MAX9236EUM-TD [MAXIM]

Line Receiver, 4 Func, 4 Rcvr, CMOS, PDSO48, 6.10 MM, MO-153ED, TSSOP-48;
MAX9236EUM-TD
型号: MAX9236EUM-TD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Receiver, 4 Func, 4 Rcvr, CMOS, PDSO48, 6.10 MM, MO-153ED, TSSOP-48

光电二极管 接口集成电路
文件: 总15页 (文件大小:183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3641; Rev 1; 10/07  
Hot-Swappable, 21-Bit, DC-Balanced LVDS  
Deserializers  
General Description  
Features  
The MAX9234/MAX9236/MAX9238 deserialize three  
LVDS serial-data inputs into 21 single-ended  
LVCMOS/LVTTL outputs. A parallel-rate LVDS clock  
received with the LVDS data streams provides timing for  
deserialization. The outputs have a separate supply,  
allowing 1.8V to 5V output logic levels. All these devices  
are hot-swappable and allow “on-the-fly” frequency  
programming.  
DC Balance Allows AC-Coupling for Wider Input  
Common-Mode Voltage Range  
On-the-Fly Frequency Programming  
Operating Frequency Range  
8MHz to 34MHz (MAX9234/MAX9236)  
16MHz to 66MHz (MAX9238)  
Falling-Edge Output Strobe (MAX9236/MAX9238)  
The MAX9234/MAX9236/MAX9238 feature DC balance,  
which allows isolation between a serializer and deseri-  
alizer using AC-coupling. Each deserializer decodes  
data transmitted by one of the MAX9209/MAX9211/  
MAX9213/MAX9215 serializers.  
Slower Output Transitions for Reduced EMI  
(MAX9234/MAX9236)  
High-Impedance Outputs when PWRDWN Is Low  
Allow Output Busing  
The MAX9234 has a rising-edge output strobe. The  
MAX9236/MAX9238 have a falling-edge output strobe.  
The MAX9234/MAX9236/MAX9238 operate in DC-  
balanced mode only.  
5V-Tolerant PWRDWN Input  
PLL Requires No External Components  
Up to 1.386Gbps Throughput  
The MAX9234/MAX9236 operate with a parallel input  
clock of 8MHz to 34MHz, while the MAX9238 operates  
from 16MHz to 66MHz. The transition time of the single-  
ended outputs is increased on the low-frequency version  
parts (MAX9234/MAX9236) for reduced EMI. The LVDS  
inputs meet ISO 10605 ESD specification, 25kV for Air-  
Gap Discharge and 8kV Contact Discharge.  
Separate Output Supply Pins Allow Interface to  
1.8V, 2.5V, 3.3V, and 5V Logic  
LVDS Inputs Meet ISO 10605 ESD Requirements  
LVDS Inputs Conform to ANSI TIA/EIA-644 LVDS  
Standard  
The MAX9234/MAX9236/MAX9238 are available in 48-pin  
TSSOP packages and operate over the -40°C to +85°C  
temperature range.  
Low-Profile, 48-Lead TSSOP Package  
+3.3V Main Power Supply  
-40°C to +85°C Operating Temperature Range  
Applications  
Automotive Navigation Systems  
Automotive DVD Entertainment Systems  
Digital Copiers  
Ordering Information  
PIN-  
PACKAGE  
PKG  
CODE  
PART  
TEMP RANGE  
Laser Printers  
MAX9234EUM  
MAX9236EUM  
MAX9238EUM  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
48 TSSOP  
48 TSSOP  
48 TSSOP  
U48-1  
U48-1  
U48-1  
Functional Diagram and Pin Configuration appear at end of  
data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Hot-Swappable, 21-Bit, DC-Balanced LVDS  
Deserializers  
to GND...........................................................-0.5V to +4.0V  
ESD Protection  
Human Body Model (R = 1.5kΩ, C = 100pF)  
D
S
All Pins to GND ..................................…………………. 5kV  
PWRDWN to GND....................................................-0.5V to 6.0V  
IEC 61000-4-2 (R = 330Ω, CS = 150pF)  
Contact Discharge (RxIN_, RxCLK IN_) to GND ......... 8kV  
Air-Gap Discharge (RxIN_, RxCLK IN_) to GND ....... 15kV  
D
RxOUT_, RxCLK OUT to GND................-0.5V to (V  
+ 0.5V)  
CCO  
Continuous Power Dissipation (T = +70°C)  
A
48-Pin TSSOP (derate 16mW/°C above +70°C) ....... 1282mW  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
ISO 10605 (R = 2kΩ, C = 330pF)  
D S  
Contact Discharge (RxIN_, RxCLK IN_) to GND ........ 8kV  
Air Discharge (RxIN_, RxCLK IN_) to GND ............... 25kV  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, V  
= +3.0V to +5.5V, PWRDWN = high, differential input voltage V = 0.05V to 1.2V, input common-  
CCO ID  
CC  
mode voltage V  
= V /2to 2.4V - V /2, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= V  
=
CM  
ID  
ID  
A
CC  
CCO  
+3.3V, V = 0.2V, V  
= 1.25V, T = +25°C.) (Notes 1, 2)  
CM A  
ID  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SINGLE-ENDED INPUT (PWRDWN)  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Current  
V
2.0  
-0.3  
-70  
5.5  
+0.8  
+70  
-1.5  
V
V
IH  
V
IL  
IN  
I
V
= high or low  
µA  
V
IN  
Input Clamp Voltage  
V
I
CL  
= -18mA  
CL  
SINGLE-ENDED OUTPUTS (RxOUT_, RxCLK OUT)  
V
V
V
V
-
-
-
-
CCO  
0.1  
I
I
= -100µA  
= -2mA  
OH  
CCO  
0.25  
RxCLK OUT  
RxOUT_  
MAX9234/  
MAX9236  
High-Level Output Voltage  
V
V
OH  
CCO  
0.40  
OH  
CCO  
0.25  
MAX9238  
