MAX9164ESD [MAXIM]

3.3V Single LVDS Driver/Receiver; 3.3V单路LVDS驱动器/接收器
MAX9164ESD
型号: MAX9164ESD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

3.3V Single LVDS Driver/Receiver
3.3V单路LVDS驱动器/接收器

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管
文件: 总10页 (文件大小:237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2738; Rev 0; 1/03  
3.3V Single LVDS Driver/Receiver  
General Description  
Features  
The MAX9164 high-speed LVDS driver/receiver is  
designed specifically for low-power point-to-point appli-  
cations. The MAX9164 operates from a single 3.3V  
power supply, and is pin compatible with DS90LV019.  
The device features an independent differential driver  
and receiver.  
3.3V Operation  
35% Lower Power than DS90LV019  
200Mbps Data Signaling Rate  
1V Common-Mode Range  
100mV Receiver Sensitivity  
The MAX9164 driver output uses a current-steering  
configuration to generate a 3.1mA drive current. The  
driver accepts a single-ended input and translates it to  
LVDS signals at speeds up to 200Mbps over con-  
trolled-impedance media of approximately 100. The  
transmission media may be printed circuit board traces  
or cables. The enable logic input, DE, is used to enable  
or disable the driver.  
Flow-Through Pinout  
Receiver Output High for Open Input  
Ordering Information  
PART  
MAX9164ESD  
MAX9164EUD  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
14 SO  
The MAX9164 receiver detects a differential input as  
low as 100mV and translates it to single-ended output  
at speeds up to 200Mbps. The enable logic input, RE,  
is used to enable or disable the receiver.  
14 TSSOP  
Pin Configuration  
Inputs and outputs conform to the ANSI TIA/EIA-644  
LVDS standard. The MAX9164 is offered in 14-lead SO  
and TSSOP packages, and is specified for operation  
from -40°C to +85°C.  
TOP VIEW  
DE  
DIN  
1
2
3
4
5
6
7
14 V  
CC  
13 N.C.  
12 DO+  
11 DO-  
10 RI+  
N.C.  
ROUT  
N.C.  
N.C.  
GND  
Applications  
MAX9164  
Cell-Phone Base Stations  
Add/Drop Muxes  
Digital Cross-Connects  
DSLAMs  
Network Switches/Routers  
Backplane Interconnect  
Clock Distribution  
9
8
RI-  
RE  
SO/TSSOP  
Typical Application Circuit  
MAX9164  
MAX9164  
DO+  
RI+  
ROUT  
DIN  
100  
DO-  
RI+  
RI-  
DO+  
RE  
DE  
ROUT  
DIN  
DE  
100Ω  
RI-  
DO-  
RE  
TABLE 2. RECEIVER FUNCTION TABLE  
TABLE 1. DRIVER FUNCTION TABLE  
INPUTS  
RI+ - RI-  
L (-100mV)  
OUTPUT  
ROUT  
INPUTS  
DIN  
OUTPUTS  
DO+  
RE  
L
DE  
DO-  
H
L
L
H
H
L (0.8V)  
L
L
H(100mV)  
H
H (2.0V)  
H
L
(> -100mV and < 100mV)  
Undefined  
H
(> 0.8V and < 2.0V) Undefined Undefined  
L
H
Open  
X
H
Z
L
X
Z
Z
X: High or low  
Z: High impedance  
X: High or low  
Z: High impedance  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
3.3V Single LVDS Driver/Receiver  
ABSOLUTE MAXIMUM RATINGS  
CC  
DO+, DO-, RI+, RI- to GND...................................-0.3V to +4.0V  
DIN, ROUT, DE, RE to GND .......................-0.3V to (V + 0.3V)  
Driver Short-Circuit Current .......................................Continuous  
V
to GND...........................................................-0.3V to +4.0V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
