MAX9254 [MAXIM]

21-Bit Deserializers with Programmable Spread Spectrum and DC Balance; 21位解串器,提供可编程扩频和直流平衡
MAX9254
型号: MAX9254
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

21-Bit Deserializers with Programmable Spread Spectrum and DC Balance
21位解串器,提供可编程扩频和直流平衡

文件: 总22页 (文件大小:293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3954; Rev 2; 6/07  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
General Description  
Features  
Programmable ±±4% ±ꢀ4% or ꢁꢂꢂ FꢃreaꢄꢅFꢃepꢆrtm  
The MAX9242/MAX9244/MAX9246/MAX9254 deserialize  
three LVDS serial-data inputs into 21 single-ended LVC-  
MOS/ LVTTL outputs. A separate parallel-rate LVDS clock  
provides the timing for deserialization. The MAX9242/  
MAX9244/MAX9246/MAX9254 feature spread-spectrum  
capability, allowing the output data and clock frequency  
to spread over a specified range to reduce EMI. The sin-  
gle-ended data and clock outputs are programmable for  
a frequency spread of 2ꢀ, 4ꢀ, or no spread. The  
spread-spectrum function is also available when the  
MAX9242/MAX9244/MAX9246/MAX9254 operate in non-  
DC-balanced mode. The modulation rate of the spread is  
32kHz for a 33MHz LVDS clock input and scales linearly  
with frequency. The single-ended outputs have a sepa-  
rate supply, allowing +1.8V to +5V output logic levels.  
ꢁtꢆꢃtꢆ for Reꢄtpeꢄ EMI  
Programmable DCꢅBalanpeꢄ or NonꢅDCꢅBalanpeꢄ  
Moꢄes  
DC Balanpe Allows ACꢅCotꢃling for Wiꢄer Inꢃtꢆ  
CommonꢅMoꢄe Volꢆage Range  
Fꢃreaꢄ Fꢃepꢆrtm ꢁꢃeraꢆes in DCꢅBalanpeꢄ or  
NonꢅDCꢅBalanpeꢄ Moꢄe  
High ꢁtꢆꢃtꢆ Drive (MAX9ꢀ5±)  
π / ± Deskew by ꢁversamꢃling  
(MAX9ꢀ±ꢀ/MAX9ꢀ±±/MAX9ꢀ5±)  
16MHzꢅꢆoꢅ3±MHz (DCꢅBalanpeꢄ) anꢄ ꢀ0MHzꢅꢆoꢅ  
±0MHz (NonꢅDCꢅBalanpeꢄ) ꢁꢃeraꢆion  
(MAX9ꢀ±ꢀ/MAX9ꢀ±±/MAX9ꢀ5±)  
6MHzꢅꢆoꢅ18MHz (DCꢅBalanpeꢄ) anꢄ 8MHzꢅꢆoꢅꢀ0MHz  
The MAX9254 features high output drive current for both  
data and clock outputs for faster transition times in the  
presence of heavy capacitive loads.  
(NonꢅDCꢅBalanpeꢄ) ꢁꢃeraꢆion (MAX9ꢀ±6)  
RisingꢅEꢄge (MAX9ꢀ±ꢀ) or ꢂallingꢅEꢄge  
(MAX9ꢀ±±/MAX9ꢀ±6/MAX9ꢀ5±) ꢁtꢆꢃtꢆ Fꢆrobe  
The MAX9242/MAX9244/MAX9246/MAX9254 feature pro-  
gram-mable DC balance, allowing isolation between a  
serializer and deserializer using AC-coupling. The  
MAX9242/MAX9244/MAX9246/MAX9254 operate with the  
MAX9209/MAX9213 serializers and are available with a  
rising-edge strobe (MAX9242) or falling-edge strobe  
(MAX9244/MAX9246/MAX9254). The LVDS inputs meet  
ISO 10605 ESD specifications with 30kV Air-ꢁap  
Discharge and 6kV Contact Discharge ratings.  
HighꢅImꢃeꢄanpe ꢁtꢆꢃtꢆs when PWRDWN is Low  
Allow ꢁtꢆꢃtꢆ Btsing  
Feꢃaraꢆe ꢁtꢆꢃtꢆ Ftꢃꢃly Allows Inꢆerfape ꢆo +1.8V%  
+ꢀ.5V% +3.3V% anꢄ +5V Logip  
LVDF Inꢃtꢆs Meeꢆ IFꢁ 10605 EFD Proꢆepꢆion aꢆ  
±30kV Airꢅ-aꢃ Dispharge anꢄ ±6kV Conꢆapꢆ  
Dispharge  
LVDF Inꢃtꢆs Meeꢆ IEC 61000ꢅ±ꢅꢀ Level ± EFD  
Proꢆepꢆion aꢆ ±15kV Airꢅ-aꢃ Dispharge anꢄ ±8kV  
Conꢆapꢆ Dispharge  
Applications  
LVDF Inꢃtꢆs Conform ꢆo ANFI TIA/EIAꢅ6±± Fꢆanꢄarꢄ  
+3.3V Main Power Ftꢃꢃly  
Automotive Navigation Systems  
Automotive DVD Entertainment Systems  
Digital Copiers  
Ordering Information  
Laser Printers  
PK-  
PART  
TEMP RAN-E PINꢅPACKA-E  
CꢁDE  
U48-1  
U48-1  
U48-1  
U48-1  
U48-1  
U48-1  
U48-1  
MAX9ꢀ±ꢀEUM -40°C to +85°C 48 TSSOP  
MAX9242ꢁUM -40°C to +105°C 48 TSSOP  
MAX9ꢀ±±EUM -40°C to +85°C 48 TSSOP  
MAX9244ꢁUM -40°C to +105°C 48 TSSOP  
MAX9ꢀ±6EUM -40°C to +85°C 48 TSSOP  
MAX9246ꢁUM -40°C to +105°C 48 TSSOP  
MAX9ꢀ5±EUM -40°C to +85°C 48 TSSOP  
Selector Guide  
ꢂREQUENCY RAN-E  
FTRꢁBE  
ED-E  
ꢁVERꢅ  
FAMPLIN-  
NꢁNꢅDC  
BALANCE BALANCE  
DC  
PART  
(MHz)  
(MHz)  
MAX9242  
MAX9244  
MAX9246  
MAX9254  
Rising  
Falling  
Falling  
Falling  
Yes  
Yes  
No  
20 to 40  
20 to 40  
8 to 20  
16 to 34  
16 to 34  
6 to 18  
Devices are available in lead-free packaging. Specify lead free  
by adding a + symbol at the end of the part number when  
ordering.  
Yes  
20 to 40  
16 to 34  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
ABFꢁLUTE MAXIMUM RATIN-F  
(All voltages referenced to ꢁND.)  
IEC 61000-4-2 (R = 330Ω, C = 150pF)  
D S  
LVDS Inputs to ꢁND (Air-ꢁap Discharge)..................... 15kV  
LVDS Inputs to ꢁND (Contact Discharge)....................... 8kV  
V
V
, LVDSV , PLLV .......................................-0.5V to +4.0V  
CC  
CC  
CC  
......................................................................-0.5V to +6.0V  
CCO  
RxIN_, RxCLKIN_ ..................................................-0.5V to +4.0V  
PWRDWN ..............................................................-0.5V to +6.0V  
ISO 10605 (R = 2.0kΩ, C = 330pF)  
D S  
LVDS Inputs to ꢁND (Air-ꢁap Discharge)..................... 30kV  
LVDS Inputs to ꢁND (Contact Discharge)....................... 6kV  
Operating Temperature Range .........................-40°C to +105°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
SSꢁ, DCB...................................................-0.5V to (V  
+ 0.5V)  
+ 0.5V)  
CC  
RxOUT_, RxCLKOUT ...............................-0.5V to (V  
CCO  
Continuous Power Dissipation (T = +70°C)  
A
48-Pin TSSOP (derate 16mW/°C above +70°C) ........1282mW  
ESD Protection  
Human Body Model (R = 1.5kΩ, C = 100pF)  
D
S
All Pins to ꢁND ............................................................. 2.5kV  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERIFTICF  
(V  
= LVDSV  
= PLLV  
= +3.0V to +3.6V, V  
= +3.0V to +5.5V, PWRDWN = high; SSꢁ = high, open, or low; DCB = high or  
CC  
CC  
CC  
CCO  
low, differential input voltage |V | = 0.05V to 1.2V, input common-mode voltage V  
= |V / 2| to 2.4V - |V / 2|, unless otherwise  
ID ID  
= +1.25V, T = +25°C.) (Notes 1, 2)  
CM A  
ID  
CM  
noted. Typical values are at V  
= V  
= LVDSV  
= PLLV  
= +3.3V, |V | = 0.2V, V  
CC  
CCO  
CC  
CC  
ID  
PARAMETER  
FYMBꢁL  
CꢁNDITIꢁNF  
MIN  
TYP  
MAX UNITF  
PꢁWER FUPPLY  
V
,
CC  
LVDSV  
PLLV  
,
Power-Supply Range  
Output-Supply Range  
3.0  
1.8  
3.6  
V
V
CC  
CC  
V
5.5  
61  
CCO  
16MHz  
34MHz  
20MHz  
33MHz  
40MHz  
16MHz  
34MHz  
20MHz  
33MHz  
40MHz  
45  
72  
59  
80  
93  
57  
93  
71  
98  
115  
DC-balanced  
mode (SSꢁ = low)  
96  
79  
C = 8pF,  
L
Non-DC-balanced  
mode (SSꢁ = low)  
worst-case pattern,  
= V = 3.0V  
106  
123  
78  
V
CC  
CCO  
Worst-Case Supply Current  
I
mA  
to 3.6V, Figure 2  
(MAX9242,  
MAX9244,  
CCW  
DC-balanced mode  
(SSꢁ = high or open)  
125  
96  
MAX9254)  
Non-DC-balanced  
mode  
(SSꢁ = high or open)  
129  
145  
