MAX920EUK-T [MAXIM]

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference; SOT23封装, 1.8V ,纳安级功耗,超摆幅比较器,带/不带基准
MAX920EUK-T
型号: MAX920EUK-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

SOT23, 1.8V, Nanopower, Beyond-the-Rails Comparators With/Without Reference
SOT23封装, 1.8V ,纳安级功耗,超摆幅比较器,带/不带基准

比较器
文件: 总12页 (文件大小:152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1512; Rev 0; 7/99  
SOT23, 1.8V, Nanopower, Beyond-the-Rails  
Comparators With/Without Reference  
17–MAX920  
General Description  
Features  
The MAX917–MAX920 nanopower comparators in  
space-saving SOT23 packages feature Beyond-the-  
Rails™ inputs and are guaranteed to operate down to  
+1.8V. The MAX917/MAX918 feature an on-board  
1.245V 1.5ꢀ reference and draw an ultra-low supply  
current of only 750nA, while the MAX919/MAX920 (with-  
out reference) require just 380nA of supply current.  
These features make the MAX917–MAX920 family of  
comparators ideal for all 2-cell battery applications,  
including monitoring/management.  
Ultra-Low Supply Current  
380nA per Comparator (MAX919/MAX920)  
750nA per Comparator with Reference  
(MAX917/MAX918)  
Guaranteed to Operate Down to +1.8V  
Internal 1.245V ±1.5% Reference  
(MAX917/MAX918)  
Input Voltage Range Extends 200mV  
Beyond-the-Rails  
The unique design of the output stage limits supply-cur-  
rent surges while switching, virtually eliminating the  
supply glitches typical of many other comparators. This  
design also minimizes overall power consumption  
under dynamic conditions. The MAX917/MAX919 have  
a push/pull output stage that sinks and sources current.  
Large internal output drivers allow Rail-to-Rail® output  
swing with loads up to 8mA. The MAX918/MAX920  
have an open-drain output stage that makes them suit-  
able for mixed-voltage system design.  
CMOS Push/Pull Output with ±8mA Drive  
Capability (MAX917/MAX919)  
Open-Drain Output Versions Available  
(MAX918/MAX920)  
Crowbar-Current-Free Switching  
Internal Hysteresis for Clean Switching  
No Phase Reversal for Overdriven Inputs  
Space-Saving SOT23 Package  
Applications  
2-Cell Battery Monitoring/Management  
Ordering Information  
TEMP.  
RANGE  
PIN-  
SOT  
Ultra-Low-Power Systems  
Mobile Communications  
PART  
PACKAGE TOP MARK  
MAX917EUK-T -40°C to +85°C 5 SOT23-5  
MAX917ESA -40°C to +85°C 8 SO  
MAX918EUK-T -40°C to +85°C 5 SOT23-5  
MAX918ESA -40°C to +85°C 8 SO  
MAX919EUK-T -40°C to +85°C 5 SOT23-5  
MAX919ESA -40°C to +85°C 8 SO  
MAX920EUK-T -40°C to +85°C 5 SOT23-5  
ADIQ  
Notebooks and PDAs  
Threshold Detectors/Discriminators  
Sensing at Ground or Supply Line  
Telemetry and Remote Systems  
Medical Instruments  
ADIR  
ADIS  
ADIT  
MAX920ESA  
-40°C to +85°C 8 SO  
Selector Guide  
Pin Configurations  
SUPPLY  
CURRENT  
(nA)  
INTERNAL  
REFERENCE  
OUTPUT  
TYPE  
TOP VIEW  
PART  
MAX917  
MAX918  
MAX919  
MAX920  
Yes  
Yes  
No  
Push/Pull  
Open-Drain  
Push/Pull  
750  
750  
380  
380  
1
2
3
5
4
V
OUT  
CC  
MAX917  
MAX918  
MAX919  
MAX920  
V
EE  
No  
Open-Drain  
IN+  
IN- (REF)  
Typical Application Circuit appears at end of data sheet.  
Beyond-the-Rails is a trademark of Maxim Integrated Products.  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
SOT23-5  
( ) ARE FOR MAX917/MAX918.  
Pin Configurations continue at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
SOT23, 1.8V, Nanopower, Beyond-the-Rails  
Comparators With/Without Reference  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V  
to V )..................................................+6V  
Continuous Power Dissipation (T = +70°C)  
A
CC  
EE  
Voltage Inputs (IN+, IN-, REF) .........(V - 0.3V) to (V  
Output Voltage  
+ 0.3V)  