ESD Protection  
CC  
Continuous Power Dissipation (T = +70°C)  
14-Pin SO (derate 8.3mW/°C above +70°C)................667mW  
14-Pin TSSOP (derate 9.1mW/°C above +70°C) .........727mW  
HBM (1.5k, 100pF), DO+, DO-, RI+, RI-, DE, RE, DIN,  
ROUT......................................................................> 2kV  
Lead Temperature (soldering, 10s) .................................+300°C  
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= 3.0V to 3.6V, |V | = 0.1V to 2.4V, common-mode input voltage (V ) = |V /2| to 2.4V - |V |/2, R = 1001ꢀ, T = -40°C to  
CC  
ID CM ID ID L A  
+85°C. Typical values are at V  
= 3.3V, |V | = 0.2V, V  
= 1.2V, T = +25°C, unless otherwise noted.) (Notes 1, 2)  
CM A  
CC  
ID  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SINGLE-ENDED INPUTS (DIN, DE, RE)  
Input High Voltage  
V
2.0  
0
V
V
V
IH  
CC  
Input Low Voltage  
V
0.8  
IL  
IN  
Input Current  
I
RE, DE, DIN = high or low  
-10  
-1.5  
+10  
µA  
V
Input Diode Clamp Voltage  
DRIVER OUTPUT (DO+, DO-)  
Differential Output Voltage  
V
I
= -18mA  
CLAMP  
CL  
V
Figure 1  
250  
1.0  
310  
0.02  
1.29  
0.8  
450  
25  
mV  
mV  
V
OD  
Change in Magnitude of V  
Between  
OD  
V  
Figure 1  
OD  
OS  
Complementary Output States  
Offset Voltage  
V
Figure 1  
1.7  
25  
Change in Magnitude of V Between  
OS  
Complementary Output States  
V  
Figure 1  
mV  
OS  
High-Impedance Leakage Current  
Power-Off Leakage Current  
I
I
DE = 0; DO+, DO- = V  
or 0  
CC  
-1  
-1  
+1  
+1  
µA  
µA  
OZD  
OXD  
DO+, DO- = 3.6V or 0; V  
= 0  
CC  
DO+ = 0 at DIN = V  
DO- = 0 at DIN = 0  
-3  
-3  
-10  
-10  
CC  
Output Short-Circuit Current  
Output Capacitance  
I
mA  
pF  
OSD  
Capacitance from DO+ or  
DO- to 0  
C
3.7  
DO  
RECEIVER INPUT (RI+, RI-)  
Differential Input High Threshold  
Differential Input Low Threshold  
V
100  
+10  
mV  
mV  
TH  
V
-100  
-10  
TL  
V
= 3.6V or 0;  
CC  
Input Current  
I
µA  
pF  
IN  
RI+, RI- = 2.4V or 0  
Input Capacitance  
C
RI+ or RI- to 0  
5
RI  
RECEIVER OUTPUT (ROUT)  
V
= 100mV  
ID  
Output High Voltage  
V
I
I
= -400µA  
2.9  
-20  
3.28  
V
OH  
OH  
OL  
RI+, RI- open  
Output Low Voltage  
V
I
= +2.0mA, V = -100mV  
ID  
0.025  
-28  
0.4  
-75  
V
OL  
Output Short-Circuit Current  
V
= +100mV, ROUT = 0  
mA  
OS  
ID  
2
_______________________________________________________________________________________  
3.3V Single LVDS Driver/Receiver  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.0V to 3.6V, |V | = 0.1V to 2.4V, common-mode input voltage (V ) = |V /2| to 2.4V - |V |/2, R = 1001ꢀ, T = -40°C to  
CC  
ID CM ID ID L A  
+85°C. Typical values are at V  
= 3.3V, |V | = 0.2V, V  
= 1.2V, T = +25°C, unless otherwise noted.) (Notes 1, 2)  
CM A  
CC  
ID  
PARAMETER  
SUPPLY CURRENT  
Supply Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
DE = V , RE = 0  
7.4  
7.4  
4.4  
4.4  
12.5  
12.5  
7.0  
mA  
mA  
mA  
mA  
CC  
CC  
Driver Supply Current  
Receiver Supply Current  
Disable Supply Current  
I
DE = RE = V  
CCD  
CC  
I
DE = RE = 0  
CCR  
I
DE = 0, RE = V  
7.0  
CCZ  
CC  
AC ELECTRICAL CHARACTERISTICS  
(V  
= 3.0V to 3.6V, |V | = 0.2V, V  