I
I
= 100µA  
= 2mA  
0.1  
0.2  
OL  
RxCLK OUT  
RxOUT_  
MAX9234/  
MAX9236  
Low-Level Output Voltage  
V
V
OL  
0.26  
0.2  
OL  
MAX9238  
PWRDWN = low,  
High-Impedance Output Current  
I
-20  
+20  
µA  
OZ  
V
= -0.3V to V  
+ 0.3V  
CCO  
OUT_  
RxCLK OUT  
RxOUT_  
-10  
-5  
-40  
-20  
-40  
-75  
-37  
-75  
MAX9234/  
MAX9236  
V
= 3.0V to  
CCO  
3.6V, V  
= 0  
OUT  
Output Short-Circuit Current  
(Note: Short one output at a  
time.)  
MAX9238  
-10  
-28  
-14  
-28  
I
mA  
OS  
RxCLK OUT  
RxOUT_  
MAX9234/  
MAX9236  
V
= 4.5V to  
CCO  
5.5V, V  
= 0  
OUT  
MAX9238  
2
_______________________________________________________________________________________  
Hot-Swappable, 21-Bit, DC-Balanced LVDS  
Deserializers  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, V  
= +3.0V to +5.5V, PWRDWN = high, differential input voltage V = 0.05V to 1.2V, input common-  
CCO ID  
CC  
mode voltage V  
= V /2to 2.4V - V /2, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= V  
=
CM  
ID  
ID  
A
CC  
CCO  
+3.3V, V = 0.2V, V  
= 1.25V, T = +25°C.) (Notes 1, 2)  
CM A  
ID  
PARAMETER  
LVDS INPUTS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Differential Input-High Threshold  
Differential Input-Low Threshold  
Input Current  
V
50  
mV  
mV  
µA  
TH  
V
-50  
-25  
TL  
I
I
PWRDWN = high or low  
= V = 0 or open,  
PWRDWN = 0 or open  
+25  
+40  
IN+, IN-  
V
CC  
CCO  
Power-Off Input Current  
I
I
-40  
42  
µA  
INO+, INO-  
PWRDWN = high or low (Figure 1)  
Input Resistor 1  
R
78  
kΩ  
IN1  
V
= V  
= 0 or open (Figure 1)  
CCO  
CC  
POWER SUPPLY  
8MHz  
42  
57  
MAX9234/  
MAX9236  
C = 8pF,  
L
worst-case  
16MHz  
34MHz  
16MHz  
34MHz  
66MHz  
98  
Worst-Case Supply Current  
Power-Down Supply Current  
I
pattern; V  
=
CC  
mA  
µA  
CCW  
63  
V
= 3.0V to  
CCO  
MAX9238  
106  
177  
50  
3.6V, Figure 2  
I
PWRDWN = low  
CCZ  
_______________________________________________________________________________________  
3
Hot-Swappable, 21-Bit, DC-Balanced LVDS  
Deserializers  
AC ELECTRICAL CHARACTERISTICS  
(V  
= V  
= +3.0V to +3.6V, 100mV  
at 200kHz supply noise, C = 8pF, PWRDWN = high, differential input voltage V =  
CC  
CCO  
P-P L ID  
0.1V to 1.2V, input common mode voltage V  
= V /2to 2.4V - V /2, T = -40°C to +85°C, unless otherwise noted. Typical  
ID ID A  
CM  
values are at V  
= V  
= +3.3V, V = 0.2V, V  
= 1.25V, T = +25°C.) (Notes 3, 4, 5)  
CC  
CCO  
ID  
CM  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
3.52  
2.2  
TYP  
5.04  
3.15  
3.15  
3.18  
2.12  
2.12  
7044  
3137  
1327  
685  
MAX  
6.24  
3.9  
UNITS  
RxOUT  
MAX9234/  
MAX9236  
0.1V  
0.9V  
Figure 3  
to  
to  
CCO  
CCO  
Output Rise Time  
CLHT  
CHLT  
ns  
,
,
RxCLK OUT  
MAX9238  
2.2  
3.9  
RxOUT  
1.95  
1.3  
4.35  
2.9  
MAX9234/  
MAX9236  
0.9V  
0.1V  
Figure 3  
CCO  
CCO  
Output Fall Time  
RxCLK OUT  
ns  
ps  
MAX9238  
1.3  
2.9  
8MHz  
6600  
2560  
900  
330  
16MHz  
34MHz  
66MHz  
Figure 4  
(Note 6)  
RxIN Skew Margin  
RSKM  
MAX9238  
0.35 x  
RCOP  
RxCLK OUT High Time  
RxCLK OUT Low Time  
RCOH  
RCOL  
RSRC  
Figures 5a, 5b  
Figures 5a, 5b  
Figures 5a, 5b  
ns  
ns  
ns  
0.35 x  
RCOP  
0.30 x  
RCOP  
RxOUT Setup to RxCLK OUT  
0.45 x  
RCOP  
RxOUT Hold from RxCLK OUT  
RxCLK IN to RxCLK OUT Delay  
RHRC  
RCCD  
RPLLS  
RPDD  
Figures 5a, 5b  
Figures 6a, 6b  
Figure 7  
ns  
ns  
ns  
ns  
4.9  
6.17  
8.1  
Deserializer Phase-Locked Loop  
Set  
32800  
x RCIP  
Deserializer Power-Down Delay  
Figure 8  
100  
Note 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground  
except V and V  
.
TL  
TH  
Note 2: Maximum and minimum limits overtemperature are guaranteed by design and characterization. Devices are production  
tested at T = +25°C.  
A
Note 3: AC parameters are guaranteed by design and characterization, and are not production tested. Limits are set at 6 sigma.  
Note 4: C includes probe and test jig capacitance.  
L
Note 5: RCIP is the period of RxCLK IN. RCOP is the period of RxCLK OUT. RCIP = RCOP.  
Note 6: RSKM measured with 150ps cycle-to-cycle jitter on RxCLK IN.  
4
_______________________________________________________________________________________  
Hot-Swappable, 21-Bit, DC-Balanced LVDS  
Deserializers  
Typical Operating Characteristics  
(V  
= V  
= +3.3V, C = 8pF, PWRDWN = high, differential input voltage V = 0.2V, input common-mode voltage V  
= 1.2V,  
CM  
CC  
CCO  
L
ID  
T
A
= +25°C, unless otherwise noted.)  
MAX9234/MAX9236  
MAX9238  
WORST-CASE PATTERN AND PRBS  
SUPPLY CURRENT vs. FREQUENCY  
WORST-CASE PATTERN AND PRBS  
SUPPLY CURRENT vs. FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
180  
160  
140  
120  
100  
80  
WORST CASE  