5-Pin SOT23 (derate 7.31mW/°C above +70°C).........571mW  
8-Pin SO (derate 5.88mW/°C above +70°C)...............471mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
EE  
CC  
MAX917/MAX919........................(V - 0.3V) to (V  
+ 0.3V)  
EE  
CC  
MAX918/MAX920......................................(V - 0.3V) to +6V  
EE  
Output Current.................................................................. 50mA  
Output Short-Circuit Duration .............................................10sec  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
17–MAX920  
ELECTRICAL CHARACTERISTICS—MAX917/MAX918  
(V  
CC  
= +5V, V = 0, V  
= V  
, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
EE  
IN+  
REF  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
V
CC  
Inferred from the PSRR test  
1.8  
5.5  
V
V
= 1.8V  
0.75  
0.80  
CC  
1.30  
1.60  
Supply Current  
I
T
T
= +25°C  
µA  
CC  
A
V
CC  
= 5V  
= T  
to T  
A
MIN  
MAX  
IN+ Voltage Range  
Input Offset Voltage  
Input-Referred Hysteresis  
Input Bias Current  
V
Inferred from the output swing test  
V
EE  
- 0.2  
V
CC  
+ 0.2  
5
V
mV  
mV  
nA  
IN+  
T
= +25°C  
1
A
A
V
(Note 2)  
OS  
HB  
T
= T  
to T  
10  
MIN  
MAX  
V
(Note 3)  
4
T
T
= +25°C  
0.15  
1
A
I
B
= T  
to T  
2
A
MIN  
MAX  
Power-Supply Rejection Ratio  
PSRR  
V
CC  
= 1.8V to 5.5V  
0.1  
1
mV/V  
T
T
T
T
T
T
T
T
= +25°C  
190  
400  
500  
200  
300  
400  
500  
200  
300  
1
A
A
A
A
A
A
A
A
MAX917 only, V  
=
CC  
5V, I  
= 8mA  
SOURCE  
= T  
to T  
MIN  
MAX  
MAX  
MAX  
MAX  
Output Voltage Swing High  
V
- V  
mV  
CC  
OH  
= +25°C  
= T to T  
55  
190  
55  
MAX917 only, V  
=
CC  
1.8V, I  
= 1mA  
SOURCE  
MIN  
= +25°C  
= T to T  
V
CC  
= 5V,  
I
= 8mA  
SINK  
MIN  
Output Voltage Swing Low  
Output Leakage Current  
Output Short-Circuit Current  
V
mV  
µA  
OL  
= +25°C  
= T to T  
V
CC  
= 1.8V,  
I
= 1mA  
SINK  
MIN  
I
MAX918 only, V = 5.5V  
0.001  
95  
LEAK  
O
V
= 5V  
CC  
CC  
CC  
CC  
Sourcing, V = V  
O
EE  
V
V
V
= 1.8V  
= 5V  
8
I
mA  
SC  
98  
Sinking, V = V  
O
CC  
= 1.8V  
10  
2
_______________________________________________________________________________________  
SOT23, 1.8V, Nanopower, Beyond-the-Rails  
Comparators With/Without Reference  
17–MAX920  
ELECTRICAL CHARACTERISTICS—MAX917/MAX918 (continued)  
(V  
CC  
= +5V, V = 0, V  
= V  
, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
EE  
IN+  
REF  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
17  
MAX  
UNITS  
V
V
= 1.8V  
= 5V  
CC  
High-to-Low Propagation Delay  
(Note 4)  
t
µs  
PD-  
22  
CC  
V
V
= 1.8V  
= 5V  
30  
CC  
MAX917 only  
95  
CC  
Low-to-High Propagation Delay  
(Note 4)  
V
R
= 1.8V,  
CC  
t
35  
µs  
PD+  
= 100kΩ  
PULL-UP  
MAX918 only  
V
CC  
= 5V,  
120  
R
= 100kΩ  
PULL-UP  
Rise Time  
t
MAX917 only, C = 15pF  
6
4
µs  
µs  
RISE  
L
Fall Time  
t
C = 15pF  
L
FALL  
Power-Up Time  
t
1.2  
1.245  
ms  
ON  
T = +25°C  
1.227  
1.200  
1.263  
1.290  
A
Reference Voltage  
V
V
REF  
T = T  
to T  
MAX  
A
MIN  
Reference Voltage Temperature  
Coefficient  
TC  
95  
ppm/°C  
REF  
BW = 10Hz to 100kHz  
600  
215  
Reference Output  
Voltage Noise  
e
n
µV  
RMS  
BW = 10Hz to 100kHz, C  
= 1nF  
REF  
V  
V  
/
/
REF  
CC  
Reference Line Regulation  
Reference Load Regulation  
1.8V V  
5.5V  
0.1  
0.2  
mV/V  
CC  
V  
REF  
I  
OUT  
= 10nA  
mV/nA  
I  
OUT  
ELECTRICAL CHARACTERISTICS—MAX919/MAX920  
(V  
CC  
= +5V, V = 0, V  
= 0, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
EE  
CM  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
Supply Current  
V
Inferred from the PSRR test  
1.8  
5.5  
V
CC  
V
CC  
= 1.8V  
0.38  
0.45  
I
T
T
= +25°C  
0.80  
