MAX9273GTL+ [MAXIM]

22-Bit GMSL Serializer with Coax or STP Cable Drive;
MAX9273GTL+
型号: MAX9273GTL+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

22-Bit GMSL Serializer with Coax or STP Cable Drive

文件: 总49页 (文件大小:2548K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
General Description  
Benefits and Features  
S Ideal for Camera Applications  
The MAX9273 compact serializer is designed to drive  
50I coax or 100I shielded twisted-pair (STP) cable.  
The device pairs with the MAX9272 deserializer. The  
parallel input is programmable for single or double input.  
Double input allows higher pixel clock input frequency by  
registering two pixels of typical image-sensor video data  
before serializing. This doubles the maximum pixel clock  
frequency compared to single input.  
Drives Low-Cost 50I Coax Cable and FAKRA  
Connectors or 100I STP  
Error Detection/Correctionꢀ  
9.6kbps to 1Mbps Control Channel in I2C-to-I2C  
Mode with Clock Stretch Capability  
Best-in-Class Supply Current: 75mA (max)  
Double-Rate Clock for Megapixel Cameras  
Serializer Pre/Deemphasis Allows 15m Cable at  
Full Speed  
The device features an embedded control channel that  
operates at 9.6kbps to 1Mbps in UART and mixed UART/  
I2C modes, and up to 400kbps in I2C mode. Using the  
control channel, a microcontroller (FC) is capable of  
programming serializer, deserializer, and camera (or any  
peripheral) registers at any time, independent of video  
timing. There is one dedicated GPIO, four optional GPIOs,  
and a GPO output, allowing remote power-up of a camera  
module, camera frame synchronization, and other uses.  
Error-detection and correction coding are programmable.  
40-Pin (6mm x 6mm) TQFN Package with 0.5mm  
Lead Pitch  
S High-Speed Data Serialization for Megapixel  
Cameras  
Up to 1.5Gbps Serial-Bit Rate with Single or  
Double Input: 6.25MHz to 100MHz Clock  
S Multiple Control-Channel Modes for System  
Flexibility  
For driving longer cables, the serializer has program-  
mable pre/deemphasis. Programmable spread spectrum  
is available on the serial output. The serial output meets  
ISO 10605 and IEC 61000-4-2 ESD standards. The core  
supply range is 1.7V to 1.9V and the I/O supply range is  
1.7V to 3.6V. The device is available in a 40-pin (6mm x  
6mm) TQFN-EP package with 0.5mm lead pitch and oper-  
ates over the -40NC to +105NC temperature range.  
9.6kbps to 1Mbps Control Channel in UART-to-  
UART or UART-to-I2C Modes  
S Reduces EMI and Shielding Requirements  
Output Programmable for 100mV to 500mV  
Single-Ended or 100mV to 400mV Differential  
Programmable Spread Spectrum on the Serial  
Output Reduces EMI  
Bypassable Input PLL for Parallel Clock Jitter  
Attenuation  
Applications  
Tracks Spread Spectrum on Parallel Input  
S Peripheral Features for Camera Power-Up and  
Verification  
Automotive Camera Systems  
Navigation Displays  
Built-In PRBS Generator for BER Testing of the  
Serial Link  
Up to Five GPIO Ports  
Dedicated “Up/Down” GPO for Camera Frame  
Sync Trigger and Other Uses  
S Reduces Power Requirements  
Remote/Local Wake-Up from Sleep Mode  
Ordering Information appears at end of data sheet.  
Typical Application Circuit appears at end of data sheet.  
S Meets Rigorous Automotive and Industrial  
Requirements  
-40NC to +105NC Operating Temperature  
±±kV Contact and ±15kV Air ISO 10605 and  
IEC 61000-4-2 ESD Protection  
For related parts and recommended products to use with this part,  
refer to www.maximintegrated.com/MAX9273.related.  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-6384; Rev 1; 11/12  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Package Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Input Bit Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Serial Link Signaling and Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Reverse Control Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Data-Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Control Channel and Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
2
Interfacing Command-Byte-Only I C Devices with UART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
UART Bypass Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
2
I C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
START and STOP Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Bus Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Format for Writing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Format for Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2
I C Communication with Remote-Side Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2
I C Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Control-Channel Broadcast Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
GPO/GPI Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Pre/Deemphasis Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Manual Programming of the Spread-Spectrum Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Additional Error Detection and Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Cyclic Redundancy Check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Maxim Integrated  
2
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
TABLE OF CONTENTS (continued)  
Hamming Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
HS/VS Encoding and/or Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Serial Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Coax-Mode Splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Configuration Inputs (CONF1, CONF0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Sleep Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Configuration Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Link Startup Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
PRBS Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Error Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Dual µC Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Jitter-Filtering PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
PCLKIN Spread Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Changing the Clock Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Fast Detection of Loss-of-Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Providing a Frame Sync (Camera Applications) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Software Programming of the Device Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Three-Level Configuration Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Configuration Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Compatibility with Other GMSL Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
GPIOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Internal Input Pulldowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
2
Choosing I C/UART Pullup Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
AC-Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Selection of AC-Coupling Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Power-Supply Circuits and Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Power-Supply Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Cables and Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Board Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Maxim Integrated  
3
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
LIST OF FIGURES  
Figure 1. Serial-Output Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 2. Output Waveforms at OUT+, OUT- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 3. Single-Ended Output Template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 4. Worst-Case Pattern Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 5. Parallel Clock Input Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2
Figure 6. I C Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 7. Differential Output Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 8. Input Setup and Hold Times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 9. GPI-to-GPO Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 10. Serializer Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 11. Link Startup Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 12. Power-Up Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 13. Single-Input Waveform (Latch on Rising Edge of PCLKIN Selected). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 14. Single-Input Function Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 15. Double-Input Function Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 16. Double-Input Waveform (Latch on Rising Edge of PCLKIN Selected) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 17. Serial-Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 18. GMSL UART Protocol for Base Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 19. GMSL UART Data Format for Base Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 20. SYNC Byte (0x79) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 21. ACK Byte (0xC3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2
Figure 22. Format Conversion Between GMSL UART and I C with Register Address (I2CMETHOD = 0) . . . . . . . . 26  
2
Figure 23. Format Conversion Between GMSL UART and I C with Register Address (I2CMETHOD = 1) . . . . . . . . 27  
Figure 24. START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 25. Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 26. Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 27. Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2
Figure 28. Format for I C Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 29. Format for Write to Multiple Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2
Figure 30. Format for I C Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 31. 2:1 Coax-Mode Splitter Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 32. Coax-Mode Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 33. State Diagram, All Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 34. Human Body Model ESD Test Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 35. IEC 61000-4-2 Contact Discharge ESD Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 36. ISO 10605 Contact Discharge ESD Test Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Maxim Integrated  
4
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
LIST OF TABLES  
Table 1. Power-Up Default Register Map (see Table 15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 2. Input Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 3. Data-Rate Selection Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2
Table 4. I C Bit-Rate Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 5. TP/Coax Drive Current (CMLLVL = 1000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 6. Serial Output Spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 7. Spread Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 8. Modulation Coefficients and Maximum SDIV Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 9. Configuration Input Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 10. Startup Procedure for Video-Display Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 11. Startup Procedure for Image-Sensing Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 12. MAX9273 Feature Compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 13. Typical Power-Supply Currents (Using Worst-Case Input Pattern). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 14. Suggested Connectors and Cables for GMSL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 15. Register Table (see Table 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Maxim Integrated  
5
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
ABSOLUTE MAꢀIMUM RATINGS*  
AVDD to EP ..........................................................-0.5V to +1.9V  
DVDD to EP..........................................................-0.5V to +1.9V  
IOVDD to EP.........................................................-0.5V to +3.9V  
OUT+, OUT- to EP ...............................................-0.5V to +1.9V  
Continuous Power Dissipation (T = +70NC)  
TQFN (derate 37mW/NC above +70NC).....................2963mW  
Junction Temperature .....................................................+150NC  
Operating Temperature Range........................-40 C to +105NC  
Storage Temperature Range............................-65 C to +150NC  
A
o
o
All other pins to EP.............................. -0.5V to (V  
+ 0.5V)  
IOVDD  
OUT+, OUT- short circuit to ground or supply ........Continuous  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
*EP connected to PCB ground.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
TQFN  
Junction-to-Ambient Thermal Resistance (q ) ..........27°C/W  
Junction-to-Case Thermal Resistance (q ).....................1°C/W  
JC  
JA  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= V  
= 1.7V to 1.9V, V  
= 1.7V to 3.6V, R = 100I 1ꢀ (differential), EP connected to PCB ground (GND),  
AVDD  
DVDD  
IOVDD L  
T
= -40NC to +105NC, unless otherwise noted. Typical values are at V  
= V  
= V  
= 1.8V, T = +25NC.)  