WORST CASE  
27 - 1 PRBS  
27 - 1 PRBS  
60  
40  
5
10  
15  
20  
25  
30  
35  
40  
10  
20  
30  
40  
50  
60  
70  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
MAX9238  
MAX9234/MAX9236  
RxOUT TRANSITION TIME  
vs. OUTPUT SUPPLY VOLTAGE (V  
RxOUT TRANSITION TIME  
vs. OUTPUT SUPPLY VOLTAGE (V  
)
)
CCO  
CCO  
5
4
3
2
1
0
7
6
5
4
3
2
1
CLHT  
CLHT  
CHLT  
CHLT  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
OUTPUT SUPPLY VOLTAGE (V)  
OUTPUT SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
Hot-Swappable, 21-Bit, DC-Balanced LVDS  
Deserializers  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 2, 4, 5, 45,  
46, 47  
RxOUT14–RxOUT20 Channel 2 Single-Ended Outputs  
3, 25, 32, 38,  
44  
GND  
Ground  
6
N.C.  
LVDS GND  
RxIN0-  
No Connection  
LVDS Ground  
7, 13, 18  
8
9
Inverting Channel 0 LVDS Serial-Data Input  
Noninverting Channel 0 LVDS Serial-Data Input  
Inverting Channel 1 LVDS Serial-Data Input  
Noninverting Channel 1 LVDS Serial-Data Input  
RxIN0+  
RxIN1-  
10  
11  
RxIN1+  
LVDS Supply Voltage. Bypass to LVDS GND with 0.1µF and 0.001µF capacitors in parallel as  
close to LVDS V as possible, with the smallest value capacitor closest to the supply pin.  
CC  
12  
LVDS V  
CC  
14  
15  
RxIN2-  
RxIN2+  
Inverting Channel 2 LVDS Serial-Data Input  
Noninverting Channel 2 LVDS Serial-Data Input  
Inverting LVDS Parallel Rate Clock Input  
Noninverting LVDS Parallel Rate Clock Input  
PLL Ground  
16  
RxCLK IN-  
RxCLK IN+  
PLL GND  
17  
19, 21  
PLL Supply Voltage. Bypass to PLL GND with 0.1µF and 0.001µF capacitors in parallel as  
close to PLL V as possible, with the smallest value capacitor closest to the supply pin.  
CC  
20  
22  
23  
PLL V  
CC  
5V Tolerant LVTTL/LVCMOS Power-Down Input. Internally pulled down to GND. Outputs are  
high impedance when PWRDWN = low or open.  
PWRDWN  
Parallel Rate Clock Single-Ended Output. The MAX9234 has a rising-edge strobe. The  
MAX9236/MAX9238 have a falling-edge strobe.  
RxCLK OUT  
24, 26, 27, 29,  
30, 31, 33  
RxOUT0–RxOUT6 Channel 0 Single-Ended Outputs  
Output Supply Voltage. Bypass to GND with 0.1µF and 0.001µF capacitors in parallel as  
close to V as possible, with the smallest value capacitor closest to the supply pin.  
28, 36, 48  
V
CCO  
CCO  
34, 35, 37, 39,  
40, 41, 43  
RxOUT7–RxOUT13 Channel 1 Single-Ended Outputs  
Digital Supply Voltage. Bypass to GND with 0.1µF and 0.001µF capacitors in parallel as close  
to V as possible, with the smallest value capacitor closest to the supply pin.  
42  
V
CC  
CC  
6
_______________________________________________________________________________________  
Hot-Swappable, 21-Bit, DC-Balanced LVDS  
Deserializers  
Table 1. Part Equivalent Table  
OPERATING  
FREQUENCY (MHz)  
PART  
EQUIVALENT WITH DCB/NC = HIGH OR OPEN  
OUTPUT STROBE  
MAX9234  
MAX9236  
MAX9238  
MAX9210  
MAX9220  
MAX9222  
8 to 34  
8 to 34  
16 to 66  
Rising edge  
Falling edge  
Falling edge  
link (2.4V - 1.425V = 0.975V and 1.075V - 0V = 1.075V).  
Common-mode voltage differences may be due to  
ground potential variation or common-mode noise. If  
there is more than 1V of difference, the receiver is not  
guaranteed to read the input signal correctly and may  
cause bit errors. AC-coupling filters low-frequency  
ground shifts and common-mode noise and passes  
high-frequency data. A common-mode voltage differ-  
ence up to the voltage rating of the coupling capacitor  
(minus half the differential swing) is tolerated. DC-bal-  
anced coding of the data is required to maintain the dif-  
ferential signal amplitude and limit jitter on an  
AC-coupled link. A capacitor in series with each output  
of the LVDS driver is sufficient for AC-coupling.  
However, two capacitors—one at the serializer output  
and one at the deserializer input—provide protection in  
case either end of the cable is shorted to a high voltage.  
Detailed Description  
The MAX9234/MAX9236 operate at a parallel clock fre-  
quency of 8MHz to 34MHz. The MAX9238 operates at a  
parallel clock frequency of 16MHz to 66MHz. The tran-  
sition times of the single-ended outputs are increased  
on the MAX9234/MAX9236 for reduced EMI.  
DC Balance  
Data coding by the MAX9209/MAX9211/MAX9213/  
MAX9215 serializers (which are companion devices to  
the MAX9234/MAX9236/MAX9238 deserializers) limits  
the imbalance of ones and zeros transmitted on each  
channel. If +1 is assigned to each binary 1 transmitted  
and -1 is assigned to each binary 0 transmitted, the varia-  
tion in the running sum of assigned values is called the  
digital sum variation (DSV). The maximum DSV for the  
data channels is 10. At most, 10 more zeros than ones,  