_______________________________________________________________________________________  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
DC ELECTRICAL CHARACTERIFTICF (ponꢆinteꢄ)  
(V  
= LVDSV  
= PLLV  
= +3.0V to +3.6V, V  
ID  
= +3.0V to +5.5V, PWRDWN = high; SSꢁ = high, open, or low; DCB = high or  
CC  
CC  
CC  
CCO  
low, differential input voltage |V | = 0.05V to 1.2V, input common-mode voltage V  
= |V / 2| to 2.4V - |V / 2|, unless otherwise  
ID ID  
CM  
noted. Typical values are at V  
= V  
= LVDSV  
= PLLV  
= +3.3V, |V | = 0.2V, V  
= +1.25V, T = +25°C.) (Notes 1, 2)  
CM A  
CC  
CCO  
CC  
CC  
ID  
PARAMETER  
FYMBꢁL  
CꢁNDITIꢁNF  
MIN  
TYP  
27  
30  
43  
33  
37  
52  
32  
38  
57  
41  
46  
66  
MAX UNITF  
6MHz  
8MHz  
41  
45  
61  
47  
52  
DC-balanced  
mode (SSꢁ = low)  
18MHz  
8MHz  
Non-DC-balanced  
mode (SSꢁ = low)  
C = 8pF,  
L
10MHz  
20MHz  
6MHz  
worst-case pattern,  
= V = 3.0V  
73  
Worst-Case Supply Current  
I
V
mA  
47  
CCW  
CC  
CCO  
to 3.6V, Figure 2  
(MAX9246)  
DC-balanced mode  
(SSꢁ = high or open)  
8MHz  
57  
81  
58  
65  
92  
18MHz  
8MHz  
Non-DC-balanced  
mode  
(SSꢁ = high or open)  
10MHz  
20MHz  
Power-Down Supply Current  
I
PWRDWN = low  
50  
µA  
CCZ  
5VꢅTꢁLERANT Lꢁ-IC INPUT (PWRDWN)  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Current  
V
2.0  
-0.3  
-20  
5.5  
+0.8  
+20  
V
V
IH  
V
IL  
IN  
I
PWRDWN = high or low level  
= -18mA  
µA  
V
Input Clamp Voltage  
V
I
CL  
-1.5  
CL  
THREEꢅLEVEL Lꢁ-IC INPUTF (DCB% FF-)  
V
+
CC  
0.3  
High-Level Input Voltage  
V
2.5  
V
IH  
DCB, SSꢁ open or connected to a driver with  
output in high-impedance state (Note 3)  
Mid-Level Input Current  
Low-Level Input Voltage  
Input Current  
I
-10  
-0.3  
-20  
+10  
+0.8  
+20  
µA  
V
IM  
V
IL  
DCB, SSꢁ = high or low level,  
PWRDWN = high or low  
I
µA  
V
IN  
Input Clamp Voltage  
V
I
CL  
= -18mA  
-1.5  
CL  
FIN-LEꢅENDED ꢁUTPUTF (RxꢁUT_% RxCLKꢁUT)  
V
CCO  
- 0.1  
I
I
= -100µA  
= -2mA  
OH  
V
CCO  
RxCLKOUT (Note 4)  
- 0.25  
High-Level Output Voltage  
V
V
OH  
V
CCO  
OH  
- 0.43  
RxOUT_  
V
CCO  
MAX9254  
- 0.25  
I
I
= 100µA  
= 2mA  
0.1  
0.2  
OL  
RxCLKOUT (Note 4)  
RxOUT_  
Low-Level Output Voltage  
V
V
OL  
0.26  
0.2  
OL  
MAX9254  
_______________________________________________________________________________________  
3
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
DC ELECTRICAL CHARACTERIFTICF (ponꢆinteꢄ)  
(V  
= LVDSV  
= PLLV  
= +3.0V to +3.6V, V  
ID  
= +3.0V to +5.5V, PWRDWN = high; SSꢁ = high, open, or low; DCB = high or  
CC  
CC  
CC  
CCO  
low, differential input voltage |V | = 0.05V to 1.2V, input common-mode voltage V  
= |V / 2| to 2.4V - |V / 2|, unless otherwise  
ID ID  
CM  
noted. Typical values are at V  
= V  
= LVDSV  
= PLLV  
= +3.3V, |V | = 0.2V, V  
= +1.25V, T = +25°C.) (Notes 1, 2)  
CM A  
CC  
CCO  
CC  
CC  
ID  
PARAMETER  
FYMBꢁL  
CꢁNDITIꢁNF  
MIN  
-30  
-10  
-5  
TYP  
MAX UNITF  
High-Impedance Output Current  
I
PWRDWN = low, V  
= -0.3V to (V + 0.3V)  
CCO  
+30  
-40  
-20  
-75  
-37  
µA  
OZ  
OS  
OUT  
RxCLKOUT (Note 4)  
RxOUT_  
V
V
= 3.0V to 3.6V,  
CCO  
OUT  
= 0V  
Output Short-Circuit Current  
(Note 5)  
I
mA  
RxCLKOUT (Note 4)  
RxOUT_  
-28  
-13  
VCCO = 4.5V to 5.5V,  
VOUT = 0V  
RxOUT_  
V
V
= 3.0V to 3.6V,  
= 0V  
CCO  
OUT  
-16  
-34  
-51  
-93  
RxCLKOUT (Note 4)  
RxOUT_  
Output Short-Circuit Current  
(MAX9254) (Note 5)  
I
mA  
OS  
VCCO = 4.5V to 5.5V,  
VOUT = 0V  
RxCLKOUT (Note 4)  
LVDF INPUTF (RxIN_% RxCLKIN_)  
Differential Input High Threshold  
Differential Input Low Threshold  
Input Current  
V
(Note 6)  
50  
mV  
mV  
µA  
µA  
TH  
V
(Note 6)  
-50  
-25  
-40  
TL  
I
, I  
PWRDWN = high or low  
+25  
+40  
IN+ IN-  
Power-Off Input Current  
I
, I  
V
= V  
= 0V or open  
CCO  
INO+ INO-  
CC  
PWRDWN = high or low,  
= V = 0V or open,  
-40°C to +85°C  
-40°C to +105°C  
-40°C to +85°C  
-40°C to +105°C  
42  
42  
78  
85  
Input Resistor 1  
R
kΩ  
kΩ  
V
IN1  
CC  
CCO  
Figure 1  
PWRDWN = high or low,  
= V = 0V or open,  
246  
246  
410  
440  
Input Resistor 2  
R
V
CC  
IN2  
CCO  
Figure 1  
AC ELECTRICAL CHARACTERIFTICF  
(V  
= LVDSV  
= PLLV  
= +3.0V to +3.6V, V  
= +3.0V to +3.6V, C = 8pF, PWRDWN = high; SSꢁ = high, open, or low;  
CC  
CC  
CC  
CCO L  
DCB = high or low, differential input voltage |V | = 0.1V to 1.2V, input common-mode voltage V  
= |V / 2| to 2.4V - |V / 2|, unless  
ID ID  
= +1.25V, T = +25°C.) (Notes 6, 7, 8)  
ID  
CM  
otherwise noted. Typical values are at V = V  
= LVDSV = PLLV = +3.3V, |V | = 0.2V, V  
CC  
CCO  
CC  
CC  
ID  
CM A  
PARAMETER  
Output Rise Time  
FYMBꢁL  
CꢁNDITIꢁNF  
MIN  
TYP  
4.7  
MAX  
6.5  
UNITF  
RxOUT_  
2.9  
2.0  
0.1 x V  
Figure 3  
to 0.9 x V  
,
CCO  
CCO  
CLHT  
CHLT  
CLHT  
CHLT  
ns  
RxCLKOUT  
RxOUT_  
3.3  
4.1  
2.1  
3.0  
4.2  
0.9 x V  
Figure 3  
to 0.1 x V  
to 0.9 x V  
to 0.1 x V  
,
CCO  
CCO  
Output Fall Time  
ns  
ns  
ns  
RxCLKOUT  
1.10  
1.94  
2.70  
0.1 x V  
Figure 3  
,
CCO  
CCO  
Output Rise Time (MAX9254)  
Output Fall Time (MAX9254)  
RxOUT_  
1.4  
1.1  
2.2  
1.8  
3.3  
2.8  
0.9 x V  
Figure 3  
,
CCO  
CCO  
RxCLKOUT  
16MHz  
34MHz  
20MHz  
40MHz  
2560  
900  
3142  
1386  
3164  
1371  
DC-balanced mode,  
Figure 4  
RxIN Skew Margin (Note 9)  
RSKM  
ps  
2500  
960  
Non-DC-balanced mode,  
Figure 4  
±
_______________________________________________________________________________________  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
AC ELECTRICAL CHARACTERIFTICF (ponꢆinteꢄ)  
(V  
= LVDSV  
= PLLV  
= +3.0V to +3.6V, V  
= +3.0V to +3.6V, C = 8pF, PWRDWN = high; SSꢁ = high, open, or low;  
CC  
CC  
CC  
CCO L  
DCB = high or low, differential input voltage |V | = 0.1V to 1.2V, input common-mode voltage V  
= |V / 2| to 2.4V - |V / 2|, unless  
ID ID  
ID  
CM  
otherwise noted. Typical values are at V = V  
= LVDSV = PLLV = +3.3V, |V | = 0.2V, V  
= +1.25V, T = +25°C.) (Notes 6, 7, 8)  
CM A  
CC  
CCO  
CC  
CC  
ID  
PARAMETER  
FYMBꢁL  
CꢁNDITIꢁNF  
MIN  
TYP  
MAX  
UNITF  
0.35 x  
RCOP  
RxCLKOUT High Time  
RCOH  
Figures 5a, 5b  
Figures 5a, 5b  
Figures 5a, 5b  
Figures 5a, 5b  
ns  
0.35 x  
RCOP  
RxCLKOUT Low Time  
RCOL  
RSRC  
RHRC  
RCCD  
ns  
ns  
ns  
ns  
0.3 x  
RCOP  
RxOUT Setup to RxCLKOUT  
RxOUT Hold from RxCLKOUT  
RxCLKIN to RxCLKOUT Delay  
0.45 x  
RCOP  
4.5 +  
6.5 +  
8.2 +  
SSꢁ = low, Figures 6a, 6b  
(RCIP / 2) (RCIP / 2) (RCIP / 2)  
Deserializer Phase-Locked-  
Loop Set  
65,600 x  
RCIP  
RPLLS  