A
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAꢀ  
UNITS  
SINGLE-ENDED INPUTS (DIN_, HS, VS, MS, PWDN, DRS, AUTOS, PCLKIN)  
0.65 x  
High-Level Input Voltage  
V
V
IH1  
V
IOVDD  
0.35 x  
Low-Level Input Voltage  
Input Current  
V
V
IL1  
V
IOVDD  
+20  
I
V
= 0V to V  
IOVDD  
-10  
FA  
IN1  
IN  
THREE-LEVEL LOGIC INPUTS (CONF0, CONF1)  
0.7 x  
High-Level Input Voltage  
Low-Level Input Voltage  
V
V
V
IH  
V
IOVDD  
0.3 x  
V
IL  
V
IOVDD  
+10  
Midlevel Input Current  
Input Current  
I
(Note 2)  
-10  
FA  
FA  
INM  
I
IN  
-150  
+150  
SINGLE-ENDED OUTPUT (GPO)  
V
IOVDD  
- 0.2  
High-Level Output Voltage  
Low-Level Output Voltage  
Output Short-Circuit Current  
V
I
I
= -2mA  
= 2mA  
V
V
OH1  
OUT  
OUT  
V
0.2  
64  
21  
OL1  
V
V
= 3.0V to 3.6V  
= 1.7V to 1.9V  
16  
3
35  
12  
IOVDD  
I
V
= 0V  
mA  
OS  
O
IOVDD  
Maxim Integrated  
6
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 1.7V to 1.9V, V  
= 1.7V to 3.6V, R = 100I 1ꢀ (differential), EP connected to PCB ground (GND),  
AVDD  
DVDD  
IOVDD L  
T
= -40NC to +105NC, unless otherwise noted. Typical values are at V  
= V  
= V  
= 1.8V, T = +25NC.)  
A
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAꢀ  
UNITS  
OPEN-DRAIN INPUTS/OUTPUTS (Rꢀ/SDA, Tꢀ/SCL, GPIO_)  
0.7 x  
High-Level Input Voltage  
Low- Level Input Voltage  
Input Current  
V
V
V
IH2  
V
IOVDD  
0.3 x  
V
IL2  
IN2  
OL2  
V
IOVDD  
RX/SDA, TX/SCL  
GPIO_  
-110  
-80  
+1  
+1  
0.4  
0.3  
I
(Note 3)  
FA  
V
V
= 1.7V to 1.9V  
= 3.0V to 3.6V  
IOVDD  
IOVDD  
Low-Level Output Voltage  
V
I
= 3mA  
OUT  
V
DIFFERENTIAL SERIAL OUTPUTS (OUT+, OUT-)  
Preemphasis off (Figure 1)  
300  
350  
240  
400  
1.4  
500  
610  
425  
Differential Output Voltage  
V
3.3dB preemphasis setting (Figure 2)  
3.3dB deemphasis setting (Figure 2)  
mV  
OD  
Change in V Between  
Complementary Output States  
OD  
DV  
25  
1.56  
25  
mV  
V
OD  
Output Offset Voltage  
V
Preemphasis off  
1.1  
-62  
OS  
(V  
+ V  
)/2 = V  
OUT+  
OUT- OS  
Change in V  
Complementary Output States  
Between  
OS  
DV  
mV  
OS  
V
V
or V  
or V  
= 0V  
OUT+  
OUT-  
Output Short-Circuit Current  
I
mA  
OS  
= 1.9V  
25  
25  
OUT+  
OUT-  
Magnitude of Differential Output  
Short-Circuit Current  
I
V
= 0V  
OD  
mA  
OSD  
Output Termination Resistance  
(Internal)  
R
From V  
, V  
to V  
AVDD  
45  
54  
63  
I
O
OUT+ OUT-  
SINGLE-ENDED SERIAL OUTPUTS (OUT+, OUT-)  
Preemphasis off, high drive (Figure 3)  
375  
435  
500  
625  
765  
3.3dB preemphasis setting, high drive  
(Figure 2)  
Single-Ended Output Voltage  
V
mV  
OD  
3.3dB deemphasis setting, high drive  
(Figure 2)  
300  
-69  
535  
V
V
or V  
or V  
= 0V  
OUT+  
OUT-  
Output Short-Circuit Current  
I
mA  
OS  
= 1.9V  
32  
63  
OUT+  
OUT-  
Output Termination Resistance  
(Internal)  
R
O
From V  
or V  
to V  
AVDD  
45  
54  
I
OUT+  
OUT-  
Maxim Integrated  
7
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 1.7V to 1.9V, V  
= 1.7V to 3.6V, R = 100I 1ꢀ (differential), EP connected to PCB ground (GND),  
AVDD  
DVDD  
IOVDD L  
T
= -40NC to +105NC, unless otherwise noted. Typical values are at V  
= V  
= V  
= 1.8V, T = +25NC.)  
A
AV DD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAꢀ  
UNITS  
REVERSE CONTROL-CHANNEL RECEIVER OUTPUTS (OUT+, OUT-)  
High Switching Threshold  
V
27  
mV  
mV  
CHR  
Low Switching Threshold  
V
-27  
CLR  
POWER SUPPLY  
f
f
f
f
= 25MHz  
= 50MHz  
= 50MHz  
= 100MHz  
40  
50  
40  
51  
40  
5
65  
75  
Single input,  
BWS = 0  
PCLKIN  
PCLKIN  
PCLKIN  
PCLKIN  
Worst-Case Supply Current  
(Figure 4)  
I
mA  
WCS  
65  
Double input,  
BWS = 0  
75  
Sleep Mode Supply Current  
Power-Down Supply Current  
ESD PROTECTION  
I
Single wake-up receiver enabled  
100  
70  
FA  
FA  
CCS  
I
PWDN = EP  
CCZ  
Human Body Model, R = 1.5kI,  
D
8
C = 100pF  
S
IEC 61000-4-2,  
Contact discharge  
Air discharge  
10  
15  
10  
30  
R
= 330I,  
D
OUT+, OUT- (Note 4)  
All Other Pins (Note 5)  
V
V
kV  
kV  
ESD  
C = 150pF  
S
ISO 10605,  
Contact discharge  
Air discharge  
R
= 2kI,  
D
C = 330pF  
S
Human Body Model, R = 1.5kI,  
D
4
ESD  
C = 100pF  
S
AC ELECTRICAL CHARACTERISTICS  
(V  
= V  
= 1.7V to 1.9V, V  
= 1.7V to 3.6V, R = 100I Q1ꢀ (differential), EP connected to PCB ground (GND),  
DVDD  
AVDD  
IOVDD L  
T
= -40NC to +105NC, unless otherwise noted. Typical values are at V  
= V  
= V  
= 1.8V, T = +25NC)  
A
DVDD  
AVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAꢀ  
UNITS  
CLOCK INPUT (PCLKIN)  
BWS = 1, DRS = 1  
6.25  
8.33  
12.5  
16.66  
25  
12.5  
16.66  
37.5  
50  
BWS = 0, DRS = 1  
BWS = 1, DRS = 0  
BWS = 0, DRS = 0  
Clock Frequency  
f
MHz  
PCLKIN  
BWS = 1, DRS = 0, 15-bit double input  
BWS = 0, DRS = 0, 11-bit double input  
75  
33.33  
35  
100  
65  
Clock Duty Cycle  
DC  
t
/t or t /t (Figure 5, Note 6)  
LOW T  
50  
_
HIGH T  
Clock Transition Time  
t , t  
(Figure 5, Note 6)  
4
ns  
R
F_  
ps  
Clock Jitter  
t
J
1.5Gbps bit rate, 300kHz sinusoidal jitter  
800  
(pk-pk)  
Maxim Integrated  
8
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 1.7V to 1.9V, V  
= 1.7V to 3.6V, R = 100I Q1ꢀ (differential), EP connected to PCB ground (GND),  
DVDD  
AVDD  
IOVDD L  
T
= -40NC to +105NC, unless otherwise noted. Typical values are at V  
= V  
= V  
= 1.8V, T = +25NC)  
A
DVDD  
AVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAꢀ  