1.2  
µA  
V
CC  
A
V
CC  
= 5V  
= T  
to T  
A
MIN  
MAX  
Input Common-Mode  
Voltage Range  
V
CM  
Inferred from the CMRR test  
V
- 0.2  
V + 0.2  
CC  
EE  
T
T
= +25°C  
1
5
A
-0.2V V  
(V + 0.2V) (Note 2)  
CC  
CM  
Input Offset Voltage  
Input-Referred Hysteresis  
Input Bias Current  
V
V
mV  
mV  
nA  
OS  
= T  
to T  
10  
A
MIN  
MAX  
-0.2V V  
(V  
+ 0.2V) (Note 3)  
4
HB  
CM  
CC  
T
A
T
A
= +25°C  
0.15  
1
2
I
B
= T  
to T  
MAX  
MIN  
_______________________________________________________________________________________  
3
SOT23, 1.8V, Nanopower, Beyond-the-Rails  
Comparators With/Without Reference  
ELECTRICAL CHARACTERISTICS—MAX919/MAX920 (continued)  
(V  
CC  
= +5V, V = 0, V  
= 0, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
EE  
CM  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
10  
MAX  
UNITS  
pA  
Input Offset Current  
I
OS  
Power-Supply Rejection Ratio  
PSRR  
V
= 1.8V to 5.5V  
0.1  
0.5  
190  
1
mV/V  
mV/V  
CC  
Common-Mode Rejection Ratio  
CMRR  
(V - 0.2V) V  
(V + 0.2V)  
CC  
3
EE  
CM  
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
= +25°C  
400  
500  
200  
300  
400  
500  
200  
300  
1
MAX919 only, V  
5V, I  
=
CC  
= 8mA  
SOURCE  
= T  
to T  
MIN  
MAX  
MAX  
MAX  
MAX  
Output Voltage Swing High,  
V
- V  
OH  
mV  
CC  
= +25°C  
= T to T  
55  
190  
55  
MAX919 only, V  
1.8V, I  
=
CC  
= 1mA  
SOURCE  
MIN  
= +25°C  
= T to T  
V
CC  
= 5V,  
= 8mA  
I
SINK  
17–MAX920  
MIN  
Output Voltage Swing Low  
Output Leakage Current  
Output Short-Circuit Current  
V
OL  
mV  
µA  
= +25°C  
= T to T  
V
CC  
= 1.8V,  
= 1mA  
I
SINK  
MIN  
I
MAX920 only, V = 5.5V  
0.001  
95  
8
O
LEAK  
V
= 5V  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
Sourcing, V = V  
O
EE  
V
V
V
V
V
V
V
= 1.8V  
= 5V  
I
mA  
SC  
98  
10  
17  
22  
30  
95  
Sinking, V = V  
O
CC  
= 1.8V  
= 1.8V  
= 5V  
High-to-Low Propagation Delay  
(Note 4)  
t
µs  
µs  
PD-  
= 1.8V  
= 5V  
MAX919 only  
MAX920 only  
Low-to-High Propagation Delay  
(Note 4)  
V
CC  
= 1.8V  
t
35  
PD+  
R
= 100kΩ  
PULL-UP  
V
CC  
= 5V  
120  
R
= 100kΩ  
PULL-UP  
Rise Time  
t
MAX919 only, C = 15pF  
6
4
µs  
µs  
RISE  
L
Fall Time  
t
C = 15pF  
L
FALL  
Power-Up Time  
t
1.2  
ms  
ON  
Note 1: All specifications are 100ꢀ tested at T = +25°C. Specification limits over temperature (T = T  
to T ) are guaranteed  
MAX  
A
A
MIN  
by design, not production tested.  
Note 2: V is defined as the center of the hysteresis band at the input.  
OS  
Note 3: The hysteresis-related trip points are defined as the edges of the hysteresis band, measured with respect to the center of  
the band (i.e., V ) (Figure 2).  
OS  
Note 4: Specified with an input overdrive (V  
) of 100mV, and load capacitance of C = 15pF. V  
is defined  
OVERDRIVE  
L
OVERDRIVE  
above and beyond the offset voltage and hysteresis of the comparator input. For the MAX917/MAX918, reference voltage  
error should also be added.  
4
_______________________________________________________________________________________  
SOT23, 1.8V, Nanopower, Beyond-the-Rails  
Comparators With/Without Reference  
17–MAX920  
Typical Operating Characteristics  
(V  
CC  
= +5V, V = 0, C = 15pF, V = 100mV, T = +25°C, unless otherwise noted.)  
OVERDRIVE A  
EE  
L
MAX917/MAX918  
SUPPLY CURRENT vs.  
MAX919/MAX920  
SUPPLY CURRENT vs.  
MAX917/MAX918  
SUPPLY VOLTAGE AND TEMPERATURE  
SUPPLY VOLTAGE AND TEMPERATURE  
600  
SUPPLY CURRENT vs. TEMPERATURE  
900  
850  
800  
750  
700  
650  
600  
550  
500  
900  
800  
700  
600  
500  
T
= +85°C  
= +25°C  
= -40°C  
A
V
CC  
= 5V  
T
T
= +85°C  
= +25°C  
A
A
500  
400  
300  
T
A
V
CC  
= 3V  
V
CC  
= 1.8V  
T
A