RPDD  
Figure 7  
Figure 8  
ns  
ns  
ns  
Deserializer Power-Down Delay  
100  
Deserializer Phase-Locked-  
Loop Set from SSꢁ Change  
32,800 x  
RCIP  
RPLLS2 Figure 9  
Maximum output  
frequency  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
RxCLKIN  
+ 3.6ꢀ  
RxCLKIN  
+ 4.0ꢀ  
RxCLKIN  
+ 4.4ꢀ  
SSꢁ = high,  
Figure 10  
Minimum output  
frequency  
RxCLKIN  
- 4.4ꢀ  
RxCLKIN  
- 4.0ꢀ  
RxCLKIN  
- 3.6ꢀ  
Spread-Spectrum Output  
Frequency  
f
MHz  
Maximum output  
frequency  
RxCLKOUT  
RxCLKIN  
+ 1.8ꢀ  
RxCLKIN  
+ 2.0ꢀ  
RxCLKIN  
+ 2.2ꢀ  
SSꢁ = open,  
Figure 10  
Minimum output  
frequency  
RxCLKIN  
- 2.2ꢀ  
RxCLKIN  
- 2.0ꢀ  
RxCLKIN  
- 1.8ꢀ  
SSꢁ = low  
Figure 10  
RxCLKIN  
RxCLKIN  
Spread-Spectrum Modulation  
Frequency  
f
/
RxCLKIN  
1016  
f
Hz  
SSM  
Noꢆe 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground,  
except V and V  
.
TL  
TH  
Noꢆe ꢀ: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are production  
tested at T = +25°C.  
A
Noꢆe 3: To provide a mid level, leave the input open, or, if driven, put driver in high impedance. High-impedance leakage current  
must be less than 10µA.  
Noꢆe ±: RxCLKOUT limits are scaled based on RxOUT_ measurements, design, and characterization data.  
Noꢆe 5: One output shorted at a time. Current out of the pin.  
Noꢆe 6: V , V , and AC parameters are guaranteed by design and characterization, and are not production tested. Limits are set  
TH TL  
at 6 sigma.  
Noꢆe 7: C includes probe and test jig capacitance.  
L
Noꢆe 8: RCIP is the period of RxCLKIN. RCOP is the period of RxCLKOUT.  
Noꢆe 9: RSKM is measured with less than 150ps cycle-to-cycle jitter on RxCLKIN.  
_______________________________________________________________________________________  
5
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
Test Circuits/Timing Diagrams  
V
CC  
R
FAIL-SAFE  
IN2  
COMPARATOR  
RCOP  
RxIN_ + OR  
RxCLKIN+  
RxIN_ + OR  
RxCLKIN+  
RxCLKOUT  
V
- 0.3V  
CC  
R
R
R
R
IN1  
IN1  
IN1  
IN1  
1.2V  
ODD RxOUT  
EVEN RxOUT  
RxIN_ - OR  
RxCLKIN-  
RxIN_ - OR  
RxCLKIN-  
NON-DC-BALANCED MODE  
DC-BALANCED MODE  
Figure 2. Worst-Case Test Pattern  
Figure 1. LVDS Input Circuits  
90%  
90%  
RxOUT_ OR  
RxCLKOUT  
10%  
10%  
RxOUT_ OR  
RxCLKOUT  
8pF  
CLHT  
CHLT  
Figure 3. Output Load and Transition Times  
IDEAL SERIAL BIT TIME  
1.3V  
1.1V  
RCOP  
RxCLK OUT  
RxOUT_  
2.0V  
2.0V  
2.0V  
0.8V  
0.8V  
RCOL  
RCOH  
RHRC  
2.0V  
RSKM  
RSKM  
RSRC  
IDEAL  
IDEAL  
2.0V  
0.8V  
MIN  
MAX  
0.8V  
INTERNAL STROBE  
Figure 4. LVDS Receiver Input Skew Margin  
Figure 5a. Rising-Edge Output Setup/Hold and High/Low Times  
6
_______________________________________________________________________________________  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
Test Circuits/Timing Diagrams (continued)  
RCOP  
RCIP  
2.0V  
0.8V  
2.0V  
RxCLKOUT  
RxOUT_  
RxCLKIN  
V
= 0V  
ID  
0.8V  
0.8V  
RCOH  
RSRC  
RCOL  
RHRC  
RCCD  
1.5V  
2.0V  
0.8V  
2.0V  
0.8V  
RxCLKOUT  
Figure 6a. Clock-IN to Clock-OUT Delay (MAX9244/MAX9246/  
MAX9254)  
Figure 5b. Falling-Edge Output Setup/Hold and High/Low Times  
RCIP  
2V  
+
PWRDWN  
RxCLKIN  
V
ID  
= 0  
-
3V  
RCCD  
V
CC  
RPLLS  
RxCLKOUT  
1.5V  
RxCLKIN  
Figure 6b. Clock-IN to Clock-OUT Delay (MAX9242)  
1.5V  
RxCLKOUT  
HIGH IMPEDANCE  
PWRDWN  
1.5V  
Figure 7. Phase-Locked-Loop Set Time  
RxCLKIN  
RPDD  
RxOUT_  
RxCLKOUT  
1.5V  
HIGH IMPEDANCE  
Figure 8. Power-Down Delay  
_______________________________________________________________________________________  
7
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
Test Circuits/Timing Diagrams (continued)  
2.5V  
0.8V  
SSG  
OPEN OR LESS THAN 10μA LEAKAGE  
RPLLS2  
RxCLKIN_  
RxCLKOUT  
RxOUT_  
TIMING SHOWN FOR FALLING-EDGE STROBE (MAX9244/MAX9246/MAX9254)  
=
PWRDWN HIGH  
Figure 9. Phase-Locked-Loop Set Time from SSG Change  
FREQUENCY  
1 / f  
SSM  
f
(MAX)  
RxCLKOUT  
f
TIME  
RxCLKIN  
f
(MIN)  
RxCLKOUT  
Figure 10. Simplified Modulation Profile  
8
_______________________________________________________________________________________  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
Typical Operating Characteristics  
(V  
CC  
= PLLV  
= LVDSV  
= V  
= +3.3V, C = 8pF, PWRDWN = high, differential input voltage |V | = 0.2V, input common-mode  
CC  
CC  
CCO  
L
ID  
voltage V  
= 1.2V, T = +25°C, MAX9244/MAX9254, unless otherwise noted.)  
CM  
A
WORST-CASE AND PRBS SUPPLY CURRENT  
vs. FREQUENCY  
(NON-DC-BALANCED MODE, NO SPREAD)  
WORST-CASE AND PRBS SUPPLY CURRENT  
vs. FREQUENCY  
WORST-CASE AND PRBS SUPPLY CURRENT  
vs. FREQUENCY  
(DC-BALANCED MODE, NO SPREAD)  
(DC-BALANCED MODE, 2% SPREAD)  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
WORST-CASE PATTERN  
WORST-CASE PATTERN  
WORST-CASE PATTERN  
7
2 - 1 PRBS  
7
2 - 1 PRBS  
7
2 - 1 PRBS  
15  
20  
25  
30  
35  
40  
15  
20  
25  
30  
35  
40  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
WORST-CASE AND PRBS SUPPLY CURRENT  
vs. FREQUENCY  
RxOUT_TRANSITION TIME  
vs. OUTPUT SUPPLY VOLTAGE (V  
RxOUT_ OUTPUT LOADING  
)
(DC-BALANCED MODE, 4% SPREAD)  
CCO  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
100  
90  
80  
70  
60  
50  
40  
30  
14  
12  
10  
8
WORST-CASE PATTERN  
MAX9254  
C
LHT  
6
7
2 - 1 PRBS  
MAX9244  
4
2
C
HLT  
0
0
1
2
3
15  
20  
25  
30  
35  
40  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT SUPPLY VOLTAGE (V)  
LOAD (mA)  
FREQUENCY (MHz)  
RxCLKOUT POWER SPECTRUM  
vs. FREQUENCY  
(RxCLKIN_ = 33MHz, 2% SPREAD)  
RxCLKOUT POWER SPECTRUM  
vs. FREQUENCY  
(RxCLKIN_ = 33MHz, 4% SPREAD)  
RxCLKOUT POWER SPECTRUM  
vs. FREQUENCY  
(RxCLKIN_ = 33MHz, NO SPREAD)  
20  
10  
20  
10  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
RESOLUTION BW = 100kHz  
VIDEO BW = 100kHz  
ATTENUATION = 50dB  
RESOLUTION BW = 100kHz  
VIDEO BW = 100kHz  
ATTENUATION = 50dB  
RESOLUTION BW = 100kHz  
VIDEO BW = 100kHz  
ATTENUATION = 50dB  
-70  
-80  
-70  
-80  
-70  
-80  
30  
33  
36  
30  
33  
36  
30  
33  
36  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
9
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
Typical Operating Characteristics (continued)  
(V  
CC  
= PLLV  
= LVDSV  
= V  
= +3.3V, C = 8pF, PWRDWN = high, differential input voltage |V | = 0.2V, input common-mode  
CC  
CC  
CCO  
L
ID  
voltage V  
= 1.2V, T = +25°C, MAX9244/MAX9254, unless otherwise noted.)  
CM  
A
RxCLKOUT POWER SPECTRUM  
RxCLKOUT POWER SPECTRUM  
vs. FREQUENCY  
(RxCLKIN_ = 16MHz, 2% SPREAD)  