UNITS  
I2C/UART and GPIO Port Timing  
I2C/UART Bit Rate  
9.6  
20  
1000  
120  
kbps  
ns  
30ꢀ to 70ꢀ, C = 10pF to 100pF,  
L
1kIpullup to IOVDD  
Output Rise Time  
Output Fall Time  
t
R
70ꢀ to 30ꢀ, C = 10pF to 100pF,  
L
1kIpullup to IOVDD  
t
20  
120  
ns  
F
Input Setup Time  
Input Hold Time  
t
I2C only (Figure 6, Note 6)  
I2C only (Figure 6, Note 6)  
100  
0
ns  
ns  
SET  
t
HOLD  
SWITCHING CHARACTERISTICS (Note 6)  
Differential Output Rise/Fall  
Time  
20ꢀ to 80ꢀ, V  
R400mV R = 100I,  
OD L  
t , t  
250  
ps  
UI  
R
F
serial-bit rate = 1.5Gbps  
1.5Gbps PRBS signal, measured at  
= 0V differential, preemphasis  
Total Serial Output Jitter  
(Differential Output)  
t
V
0.25  
TSOJ1  
OD  
disabled (Figure 7)  
1.5Gbps PRBS signal, measured at  
Deterministic Serial Output  
Jitter (Differential Output)  
t
t
V
= 0V differential, preemphasis  
0.15  
0.25  
0.15  
UI  
UI  
UI  
DSOJ2  
OD  
disabled (Figure 7)  
Total Serial Output Jitter  
(Single-Ended Output)  
1.5Gbps PRBS signal, measured at V /2,  
O
preemphasis disabled (Figure 3)  
t
TSOJ1  
DSOJ2  
1.5Gbps PRBS signal, measured at V /2,  
O
preemphasis disabled (Figure 3)1.5Gbps  
PRBS signal  
Deterministic Serial Output  
Jitter (Single-Ended Output)  
Parallel Data Input Setup Time  
Parallel Data Input Hold Time  
t
(Figure 8)  
(Figure 8)  
2
1
ns  
ns  
SET  
t
HOLD  
Deserializer GPI to serializer GPO  
(Figure 9)  
GPI-to-GPO Delay  
t
350  
Fs  
GPIO_  
Spread spectrum enabled  
(Figure 10)  
6880  
3040  
2
Serializer Delay (Note 7)  
t
Bits  
SD  
Spread spectrum disabled  
Link Start Time  
Power-Up Time  
t
(Figure 11)  
(Figure 12)  
ms  
ms  
LOCK  
t
7
PU  
Note 2: To provide a midlevel, leave the input open, or, if driven, put driver in high impedance. High-impedance leakage current  
must be less than Q10µA.  
Note 3: I min due to voltage drop across the internal pullup resistor.  
IN  
Note 4: Specified pin to ground.  
Note 5: Specified pin to all supply/ground.  
Note 6: Guaranteed by design and not production tested.  
Note 7: Measured in serial link bit times. Bit time = 1/(30 x f  
for BWS = 0. Bit time = 1/(40 x f  
) for BWS = 1.  
PCLKIN)  
PCLKIN  
Maxim Integrated  
9
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Typical Operating Characteristics  
(V  
= V  
= V  
= 1.8V, DBL = low, T = +25NC, unless otherwise noted.)  
AVDD  
DVDD  
IOVDD A  
SUPPLY CURRENT vs.PCLKIN  
FREQUENCY (BWS = 0)  
SUPPLY CURRENT vs. PCLKIN  
FREQUENCY (BWS = 1)  
OUTPUT POWER SPECTRUM vs. PCLKIN  
FREQUENCY (VARIOUS SPREAD)  
70  
65  
60  
55  
50  
45  
40  
35  
70  
65  
60  
55  
50  
45  
40  
35  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f
= 20MHz  
PCLKIN  
PRBS ON,  
COAX MODE  
PRBS ON,  
COAX MODE  
PREEMPHASIS =  
0x0B TO 0x0F  
PREEMPHASIS =  
0x0B TO 0x0F  
0.5%  
0%  
SPREAD  
SPREAD  
1%  
SPREAD  
4% SPREAD  
2% SPREAD  
PREEMPHASIS =  
0x01 TO 0x04  
PREEMPHASIS =  
0x01 TO 0x04  
PREEMPHASIS = 0x00  
PREEMPHASIS = 0x00  
10 15 20 25  
PCLKIN FREQUENCY (MHz)  
5
10 15 20 25 30 35 40 45 50  
PCLKIN FREQUENCY (MHz)  
5
30  
35  
40  
18.5 19.0 19.5 20.0 20.5 21.0 21.5  
PCLKIN FREQUENCY (MHz)  
SERIAL LINK SWITCHING PATTERN  
WITH 6dB PREEMPHASIS (PARALLEL BIT  
SERIAL LINK SWITCHING PATTERN  
WITH 6dB PREEMPHASIS (PARALLEL BIT  
OUTPUT POWER SPECTRUM vs. PCLKIN  
FREQUENCY (VARIOUS SPREAD)  
RATE = 50MHz, 10m STP CABLE)  
RATE = 50MHz, 20m COAX CABLE)  
MAX9273 toc05  
MAX9273 toc06  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
= 50MHz  
PCLKIN  
0% SPREAD  
0.5% SPREAD  
1%  
SPREAD  
4% SPREAD  
2% SPREAD  
47  
48  
49  
50  
51  
52  
53  
50mV/div  
200ps/div  
1.5Gbps  
50mV/div  
200ps/div  
1.5Gbps  
PCLKIN FREQUENCY (MHz)  
MAXIMUM PCLKIN FREQUENCY  
vs. COAX CABLE LENGTH (BER 10  
MAXIMUM PCLKIN FREQUENCY  
vs. STP CABLE LENGTH (BER 10  
MAXIMUM PCLKIN FREQUENCY  
-10  
-10  
-10  
)
)
vs. ADDITIONAL DIFFERENTIAL C (BER < 10  
)
L
60  
40  
20  
0
60  
40  
20  
0
60  
10m STP CABLE  
OPTIMUM PE/EQ  
SETTINGS  
OPTIMUM PE/EQ  
SETTINGS  
50  
40  
30  
20  
10  
0
6dB PE, EQ OFF  
6dB PE, EQ OFF  
6dB PE, EQ OFF  
NO PE, 10.7dB EQ  
NO PE, 10.7dB EQ  
NO PE, EQ OFF  
NO PE, 10.7dB EQ  
NO PE, EQ OFF  
NO PE, EQ OFF  
-12  
-12  
-12  
BER CAN BE AS LOW AS 10  
FOR CABLE LENGTHS LESS THAN 10m  
BER CAN BE AS LOW AS 10  
FOR CABLE LENGTHS LESS THAN 10m  
BER CAN BE AS LOW AS 10 FOR C < 4pF  
L
FOR OPTIMUM PE/EQ SETTINGS  
0
5
10  
15  
20  
0
5
10  
15  
20  
25  
0
2
4
6
8
10  
STP CABLE LENGTH (m)  
COAX CABLE LENGTH (m)  
ADDITIONAL DIFFERENTIAL LOAD CAPACITANCE (pF)  
Maxim Integrated  
10  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Pin Configuration  
TOP VIEW  
30 29 28 27 26 25 24 23 22 21  
20  
31  
32  
33  
MS  
PCLKIN  
DIN0  
19 GPIO1  
18 GPO  
DIN1  
17  
16  
DIN21  
DIN20  
DIN2 34  
35  
36  
37  
38  
39  
40  
DVDD  
DIN3  
MAX9273  
15 IOVDD  
14  
DIN19/VS  
13 DIN18/VS  
12  
DIN4  
DIN5  
EP*  
DIN17/GPIO5  
11 DIN16/GPIO4  
IOVDD  
DIN6  
+
1
2
3
4
5
6
7
8
9
10  
TQFN  
(6mm x 6mm x 0.75mm)  
CONNECT EP TO GROUND PLANE  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 2, 3, 5–8,  
16, 17, 32,  
33, 34, 36,  
37, 38  
DIN0–DIN13,  
DIN20, DIN21  
Parallel Data Inputs with Internal Pulldown to EP  
1.8V Analog Power Supply. Bypass AVDD to EP with 0.1FF and 0.001FF capacitors as close  
as possible to the device with the smaller capacitor closest to AVDD.  