T
A
= -40°C  
-40  
-15  
10  
35  
60  
85  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
MAX919/MAX920  
SUPPLY CURRENT vs.  
OUTPUT TRANSITION FREQUENCY  
MAX917/MAX918  
SUPPLY CURRENT vs.  
OUTPUT TRANSITION FREQUENCY  
MAX919/MAX920  
SUPPLY CURRENT vs. TEMPERATURE  
550  
500  
450  
400  
350  
300  
14  
12  
10  
8
16  
14  
V
= 5V  
V
= 5V  
CC  
CC  
12  
10  
8
V
= 5V  
= 3V  
CC  
V
= 3V  
CC  
V
CC  
6
V
= 3V  
CC  
V
= 1.8V  
CC  
6
4
4
2
2
V
= 1.8V  
CC  
V
= 1.8V  
CC  
0
0
-40  
-15  
10  
35  
60  
85  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
OUTPUT TRANSITION FREQUENCY (Hz)  
OUTPUT TRANSITION FREQUENCY (Hz)  
OUTPUT VOLTAGE LOW vs. SINK CURRENT  
AND TEMPERATURE  
MAX917/MAX919  
OUTPUT VOLTAGE HIGH vs. SOURCE CURRENT  
OUTPUT VOLTAGE LOW vs. SINK CURRENT  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
500  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 1.8V  
CC  
V
CC  
= 1.8V  
V
= 3V  
CC  
V
= 5V  
CC  
V
= 3V  
CC  
V
CC  
= 5V  
400  
300  
200  
100  
0
T
= +25°C  
A
T
= +85°C  
A
T
A
= -40°C  
0
0
2
4
6
8
10 12 14 16  
0
2
4
6
8
10 12 14 16  
0
2
4
6
8
10 12 14 16 18 20  
SINK CURRENT (mA)  
SINK CURRENT (mA)  
SOURCE CURRENT (mA)  
_______________________________________________________________________________________  
5
SOT23, 1.8V, Nanopower, Beyond-the-Rails  
Comparators With/Without Reference  
Typical Operating Characteristics (continued)  
(V  
CC  
= +5V, V = 0, C = 15pF, V  
= 100mV, T = +25°C, unless otherwise noted.)  
A
OVERDRIVE  
EE  
L
MAX917/MAX919  
SHORT-CIRCUIT SOURCE CURRENT  
vs. TEMPERATURE  
MAX917/MAX919  
OUTPUT VOLTAGE HIGH vs.  
SOURCE CURRENT AND TEMPERATURE  
SHORT-CIRCUIT SINK CURRENT  
vs. TEMPERATURE  
140  
120  
100  
80  
120  
0.6  
V
CC  
= 5V  
100  
80  
60  
40  
20  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 5V  
= 3V  
CC  
T
A
= +25°C  
T
= +85°C  
A
60  
V
= 3V  
CC  
V
CC  
40  
T
A
= -40°C  
20  
V
= 1.8V  
35  
CC  
17–MAX920  
V
= 1.8V  
CC  
0
-40  
-15  
10  
60  
85  
-40  
-15  
10  
35  
60  
85  
0
2
4
6
8
10 12 14 16 18 20  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SOURCE CURRENT (mA)  
MAX917/MAX918  
REFERENCE VOLTAGE vs. TEMPERATURE  
HYSTERESIS VOLTAGE vs. TEMPERATURE  
5.0  
OFFSET VOLTAGE vs. TEMPERATURE  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
1.246  
1.245  
1.244  
1.243  
1.242  
1.241  
V
= 5V  
= 3V  
CC  
V
CC  
= 1.8V  
4.5  
4.0  
3.5  
3.0  
2.5  
V
CC  
V
CC  
= 3V  
V
= 1.8V  
CC  
V
CC  
= 5V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX917/MAX918  
REFERENCE VOLTAGE vs.  
SUPPLY VOLTAGE  
MAX917/MAX918  
REFERENCE OUTPUT VOLTAGE vs.  
REFERENCE SOURCE CURRENT  
MAX917/MAX918  
REFERENCE OUTPUT VOLTAGE vs.  
REFERENCE SINK CURRENT  
1.2440  
1.2435  
1.2430  
1.2425  
1.2420  
1.2415  
1.2460  
1.2460  
1.2455  
1.2450  
1.2445  
1.2440  
1.2435  
V
= 1.8V  
CC  
V
= 3V  
CC  
1.2455  
1.2450  
1.2445  
1.2440  
V
= 1.8V  
CC  
V
= 3V  
CC  
V
= 5V  
CC  
V
CC  
= 5V  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
SUPPLY VOLTAGE (V)  
SOURCE CURRENT (nA)  
SINK CURRENT (nA)  
6
_______________________________________________________________________________________  
SOT23, 1.8V, Nanopower, Beyond-the-Rails  
Comparators With/Without Reference  
17–MAX920  
Typical Operating Characteristics (continued)  
(V  
CC  
= +5V, V = 0, C = 15pF, V  
= 100mV, T = +25°C, unless otherwise noted.)  
A
OVERDRIVE  
EE  
L
MAX917/MAX919  
PROPAGATION DELAY (t  
vs. TEMPERATURE  
PROPAGATION DELAY (t  
vs. TEMPERATURE  
)
PROPAGATION DELAY (t  
vs. CAPACITIVE LOAD  
)
PD-  
PD-  
)
PD+  
140  
120  
30  
120  
100  
80  
60  
40  
20  
0
V
= 1.8V  
CC  
25  
20  
15  
10  
5
V
CC  
= 1.8V  