RxCLKOUT POWER SPECTRUM  
vs. FREQUENCY  
(RxCLKIN_ = 16MHz, 4% SPREAD)  
vs. FREQUENCY  
(RxCLKIN_ = 16MHz, NO SPREAD)  
20  
10  
20  
10  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
RESOLUTION BW = 100kHz  
VIDEO BW = 100kHz  
ATTENUATION = 50dB  
RESOLUTION BW = 100kHz  
VIDEO BW = 100kHz  
ATTENUATION = 50dB  
RESOLUTION BW = 100kHz  
VIDEO BW = 100kHz  
ATTENUATION = 50dB  
-70  
-70  
-80  
-70  
-80  
-80  
14  
16  
18  
14  
16  
18  
14  
15.0  
7
16  
18  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
RxOUT_ POWER SPECTRUM  
vs. FREQUENCY  
(RxCLKIN_ = 33MHz, NO SPREAD)  
RxOUT_ POWER SPECTRUM  
vs. FREQUENCY  
(RxCLKIN_ = 33MHz, 2% SPREAD)  
RxOUT_ POWER SPECTRUM  
vs. FREQUENCY  
(RxCLKIN_ = 33MHz, 4% SPREAD)  
20  
10  
20  
10  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
RESOLUTION BW = 100kHz  
VIDEO BW = 100kHz  
ATTENUATION = 50dB  
RESOLUTION BW = 100kHz  
VIDEO BW = 100kHz  
ATTENUATION = 50dB  
RESOLUTION BW = 100kHz  
VIDEO BW = 100kHz  
ATTENUATION = 50dB  
-70  
-70  
-80  
-70  
-80  
-80  
15.0  
16.5  
18.0  
15.0  
16.5  
18.0  
16.5  
18.0  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
RxOUT_ POWER SPECTRUM  
vs. FREQUENCY  
(RxCLKIN_ = 16MHz, NO SPREAD)  
RxOUT_ POWER SPECTRUM  
vs. FREQUENCY  
(RxCLKIN_ = 16MHz, 4% SPREAD)  
RxOUT_ POWER SPECTRUM  
vs. FREQUENCY  
(RxCLKIN_ = 16MHz, 2% SPREAD)  
20  
10  
20  
10  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
RESOLUTION BW = 100kHz  
VIDEO BW = 100kHz  
ATTENUATION = 50dB  
RESOLUTION BW = 100kHz  
VIDEO BW = 100kHz  
ATTENUATION = 50dB  
RESOLUTION BW = 100kHz  
VIDEO BW = 100kHz  
ATTENUATION = 50dB  
-70  
-70  
-80  
-70  
-80  
-80  
7
8
9
8
9
7
8
9
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
10 ______________________________________________________________________________________  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
Pin Description  
PIN  
1
NAME  
ꢂUNCTIꢁN  
RxOUT17  
RxOUT18  
Channel 2 Single-Ended Outputs  
ꢁround  
2
3, 25, 32,  
38, 44  
ꢁND  
4
5
RxOUT19  
RxOUT20  
Channel 2 Single-Ended Outputs  
Three-Level-Logic, Spread-Spectrum ꢁenerator Control Input. SSꢁ selects the frequency spread of  
RxCLKOUT relative to RxCLKIN (see Table 3).  
6
7
SSꢁ  
DCB  
Three-Level-Logic, DC-Balance Control Input. DCB selects DC-balanced, non-DC-balanced, or reserved  
operation (see Table 1).  
8
9
RxIN0-  
RxIN0+  
RxIN1-  
RxIN1+  
Inverting Channel 0 LVDS Serial-Data Input  
Noninverting Channel 0 LVDS Serial-Data Input  
Inverting Channel 1 LVDS Serial-Data Input  
Noninverting Channel 1 LVDS Serial-Data Input  
10  
11  
LVDS Supply Voltage. Bypass LVDSV to ꢁND with 0.1µF and 0.001µF capacitors in parallel as close to  
CC  
the pin as possible.  
12  
LVDSV  
CC  
13, 18  
14  
LVDSꢁND LVDS ꢁround  
RxIN2-  
Inverting Channel 2 LVDS Serial-Data Input  
Noninverting Channel 2 LVDS Serial-Data Input  
15  
RxIN2+  
16  
RxCLKIN- Inverting LVDS Parallel-Rate Clock Input  
RxCLKIN+ Noninverting LVDS Parallel-Rate Clock Input  
17  
19, 21  
PLLꢁND  
PLL ꢁround  
PLL Supply Voltage. Bypass PLLV  
the pin as possible.  
to ꢁND with 0.1µF and 0.001µF capacitors in parallel as close to  
CC  
20  
22  
23  
PLLV  
CC  
5V-Tolerant LVTTL/LVCMOS Power-Down Input. PWRDWN is internally pulled down to ꢁND. Outputs are  
high impedance when PWRDWN = low or open.  
PWRDWN  
Parallel-Rate Clock Single-Ended Output. The MAX9242 has a rising-edge strobe. The MAX9244/MAX9246/  
MAX9254 have a falling-edge strobe.  
RxCLKOUT  
24  
26  
27  
RxOUT0  
RxOUT1  
RxOUT2  
Channel 0 Single-Ended Outputs  
Output Supply Voltage. Bypass each V  
close to the pin as possible.  
to ꢁND with 0.1µF and 0.001µF capacitors in parallel as  
CCO  
28, 36, 48  
V
CCO  
29  
30  
31  
33  
RxOUT3  
RxOUT4  
RxOUT5  
RxOUT6  
Channel 0 Single-Ended Outputs  
______________________________________________________________________________________ 11  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
Pin Description (continued)  
PIN  
34  
35  
37  
39  
40  
41  
NAME  
RxOUT7  
RxOUT8  
RxOUT9  
RxOUT10  
RxOUT11  
RxOUT12  
ꢂUNCTIꢁN  
Channel 1 Single-Ended Outputs  
Digital Supply Voltage. Bypass V  
pin as possible.  
to ꢁND with 0.1µF and 0.001µF capacitors in parallel as close to the  
CC  
42  
V
CC  
43  
45  
46  
47  
RxOUT13 Channel 1 Single-Ended Output  
RxOUT14  
Channel 2 Single-Ended Outputs  
RxOUT15  
RxOUT16  
Functional Diagram  
CHANNEL 0  
RxIN0+  
RxIN0-  
7
7
7
7
7
7
SERIAL-TO-PARALLEL  
RxOUT0–RxOUT6  
RxOUT7–RxOUT13  
CHANNEL 1  
RxIN1+  
RxIN1-  
SERIAL-TO-PARALLEL  
FIFO  
CHANNEL 2  
RxIN2+  
RxIN2-  
SERIAL-TO-PARALLEL  
RxOUT14–RxOUT20  
PARALLEL  
CLOCK  
7x OR 9x STROBES  
PLL1  
CLK CLK  
IN  
OUT  
RxCLKIN+  
RxCLKIN-  
DCB  
FIFO  
CONTROL  
MAX9242  
SPREAD-  
SPECTRUM  
PLL (SSPLL)  
MAX9244  
MAX9246  
MAX9254  
RxCLKOUT  
SSG  
PWRDWN  
1ꢀ ______________________________________________________________________________________  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
Data coding by the MAX9209/MAX9213 serializers (that  
are companion devices to the MAX9242/MAX9244/  
Detailed Description  
The MAX9242/MAX9244/MAX9246/MAX9254 deserialize  
MAX9246/MAX9254 deserializers) limits the imbalance  
of ones and zeros transmitted on each channel. If +1 is  
assigned to each binary 1 transmitted and -1 is  
assigned to each binary 0 transmitted, the variation in  
the running sum of assigned values is called the digital  
sum variation (DSV). The maximum DSV for the data  
channels is 10. At most, 10 more zeros than ones, or 10  
more ones than zeros, are ever transmitted. The maxi-  
mum DSV for the clock channel is 5. Limiting the DSV  
and choosing the correct coupling capacitors maintain  
differential signal amplitude and reduces jitter due to  
droop on AC-coupled links.  
three LVDS serial-data inputs into 21 single-ended LVC-  
MOS/ LVTTL outputs. The outputs are programmable for  
no spread or for a spread of 2ꢀ or 4ꢀ, relative to the  
LVDS input clock frequency. The MAX9242/MAX9244/  
MAX9254 operate at a parallel clock frequency of 16MHz  
to 34MHz in DC-balanced mode and 20MHz to 40MHz in  
non-DC-balanced mode. The MAX9246 operates at a  
6MHz-to- 18MHz parallel clock frequency in DC-balanced  
mode and 8MHz-to-20MHz parallel clock frequency in  
non-DC-balanced mode. DC-balanced or non-DC-bal-  
anced operation is controlled by the DCB input. The  
MAX9242 has a rising-edge strobe and the MAX9244/  
MAX9246/MAX9254 have a falling-edge strobe.  