= 1.2V, R = 1001ꢀ, C = 10pF, T = -40°C to +85°C. Typical values are at V = 3.3V,  
CC  
CC  
ID  
CM  
L
L
A
|V | = 0.2V, V  
ID  
= 1.2V, T = +25°C, unless otherwise noted.) (Notes 3, 4, 5)  
CM  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER  
Differential High-to-Low Propagation Delay  
Differential Low-to-High Propagation Delay  
t
t
Figure 2  
Figure 2  
Figure 2  
Figure 2  
Figure 2  
Figure 3  
Figure 3  
Figure 3  
Figure 3  
2.0  
1.0  
4.4  
4.2  
0.2  
0.9  
0.8  
6.0  
5.5  
5.5  
5.0  
6.5  
7.0  
1.0  
3.0  
3.0  
8.0  
9.0  
8.0  
8.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PHLD  
PLHD  
Differential Skew | t  
Rise Time  
- t  
|
t
SKD  
PHLD PLHD  
t
0.2  
0.2  
1.5  
2.5  
4.0  
3.8  
TLHD  
THLD  
Fall Time  
t
Disable Time High to Z  
Disable Time Low to Z  
Enable Time Z to High  
Enable Time Z to Low  
RECEIVER  
t
PHZ  
t
PLZ  
PZH  
t
t
PZL  
Differential High-to-Low Propagation Delay  
Differential Low-to-High Propagation Delay  
t
t
Figure 4  
Figure 4  
Figure 4  
Figure 4  
Figure 4  
Figure 5  
Figure 5  
Figure 5  
Figure 5  
3.0  
3.0  
5.4  
5.3  
0.14  
0.8  
0.4  
5.4  
5.1  
5.4  
5.1  
7.0  
9.0  
1.5  
3.0  
3.0  
6.0  
6.0  
8.0  
8.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PHL  
PLH  
Differential Skew | t  
Rise Time  
- t  
|
T
PHL PLH  
SK  
TLH  
THL  
PHZ  
t
t
0.15  
0.15  
3.0  
Fall Time  
Disable Time High to Z  
Disable Time Low to Z  
Enable Time Z to High  
Enable Time Z to Low  
t
t
3.0  
PLZ  
t
3.0  
PZH  
t
3.0  
PZL  
Note 1: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are 100ꢀ tested  
at T = +25°C.  
A
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to device  
ground except V , V , V , V , and V  
.
TH TL ID OD  
OD  
Note 3: C includes probe and jig capacitance.  
L
Note 4: AC parameters are guaranteed by design and characterization.  
Note 5: Generator waveforms for all tests unless otherwise specified: f = 100MHz, Z = 50, t = t = 6.0ns (0 to 3V, 0ꢀ to 100ꢀ)  
0
R
F
for DE and RE, t = t = 3.0ns (0 to 3V, 0ꢀ to 100ꢀ) for DIN, and t = t = 1.0ns (|V | = 0.2V, 20ꢀ to 80ꢀ) for RI+/RI-  
R
F
R
F
ID  
inputs.  
_______________________________________________________________________________________  
3
3.3V Single LVDS Driver/Receiver  
Typical Operating Characteristics  
(V  
= 3.3V, |V | = 0.2V, V  
= 1.2V, R = 1001ꢀ, FREꢁ = 100MHz, C = 10pF, T = +25°C, unless otherwise noted.)  
CC  
ID  
CM  
L
L
A
DRIVER SUPPLY CURRENT  
vs. FREQUENCY  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE  
vs. LOAD RESISTANCE  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE  
13  
12  
11  
10  
9
313  
460  
440  
420  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
180  
160  
312  
311  
310  
309  
308  
307  
306  
8
7
0
25 50 75 100 125 150 175 200  
FREQUENCY (MHz)  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
60 70 80 90 100 110 120 130 140 150  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE ()  
DRIVER SUPPLY CURRENT (I  
vs. SUPPLY VOLTAGE  
)
SUPPLY CURRENT (I  
vs. TEMPERATURE  
)
DRIVER DIFFERENTIAL PROPAGATION  
DELAY vs. SUPPLY VOLTAGE  
CC  
CC  
7.8  
7.7  
7.6  
7.5  
7.4  
7.3  
7.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