V
CC  
= 5V  
100  
80  
V
= 5V  
CC  
V
CC  
= 3V  
V
CC  
= 3V  
V
= 3V  
V
CC  
60  
40  
20  
0
= 1.8V  
CC  
V
CC  
= 5V  
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
0.01  
0.1  
1
10  
100  
1000  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CAPACITIVE LOAD (nF)  
MAX917/MAX919  
PROPAGATION DELAY (t  
vs. CAPACITIVE LOAD  
MAX917/MAX919  
PROPAGATION DELAY (t  
vs. INPUT OVERDRIVE  
)
PROPAGATION DELAY (t  
vs. INPUT OVERDRIVE  
)
PD+  
PD-  
)
PD+  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
70  
60  
50  
40  
30  
20  
10  
V
= 3V  
CC  
V
CC  
= 1.8V  
V
= 5V  
CC  
CC  
V
= 5V  
CC  
V
V
= 3V  
60  
V
V
= 3V  
CC  
V
CC  
= 5V  
= 1.8V  
40  
CC  
= 1.8V  
CC  
20  
0
0.01  
0
10  
20  
30  
40  
50  
0.1  
1
10  
100  
1000  
0
10  
20  
30  
40  
50  
INPUT OVERDRIVE (mV)  
CAPACITIVE LOAD (nF)  
INPUT OVERDRIVE (mV)  
MAX918/MAX920  
MAX918/MAX920  
PROPAGATION DELAY (t ) vs.  
PROPAGATION DELAY (t ) vs.  
PD+  
PD-  
PROPAGATION DELAY (t  
)
PD-  
PULL-UP RESISTANCE  
PULL-UP RESISTANCE  
(V = 5V)  
CC  
MAX917-920 toc27  
20  
19  
18  
17  
16  
15  
14  
250  
200  
150  
100  
50  
V
= 1.8V  
CC  
IN+  
(50mV/  
div)  
V
= 3V  
= 5V  
CC  
V
= 5V  
= 3V  
CC  
OUT  
(2V/div)  
V
CC  
V
CC  
V
= 1.8V  
CC  
0
10  
100  
1k  
10k  
10  
100  
1k  
10k  
20µs/div  
R
(k)  
R
(k)  
PULL-UP  
PULL-UP  
_______________________________________________________________________________________  
7
SOT23, 1.8V, Nanopower, Beyond-the-Rails  
Comparators With/Without Reference  
Typical Operating Characteristics (continued)  
(V  
CC  
= +5V, V = 0, C = 15pF, V  
= 100mV, T = +25°C, unless otherwise noted.)  
OVERDRIVE  
A
EE  
L
MAX917/MAX919  
PROPAGATION DELAY (t  
MAX917/MAX919  
PROPAGATION DELAY (t  
PROPAGATION DELAY (t  
)
)
)
PD+  
PD-  
PD+  
(V = 3V)  
(V = 5V)  
CC  
(V = 3V)  
CC  
CC  
MAX917-920 toc29  
MAX917-920 toc28  
MAX917-920 toc30  
IN+  
(50mV/  
div)  
IN+  
(50mV/  
div)  
IN+  
(50mV/  
div)  
OUT  
(2V/div)  
OUT  
OUT  
(2V/div)  
(2V/div)  
17–MAX920  
20µs/div  
20µs/div  
20µs/div  
MAX917/MAX919  
PROPAGATION DELAY (t  
PROPAGATION DELAY (t  
)
)
MAX917/MAX919  
10kHz RESPONSE (V = 1.8V)  
CC  
MAX917-920 toc33  
PD-  
PD+  
(V = 1.8V)  
(V = 1.8V)  
CC  
CC  
MAX917-920 toc31  
MAX917-920 toc32  
IN+  
(50mV/  
div)  
IN+  
(50mV/  
div)  
IN+  
(50mV/  
div)  
OUT  
(1V/div)  
OUT  
(1V/div)  
OUT  
(1V/div)  
20µs/div  
20µs/div  
20µs/div  
MAX917/MAX919  
1kHz RESPONSE (V = 5V)  
CC  
POWER-UP/DOWN RESPONSE  
MAX917-920 toc34  
MAX917-920 toc35  
IN+  
(50mV/div)  
V
CC  
(2V/div)  
OUT  
(2V/div)  
OUT  
(2V/div)  
200µs/div  
40µs/div  
8
_______________________________________________________________________________________  
SOT23, 1.8V, Nanopower, Beyond-the-Rails  
Comparators With/Without Reference  
17–MAX920  
Functional Diagrams  
V
CC  
V
CC  
IN+  
IN+  
IN-  
OUT  
OUT  
REF  
MAX919  
MAX920  
MAX917  
MAX918  
REF  
1.245V  
V
EE  
V
EE  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX917/MAX918  
MAX919/MAX920  
SOT23-5  
SO  
SOT23-5  
SO  
1
2
6
1
2
6
OUT  
Comparator Output  
4
4
V
EE  
Negative Supply Voltage  
3
3
3
3
2
IN+  
IN-  
Comparator Noninverting Input  
Comparator Inverting Input  
4
4
2
5
REF  
1.245V Reference Output and Comparator Inverting Input  
Positive Supply Voltage  
5
7
7
V
CC  
1, 5, 8  
1, 5, 8  
N.C.  
No Connection. Not internally connected.  
output stage that sinks as well as sources current. The  
MAX918/MAX920 have an open-drain output stage that  
Detailed Description  
The MAX917/MAX918 feature an on-board 1.245V  
1.5ꢀ reference, yet draw an ultra-low supply current  
of 750nA. The MAX919/MAX920 (without reference)  