4, 27  
AVDD  
Parallel Data Inputs/GPIO. Defaults to parallel data input on power-up.  
Parallel data input has internal pulldown to EP.  
GPIO_ has an open-drain output with internal 60kIpullup to IOVDD. See register table  
for programming details.  
DIN14/  
GPIO2–DIN17/  
GPIO5  
9–12  
Parallel Data Input/Horizontal Sync with Internal Pulldown to EP. Defaults to parallel data input  
on power-up.  
Horizontal sync input when VS/HS encoding is enabled (Table 2).  
13  
14  
DIN18/HS  
DIN19/VS  
Parallel Data Input/Vertical Sync with Internal Pulldown to EP. Defaults to parallel data input on  
power-up.  
Vertical sync input when VS/HS encoding is enabled (Table 2).  
Maxim Integrated  
11  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
I/O Supply Voltage. 1.8V to 3.3V logic I/O power supply. Bypass IOVDD to EP with 0.1FF  
and 0.001FF capacitors as close as possible to the device with the smallest value capacitor  
closest to IOVDD.  
15, 39  
IOVDD  
General-Purpose Output. GPO follows the GMSL deserializer GPI (or INT) input. GPO = low  
upon power-up and when PWDN = low.  
18  
19  
20  
GPO  
GPIO1  
MS  
Open-Drain, General-Purpose Input/Output with Internal 60kIPullup to IOVDD  
Mode-Select Input with Internal Pulldown to EP. Set MS = low to select base mode.  
Set MS = high to select bypass mode.  
Active-Low, Power-Down Input with Internal Pulldown to EP. Set PWDN low to enter  
power-down mode to reduce power consumption.  
21  
PWDN  
22  
23  
24  
25  
26  
DRS  
CONF0  
CONF1  
OUT-  
Data-Rate Select Input with Internal Pulldown to EP (Table 15).  
Configuration 0. Three-level configuration input (Table 9).  
Configuration 1. Three-level configuration input (Table 9).  
Inverting Coax/Twisted-Pair Serial Output  
OUT+  
Noninverting Coax/Twisted-Pair Serial Output  
UART Receive or I2C Serial-Data Input/Output with Internal 30kIPullup to IOVDD. In UART  
mode, RX/SDA is the Rx input of the serializer’s UART. In the I2C mode, RX/SDA is the  
SDA input/output of the serializer’s I2C master/slave. RX/SDA has an open-drain driver and  
requires a pullup resistor.  
28  
RX/SDA  
UART Transmit or I2C Serial-Clock Input/Output with Internal 30kIPullup to IOVDD. In UART  
mode, TX/SCL is the Tx output of the serializer’s UART. In the I2C mode, TX/SCL is the SCL  
input/output of the serializer’s I2C master/slave. TX/SCL has an open-drain driver and requires  
a pullup resistor.  
29  
30  
TX/SCL  
Autostart Input with Internal Pulldown to EP. AUTOS = low enables serialization upon power-  
up and automatic frequency range selection of PCLKIN. AUTOS = high puts the part in sleep  
mode upon power-up.  
AUTOS  
Parallel Clock Input with Internal Pulldown to EP. Latches parallel data inputs and provides  
the PLL reference clock.  
31  
35  
PCLKIN  
DVDD  
EP  
1.8V Digital Power Supply. Bypass DVDD to EP with 0.1FF and 0.001FF capacitors as close  
as possible to the device with the smaller value capacitor closest to DVDD.  
Exposed Pad. EP is internally connected to device ground. MUST connect EP to the PCB  
ground plane through an array of vias for proper thermal and electrical performance.  
Maxim Integrated  
12  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Functional Diagram  
SSPLL  
PCLKIN  
FILTER  
PLL  
MAX9273  
CLKDIV  
DIN0–DIN13  
DIN14/GPIO2  
DIN15/GPIO3  
DIN16/GPIO4  
DIN17/GPIO5  
OUT+  
PARALLEL  
TO SERIAL  
OUT-  
CML TX  
SCRAMBLE/  
CRC/  
HAMMING/  
8b/10b  
ENCODE  
SINGLE-/  
DOUBLE-  
INPUT  
LATCH  
FIFO  
RX  
GPO  
REVERSE  
CONTROL  
CHANNEL  
GPIO1  
FCC  
GPIO  
DIN18/HS  
DIN19/VS  
2
UART/I C  
DIN20, DIN21  
TX/SCL RX/SDA  
Maxim Integrated  
13  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
R /2  
L
OUT+  
V
OD  
V
OS  
OUT-  
R /2  
L
GND  
((OUT+) + (OUT-))/2  
OUT-  
OUT+  
V
V
OS(+)  
V
OS(-)  
OS(-)  
DV = |V  
- V  
|
OS(+) OS(-)  
OS  
V
(+)  
OD  
V
= 0V  
OD  
V
OD(-)  
V
OD(-)  
DV = |V  
- V  
|
OD(+) OD(-)  
OD  
(OUT+) - (OUT-)  
Figure 1. Serial-Output Parameters  
OUT+  
OUT+  
OR  
V /2  
O
V
V /2  
O
V
O
O
V
V
OD(D)  
OD(P)  
V
OS  
OUT-  
OUT-  
Figure 3. Single-Ended Output Template  
SERIAL-BIT  
TIME  
PCLKIN  
Figure 2. Output Waveforms at OUT+, OUT-  
DIN_  
NOTE: PCLKIN PROGRAMMED FOR RISING LATCH EDGE.  
Figure 4. Worst-Case Pattern Input  
Maxim Integrated  
14  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
t
T
V
IH MIN  
t
HIGH  
PCLKIN  
V
IL MAX  
t
R
t
F
t
LOW  
Figure 5. Parallel Clock Input Requirements  
START  
CONDITION  
BIT 7  
MSB  
(A7)  
STOP  
CONDITION  
(P)  
BIT 6  
(A6)  
BIT 0  
(R/W)  
ACKNOWLEDGE  
(A)  
PROTOCOL  
(S)  
t
t
t
HIGH  
SU;STA  
LOW  
1/f  
SCL  
SCL  
SDA  
t
SP  
t
BUF  
t
t
f
r
t
t
t
t
t
SU;STO  
HD;STA  
t
HD;DAT  
VD;DAT  
VD;ACK  
SU;DAT  
2
Figure 6. I C Timing Parameters  
800mV  
P-P  
t
t
TSOJ1  
2
TSOJ1  
2
Figure 7. Differential Output Template  
Maxim Integrated  
15  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
V
IH MIN  
PCLKIN  
V
IL MAX  
t
t
HOLD  
SET  
V
V
V
V
IH MIN  
IH MIN  
IL MAX  
DIN_  
IL MAX  
NOTE: PCLKIN PROGRAMMED FOR RISING LATCHING EDGE.  