DE = HIGH  
RE = HIGH  
DC CURRENT  
DE = HIGH  
RE = LOW  
DC CURRENT  
t
PHLD  
t
PLHD  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
-40  
-15  
10  
35  
60  
85  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
DRIVER DIFFERENTIAL PROPAGATION  
DELAY vs. TEMPERATURRE  
DRIVER DIFFERENTIAL SKEW  
vs. SUPPLY VOLTAGE  
DRIVER DIFFERENTIAL SKEW  
vs. TEMPERATURE  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
0.23  
0.22  
0.21  
0.20  
0.19  
0.18  
0.17  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
t
PHLD  
t
PLHD  
-40  
-15  
10  
35  
60  
85  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
3.3V Single LVDS Driver/Receiver  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, |V | = 0.2V, V  
= 1.2V, R = 1001ꢀ, FREꢁ = 100MHz, C = 10pF, T = +25°C, unless otherwise noted.)  
CC  
ID  
CM  
L
L
A
DRIVER TRANSITION TIME  
vs. SUPPLY VOLTAGE  
DRIVER TRANSITION TIME  
vs. TEMPERATURE  
DRIVER TRANSITION TIME  
vs. TOTAL LOAD CAPACITANCE  
1.3  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
t
TLHD  
t
TLHD  
t
THLD  
t
THLD  
t
THLD  
t
TLHD  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
-40  
-15  
10  
35  
60  
85  
10  
15  
20  
25  
30  
35  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
CAPACITANCE (pF)  
RECEIVER OUTPUT SHORT-CIRCUIT  
CURRENT vs. SUPPLY VOLTAGE  
RECEIVER OUTPUT HIGH VOLTAGE  
vs. SUPPLY VOLTAGE  
RECEIVER OUTPUT LOW VOLTAGE  
vs. SUPPLY VOLTAGE  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
40  
35  
30  
25  
20  
15  
10  
5
0.029  
0.028  
0.027  
0.026  
0.025  
0.024  
0.023  
0.022  
I
= -400µA  
LOAD  
I
= 2mA  
LOAD  
V = -100mV  
ID  
V
ID  
= +100mV  
V
= +100mV  
3.5 3.6  
ID  
0
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
RECEIVER DIFFERENTIAL PROPAGATION  
DELAY vs. SUPPLY VOLTAGE  
RECEIVER TRANSITION TIME  
vs. TOTAL LOAD CAPACITANCE  
RECEIVER DIFFERENTIAL PROPAGATION  
DELAY vs. TEMPERATURE  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6.00  
5.75  
5.50  
5.25  
5.00  
4.75  
t
PHL  
t
TLH  
t
PHL  
t
t
THL  
PLH  
t
PLH  
35  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
10  
15  
20  
25  
30  
35  
-40  
-15  
10  
60  
85  
SUPPLY VOLTAGE (V)  
CAPACITANCE (pF)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
3.3V Single LVDS Driver/Receiver  
Pin Description  
PIN  
NAME  
FUNCTION  
LVTTL/LVCMOS Driver Enable Input. The driver is enabled when DE is high. When DE is low,  
the driver outputs, DO+ and DO-, are disabled and are high impedance.  
1
DE  
2
DIN  
N.C.  
LVTTL/LVCMOS Driver Input  
No Connection. Not internally connected.  
LVTTL/LVCMOS Receiver Output  
Ground  
3, 5, 6, 13  
4
7
ROUT  
GND  
LVTTL/LVCMOS Receiver Enable Input. The receiver is enabled when RE is low. When RE is  
high, the receiver output is disabled and is high impedance.  
8
RE  
9
RI-  
RI+  
Inverting LVDS Receiver Input. RI- has an integrated pulldown to GND.  
10  
11  
12  
14  
Noninverting LVDS Receiver Input. RI+ has an integrated pullup to V  
.
CC  
DO-  
DO+  
Inverting LVDS Driver Output  
Noninverting LVDS Driver Output  
V
Power-Supply Input. Bypass V  
to GND with 0.1µF and 0.001µF ceramic capacitors.  
CC  
CC  