consume just 380nA of supply current. All four devices  
are guaranteed to operate down to +1.8V. Their com-  
mon-mode input voltage range extends 200mV  
beyond-the-rails. Internal hysteresis ensures clean out-  
put switching, even with slow-moving input signals.  
Large internal output drivers allow rail-to-rail output  
swing with up to 8mA loads.  
can be pulled beyond V  
to an absolute maximum of  
CC  
6V above V . These open-drain versions are ideal for  
EE  
implementing wire-Or output logic functions.  
Input Stage Circuitry  
The input common-mode voltage range extends from  
V
EE  
- 0.2V to V  
+ 0.2V. These comparators operate  
CC  
at any differential input voltage within these limits. Input  
bias current is typically 0.15nA if the input voltage is  
between the supply rails. Comparator inputs are pro-  
tected from overvoltage by internal ESD protection  
diodes connected to the supply rails. As the input volt-  
age exceeds the supply rails, these ESD protection  
diodes become forward biased and begin to conduct.  
The output stage employs a unique design that mini-  
mizes supply-current surges while switching, virtually  
eliminating the supply glitches typical of many other  
comparators. The MAX917/MAX919 have a push/pull  
_______________________________________________________________________________________  
9
SOT23, 1.8V, Nanopower, Beyond-the-Rails  
Comparators With/Without Reference  
Output Stage Circuitry  
V
CC  
The MAX917–MAX920 contain a unique break-before-  
make output stage capable of rail-to-rail operation with  
up to 8mA loads. Many comparators consume orders  
of magnitude more current during switching than dur-  
ing steady-state operation. However, with this family of  
comparators, the supply-current change during an out-  
put transition is extremely small. In the Typical Oper-  
ating Characteristics, the Supply Current vs. Output  
Transition Frequency graphs show the minimal supply-  
current increase as the output switching frequency  
approaches 1kHz. This characteristic reduces the need  
for power-supply filter capacitors to reduce glitches  
created by comparator switching currents. In battery-  
powered applications, this characteristic results in a  
substantial increase in battery life.  
120nA  
REF  
V
EE  
Figure 1. MAX917/MAX918 Voltage Reference Output  
Equivalent Circuit  
17–MAX920  
Reference (MAX917/MAX918)  
Internal Hysteresis  
The internal reference in the MAX917/MAX918 has an  
Many comparators oscillate in the linear region of oper-  
ation because of noise or undesired parasitic feed-  
back. This tends to occur when the voltage on one  
input is equal or very close to the voltage on the other  
input. The MAX917–MAX920 have internal hysteresis to  
counter parasitic effects and noise.  
output voltage of +1.245V with respect to V . Its typi-  
EE  
cal temperature coefficient is 95ppm/°C over the full  
-40°C to +85°C temperature range. The reference is a  
PNP emitter-follower driven by a 120nA current source  
(Figure 1). The output impedance of the voltage refer-  
ence is typically 200k, preventing the reference from  
driving large loads. The reference can be bypassed  
with a low-leakage capacitor. The reference is stable  
for any capacitive load. For applications requiring a  
lower output impedance, buffer the reference with a  
low-input-leakage op amp, such as the MAX406.  
The hysteresis in a comparator creates two trip points:  
one for the rising input voltage (V  
) and one for the  
THR  
falling input voltage (V  
) (Figure 2). The difference  
THF  
between the trip points is the hysteresis (V ). When  
HB  
the comparator’s input voltages are equal, the hystere-  