Figure 8. Input Setup and Hold Times  
V
IH_MIN  
DESERIALIZER  
GPI  
V
IL_MAX  
t
GPIO  
t
GPIO  
V
OH_MIN  
SERIALIZER  
GPO  
V
OL_MAX  
Figure 9. GPI-to-GPO Delay  
Maxim Integrated  
16  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
EXPANDED TIME SCALE  
DIN_  
N
N+2  
N+3  
N+4  
N+1  
PCLKIN  
N-1  
N
OUT+/-  
t
SD  
FIRST BIT  
LAST BIT  
Figure 10. Serializer Delay  
PCLKIN  
t
LOCK  
350Fs  
SERIAL LINK INACTIVE  
SERIAL LINK ACTIVE  
REVERSE CONTROL CHANNEL  
DISABLED  
CHANNEL  
DISABLED  
REVERSE CONTROL CHANNEL  
AVAILABLE  
PWDN MUST BE HIGH  
Figure 11. Link Startup Time  
Maxim Integrated  
17  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
PCLKIN  
V
IH1  
PWDN  
t
PU  
POWERED UP,  
SERIAL LINK INACTIVE  
POWERED DOWN  
POWERED UP, SERIAL LINK ACTIVE  
350µs  
REVERSE CONTROL  
CHANNEL DISABLED  
REVERSE CONTROL  
CHANNEL ENABLED  
REVERSE CONTROL  
CHANNEL DISABLED  
REVERSE CONTROL  
CHANNEL ENABLED  
Figure 12. Power-Up Delay  
Register Mapping  
Detailed Description  
Registers set the operating conditions of the serializer  
and are programmed using the control channel in base  
mode. The serializer holds its device address and the  
device address of the deserializer it is driving. Similarly,  
the driven deserializer holds its device address and the  
address of the serializer by which it is driven. Whenever  
a device address is changed, be sure to write the new  
address to both devices. The default device address of  
the MAX9273 serializer (or any GMSL serializer) is 0x80  
and the default device address of any GMSL deserial-  
izer is 0x90 (Table 1). Registers 0x00 and 0x01 in both  
devices hold the device addresses.  
The MAX9273 serializer, when paired with the MAX9272  
deserializer, provides the full set of operating features,  
but offers basic functionality when paired with any GMSL  
deserializer.  
The serializer has a maximum serial-bit rate of 1.5Gbps  
for 15m or more of cable and operates up to a maximum  
input clock of 50MHz in 22-bit, single-input mode, or  
75MHz/100MHz in 15-bit/11-bit, double-input mode,  
respectively. Pre/deemphasis, along with the GMSL  
deserializer channel equalizer, extends the link length  
and enhances link reliability.  
Input Bit Map  
The parallel input functioning and width depends on  
settings of the double-/single-input mode (DBL), HS/VS  
encoding (HVEN), error correction (EDC), and bus width  
(BWS). DINA are the inputs latched by the pixel clock in  
single-input mode, or the inputs latched on the first pixel  
clock in double-input mode. DINB are the inputs latched  
on the second pixel clock in double-input mode. Table 2  
lists the bit map for the control pin settings.  
The control channel enables a FC to program serial-  
izer and deserializer registers and program registers  
on peripherals. The FC can be located at either end of  
the link, or at both ends. Two modes of control-channel  
operation are available with associated protocols and  
data formats. Base mode uses either I2C or GMSL UART,  
while bypass mode uses a user-defined UART.  
Spread spectrum is available to reduce EMI on the serial  
output. The serial output complies with ISO 10605 and  
IEC 61000-4-2 ESD protection standards.  
Maxim Integrated  
18  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Table 1. Power-Up Default Register Map (see Table 15)  
REGISTER  
ADDRESS (hex)  
POWER-UP  
DEFAULT (hex)  
POWER-UP DEFAULT SETTINGS  
(MSB FIRST)  
SERID = 1000000, serializer device address  
CFGBLOCK = 0, registers 0x00 to 0x1F are read/write  
0x00  
0x01  
0x80  
0x90  
DESID = 1001000, deserializer device address  
RESERVED = 0  
SS = 000, no spread spectrum  
RESERVED = 1  
PRNG = 11, automatically detect the pixel clock range  
SRNG = 11, automatically detect serial-data rate  
0x02  
0x03  
0x1F  
0x00  
AUTOFM = 00, calibrate spread-modulation rate only once after locking  
SDIV = 000000, auto calibrate sawtooth divider  
SEREN = 0 (AUTOS = high), SEREN = 1(AUTOS = low), serial link enable default  
depends on AUTOS pin state at power-up  
CLINKEN = 0, configuration link disabled  
PRBSEN = 0, PRBS test disabled  
SLEEP = 0, sleep mode disabled (see the Link Startup Procedure section)  
INTTYPE = 01, local control channel uses UART  
0x04  
0x07, 0x87  
REVCCEN = 1, reverse control channel active (receiving)  
FWDCCEN = 1, forward control channel active (sending)  
I2CMETHOD = 0, I2C packets include register address  
ENJITFILT = 0, jitter filter disabled  
PRBSLEN = 00, continuous PRBS length  
RESERVED = 00  
ENWAKEN = 0, OUT- wake-up receiver disabled  
ENWAKEP = 1, OUT+ wake-up receiver enabled  
0x05  
0x06  
0x01  
CMLLVL = 1000 or 1010, output level determined by the state of CONF1, CONF0 at  
power-up  
0x80, 0xA0  
PREEMP = 0000, preemphasis disabled  
DBL = 0, double-input mode  
DRS = 0, high data-rate mode  
BWS = 0, 24-bit mode  
ES = 0 or 1, edge-select input setting determined by the state of CONF1,  
CONF0 at startup  
0x07  
0x00, 0x10  
RESERVED = 0  
HVEN = 0, HS/VS encoding disabled  
EDC = 00, 1-bit parity error detection  
INVVS = 0, serializer does not invert VSYNC  
INVHS = 0, serializer does not invert HSYNC  
RESERVED = 000000  
0x08  
0x09  
0x00  
0x00  
I2CSRCA = 0000000, I2C address translator source A is 0x00  
RESERVED = 0  
Maxim Integrated  
19  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Table 1. Power-Up Default Register Map (see Table 15) (continued)  
REGISTER  
ADDRESS (hex)  
POWER-UP  
DEFAULT (hex)  
POWER-UP DEFAULT SETTINGS  
(MSB FIRST)  
I2CDSTA = 0000000, I2C address translator destination A is 0x00  
RESERVED = 0  
0x0A  
0x0B  
0x0C  
0x00  
0x00  
0x00  
I2CSRCB = 0000000, I2C address translator source B is 0x00  
RESERVED = 0  
I2CDSTB = 0000000, I2C address translator destination B is 0x00  
RESERVED = 0  
I2CLOCACK = 1, acknowledge generated when forward channel is not available  
I2CSLVSH = 01, 469ns/234ns I2C setup/hold time  
I2CMSTBT = 101, 339kbps (typ) I2C-to-I2C master bit-rate setting  
I2CSLVTO = 10, 1024Fs (typ) I2C-to-I2C slave remote timeout  
0x0D  
0xB6  
DIS_REV_P = 0, OUT+ reverse channel receiver enabled  
DIS_REV_N = 1, OUT- reverse channel receiver disabled  
GPIO5EN = 0, GPIO5 disabled  
GPIO4EN = 0, GPIO4 disabled  
GPIO3EN = 0, GPIO3 disabled  
0x0E  
0x42  
GPIO2EN = 0, GPIO2 disabled  
GPIO1EN = 1, GPIO1 enabled  
RESERVED = 0  
RESERVED = 11  
GPIO5OUT = 1, GPIO5 set high  
GPIO4OUT = 1, GPIO4 set high  
GPIO3OUT = 1, GPIO3 set high  
GPIO2OUT = 1, GPIO2 set high  
GPIO1OUT = 1, GPIO1 set high  
SETGPO = 0, GPO set low  
0x0F  
0xFE  
RESERVED = 00  
GPIO5IN = 1, GPIO5 is input high  
GPIO4IN = 1, GPIO4 is input high  
GPIO3IN = 1, GPIO3 is input high  
GPIO2IN = 1, GPIO2 is input high  
GPIO1IN = 1, GPIO1 is input high  
GPO_L = 0, GPO set low  
0x10  
0x11  
0x3E  
0x00  
ERRGRATE = 00, generate an error every 2560 bits  
ERRGTYPE = 0, generate single-bit errors  
ERRGCNT = 00, continuously generate errors  
ERRGPER = 0, disable periodic error generation  
ERRGEN = 0, disable error generation  
0x12  
0x13  
0x14  
0x40  
0x22  
0xXX  
RESERVED = 01000000  
RESERVED = 00100010  
RESERVED = XXXXXXXX  
Maxim Integrated  
20  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Table 1. Power-Up Default Register Map (see Table 15) (continued)  
REGISTER  
ADDRESS (hex)  
POWER-UP  
DEFAULT (hex)  
POWER-UP DEFAULT SETTINGS  
(MSB FIRST)  
CXTP = 0, CXTP is low  
I2CSEL = 0, input is low  
LCCEN = 0, local control channel disabled  
RESERVED = 000  
0x15  
0x00  
OUTPUTEN = 0, output disabled  
PCLKDET = 0, no valid PCLKIN detected  
0x16  
0x17  
0xXX (read only)  
0xXX (read only)  
RESERVED = XXXXXXXX  
RESERVED = XXXXXXXX  
0x0B  
(read only)  
0x1E  
ID = 00001011, device ID is 0x0B  
RESERVED = 000  
CAPS = 0, serializer is not HDCP capable  
REVISION = XXXX, revision number  
0x0X  
(read only)  
0x1F  
X = Don’t care.  