To obtain DC balance on the data channels, the serial-  
izer parallel data is inverted or not inverted, depending  
on the sign of the digital sum at the word boundary.  
Two complementary bits are appended to each group  
of 7 parallel-input data bits to indicate to the MAX9242/  
MAX9244/MAX9246/MAX9254 deserializer whether the  
data bits are inverted (see Figures 11 and 12). The  
deserializer restores the original state of the parallel  
data. The LVDS clock signal alternates duty cycles of  
4/9 and 5/9 to maintain DC balance.  
DC Balance (DCB)  
DC-balanced or non-DC-balanced operation is con-  
trolled by the DCB input (see Table 1). In the non-DC-  
balanced mode, each channel deserializes 7 bits every  
cycle of the parallel clock. In DC-balanced mode, 9 bits  
are deserialized every clock cycle (7 data bits + 2  
DC-balanced bits). The highest serial-data rate on each  
channel in DC-balanced mode is 34MHz x 9 = 306Mbps.  
In non-DC-balanced mode, the maximum data rate is  
40MHz x 7 = 280Mbps.  
Spread-Spectrum Generator (SSG)  
The MAX9242/MAX9244/MAX9246/MAX9254 single-  
ended data and clock outputs are programmable for a  
variation of 2ꢀ or 4ꢀ around the LVDS input clock fre-  
quency. The modulation rate of the frequency variation is  
32.48kHz for a 33MHz LVDS clock input and scales lin-  
early with the input clock frequency (see Table 2). The  
spread spectrum can also be turned off. The output  
spread is controlled through the SSꢁ input (see Table 3).  
Table 1. DCB ꢂtnpꢆion  
DCB INPUT LEVEL  
ꢂUNCTIꢁN  
Non-DC-balanced mode  
Reserved  
High  
Mid  
Low  
DC-balanced mode  
+
-
RxCLKIN  
CYCLE N - 1  
CYCLE N  
CYCLE N + 1  
TxIN15 TxIN14 TxIN20 TxIN19 TxIN18  
RxIN2  
TxIN17 TxIN16 TxIN15  
TxIN14 TxIN20 TxIN19 TxIN18  
TxIN17 TxIN16 TxIN15 TxIN14  
TxIN8  
RxIN1  
TxIN7  
TxIN0  
TxIN13 TxIN12 TxIN11  
TxIN10  
TxIN3  
TxIN9  
TxIN2  
TxIN8  
TxIN1  
TxIN7  
TxIN0  
TxIN13 TxIN12 TxIN11  
TxIN10  
TxIN3  
TxIN9  
TxIN2  
TxIN8  
TxIN1  
TxIN7  
TxIN0  
TxIN1  
RxIN0  
TxIN6  
TxIN5  
TxIN4  
TxIN6  
TxIN5  
TxIN4  
TxIN_ IS DATA FROM THE SERIALIZER.  
Figure 11. Deserializer Serial Input in Non-DC-Balanced Mode  
______________________________________________________________________________________ 13  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
+
-
RxCLKIN  
CYCLE N - 1  
CYCLE N  
CYCLE N + 1  
DCA2  
RxIN2  
DCB2  
TxIN20 TxIN19 TxIN18  
TxIN13 TxIN12 TxIN11  
TxIN17 TxIN16 TxIN15  
TxIN14  
TxIN7  
TxIN0  
DCA2  
DCA1  
DCA0  
DCB2  
DCB1  
DCB0  
TxIN20  
TxIN13  
TxIN6  
TxIN19 TxIN18 TxIN17 TxIN16 TxIN15 TxIN14  
DCA1  
RxIN1  
DCB1  
DCB0  
TxIN10  
TxIN3  
TxIN9  
TxIN2  
TxIN8  
TxIN1  
TxIN12 TxIN11 TxIN10  
TxIN9  
TxIN2  
TxIN8  
TxIN1  
TxIN7  
TxIN0  
DCA0  
RxIN0  
TxIN6  
TxIN5  
TxIN4  
TxIN5  
TxIN4  
TxIN3  
TxIN_, DCA_, AND DCB_ ARE DATA FROM THE SERIALIZER.  
Figure 12. Deserializer Serial Input in DC-Balanced Mode  
To select the mid level, leave the input open, or if driven,  
put the driver output in high impedance. The driver high-  
impedance leakage current must be less than 10µA.  
Any spread change causes a maximum delay time of  
32,800 x RCIP before output data is valid. When the  
spread amount is changed from 2ꢀ to 4ꢀ or vice-  
versa, the data outputs go low for one delay time (see  
Figure 13). Similarly, when the spread is changed from  
no spread to 2ꢀ or 4ꢀ, the data outputs go low for  
one delay time (see Figure 14). The data outputs contin-  
ue to switch but are not valid when the spread amount is  
changed from 2ꢀ or 4ꢀ to no spread (see Figure  
15). The spread-spectrum function is also available  
when the MAX9242/MAX9244/MAX9246/MAX9254 oper-  
ate in non-DC-balanced mode.  
Table ꢀ. Moꢄtlaꢆion Raꢆe  
f
(MHz)  
f
(kHz) = f  
/ 1016  
RxCLKIN  
RxCLKIN  
M
6
5.91  
7.87  
8
10  
16  
18  
20  
33  
34  
40  
9.84  
15.75  
17.72  
19.68  
32.48  
33.46  
39.37  
Hot Swap  
When the MAX9242/MAX9244/MAX9246/MAX9254 are  
connected to an active serializer, they synchronize correct-  
ly. The PLL control voltage does not saturate in response to  
high-frequency glitches that may occur during a hot swap.  
The PWRDWN input on the MAX9242/MAX9244/MAX9246/  
MAX9254 does not need to be cycled when these devices  
are connected to an active serializer.  
Table 3. FF- ꢂtnpꢆion  
FF- INPUT LEVEL  
ꢂUNCTIꢁN  
RxCLKOUT frequency spread  
4ꢀ relative to RxCLKIN  
High  
Mid  
PLL Lock Time  
The MAX9242/MAX9244/MAX9246/MAX9254 use two  
PLLs. The first PLL (PLL1) generates a 7x clock (non-DC-  
balanced mode) or a 9x clock (DC-balanced mode) from  
RxCLKIN for deserializing the LVDS inputs. The second  
PLL (SSPLL) is used for spread-spectrum modulation.  
During initial power-up, the PLL1 locks, and SSPLL locks  
immediately after. The PLL lock times are set by an inter-  
nal counter. The maximum time to lock for each PLL is  
32,800 clock periods. Power and clock should be stable  
to meet the lock time specification. After initialization, if  
the first PLL loses lock, it locks again and then the  
RxCLKOUT frequency spread  
2ꢀ relative to RxCLKIN  
No spread on RxCLKOUT  
relative to RxCLKIN  
Low  
Note: RxOUT_ data outputs are spread because RxCLKOUT  
strobes the output of the FIFO.  
1± ______________________________________________________________________________________  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
SSG  
4% OR 2% SPREAD  
2% OR 4% SPREAD  
RPLLS2 (32,800 x RCIP)  
RxCLKOUT  
RxOUT_  
LOW  
Figure 13. Output Waveforms when Spread Amount is Changed  
SSG  
NO SPREAD  
2% OR 4% SPREAD  
RPLLS2 (32,800 x RCIP)  
RxCLKOUT  
RxOUT_  
LOW  
Figure 14. Output Waveforms when Spread is Added  
SSG  
4% OR 2% SPREAD  
NO SPREAD  
RPLLS2 (32,800 x RCIP)  
RxCLKOUT  
RxOUT_  
DATA SWITCHING BUT NOT VALID  
Figure 15. Output Waveforms when Spread is Removed  
spread-spectrum PLL locks immediately after (see  
Figure 16). If the spread-spectrum PLL loses lock, it  
locks again with only one PLL lock delay (see Figure 17).  
increases the common-mode voltage range of an LVDS  
receiver to nearly the voltage rating of the capacitor. The  
typical LVDS driver output is 350mV centered on a 1.25V  
offset voltage, making single-ended output voltages of  
1.425V and 1.075V. An LVDS receiver accepts signals  
from 0 to 2.4V, allowing approximately 1V common-  
mode difference between the driver and receiver on a  
AC-Coupling Benefits  
Bit errors experienced with DC-coupling (Figure 18)  
can be eliminated by increasing the receiver common-  