or 10 more ones than zeros, are transmitted. The maxi-  
mum DSV for the clock channel is five. Limiting the DSV  
and choosing the correct coupling capacitors maintains  
differential signal amplitude and reduces jitter due to  
droop on AC-coupled links.  
RxIN_ + OR  
RxCLK IN+  
RIN1  
1.2V  
To obtain DC balance on the data channels, the serial-  
izer parallel data is inverted or not inverted, depending  
on the sign of the digital sum at the word boundary.  
Two complementary bits are appended to each group  
of 7 parallel input data bits to indicate to the MAX9234/  
MAX9236/MAX9238 deserializers whether the data bits  
are inverted (see Figure 9). The deserializer restores  
the original state of the parallel data. The LVDS clock  
signal alternates duty cycles of 4/9 and 5/9, which  
maintain DC balance.  
RIN1  
RxIN_ - OR  
RxCLK IN-  
Figure 1. LVDS Input Circuit  
RCIP  
AC-Coupling Benefits  
RxCLK OUT  
Bit errors experienced with DC-coupling can be elimi-  
nated by increasing the receiver common-mode voltage  
range by AC-coupling. AC-coupling increases the com-  
mon-mode voltage range of an LVDS receiver to nearly  
the voltage rating of the capacitor. The typical LVDS dri-  
ver output is 350mV centered on an offset voltage of  
1.25V, making single-ended output voltages of 1.425V  
and 1.075V. An LVDS receiver accepts signals from 0 to  
2.4V, allowing approximately 1V common-mode differ-  
ence between the driver and receiver on a DC-coupled  
ODD RxOUT  
EVEN RxOUT  
RISING-EDGE STROBE SHOWN.  
Figure 2. Worst-Case Test Pattern  
_______________________________________________________________________________________  
7
Hot-Swappable, 21-Bit, DC-Balanced LVDS  
Deserializers  
90%  
90%  
RxOUT_ OR  
RxCLK OUT  
10%  
10%  
RxOUT_ OR  
RxCLK OUT  
8pF  
CLHT  
CHLT  
Figure 3. Output Load and Transition Times  
IDEAL SERIAL BIT TIME  
1.3V  
1.1V  
RxCLK IN  
V
= 0  
ID  
RCCD  
1.5V  
RSKM  
RSKM  
RxCLK OUT  
IDEAL  
IDEAL  
Figure 6a. MAX9234 Clock-IN to Clock-OUT Delay  
MIN  
MAX  
INTERNAL STROBE  
+
RxCLK IN  
V
= 0  
Figure 4. LVDS Receiver Input Skew Margin  
ID  
-
RCCD  
RCIP  
1.5V  
RxCLK OUT  
RxCLK OUT  
2.0V  
2.0V  
2.0V  
0.8V  
0.8V  
RCOL  
RCOH  
RHRC  
2.0V  
Figure 6b. MAX9236/MAX9238 Clock-IN to Clock-OUT Delay  
RSRC  
2.0V  
0.8V  
RxOUT_  
0.8V  
2V  
PWRDWN  
Figure 5a. MAX9234 Output Setup/Hold and High/Low Times  
3V  
RCIP  
V
CC  
RPLLS  
2.0V  
0.8V  
2.0V  
RxCLK OUT  
RxOUT_  
0.8V  
0.8V  
RxCLK IN  
RCOH  
RSRC  
RCOL  
RHRC  
2.0V  
0.8V  
2.0V  
0.8V  
RxCLK OUT  
HIGH-Z  
Figure 5b. MAX9236/MAX9238 Output Setup/Hold and High/Low  
Times  
Figure 7. Phase-Locked Loop Set Time  
8
_______________________________________________________________________________________  
Hot-Swappable, 21-Bit, DC-Balanced LVDS  
Deserializers  
Applications Information  
PWRDWN  
Selection of AC-Coupling Capacitors  
Voltage droop and the DSV of transmitted symbols  
0.8V  
cause signal transitions to start from different voltage  
levels. Because the transition time is finite, starting the  
signal transition from different voltage levels causes  
timing jitter. The time constant for an AC-coupled link  
needs to be chosen to reduce droop and jitter to an  
RxCLK IN  
RPDD  
acceptable level.  
RxOUT_  
RxCLK OUT  
The RC network for an AC-coupled link consists of the  
LVDS receiver termination resistor (R ), the LVDS driver  
HIGH-Z  
T
output resistor (R ), and the series AC-coupling capac-  
O
itors (C). The RC time constant for two equal-value  
Figure 8. Power-Down Delay  
series capacitors is (C x (R + R )) / 2 (Figure 10). The  
T
O
RC time constant for four equal-value series capacitors  
is (C x (R + R )) / 4 (Figure 11).  
MAX9234/MAX9236/MAX9238 vs.  
MAX9210/MAX9220/MAX9222  
T
O
R is required to match the transmission line imped-  
T
The MAX9234/MAX9236/MAX9238 operate in DC-bal-  
ance mode only. Pinouts are the same as the  
MAX9210/MAX9220/MAX9222 except that pin 6 on the  
MAX9234/MAX9236/MAX9238 is no connect (N.C.). DC  
balance allows AC-coupling with series capacitors. The  
MAX9234/MAX9236/MAX9238 are hot-swappable and  
the input frequency can be changed on the fly, but oth-  
erwise the specifications and functionality are the same  
as the MAX9210/MAX9220/MAX9222 operating in DC-  
balance mode. See Table 1.  
ance (usually 100Ω) and R is determined by the LVDS  
O
driver design (the minimum differential output resis-  
tance of 78Ω for the MAX9209/MAX9211/MAX9213/  
MAX9215 serializers is used in the following example).  
This leaves the capacitor selection to change the sys-  
tem time constant.  
+
-
RxCLK IN  
CYCLE N - 1  
CYCLE N  
CYCLE N + 1  
DCA2  
RxIN2  
DCB2  
TxIN20 TxIN19 TxIN18  
TxIN13 TxIN12 TxIN11  