Table 2. Input Map  
EDC  
0
BWS  
0
DBL  
0
HVEN  
DINA  
0:21  
DINB*  
SERIAL LINK WORD BITS  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0:21  
0:17, 20:21  
0:21  
0
0
0
0:17, 20:21, HS, VS  
0:10  
0
0
1
0:10  
0
0
1
0:10, HS, VS  
0:21  
0:10, HS, VS  
0:21  
0
1
0
0:21  
0
1
0
0:17, 20:21, HS, VS  
0:14  
0:17, 20:21  
0:29  
0
1
1
0:14  
0
1
1
0:14, HS, VS  
0:15  
0:14, HS, VS  
0:29  
1
0
0
0:15  
1
0
0
0:15, HS, VS  
0:7  
0:7  
0:15  
1
0
1
0:15  
1
0
1
0:7, HS, VS  
0:21  
0:7, HS, VS  
0:15  
1
1
0
0:21  
1
1
0
0:17, 20:21, HS, VS  
0:11  
0:17, 20:21  
0:23  
1
1
1
0:11, HS, VS  
0:11, HS, VS  
1
1
1
0:11, HS, VS  
0:23  
*In double-input mode (DBL = 1), DINA are latched on the first cycle of PCLKIN and DINB are latched on the second cycle of  
PCLKIN.  
Maxim Integrated  
21  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
The parallel input has two input modes: single- and  
In double-input mode, LATCH B stores two input words  
(Figure 15). Data from LATCH B is sent to the scrambler  
as a combined word. The MAX9272 deserializer outputs  
the combined word (single-output mode) or two half-sized  
words (double-output mode). The serializer/deserializer  
use pixel clock rates from 33.3MHz to 100MHz for 11-bit,  
double-input mode and 25MHz to 75MHz for 15-bit,  
double-input mode. See Figure 16 for timing details.  
double-rate input. In single-input mode, LATCH A stores  
data from DIN_ every PCLKIN cycle (Figure 13). Parallel  
data from LATCH A is then sent to the scrambler for  
serialization (Figure 14). The device accepts pixel clocks  
from 6.25MHz to 50MHz.  
PCLKIN  
DIN0–DIN21  
LATCH A  
FIRST WORD  
SECOND WORD  
THIRD WORD  
FOURTH WORD  
FIRST WORD  
SECOND WORD  
THIRD WORD  
FOURTH WORD  
Figure 13. Single-Input Waveform (Latch on Rising Edge of PCLKIN Selected)  
MAX9273  
DIN0–DIN14  
INPUT  
LATCH B  
DIN0–DIN21  
OR  
DIN0–DIN10  
INPUT  
LATCH B  
INPUT  
LATCH A  
MAX9273  
÷ 2  
PCLKIN  
PCLKIN  
Figure 14. Single-Input Function Block  
Figure 15. Double-Input Function Block  
Maxim Integrated  
22  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
PCLKIN  
÷ 2  
DIN0–DIN14  
OR  
FIRST WORD  
SECOND WORD  
THIRD WORD  
FOURTH WORD  
DIN0–DIN10  
LATCH A  
LATCH B  
FIRST WORD  
THIRD WORD  
THIRD AND FOURTH WORD  
FIRST AND SECOND WORD  
Figure 16. Double-Input Waveform (Latch on Rising Edge of PCLKIN Selected)  
Serial Link Signaling and Data Format  
The serializer uses differential CML signaling to drive  
twisted-pair cable and single-ended CML to drive coaxial  
cable. The output amplitude is programmable.  
Control Channel and Register Programming  
The control channel is available for the FC to send and  
receive control data over the serial link simultaneously  
with the high-speed data. The FC controls the link from  
either the serializer or deserializer side. The control chan-  
nel between the FC and serializer or deserializer runs in  
base mode or bypass mode, according to the mode-  
selection (MS) input of the device connected to the FC.  
Base mode is a half-duplex control channel and bypass  
mode is a full-duplex control channel.  
Input data is scrambled and then 8b/10b coded. The  
deserializer recovers the embedded serial clock, then  
samples, decodes, and descrambles the data. In 24-bit  
or 32-bit mode, 22 or 30 bits contain the video data  
and/or error correction bits, if used. The 23rd or 31st bit  
carries the forward control-channel data. The last bit is  
the parity bit of the previous 23 or 31 bits (Figure 17).  
UART Interface  
In base mode, the FC is the host and can access the  
registers of both the serializer and deserializer from  
either side of the link using the GMSL UART protocol.  
The FC can also program the peripherals on the remote  
side by sending the UART packets to the serializer or  
deserializer, with the UART packets converted to I2C  
by the device on the remote side of the link. The FC  
communicates with a UART peripheral in base mode  
(through INTTYPE register settings), using the half-duplex  
default GMSL UART protocol of the serializer/deserial-  
izer. The device addresses of the serializer/deserializer in  
base mode are programmable. The default value is 0x80  
for the serializer and 0x90 for the deserializer.  
Reverse Control Channel  
The serializer uses the reverse control channel to receive  
I2C/UART and GPO signals from the deserializer in the  
opposite direction of the video stream. The reverse  
control channel and forward video data coexist on  
the same serial cable forming a bidirectional link. The  
reverse control channel operates independently from the  
forward control channel. The reverse control channel is  
available 2ms after power-up. The serializer temporarily  
disables the reverse control channel for 350Fs after start-  
ing/stopping the forward serial link.  
Data-Rate Selection  
The serializer/deserializer use DRS, DBL, and BWS to set  
the PCLKIN frequency range (Table 3). Set DRS = 1 for  
a PCLKIN frequency range of 6.25MHz to 12.5MHz (32-  
bit, single-input mode) or 8.33MHz to 16.66MHz (24-bit,  
single-input mode). Set DRS = 0 for normal operation.  
It is not recommended to use double-input mode when  
DRS = 1.  
When the peripheral interface is I2C, the serializer/  
deserializer convert UART packets to I2C that have  
device addresses different from those of the serializer or  
deserializer. The converted I2C bit rate is the same as the  
original UART bit rate.  
Maxim Integrated  
23  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
24 BITS  
32 BITS  
D0  
D1  
D21  
FCC  
PCB  
D0  
D1  
D29  
FCC  
PCB  
FORWARD  
CONTROL-  
CHANNEL BIT  
FORWARD  
CONTROL-  
CHANNEL BIT  
VIDEO AND ERROR-  
CORRECTION DATA  
VIDEO AND ERROR-  
CORRECTION DATA  
PACKET  
PARITY  
PACKET  
PARITY  
CHECK BIT  
CHECK BIT  
NOTE: SERIAL DATA SHOWN BEFORE SCRAMBLING AND 8b/10b ENCODING  
Figure 17. Serial-Data Format  
Table 3. Data-Rate Selection Table  
DRS SETTING  
DBL SETTING  
BWS SETTING  
PCLKIN RANGE (MHz)  
16.66 to 50  
12.5 to 35  
0
0
0
0
1
1
1
1
0 (single input)  
0 (24-bit mode)  
0
1 (32-bit mode)  
1 (double input)  
0
1
0
1
0
1
33.3 to 100  
25 to 75  
1
0
0
1
1
8.33 to 16.66  
6.25 to 12.5  
Do not use  
Do not use  
The deserializer uses differential line coding to send  
signals over the reverse channel to the serializer. The  
bit rate of the control channel is 9.6kbps to 1Mbps in  
both directions. The serializer/deserializer automatically  
detect the control-channel bit rate in base mode. Packet  
bit-rate changes can be made in steps of up to 3.5  
times higher or lower than the previous bit rate. See the  
Changing the Clock Frequency section for more informa-  
tion on changing the control-channel bit rate.  
izer registers do not take effect until after the acknowl-  
edge byte is sent. This allows the FC to verify that write  
commands are received without error, even if the result  
of the write command directly affects the serial link. The  
slave uses the SYNC byte to synchronize with the host  
UART’s data rate. If the GPI or MS/HVEN inputs of the  
deserializer toggle while there is control-channel com-  
munication, or if a line fault occurs, the control-channel  
communication is corrupted. In the event of a missed  
or delayed acknowledge (~1ms due to control-channel  
timeout), the FC should assume there was an error in the  
packet when the slave device received it, or that an error  
occurred during the response from the slave device. In  
base mode, the FC must keep the UART Tx/Rx lines high  
for 16 bit times before starting to send a new packet.  