mode voltage range through AC-coupling. AC-coupling  
______________________________________________________________________________________ 15  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
RPLLS (65,600 x RCIP)  
INTERNAL  
PLL1 LOCK  
INTERNAL  
SSPLL LOCK  
RxCLKOUT  
RxOUT_  
LOW  
LOW  
LOW  
LOW  
Figure 16. Output Waveforms when PLL1 Loses Lock and Locks Again  
RPLLS2 (32,800 x RCIP)  
INTERNAL  
SSPLL LOCK  
RxCLKOUT  
RxOUT_  
LOW  
TIMING SHOWN FOR STABLE CLOCK AND DATA INPUTS  
Figure 17. Output Waveforms if Spread-Spectrum PLL Loses Lock and Locks Again  
DC-coupled link (2.4V - 1.425V = 0.975V and 1.075V -  
0V = 1.075V). Common-mode voltage differences may  
Applications Information  
Selection of AC-Coupling Capacitors  
Voltage droop and the DSV of transmitted symbols  
cause signal transitions to start from different voltage  
levels. Because the transition time is finite, starting the  
signal transition from different voltage levels causes  
timing jitter. The time constant for an AC-coupled link  
needs to be chosen to reduce droop and jitter to an  
acceptable level.  
be due to ground potential variation or common-mode  
noise. If there is more than 1V of difference, the receiver  
is not guaranteed to read the input signal correctly and  
may cause bit errors. AC-coupling filters low-frequency  
ground shifts and common-mode noise and passes  
high-frequency data. A common-mode voltage differ-  
ence up to the voltage rating of the coupling capacitor  
(minus half the differential swing) is tolerated. DC-bal-  
anced coding of the data is required to maintain the  
differential signal amplitude and limit jitter on an  
AC-coupled link. A capacitor in series with each output  
of the LVDS driver is sufficient for AC-coupling. However,  
two capacitors—one at the serializer output and one at  
the deserializer input—provide protection in case either  
end of the cable is shorted to a high voltage.  
The RC network for an AC-coupled link consists of the  
LVDS receiver termination resistor (R ), the LVDS driver  
T
output resistor (R ), and the series AC-coupling capac-  
O
itors (C). The RC time constant for two equal-value  
series capacitors is (C x (R + R )) / 2 (Figure 19). The  
T
O
RC time constant for four equal-value series capacitors  
is (C x (R + R )) / 4 (Figure 20).  
T
O
16 ______________________________________________________________________________________  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
MAX9209/MAX9213  
MAX9242/MAX9244/MAX9246/MAX9254  
TRANSMISSION LINE  
TxOUT  
RxIN  
R
O
R
T
7
7
7
7
7
7
100Ω  
100Ω  
100Ω  
100Ω  
7:1  
7:1  
7:1  
PLL  
1:7 FIFO  
TxIN  
1:7 FIFO  
1:7 FIFO  
RxOUT  
PWRDWN  
TxCLK IN  
PWRDWN  
PLL1 +  
SSPLL  
RxCLK OUT  
TxCLK OUT  
RxCLK IN  
21:3 SERIALIZER  
3:21 DESERIALIZER  
Figure 18. DC-Coupled Link, Non-DC-Balanced Mode  
R is required to match the transmission line impedance  
The DSV is 10. See equation 3 for four series capacitors  
(Figure 20).  
T
(usually 100Ω) and R is determined by the LVDS dri-  
O
ver design (the minimum differential output resistance of  
78Ω for the MAX9209/MAX9213 serializers is used in  
the following example). This condition leaves the capac-  
itor selection to change the system time constant.  
The capacitor for 2ꢀ maximum droop at 16MHz parallel  
rate clock is:  
C = -(2 x t x DSV) / (ln (1 - D) x (R + R ))  
B
T
O
C = -(2 x 6.95ns x 10) / (ln (1 - 0.02) x (100Ω + 78Ω))  
C = 0.038µF  
In the following example, the capacitor value for a 2ꢀ  
droop is calculated. Jitter due to this droop is then cal-  
culated assuming a 1ns transition time:  
Jitter due to droop is proportional to the droop and  
transition time:  
C = -(2 x t x DSV) / (ln (1 - D) x (R + R )) (Eq 1)  
B
T
O
where:  
t = t x D (Eq 2)  
J T  
C = AC-coupling capacitor (F)  
where:  
t = jitter (s)  
T
t = bit time (s)  
B
J
DSV = digital sum variation (integer)  
ln = natural log  
t = transition time (s) (0 to 100ꢀ)  
D = droop (ꢀ of signal amplitude)  
D = droop (ꢀ of signal amplitude)  
Jitter due to 2ꢀ droop and assumed 1ns transition time is:  
R = termination resistor (Ω)  
T
R
O
= output resistance (Ω)  
t = 1ns x 0.02  
J
Equation 1 is for two series capacitors (Figure 19). The bit  
time (t ) is the period of the parallel clock divided by 9.  
t = 20ps  
J
B
The transition time in a real system depends on the fre-  
quency response of the cable driven by the serializer.  
______________________________________________________________________________________ 17  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
HIGH-FREQUENCY, CERAMIC  
SURFACE-MOUNT CAPACITORS  
CAN ALSO BE PLACED AT THE  
MAX9209/MAX9213  
MAX9242/MAX9244/MAX9246/MAX9254  
SERIALIZER INSTEAD OF THE DESERIALIZER.  
TxOUT  
RxIN  
R
R
T
O
7
7
7
7
7
7
1:(9 - 2)  
+ FIFO  
100Ω  
100Ω  
100Ω  
100Ω  
(7 + 2):1  
1:(9 - 2)  
+ FIFO  
TxIN  
(7 + 2):1  
(7 + 2):1  
PLL  
RxOUT  
1:(9 - 2)  
+ FIFO  
PWRDWN  
TxCLK IN  
PWRDWN  
PLL1 +  
SSPLL  
RxCLK OUT  
TxCLK OUT  
RxCLK IN  
21:3 SERIALIZER  
3:21 DESERIALIZER  
Figure 19. Two Capacitors per Link, AC-Coupled, DC-Balanced Mode  
The capacitor value decreases for a higher frequency  
parallel clock and for higher levels of droop and jitter.  
Use high-frequency, surface-mount ceramic capacitors.  
RxCLKIN-) to differential +15mV by connecting a 10kΩ  
1ꢀ pullup resistor between the noninverting input and  
LVDSV , and a 10kΩ 1ꢀ pulldown resistor between  
CC  
the inverting input and ground. These bias resistors,  
along with the 100Ω 1ꢀ tolerant termination resistor,  
provide +15mV of differential input. The +15mV bias  
causes some small degradation of RSKM proportional to  
the slew rate of the clock input. For example, if the clock  
transitions 250mV in 500ps, the slew rate of 0.5mV/ps  
reduces RSKM by 30ps.  
Equation 1 altered for four series capacitors (Figure 20) is:  
C = -(4 x t x DSV) / (ln (1 - D) x (R + R )) (Eq 3)  
B
T
O
Fail-Safe  
The MAX9242/MAX9244/MAX9246/MAX9254 have fail-  
safe LVDS inputs in non-DC-balanced mode (Figure 1).  
Fail-safe drives the outputs low when the corresponding  
LVDS input is open, undriven and shorted, or undriven  
and parallel terminated. The fail-safe on the LVDS clock  
input drives all outputs low when power is stable. Fail-  
safe does not operate in DC-balanced mode.  
Unused LVDS Data Inputs  
In non-DC-balanced mode, leave unused LVDS data  
inputs open. In non-DC-balanced mode, the input fail-  
safe circuit drives the corresponding outputs low, and no  