TxIN17 TxIN16 TxIN15  
TxIN14  
TxIN7  
TxIN0  
DCA2  
DCA1  
DCA0  
DCB2  
DCB1  
DCB0  
TxIN20  
TxIN13  
TxIN6  
TxIN19 TxIN18 TxIN17 TxIN16 TxIN15 TxIN14  
DCA1  
RxIN1  
DCB1  
DCB0  
TxIN10  
TxIN3  
TxIN9  
TxIN2  
TxIN8  
TxIN1  
TxIN12 TxIN11 TxIN10  
TxIN9  
TxIN2  
TxIN8  
TxIN1  
TxIN7  
TxIN0  
DCA0  
RxIN0  
TxIN6  
TxIN5  
TxIN4  
TxIN5  
TxIN4  
TxIN3  
TxIN_, DCA_, AND DCB_ ARE DATA FROM THE SERIALIZER.  
Figure 9. Deserializer Serial Input  
_______________________________________________________________________________________  
9
Hot-Swappable, 21-Bit, DC-Balanced LVDS  
Deserializers  
MAX9209  
MAX9211  
MAX9213  
MAX9215  
MAX9234  
MAX9236  
MAX9238  
HIGH-FREQUENCY, CERAMIC  
SURFACE-MOUNT CAPACITORS  
CAN ALSO BE PLACED AT THE  
SERIALIZER INSTEAD OF THE DESERIALIZER.  
TxOUT  
RxIN  
7
7
7
7
7
7
100Ω  
100Ω  
100Ω  
100Ω  
(7 + 2):1  
(7 + 2):1  
(7 + 2):1  
PLL  
1:(9 - 2)  
1:(9 - 2)  
1:(9 - 2)  
PLL  
TxIN  
RxOUT  
PWRDWN  
TxCLK IN  
PWRDWN  
RxCLK OUT  
TxCLK OUT  
RxCLK IN  
21:3 SERIALIZER  
3:21 DESERIALIZER  
Figure 10. Two Capacitors per Link, AC-Coupled  
MAX9209  
MAX9211  
MAX9213  
MAX9215  
MAX9234  
MAX9236  
MAX9238  
HIGH-FREQUENCY CERAMIC  
SURFACE-MOUNT CAPACITORS  
TxOUT  
RxIN  
7
7
7
7
100Ω  
(7 + 2):1  
1:(9 - 2)  
7
100Ω  
100Ω  
100Ω  
TxIN  
(7 + 2):1  
(7 + 2):1  
PLL  
1:(9 - 2)  
1:(9 - 2)  
PLL  
RxOUT  
7
PWRDWN  
TxCLK IN  
PWRDWN  
RxCLK OUT  
TxCLK OUT  
RxCLK IN  
21:3 SERIALIZER  
3:21 DESERIALIZER  
Figure 11. Four Capacitors per Link, AC-Coupled  
10 ______________________________________________________________________________________  
Hot-Swappable, 21-Bit, DC-Balanced LVDS  
Deserializers  
In the following example, the capacitor value for a  
droop of 2% is calculated. Jitter due to this droop is  
then calculated assuming a 1ns transition time:  
pullup resistor between the noninverting input and V  
,
CC  
and a 10kΩ 1% pulldown resistor between the invert-  
ing input and ground. These bias resistors, along with  
the 100Ω 1% tolerance termination resistor, provide  
+15mV of differential input.  
C = - (2 x t x DSV) / (ln (1 - D) x (R + R )) (Eq 1)  
B
T
O
where:  
C = AC-coupling capacitor (F).  
Unused LVDS Data Inputs  
t = bit time (s).  
B
At each unused LVDS data input, pull the inverting input  
DSV = digital sum variation (integer).  
ln = natural log.  
up to V using a 10kΩ resistor, and pull the noninverting  
CC  
input down to ground using a 10kΩ resistor. Do not con-  
nect a termination resistor. The pullup and pulldown resis-  
tors drive the corresponding outputs low and prevent  
switching due to noise.  
D = droop (% of signal amplitude).  
R = termination resistor (Ω).  
T
O
R
= output resistance (Ω).  
Equation 1 is for two series capacitors (Figure 10). The  
PWRDWN  
Driving PWRDWN low puts the outputs in high imped-  
ance, stops the PLL, and reduces supply current to  
50µA or less. Driving PWRDWN high drives the outputs  
low until the PLL locks. The outputs of two deserializers  
can be bused to form a 2:1 mux with the outputs con-  
trolled by PWRDWN. Wait 100ns between disabling one  
deserializer (driving PWRDWN low) and enabling the  
second one (driving PWRDWN high) to avoid con-  
tention of the bused outputs.  
bit time (t ) is the period of the parallel clock divided by  
B
9. The DSV is 10. See equation 3 for four series capaci-  
tors (Figure 11).  
The capacitor for 2% maximum droop at 8MHz parallel  
rate clock is:  
C = - (2 x t x DSV) / (ln (1 - D) x (R + R ))  
B
T
O
C = - (2 x 13.9ns x 10) / (ln (1 - 0.02) x (100Ω + 78Ω))  
C = 0.0773µF  
Jitter due to droop is proportional to the droop and  
transition time:  
Input Clock and PLL Lock Time  
There is no required timing sequence for the applica-  
tion or reapplication of the parallel rate clock (RxCLK  
IN) relative to PWRDWN, or to a power-supply ramp for  
proper PLL lock. The PLL lock time is set by an internal  
counter. The maximum time to lock is 32,800 clock  
periods. Power and clock should be stable to meet the  
lock-time specification. When the PLL is locking, the  
outputs are low.  
t = t x D (Eq 2)  
J
T
where:  
t = jitter (s).  
J
t = transition time (s) (0 to 100%).  
T
D = droop (% of signal amplitude).  
Jitter due to 2% droop and assumed 1ns transition time is:  
t = 1ns x 0.02  
J
Power-Supply Bypassing  
There are separate on-chip power domains for digital  
circuits, outputs, PLL, and LVDS inputs. Bypass each  
t = 20ps  
J
The transition time in a real system depends on the fre-  
quency response of the cable driven by the serializer.  
The capacitor value decreases for a higher frequency  
parallel clock and for higher levels of droop and jitter.  