Figure 19 shows the UART data format. Figure 20 and  
Figure 21 detail the formats of the SYNC byte (0x79)  
and the ACK byte (0xC3). The FC and the connected  
slave chip generate the SYNC byte and ACK byte,  
respectively. Events such as device wake-up and GPI  
generate transitions on the control channel that can be  
ignored by the FC. Data written to the serializer/deserial-  
Maxim Integrated  
24  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
WRITE DATA FORMAT  
SYNC  
DEV ADDR + R/W  
REG ADDR  
NUMBER OF BYTES  
BYTE 1  
BYTE N  
ACK  
MASTER WRITES TO SLAVE  
MASTER READS FROM SLAVE  
READ DATA FORMAT  
NUMBER OF BYTES  
SYNC  
DEV ADDR + R/W  
REG ADDR  
MASTER WRITES TO SLAVE  
ACK  
BYTE 1  
BYTE N  
MASTER READS FROM SLAVE  
Figure 18. GMSL UART Protocol for Base Mode  
1 UART FRAME  
D4  
START  
D0  
D1  
D2  
D3  
D5  
D6  
D7  
PARITY  
STOP  
FRAME 1  
FRAME 2  
FRAME 3  
STOP  
START  
STOP  
START  
Figure 19. GMSL UART Data Format for Base Mode  
D0  
1
D1  
0
D2  
0
D3  
1
D4  
1
D5  
1
D6  
1
D7  
0
D0  
1
D1  
D2  
0
D3  
0
D4  
0
D5  
0
D6  
1
D7  
1
START  
1
PARITY STOP  
START  
PARITY STOP  
Figure 20. SYNC Byte (0x79)  
Figure 21. ACK Byte (0xC3)  
Maxim Integrated  
25  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
UART Bypass Mode  
In bypass mode, the serializer/deserializer ignore UART  
commands from the FC and the FC communicates with  
the peripherals directly using its own defined UART pro-  
tocol. The FC cannot access the serializer/deserializer  
registers in this mode. Peripherals accessed through the  
forward control channel using the UART interface need  
to handle at least one PCLKIN period Q10ns of jitter due  
to the asynchronous sampling of the UART signal by  
PCLKIN. Set MS = high to put the control channel into  
bypass mode. For applications with the FC connected to  
the deserializer, there is a 1ms wait time between setting  
MS high and the bypass control channel being active.  
There is no delay time when switching to bypass mode  
when the FC is connected to the serializer. Do not send  
a logic-low value longer than 100Fs to ensure proper  
GPO functionality. Bypass mode accepts bit rates down  
to 10kbps in either direction. See the GPO/GPI Control  
section for GPO functionality limitations. The control-  
channel data pattern should not be held low longer than  
100Fs if GPO control is used.  
As shown in Figure 22, the remote-side device converts  
packets going to or coming from the peripherals from  
UART format to I2C format and vice versa. The remote  
device removes the byte number count and adds or  
receives the ACK between the data bytes of I2C. The I2C  
bit rate is the same as the UART bit rate.  
Interfacing Command-Byte-Only I2C  
Devices with UART  
The serializer/deserializer UART-to-I2C conversion can  
interface with devices that do not require register address-  
es, such as the MAX7324 GPIO expander. In this mode,  
the I2C master ignores the register address byte and  
directly reads/writes the subsequent data bytes (Figure 23).  
Change the communication method of the I2C master using  
the I2CMETHOD bit. I2CMETHOD = 1 sets command-byte-  
only mode, while I2CMETHOD = 0 sets normal mode where  
the first byte in the data stream is the register address.  
2
UART-TO-I C CONVERSION OF WRITE PACKET (I2CMETHOD = 0)  
SERIALIZER/DESERIALIZER  
11  
FC  
11  
11  
11  
11  
11  
11  
SYNC FRAME  
DEVICE ID + WR  
REGISTER ADDRESS NUMBER OF BYTES  
DATA 0  
DATA N  
ACK FRAME  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
8
1
8
1
1
S
DEV ID W A REG ADDR  
A
DATA 0  
A
DATA N  
A
P
2
UART-TO-I C CONVERSION OF READ PACKET (I2CMETHOD = 0)  
SERIALIZER/DESERIALIZER  
11  
FC  
11  
11  
11  
11  
ACK FRAME  
11  
DATA 0  
11  
DATA N  
SYNC FRAME  
DEVICE ID + RD  
REGISTER ADDRESS NUMBER OF BYTES  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
1
7
1
1
8
1
8
1
1
S
DEV ID W A REG ADDR  
A
S
DEV ID  
R
A
DATA 0  
A
DATA N  
A
P
S: START  
P: STOP  
A: ACKNOWLEDGE  
: MASTER TO SLAVE  
: SLAVE TO MASTER  
2
Figure 22. Format Conversion Between GMSL UART and I C with Register Address (I2CMETHOD = 0)  
Maxim Integrated  
26  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
2
UART-TO-I C CONVERSION OF WRITE PACKET (I2CMETHOD = 1)  
FC  
SERIALIZER/DESERIALIZER  
11  
11  
11  
11  
11  
11  
11  
SYNC FRAME  
DEVICE ID + WR  
REGISTER ADDRESS NUMBER OF BYTES  
DATA 0  
DATA N  
ACK FRAME  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
8
1
1
S
DEV ID  
W
A
DATA 0  
A
DATA N  
A
P
2
UART-TO-I C CONVERSION OF READ PACKET (I2CMETHOD = 1)  
FC  
SERIALIZER/DESERIALIZER  
11  
11  
11  
11  
11  
11  
DATA 0  
11  
DATA N  
SYNC FRAME  
DEVICE ID + RD  
REGISTER ADDRESS NUMBER OF BYTES  
ACK FRAME  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
8
1
1
S
DEV ID  
R
A
DATA 0  
A
DATA N  
A
P
: MASTER TO SLAVE  
: SLAVE TO MASTER S: START  
P: STOP A: ACKNOWLEDGE  
2
Figure 23. Format Conversion Between GMSL UART and I C with Register Address (I2CMETHOD = 1)  
I2C Interface  
In I2C-to-I2C mode, the serializer control-channel inter-  
face sends and receives data through an I2C-compatible  
2-wire interface. The interface uses a serial-data line  
(SDA) and a serial-clock line (SCL) to achieve bidirec-  
tional communication between master and slave(s). A FC  
master initiates all data transfers to and from the device  
and generates the SCL clock that synchronizes the data  
transfer. When an I2C transaction starts on the local-side  
device’s control-channel port, the remote-side device’s  
control-channel port becomes an I2C master that inter-  
faces with remote-side I2C peripherals. The I2C master  
must accept clock stretching that is imposed by the seri-  
alizer (holding SCL low). The SDA and SCL lines operate  
as both an input and an open-drain output. Pullup resis-  
tors are required on SDA and SCL. Each transmission  
consists of a START condition (Figure 6) sent by a mas-  
ter, followed by the device’s 7-bit slave address plus a  
R/W bit, a register address byte, one or more data bytes,  
and finally a STOP condition.  