pullup or pulldown resistors are needed. In DC-balanced  
mode, at each unused LVDS data input, pull the inverting  
Input Bias and Frequency Detection  
In DC-balanced mode, the inverting and noninverting  
LVDS inputs are internally connected to +1.2V through  
42kΩ (min) to provide biasing for AC-coupling (Figure 1).  
To prevent switching due to noise when the clock input  
is not driven, bias the clock inputs (RxCLKIN+,  
input up to LVDSV  
using a 10kΩ resistor, and pull the  
CC  
noninverting input down to ground using a 10kΩ resistor.  
Do not connect a termination resistor. The pullup and  
pulldown resistors drive the corresponding outputs low  
and prevent switching due to noise.  
18 ______________________________________________________________________________________  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
HIGH-FREQUENCY CERAMIC  
SURFACE-MOUNT CAPACITORS  
MAX9209/MAX9213  
MAX9242/MAX9244/MAX9246/MAX9254  
TxOUT  
RxIN  
R
R
T
7
7
7
7
7
7
O
1:(9 - 2)  
+ FIFO  
100Ω  
100Ω  
100Ω  
100Ω  
(7 + 2):1  
1:(9 - 2)  
+ FIFO  
TxIN  
(7 + 2):1  
(7 + 2):1  
PLL  
RxOUT  
1:(9 - 2)  
+ FIFO  
PWRDWN  
TxCLK IN  
PWRDWN  
PLL1 +  
SSPLL  
RxCLK OUT  
TxCLK OUT  
RxCLK IN  
21:3 SERIALIZER  
3:21 DESERIALIZER  
Figure 20. Four Capacitors per Link, AC-Coupled, DC-Balanced Mode  
surface-mount ceramic 0.1µF and 0.001µF capacitors in  
parallel as close to the device as possible, with the  
smallest value capacitor closest to the supply pin.  
Link Power-Up Sequence  
The recommended link power-up sequence is to power  
up the serializer, wait until the serializer PLL locks, and  
then power up the deserializer. This sequence prevents  
the deserializer from seeing an undriven or unstable  
input when powering up.  
Cables and Connectors  
Interconnect for LVDS typically has a differential imped-  
ance of 100Ω. Use cables and connectors that have  
matched differential impedance to minimize impedance  
discontinuities.  
PWRDWN  
Driving PWRDWN low puts the outputs in high imped-  
ance, stops the PLL, and reduces supply current to  
50µA or less. Driving PWRDWN high drives the outputs  
low until the PLL locks. The outputs of two deserializers  
can be bused to form a 2:1 mux with the outputs con-  
trolled by PWRDWN. Wait 100ns between disabling one  
deserializer (driving PWRDWN low) and enabling the  
second one (driving PWRDWN high) to avoid con-  
tention of the bused outputs.  
Twisted-pair and shielded twisted-pair cables offer  
superior signal quality compared to ribbon cable and  
tend to generate less EMI due to magnetic field cancel-  
ing effects. Balanced cables pick up noise as common  
mode, which is rejected by the LVDS receiver.  
Board Layout  
Keep the LVTTL/LVCMOS outputs and LVDS input sig-  
nals separated to prevent crosstalk. A four-layer PC  
board with separate layers for power, ground, LVDS  
inputs, and digital signals is recommended. Layout PC  
board traces for 100Ω differential characteristic imped-  
ance. The trace dimensions depend on the type of  
Power-Supply Bypassing  
There are separate on-chip power domains for digital  
circuits, outputs, PLL, and LVDS inputs. Bypass each  
V
, V  
CC CCO  
, PLLV , and LVDSV  
with high-frequency,  
CC  
CC  
______________________________________________________________________________________ 19  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
trace used (microstrip or stripline). Note that two 50Ω  
PC board traces do not have 100Ω differential imped-  
ance when brought close together—the impedance  
goes down when the traces are brought closer.  
The incremental current is added to (for V  
> 3.6V)  
CCO  
or subtracted from (for V  
< 3.6V) the DC Electrical  
CCO  
Characteristics table maximum supply current. The  
internal output buffer capacitance is C = 6pF. The  
INT  
worst-case pattern switching frequency of the data out-  
puts is half the switching frequency of the output clock.  
Route the PC board traces for an LVDS channel (there  
are two conductors per LVDS channel) in parallel to  
maintain the differential characteristic impedance.  
Place the termination resistor at the end of the PC  
board traces within a 1/4 inch of the LVDS receiver  
input. Avoid vias. If vias must be used, use only one  
pair per LVDS channel and place the via for each line  
at the same point along the length of the PC board  
traces. This way, any reflections will occur at the same  
time. Do not make vias into test points for ATE. Make  
LVDS clock and data pairs the same length on the PC  
board to avoid pair-to-pair skew. Make the PC board  
traces that make up a differential pair the same length  
to avoid skew within the differential pair.  
In the following example, the incremental supply current  
of the MAX9244 in spread and DC-balanced mode is cal-  
culated for V  
= 5.5V, f = 34MHz, and C = 8pF:  
C L  
CCO  
V = 5.5V - 3.6V = 1.9V  
I
C = C  
T
+ C = 6pF + 8pF = 14pF  
L
INT  
where:  
I = C V 0.5f x 21 (data outputs) + C V f x 1 (clock  
I
T I  
C
T I C  
output)  
I = (14pF x 1.9V x 0.5 x 34MHz x 21) + (14pF x 1.9V x  
I
34MHz)  
I = 9.5mA + 0.9mA = 10.4mA.  
I
5V-Tolerant Input  
PWRDWN is 5V tolerant and is internally pulled down to  
ꢁND. SSꢁ and DCB are not 5V tolerant. The input voltage  
The maximum supply current in DC-balanced mode for  
V
= V  
= 3.6V at f = 34MHz is 125mA (from the  
CC  
CCO C  
DC Electrical Characteristics table). Add 10.4mA to get  
range for SSꢁ and DCB is nominally ground to V  
.
CC  
the total approximate maximum supply current at V  
= 5.5V and V  
CCO  
= 3.6V.  
Skew Margin (RSKM)  
Skew margin (RSKM) is the time allowed for degrada-  
tion of the serial-data sampling setup and hold times by  
sources other than the deserializer. The deserializer  
sampling uncertainty is accounted for and does not  
need to be subtracted from RSKM. The main outside  
contributors of jitter and skew that subtract from RSKM  
are interconnect intersymbol interference, serializer  
pulse position uncertainty, and pair-to-pair path skew.  
CC  
If the output supply voltage is less than V  
= 3.6V,  
CCO  
the reduced supply current can be calculated using the  
same formula and method.  
At high switching frequency, high supply voltage, and  
high capacitive loading, power dissipation can exceed  
the package power dissipation rating. Do not exceed  
the maximum package power dissipation rating. See  
the Absolute Maximum Ratings for maximum package  