Use high-frequency, surface-mount ceramic capacitors.  
V
, V  
CC CCO  
, PLL V , and LVDS V  
pin with high-fre-  
CC  
CC  
quency, surface-mount ceramic 0.1µF and 0.001µF  
capacitors in parallel as close to the device as possi-  
ble, with the smallest value capacitor closest to the  
supply pin.  
Equation 1 altered for four series capacitors (Figure 11) is:  
C = - (4 x t x DSV) / (ln (1 - D) x (R + R )) (Eq 3)  
B
T
O
Cables and Connectors  
Interconnect for LVDS typically has a differential imped-  
ance of 100Ω. Use cables and connectors that have  
matched differential impedance to minimize impedance  
discontinuities.  
Input Bias and Frequency Detection  
The inverting and noninverting LVDS inputs are internally  
connected to +1.2V through 42kΩ (min) to provide bias-  
ing for AC-coupling (Figure 1). A frequency-detection  
circuit on the clock input detects when the input is not  
switching, or is switching at low frequency. In this case,  
all outputs are driven low. To prevent switching due to  
noise when the clock input is not driven, bias the clock  
input to differential +15mV by connecting a 10kΩ 1%  
Twisted-pair and shielded twisted-pair cables offer  
superior signal quality compared to ribbon cable and  
tend to generate less EMI due to magnetic field cancel-  
ing effects. Balanced cables pick up noise as common  
mode, which is rejected by the LVDS receiver.  
______________________________________________________________________________________ 11  
Hot-Swappable, 21-Bit, DC-Balanced LVDS  
Deserializers  
Board Layout  
Keep the LVTTL/LVCMOS outputs and LVDS input sig-  
R1  
1MΩ  
R2  
1.5kΩ  
nals separated to prevent crosstalk. A four-layer PC  
board with separate layers for power, ground, LVDS  
inputs, and digital signals is recommended.  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
ESD Protection  
The MAX9234/MAX9236/MAX9238 ESD tolerance is  
rated for IEC 61000-4-2 Human Body Model and ISO  
10605 standards. IEC 61000-4-2 and ISO 10605 specifiy  
ESD tolerance for electronic systems. The Human Body  
DEVICE  
UNDER  
TEST  
C
S
100pF  
STORAGE  
CAPACITOR  
SOURCE  
Model discharge components are C = 100pF and R =  
S
D
1.5kΩ (Figure 12). For the Human Body Model, all pins  
Figure 12. Human Body ESD Test Circuit  
are rated for 5kV contact discharge. The ISO 10605 dis-  
charge components are C = 330pF and R = 2kΩ  
S
D
(Figure 13). For ISO 10605, the LVDS outputs are rated  
for 8kV contact and 25kV air discharge. The IEC  
R1  
R2  
2kΩ  
50Ω TO 100Ω  
61000-4-2 discharge components are C = 150pF and  
S
R
= 330Ω (Figure 14). For IEC 61000-4-2, the LVDS  
D
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
inputs are rated for 8kV Contact Discharge and 15kV  
Air-Gap Discharge.  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
S
STORAGE  
CAPACITOR  
330pF  
5V Tolerant Input  
PWRDWN is 5V tolerant and is internally pulled down to  
GND.  
SOURCE  
Skew Margin (RSKM)  
Skew margin (RSKM) is the time allowed for degrada-  
tion of the serial data sampling setup and hold times by  
sources other than the deserializer. The deserializer  
sampling uncertainty is accounted for and does not  
need to be subtracted from RSKM. The main outside  
contributors of jitter and skew that subtract from RSKM  
are interconnect intersymbol interference, serializer  
pulse position uncertainty, and pair-to-pair path skew.  
Figure 13. ISO 10605 Contact Discharge ESD Test Circuit  
R
D
50Ω TO 100Ω  
330Ω  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
S
150pF  
STORAGE  
CAPACITOR  
V
Output Supply and Power Dissipation  
CCO  
The outputs have a separate supply (V  
) for interfacing  
SOURCE  
CCO  
to systems with 1.8V to 5V nominal input-logic levels. The  
DC Electrical Characteristics table gives the maximum  
supply current for V  
= 3.6V with 8pF load at several  
CCO  
switching frequencies with all outputs switching in the  
worst-case switching pattern. The approximate incremen-  
Figure 14. IEC 61000-4-2 Contact Discharge ESD Test Circuit  
tal supply current for V  
other than 3.6V with the same  
CCO  
The incremental current is added to (for V  
> 3.6V)  
CCO  
8pF load and worst-case pattern can be calculated using:  
or subtracted from (for V  
< 3.6V) the DC Electrical  
CCO  
I = C V 0.5f x 21 (data outputs)  
I
T I  
C
Characteristics table maximum supply current. The  
internal output buffer capacitance is C = 6pF. The  
+ C V f x 1 (clock output)  
T I C  
INT  
worst-case pattern-switching frequency of the data out-  
puts is half the switching frequency of the output clock.  
where:  
I = incremental supply current.  
I
C = total internal (C ) and external (C ) load capaci-  
T
INT  
L
In the following example, the incremental supply current is  