sis effectively causes one comparator input to move  
quickly past the other, thus taking the input out of the  
region where oscillation occurs. Figure 2 illustrates the  
case in which IN- has a fixed voltage applied, and IN+  
is varied. If the inputs were reversed, the figure would  
be the same, except with an inverted output.  
Applications Information  
Low-Voltage, Low-Power Operation  
The MAX917–MAX920 are ideally suited for use with most  
battery-powered systems. Table 1 lists a variety of battery  
types, capacities, and approximate operating times for  
the MAX917–MAX920, assuming nominal conditions.  
Table 1. Battery Applications Using MAX917–MAX920  
CAPACITY,  
AA SIZE  
(mA-h)  
MAX917/MAX918  
OPERATING TIME  
(hr)  
MAX919/MAX920  
OPERATING TIME  
(hr)  
BATTERY  
TYPE  
V
V
FRESH  
(V)  
END-OF-LIFE  
(V)  
RECHARGEABLE  
Alkaline  
(2 Cells)  
6
6
No  
Yes  
Yes  
3.0  
2.4  
3.5  
1.8  
1.8  
2.7  
2000  
750  
2.5 x 10  
5 x 10  
Nickel-Cadmium  
(2 Cells)  
6
937,500  
1.875 x 10  
Lithium-Ion  
(1 Cell)  
6
6
1000  
1.25 x 10  
2.5 x 10  
Nickel-Metal-  
Hydride  
(2 Cells)  
6
6
Yes  
2.4  
1.8  
1000  
1.25 x 10  
2.5 x 10  
10 ______________________________________________________________________________________  
SOT23, 1.8V, Nanopower, Beyond-the-Rails  
Comparators With/Without Reference  
17–MAX920  
V
CC  
THRESHOLDS  
R3  
IN+  
IN-  
V
V
THR  
R1  
V
IN  
HYSTERESIS  
BAND  
V
CC  
V
OUT  
HB  
R2  
V
THF  
EE  
MAX917  
MAX919  
V
REF  
OUT  
Figure 3. MAX917/MAX919 Additional Hysteresis  
Figure 2. Threshold Hysteresis Band  
R2 = 1/[3.0V/(1.2V · 12k) - (1 / 12k) -  
(1/1.2M)] = 8.05kΩ  
Additional Hysteresis (MAX917/MAX919)  
The MAX917/MAX919 have a 4mV internal hysteresis  
band (V ). Additional hysteresis can be generated  
HB  
For this example, choose an 8.2kstandard value.  
with three resistors using positive feedback (Figure 3).  
Unfortunately, this method also slows hysteresis re-  
sponse time. Use the following procedure to calculate  
resistor values.  
6) Verify the trip voltages and hysteresis as follows:  
V
IN  
rising: V  
= V  
· R1 [(1 / R1) + (1 / R2)  
THR  
+ (1 / R3)]  
REF  
1) Select R3. Leakage current at IN is under 2nA, so  
the current through R3 should be at least 0.2µA to  
minimize errors caused by leakage current. The cur-  
V
IN  
falling: V = V  
- (R1 · V / R3)  
CC  
THF  
THR  
Hysteresis = V  
- V  
THF  
THR  
rent through R3 at the trip point is (V  
- V )/R3.  
OUT  
REF  
Considering the two possible output states in solving  
for R3 yields two formulas: R3 = V /I or R3 =  
Additional Hysteresis (MAX918/MAX920)  
The MAX918/MAX920 have a 4mV internal hysteresis  
band. They have open-drain outputs and require an  
external pull-up resistor (Figure 4). Additional hystere-  
sis can be generated using positive feedback, but the  
formulas differ slightly from those of the MAX917/  
MAX919. Use the following procedure to calculate  
resistor values.  
REF R3  
(V  
- V  
)/I . Use the smaller of the two resulting  
CC  
REF R3  
resistor values. For example, when using the  
MAX917 (V  
= 1.245V) and V  
= 5V, and if we  
REF  
CC  
choose I = 1µA, then the two resistor values are  
R3  
1.2Mand 3.8M. Choose a 1.2Mstandard value  
for R3.  
2) Choose the hysteresis band required (V ). For this  
HB  
1) Select R3 according to the formulas R3 = V  
/ 1µA  
REF  
example, choose 50mV.  
or R3 = (V  
- V  
)/1µA - R4. Use the smaller of  
CC  
REF  
the two resulting resistor values.  
3) Calculate R1 according to the following equation:  
2) Choose the hysteresis band required (V ).  
HB  
R1 = R3 (V / V  
)
CC  
HB  
3) Calculate R1 according to the following equation:  
For this example, insert the values  