power dissipation capacity and temperature derating.  
V
Output Supply and Power Dissipation  
CCO  
The outputs have a separate supply (V  
) for interfacing  
CCO  
Rising- or Falling-Edge Output Strobe  
The MAX9242 has a rising-edge output strobe, which  
latches the parallel output data into the next chip on the  
rising edge of RxCLKOUT. The MAX9244/MAX9246/  
MAX9254 have a falling-edge output strobe, which  
latches the parallel output data into the next chip on the  
falling edge of RxCLKOUT The deserializer output  
.
strobe polarity does not need to match the serializer  
input strobe polarity.  
to systems with 1.8V to 5V nominal input logic levels. The  
DC Electrical Characteristics table gives the maximum  
supply current for V  
= 3.6V with 8pF load at several  
CCO  
switching frequencies with all outputs switching in the  
worst-case switching pattern. The approximate incremen-  
tal supply current for V  
other than 3.6V with the same  
CCO  
8pF load and worst-case pattern can be calculated using:  
I = C V 0.5f x 21 (data outputs)  
I
T I  
C
+ C V f x 1 (clock output)  
T I C  
Three-Level Logic Inputs  
SSꢁ and DCB (DCB mid level is reserved) are three-  
level-logic inputs. A logic-high input voltage must be  
greater than +2.5V and a logic-low input voltage must  
be less than +0.8V. A mid-level logic is recognized by  
the MAX9242/MAX9244/MAX9246/MAX9254 when the  
input is left open or connected to a driver in a high-  
impedance state. A weak inverter on the input stage of  
where:  
I = incremental supply current  
I
C = total internal (C ) and external (C ) load capaci-  
T
INT  
L
tance  
V = incremental supply voltage  
I
f = output clock switching frequency  
C
ꢀ0 ______________________________________________________________________________________  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
SSꢁ and DCB provides the proper mid-level voltage  
R
2kΩ  
D
under conditions of low input current. The mid-level  
input current must not be greater than 10µA, and the  
mid-level logic state cannot be driven with an external  
voltage source.  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
S
STORAGE  
CAPACITOR  
IEC 61000-4-2 Level 4 and ISO 10605  
ESD Protection  
330pF  
SOURCE  
The MAX9242/MAX9244/MAX9246/MAX9254 ESD toler-  
ance is rated for Human Body Model, IEC 61000-4-2  
and ISO 10605. The ISO 10605 and IEC 61000-4-2  
standards specify ESD tolerance for electronic sys-  
tems. All LVDS inputs on the MAX9242/MAX9244/  
MAX9246/MAX9254 meet ISO 10605 ESD protection at  
30kV Air-ꢁap Discharge and 6kV Contact Discharge  
and IEC 61000-4-2 ESD protection at 15kV Air-ꢁap  
Discharge and 8kV Contact Discharge. All other pins  
meet the Human Body Model ESD tolerance of 2.5kV.  
Figure 23. ISO 10605 Contact Discharge ESD Test Circuit  
Pin Configuration  
TOP VIEW  
The Human Body Model discharge components are C  
RxOUT17  
RxOUT18  
GND  
1
2
3
4
5
6
7
8
9
48  
V
CCO  
S
= 100pF and R = 1.5kΩ (Figure 21). The IEC 61000-4-  
D
47 RxOUT16  
46 RxOUT15  
45 RxOUT14  
44 GND  
2 discharge components are C = 150pF and R  
=
D
S
330Ω (see Figure 22). The ISO 10605 discharge com-  
RxOUT19  
RxOUT20  
SSG  
ponents are C = 330pF and R = 2kΩ (Figure 23).  
S
D
43 RxOUT13  
R
D
DCB  
42  
V
CC  
1.5kΩ  
RxIN0-  
RxIN0+  
41 RxOUT12  
40 RxOUT11  
39 RxOUT10  
38 GND  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
RxIN1- 10  
RxIN1+ 11  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
S
STORAGE  
CAPACITOR  
100pF  
LVDSV  
12  
37 RxOUT9  
SOURCE  
CC  
MAX9242  
MAX9244  
MAX9246  
MAX9254  
LVDSGND 13  
RxIN2- 14  
36  
V
CCO  
35 RxOUT8  
34 RxOUT7  
33 RxOUT6  
32 GND  
RxIN2+ 15  
Figure 21. Human Body ESD Test Circuit  
RxCLKIN- 16  
RxCLKIN+ 17  
LVDSGND 18  
PLLGND 19  
31 RxOUT5  
30 RxOUT4  
29 RxOUT3  
R2  
330Ω  
PLLV  
20  
21  
22  
CC  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
PLLGND  
28  
V
CCO  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
27 RxOUT2  
26 RxOUT1  
25 GND  
PWRDWN  
C
S
STORAGE  
CAPACITOR  
150pF  
RxCLKOUT 23  
RxOUT0 24  
SOURCE  
TFFꢁP  
Figure 22. IEC 61000-4-2 Contact Discharge ESD Test Circuit  
Chip Information  
PROCESS: CMOS  
______________________________________________________________________________________ ꢀ1  
21-Bit Deserializers with Programmable  
Spread Spectrum and DC Balance  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maximꢅip.pom/ꢃapkages.)  
N
MARKING  
AAA A  
E
H
1
2
3
TOP VIEW  
BOTTOM VIEW  
SEE DETAIL A  
b
A1  
A2  
A
C
L
c
e
END VIEW  
SEATING  
PLANE  
D
SIDE VIEW  
b
(
)
PARTING  
LINE  
b1  
0.25  
WITH PLATING  
L
DETAIL A  
c1  
c
NOTES:  
1. DIMENSIONS D & E ARE REFERENCE DATUMS AND DO NOT INCLUDE MOLD FLASH.  
BASE METAL  
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15MM ON D SIDE, AND 0.25MM ON E SIDE.  
3. CONTROLLING DIMENSION: MILLIMETERS.  
SECTION C-C  
4. THIS PART IS COMPLIANT WITH JEDEC SPECIFICATION MO-153, VARIATIONS, ED (48L), EE (56L).  
5. "N" REFERS TO NUMBER OF LEADS.  
6. THE LEAD TIPS MUST LIE WITHIN A SPECIFIED ZONE. THIS TOLERANCE ZONE IS DEFINED BY TWO PARALLEL  
PLANES. ONE PLANE IS THE SEATING PLANE, DATUM (-C-), THE OTHER PLANE IS AT THE SPECIFIED DISTANCE  
FROM (-C-) IN THE DIRECTION INDICATED.  
7. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
PACKAGE OUTLINE,  
48 & 56L TSSOP, 6.1mm BODY  
8. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
1
21-0155  
C
1
Revision History  
Pages changed at Rev 1: 1–4, 7–14, 17–22  
Pages changed at Rev 2: 1, 2, 4, 22  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
ꢀꢀ ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  
Springer  

相关型号:

MAX9254EUM

21-Bit Deserializers with Programmable Spread Spectrum and DC Balance
MAXIM

MAX9254EUM+D

Line Driver, 1 Func, CMOS, PDSO48, ROHS COMPLIANT, PLASTIC, TSSOP-48
MAXIM

MAX9254EUM+TD

Line Driver, 1 Func, CMOS, PDSO48, ROHS COMPLIANT, PLASTIC, TSSOP-48
MAXIM

MAX9254EUM/V+

Line Receiver, 1 Func, 3 Rcvr, CMOS, PDSO48, ROHS COMPLIANT, PLASTIC, TSSOP-48
MAXIM

MAX9257

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel
MAXIM

MAX9257A

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel
MAXIM

MAX9257AEVKIT

On-Board Emulated Camera
MAXIM

MAX9257AEVKIT+

On-Board Emulated Camera
MAXIM

MAX9257AGCM

Fully Programmable Serializer/Deserializer with UART/I2C Control Channel
MAXIM

MAX9257AGCM/V+

Line Driver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PQFP48, ROHS COMPLIANT, LQFP-48
MAXIM

MAX9257AGCM/V+T

Line Driver, BICMOS, PQFP48,
MAXIM
MAXIM