tance.  
calculated for V  
= 5.5V, f = 34MHz, and C = 8pF:  
C L  
CCO  
V = incremental supply voltage.  
I
V = 5.5V - 3.6V = 1.9V  
I
f = output clock-switching frequency.  
C
C = C  
T
+ C = 6pF + 8pF = 14pF  
L
INT  
12 ______________________________________________________________________________________  
Hot-Swappable, 21-Bit, DC-Balanced LVDS  
Deserializers  
where:  
Rising- or Falling-Edge Output Strobe  
The MAX9234 has a rising-edge output strobe, which  
I = C V 0.5F x 21 (data outputs) + C V f x 1 (clock  
I
T I  
C
T I C  
latches the parallel output data into the next chip on the  
rising edge of RxCLK OUT. The MAX9236/MAX9238  
have a falling-edge output strobe, which latches the  
parallel output data into the next chip on the falling  
edge of RxCLK OUT. The deserializer output strobe  
polarity does not need to match the serializer input  
strobe polarity. A deserializer with rising- or falling-  
edge output strobe can be driven by a serializer with a  
rising-edge input strobe.  
output).  
I = (14pF x 1.9V x 0.5 x 34MHz x 21) + (14pF x 1.9V x  
I
34MHz).  
I = 9.5mA + 0.9mA = 10.4mA.  
I
The maximum supply current in DC-balanced mode for  
V
= V  
= 3.6V at f = 34MHz is 106mA (from the  
CCO C  
CC  
DC Electrical Characteristics table). Add 10.4mA to get  
the total approximate maximum supply current at V  
CCO  
= 5.5V and V  
= 3.6V.  
CC  
Pin Configuration  
If the output supply voltage is less than V  
= 3.6V,  
CCO  
the reduced supply current can be calculated using the  
same formula and method.  
TOP VIEW  
At high switching frequency, high supply voltage, and  
high capacitive loading, power dissipation can exceed  
the package power-dissipation rating. Do not exceed  
the maximum package power-dissipation rating. See  
the Absolute Maximum Ratings for maximum package  
power-dissipation capacity and temperature derating.  
RxOUT17  
RxOUT18  
GND  
1
2
3
4
5
6
7
8
9
48  
V
CCO  
47 RxOUT16  
46 RxOUT15  
45 RxOUT14  
44 GND  
RxOUT19  
RxOUT20  
N.C.  
43 RxOUT13  
Functional Diagram  
LVDS GND  
RxIN0-  
42  
V
CC  
41 RxOUT12  
40 RxOUT11  
39 RxOUT10  
38 GND  
DATA  
CHANNEL 0  
LVDS DATA  
RECEIVER 0  
RxIN0+  
MAX9234  
MAX9236  
MAX9238  
RxOUT0–6  
RxIN1- 10  
RxIN1+ 11  
RxIN0+  
RxIN0-  
SERIAL-TO-  
PARALLEL  
CONVERTER  
STROBE  
STROBE  
STROBE  
LVDS V  
12  
37 RxOUT9  
CC  
DATA  
CHANNEL 1  
LVDS GND 13  
RxIN2- 14  
36  
V
CCO  
LVDS DATA  
RECEIVER 1  
35 RxOUT8  
34 RxOUT7  
33 RxOUT6  
32 GND  
RxOUT7–13  
RxOUT14–20  
RxCLK OUT  
RxIN1+  
RxIN1-  
SERIAL-TO-  
PARALLEL  
CONVERTER  
RxIN2+ 15  
RxCLK IN- 16  
RxCLK IN+ 17  
LVDS GND 18  
PLL GND 19  
DATA  
CHANNEL 2  
LVDS DATA  
RECEIVER 2  
31 RxOUT5  
30 RxOUT4  
29 RxOUT3  
RxIN2+  
RxIN2-  
SERIAL-TO-  
PARALLEL  
CONVERTER  
PLL V  
20  
CC  
PLL GND 21  
PWRDWN 22  
RxCLK OUT 23  
RxOUT0 24  
28  
V
CCO  
27 RxOUT2  
26 RxOUT1  
25 GND  
LVDS CLOCK  
RECEIVER  
RxCLK IN+  
RxCLK IN-  
REFERENCE  
CLOCK  
GENERATOR  
9x  
PLL  
TSSOP  
PWRDWN  
Chip Information  
MAX9234 TRANSISTOR COUNT: 14,104  
MAX9236 TRANSISTOR COUNT: 14,104  
MAX9238 TRANSISTOR COUNT: 14,104  
PROCESS: CMOS  
______________________________________________________________________________________ 13  
Hot-Swappable, 21-Bit, DC-Balanced LVDS  
Deserializers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
N
MARKING  
AAA A  
E
H
1
2
3
TOP VIEW  
BOTTOM VIEW  
SEE DETAIL A  
b
A1  
A2  
A
C
L
c
e
END VIEW  
SEATING  
PLANE  
D
SIDE VIEW  
b
(
)
PARTING  
LINE  
b1  
0.25  
WITH PLATING  
L
DETAIL A  
c1  
c
NOTES:  
1. DIMENSIONS D & E ARE REFERENCE DATUMS AND DO NOT INCLUDE MOLD FLASH.  
BASE METAL  
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15MM ON D SIDE, AND 0.25MM ON E SIDE.  
3. CONTROLLING DIMENSION: MILLIMETERS.  
SECTION C-C  
4. THIS PART IS COMPLIANT WITH JEDEC SPECIFICATION MO-153, VARIATIONS, ED (48L), EE (56L).  
5. "N" REFERS TO NUMBER OF LEADS.  
6. THE LEAD TIPS MUST LIE WITHIN A SPECIFIED ZONE. THIS TOLERANCE ZONE IS DEFINED BY TWO PARALLEL  
PLANES. ONE PLANE IS THE SEATING PLANE, DATUM (-C-), THE OTHER PLANE IS AT THE SPECIFIED DISTANCE  
FROM (-C-) IN THE DIRECTION INDICATED.  
7. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
PACKAGE OUTLINE,  
48 & 56L TSSOP, 6.1mm BODY  
8. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
1
21-0155  
C
1
14 ______________________________________________________________________________________  
Hot-Swappable, 21-Bit, DC-Balanced LVDS  
Deserializers  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
4/05  
Initial release  
Added IEC 61000-4-2 ESD Performance; various style changes  
10/07  
1, 2, 4, 5, 6, 12  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9236_12