DO+  
R /2  
L
2.0V  
0.8V  
DIN  
V
V
OD  
OS  
R /2  
L
DO-  
Figure 1. Differential Driver DC Test Circuit  
6
_______________________________________________________________________________________  
3.3V Single LVDS Driver/Receiver  
C
C
L
L
RI+  
PULSE  
DO+  
DO-  
ROUT  
RI-  
DIN  
GENERATOR  
PULSE  
GENERATOR  
R
C
L
L
50Ω  
50Ω  
50Ω  
3V  
0V  
1.5V  
1.5V  
1.3V  
1.1V  
RI-  
DIN  
V
ID  
0V DIFF  
PLH  
V
= 1.2V  
CM  
t
t
PHLD  
PLHD  
RI+  
DO-  
DO+  
V
0V  
OD  
t
t
PHL  
V
OH  
OL  
80%  
80%  
80%  
80%  
1.5V  
20%  
1.5V  
20%  
V
V
OD  
0V (DIFFERENTIAL)  
20%  
V
ROUT  
OD  
20%  
DO+ - DO-  
t
t
THL  
TLH  
t
t
THLD  
TLHD  
Figure 2. Driver Differential Propagation Delay and Transition  
Time Test Circuit and Waveforms  
Figure 4. Receiver Propagation Delay and Transition Time Test  
Circuit and Waveforms  
RI+  
C
C
L
L
ROUT  
DO+  
DO-  
RI-  
C
L
500Ω  
R /2  
L
2.0V  
0.8V  
DIN  
V
RE  
CC  
PULSE  
R /2  
L
1.2V  
GENERATOR  
DE  
PULSE  
GENERATOR  
50Ω  
50  
V
WHEN ROUT IS LOW,  
CC  
GND WHEN ROUT IS HIGH.  
3V  
3V  
DE  
1.5V  
1.5V  
1.5V  
1.5V  
0V  
0V  
RE  
t
t
PHZ  
PZH  
t
t
PHZ  
DO- (DIN = L)  
DO+ (DIN = H)  
PZH  
V
OH  
V
OH  
ROUT  
V
- 0.5V  
OH  
50%  
1.2V  
1.2V  
50%  
50%  
50%  
GND  
t
t
PZL  
PLZ  
t
t
PZL  
V
CC  
PLZ  
V
DO- (DIN = H)  
DO+ (DIN = L)  
OL  
50%  
50%  
V
OL  
V
+ 0.5V  
OL  
ROUT  
Figure 3. Driver High-Impedance Delay Test Circuit and  
Waveforms  
Figure 5. Receiver High-Impedance Delay Test Circuit and  
Waveforms  
_______________________________________________________________________________________  
7
3.3V Single LVDS Driver/Receiver  
The differential output requires a termination resistor at  
Detailed Description  
the far end of the transmission line. This termination  
resistor should match the differential impedance of the  
output transmission line.  
The MAX9164 high-speed LVDS driver/receiver is  
designed specifically for low-power point-to-point  
applications. The MAX9164 operates from a single 3.3V  
power supply, and is pin compatible with the  
DS90LV019. The device features an independent dif-  
ferential driver and receiver.  
These termination resistors are typically 100. Min-  
imize the distance between the input termination resis-  
tor and the MAX9164 receiver input.  
The MAX9164 driver outputs use a current-steering  
configuration to generate a 3.1mA (typ) output current.  
This current-steering approach induces less ground  
bounce and no shoot-through current, enhancing noise  
margin and system speed performance. The outputs  
are short-circuit current limited. The MAX9164 output  
requires a resistive load to terminate the signal and  
complete the transmission loop. With a typical 3.1mA  
output current, the MAX9164 produces a 310mV output  
voltage when driving a bus terminated with a 100Ω  
resistor (3.1mA x 100= 310mV).  
Traces, Cables, and Connectors  
The characteristics of differential input and output con-  
nections affect the performance of the device. Use  
controlled-impedance traces, cables, and connectors  
with matched characteristic impedance.  
Ensure that noise couples as common mode by run-  