R1 = 1.2M(50mV/5V) = 12kΩ  
4) Choose the trip point for V rising (V  
R1 = (R3 + R4) (V /V  
)
HB CC  
4) Choose the trip point for V rising (V  
) (V  
is  
IN  
THR  
THF  
) such that  
THR  
IN  
the trip point for V falling). This is the threshold  
IN  
V
V
> V  
· (R1 + R3)/R3 (V  
is the trip point for  
THR  
REF  
THF  
voltage at which the comparator switches its output  
from low to high as V rises above the trip point.  
IN  
falling). This is the threshold voltage at which the  
IN  
comparator switches its output from low to high as  
5) Calculate R2 as follows:  
V
rises above the trip point. For this example,  
IN  
choose 3V.  
1
1
R2 = 1/ V  
/ V  
R1 −  
THR REF  
(
)
5) Calculate R2 as follows:  
R1 R3  
R2 = 1/[V /(V  
THR REF  
· R1) - (1 / R1) - (1 / R3)]  
______________________________________________________________________________________ 11  
SOT23, 1.8V, Nanopower, Beyond-the-Rails  
Comparators With/Without Reference  
6) Verify the trip voltages and hysteresis as follows:  
Zero-Crossing Detector  
Figure 5 shows a zero-crossing detector application.  
The MAX919’s inverting input is connected to ground,  
and its noninverting input is connected to a 100mVp-p  
signal source. As the signal at the noninverting input  
crosses 0V, the comparator’s output changes state.  
1
1
1
V
rising:V  
= V  
REF  
R1  
+
+
IN  
THR  
R1 R2 R3  
V
falling:V  
=
IN  
THF  
1
1
1
R1  
V
R1  
+
+
V
CC  
REF  
Logic-Level Translator  
The Typical Application Circuit shows an application  
that converts 5V logic to 3V logic levels. The MAX920 is  
powered by the +5V supply voltage, and the pull-up  
resistor for the MAX920’s open-drain output is connect-  
ed to the +3V supply voltage. This configuration allows  
the full 5V logic swing without creating overvoltage on  
the 3V logic inputs. For 3V to 5V logic-level translations,  
R1 R2 R3 +R4  
Hysteresis = V - V  
R3 +R4  
THR  
THF  
Board Layout and Bypassing  
Power-supply bypass capacitors are not typically  
needed, but use 100nF bypass capacitors close to the  
device’s supply pins when supply impedance is high,  
supply leads are long, or excessive noise is expected  
on the supply lines. Minimize signal trace lengths to  
reduce stray capacitance. A ground plane and sur-  
face-mount components are recommended.  
simply connect the +3V supply voltage to V  
+5V supply voltage to the pull-up resistor.  
and the  
CC  
17–MAX920  
V
CC  
V
CC  
100mVp-p  
V
CC  
IN+  
IN-  
R3  
OUT  
R1  
R4  
V
IN  
V
V
CC  
OUT  
MAX919  
R2  
EE  
V
EE  
MAX918  
MAX920  
V
REF  
Figure 5. Zero-Crossing Detector  
Typical Application Circuit  
Figure 4. MAX918/MAX920 Additional Hysteresis  
+5V (+3V)  
Pin Configurations (continued)  
+3V (+5V)  
TOP VIEW  
100k  
100k  
V
CC  
R
PULL-UP  
IN-  
IN+  
N.C.  
IN- (REF)  
IN+  
1
2
3
4
8
7
6
5
N.C.  
3V (5V)  
LOGIC OUT  
OUT  
V
CC  
MAX917  
MAX918  
MAX919  
MAX920  
OUT  
N.C.  
MAX920  
V
EE  
V
EE  
SO  
5V (3V) LOGIC IN  
LOGIC LEVEL  
TRANSLATOR  
( ) ARE FOR MAX917/MAX918.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX921

Ultra Low-Power, Single/Dual-Supply Comparators
MAXIM

MAX921-MAX924

Ultra Low-Power, Single/Dual-Supply Comparators
MAXIM

MAX9210

Programmable DC-Balance 21-Bit Deserializers
MAXIM

MAX9210ETM

Programmable DC-Balance 21-Bit Deserializers
MAXIM

MAX9210ETM+

暂无描述
MAXIM

MAX9210EUM

Programmable DC-Balance 21-Bit Deserializers
MAXIM

MAX9210EUM+

Line Receiver, 4 Func, 4 Driver, 4 Rcvr, CMOS, PDSO48, 6.10 MM, MO-153ED, TSSOP-48
MAXIM

MAX9210EUM+D

Line Receiver
MAXIM

MAX9210EUM+TD

Line Receiver
MAXIM

MAX9210EUM-D

Line Receiver
MAXIM

MAX9210EUM-T

Line Receiver
MAXIM

MAX9210EUM-TD

Line Receiver
MAXIM