Hot-Swappable, 21-Bit, DC-Balanced LVDS Deserializers
MAXIM

MAX9238

Hot-Swappable, 21-Bit, DC-Balanced LVDS Deserializers
MAXIM

MAX9238EUM

Hot-Swappable, 21-Bit, DC-Balanced LVDS Deserializers
MAXIM

MAX9238_12

Hot-Swappable, 21-Bit, DC-Balanced LVDS Deserializers
MAXIM

MAX923C/D

Ultra Low-Power, Single/Dual-Supply Comparators
MAXIM

MAX923C/D

暂无描述
ROCHESTER

MAX923CPA

Ultra Low-Power, Single/Dual-Supply Comparators
MAXIM

MAX923CSA

Ultra Low-Power, Single/Dual-Supply Comparators
MAXIM

MAX923CSA+T

Comparator, 2 Func, 10000uV Offset-Max, 14000ns Response Time, CMOS, PDSO8, 0.150 INCH, SOP-8
MAXIM

MAX923CSA-T

Comparator, 2 Func, 10000uV Offset-Max, 14000ns Response Time, CMOS, PDSO8, SOP-8
MAXIM

MAX923CUA

Ultra Low-Power, Single/Dual-Supply Comparators
MAXIM

MAX923CUA+

Comparator, 2 Func, 10000uV Offset-Max, 14000ns Response Time, CMOS, PDSO8, UMAX-8
MAXIM