ning the traces of a differential pair close together.  
Reduce within-pair skew by matching the electrical  
length of the conductors within a differential pair.  
Excessive skew can result in a degradation of magnet-  
ic field cancellation.  
The MAX9164 receiver detects a differential input as  
low as 100mV and translates it to single-ended output.  
The device features input biasing that drives the output  
high if the inputs are left open.  
Maintain the distance between conductors within a dif-  
ferential pair to avoid discontinuities in differential  
impedance. Minimize the number of vias to further pre-  
vent impedance discontinuities.  
Power-On Reset  
The power-on reset voltage of the MAX9164 is typically  
2.2V. When the supply falls below this voltage, the  
device is disabled and the outputs (DO+, DO-, and  
ROUT) are high impedance.  
Board Layout  
For LVDS applications, a four-layer PC board with sep-  
arate power, ground, LVDS, and logic signal layers is  
recommended. Separate the LVTTL/LVCMOS and  
LVDS signals to prevent coupling.  
Applications Information  
Power-Supply Bypassing  
Chip Information  
TRANSISTOR COUNT: 901  
Bypass V  
with high-frequency, surface-mount  
CC  
ceramic 0.1µF and 0.001µF capacitors in parallel as  
close to the device as possible, with the smaller valued  
PROCESS: CMOS  
capacitor closest to V  
.
CC  
Termination  
The MAX9164 requires an external termination resistor  
at the differential input. This termination resistor should  
match the differential impedance of the input transmis-  
sion line.  
8
_______________________________________________________________________________________  
3.3V Single LVDS Driver/Receiver  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
MIN  
1.35  
0.10  
0.35  
0.19  
MAX  
1.75  
0.25  
0.49  
0.25  
0.053  
0.004  
0.014  
0.007  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
DIM  
D
MIN  
MAX  
0.197  
0.344  
0.394  
MIN  
4.80  
8.55  
9.80  
MAX  
5.00  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0 -8  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
_______________________________________________________________________________________  
9
3.3V Single LVDS Driver/Receiver  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
10 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9164ESD+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDSO14, 0.150 INCH, MS-012AB, SOIC-14
MAXIM

MAX9164ESD-T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDSO14, 0.150 INCH, MS-012AB, SOIC-14
MAXIM

MAX9164EUD

3.3V Single LVDS Driver/Receiver
MAXIM

MAX9164EUD+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDSO14, 4.40 MM, MO-153AB-1, TSSOP-14
MAXIM

MAX9164EUD-T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDSO14, 4.40 MM, MO-153AB-1, TSSOP-14
MAXIM

MAX9169

4-Port LVDS and LVTTL-to-LVDS Repeaters
MAXIM

MAX9169-MAX9170

4-Port LVDS and LVTTL-to-LVDS Repeaters
MAXIM

MAX9169ESE

4-Port LVDS and LVTTL-to-LVDS Repeaters
MAXIM

MAX9169ESE+

暂无描述
MAXIM

MAX9169ESE+T

Line Transceiver
MAXIM

MAX9169ESE-T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, CMOS, PDSO16, SOIC-16
MAXIM

MAX9169EUE

4-Port LVDS and LVTTL-to-LVDS Repeaters
MAXIM