START and STOP Conditions  
Both SCL and SDA remain high when the interface is not  
busy. A master signals the beginning of a transmission  
with a START (S) condition by transitioning SDA from high  
to low while SCL is high (Figure 24). When the master has  
finished communicating with the slave, it issues a STOP  
(P) condition by transitioning SDA from low to high while  
SCL is high. The bus is then free for another transmission.  
Bit Transfer  
One data bit is transferred during each clock pulse  
(Figure 25). The data on SDA must remain stable while  
SCL is high.  
Acknowledge  
The acknowledge bit is a clocked 9th bit that the recipient  
uses to handshake receipt of each byte of data (Figure 26).  
Thus, each byte transferred effectively requires nine bits.  
The master generates the 9th clock pulse, and the recipi-  
ent pulls down SDA during the acknowledge clock pulse.  
The SDA line is stable low during the high period of the  
clock pulse. When the master is transmitting to the slave  
device, the slave device generates the acknowledge bit  
Maxim Integrated  
27  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
SDA  
SCL  
P
S
STOP  
CONDITION  
START  
CONDITION  
Figure 24. START and STOP Conditions  
SDA  
SCL  
DATA LINE STABLE;  
DATA VALID  
CHANGE OF DATA  
ALLOWED  
Figure 25. Bit Transfer  
START  
CONDITION  
CLOCK PULSE FOR  
ACKNOWLEDGE  
1
2
8
9
SCL  
SDA  
BY  
TRANSMITTER  
SDA  
BY  
RECEIVER  
S
Figure 26. Acknowledge  
Maxim Integrated  
28  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
because the slave device is the recipient. When the slave  
Bus Reset  
C START condition  
for reads. When the R/W bit is set to 1, the serializer/  
deserializer transmit data to the master, thus the master  
is reading from the device.  
device is transmitting to the master, the master generates  
the acknowledge bit because the master is the recipient.  
The device generates an acknowledge even when the  
forward control channel is not active (not locked). To pre-  
vent acknowledge generation when the forward control  
channel is not active, set the I2CLOCACK bit low.  
The device resets the bus with the I2  
Format for Writing  
A write to the serializer/deserializer comprises the trans-  
mission of the slave address with the R/W bit set to zero,  
followed by at least one byte of information. The first  
byte of information is the register address or command  
byte. The register address determines which register of  
the device is to be written by the next byte, if received.  
If a STOP (P) condition is detected after the register  
address is received, the device takes no further action  
Slave Address  
The serializer/deserializer have a 7-bit-long slave address.  
The bit following a 7-bit slave address is the R/W bit,  
which is low for a write command and high for a read  
command. The slave address is 10000001 for read com-  
mands and 10000000 for write commands. See Figure 27.  
0
0
0
0
0
0
R/W  
LSB  
SDA  
SCL  
1
ACK  
MSB  
Figure 27. Slave Address  
0 = WRITE  
ADDRESS = 0x80  
REGISTER ADDRESS = 0x00  
REGISTER 0x00 WRITE DATA  
S
1
0
0
0
0
0
0
0
A
0
0
0
0
0
0
0
0
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
P
S = START BIT  
P = STOP BIT  
A = ACK  
D_ = DATA BIT  
2
Figure 28. Format for I C Write  
0 = WRITE  
ADDRESS = 0x80  
REGISTER ADDRESS = 0x00  
S
1
0
0
0
0
0
0
0
A
0
0
0
0
0
0
0
0
A
S = START BIT  
P = STOP BIT  
A = ACK  
REGISTER 0x00 WRITE DATA  
REGISTER 0x01 WRITE DATA  
N = NACK  
D_ = DATA BIT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
N
P
Figure 29. Format for Write to Multiple Registers  
Maxim Integrated  
29  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
I2C Communication with Remote-Side Devices  
The serializer supports I2C communication with a periph-  
eral on the remote side of the communication link using  
SCL clock stretching. While multiple masters can reside  
on either side of the communication link, arbitration is not  
provided. The connected masters need to support SCL  
clock stretching. The remote-side I2C bit-rate range must  
be set according to the local-side I2C bit rate. Supported  
remote-side bit rates can be found in Table 4. Set the  
I2CMSTBT (register 0x0D) to set the remote I2C bit-rate. If  
using a bit rate different than 400kbps, local- and remote-  
side I2C setup and hold times should be adjusted by set-  
ting the SLV_SH register settings on both sides.  
beyond storing the register address (Figure 28). Any  
bytes received after the register address are data bytes.  
The first data byte goes into the register selected by the  
register address, and subsequent data bytes go into  
subsequent registers (Figure 29). If multiple data bytes  
are transmitted before a STOP condition, these bytes  
are stored in subsequent registers because the register  
addresses autoincrement.  
Format for Reading  
The serializer/deserializer are read using the internally  
stored register address as an address pointer, the same  
way the stored register address is used as an address  
pointer for a write. The pointer autoincrements after each  
data byte is read using the same rules as for a write. Thus,  
a read is initiated by first configuring the register address  
by performing a write (Figure 30). The master can now  
read consecutive bytes from the device, with the first data  
byte being read from the register address pointed by  
the previously written register address. Once the master  
sends a NACK, the device stops sending valid data.  
I2C Address Translation  
The serializer supports I2C address translation for up to  
two device addresses. Use address translation to assign  
unique device addresses to peripherals with limited  
I2C addresses. Source addresses (address to translate  
from) are stored in registers 0x09 and 0x0B. Destination  
addresses (address to translate to) are stored in  
registers 0x0A and 0x0C.  
0 = WRITE  
ADDRESS = 0x80  
REGISTER ADDRESS = 0x00  
S
1
1
0
0
0
0
0
0
0
0
0
0
A
A
0
0
0
0
0
0
0
0
A
S = START BIT  
P = STOP BIT  
A = ACK  
N = NACK  
D_ = DATA BIT  
1 = READ  
ADDRESS = 0x81  
REGISTER 0x00 READ DATA  
REPEATED START  
S
0
0
0
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
N
P
2
Figure 30. Format for I C Read  
2
Table 4. I C Bit-Rate Ranges  
LOCAL BIT RATE  
f > 50kbps  
REMOTE BIT-RATE RANGE  
Up to 1Mbps  
I2CMSTBT SETTING  
Any  
Up to 110  
000  
20kbps > f > 50kbps  
f < 20kbps  
Up to 400kbps  
Up to 10kbps  
Maxim Integrated  
30  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Control-Channel Broadcast Mode  
Pre/Deemphasis Driver  
The serial line driver employs current-mode logic (CML)  
signaling. The driver is differential when programmed  
for twisted-pair cable. When programmed for coax, one  
side of the CML driver is used. The line driver has pro-  
grammable pre/deemphasis that modifies the output to  
compensate for cable length. There are 13 preemphasis  
settings, as shown in Table 5. Negative preemphasis  
levels are deemphasis levels where the preemphasized  
swing level is the same as normal swing, but the no-  
transition data (e.g., a 1 followed by a 1) is deempha-  
sized. Program the preemphasis levels through register  
0x06 D[3:0] of the serializer. This preemphasis function  
compensates the high-frequency loss of the cable and  
enables reliable transmission over longer link distances.  
Current drive for both TP and coax modes is program-  
mable. CMLLVL bits (0x06, D[7:4]) program drive current  
in TP and coax modes for single-ended voltage swings  
from 100mV to 500mV.  
The serializer supports broadcast commands to control  
multiple peripheral devices. Select an unused device  
address to use as a broadcast device address. Program  
the remote-side GMSL device to translate the broadcast  
device address (source address stored in registers 0x09,  
0x0B) to the peripheral device address (destination  
address stored in register 0x0A, 0x0C). Any commands  
sent to the broadcast address are sent to all designated  
peripherals, while commands sent to a peripheral’s unique  
device address are sent to that particular device only.  
GPO/GPI Control  
GPO on the serializer follows GPI transitions on the dese-  
rializer. This GPO/GPI function can be used to transmit  
signals such as frame sync in a surround-view camera  
system. The GPI-to-GPO delay is 0.35ms (max). Keep  
time between GPI transitions to a minimum 0.35ms. This  
includes transitions from the other deserializer in the  
coax-mode splitter. Bit D4 of register 0x0E in the deserial-  
izer stores the GPI input state. GPO is low after power-up.  
The FC can set GPO by writing to the SET_GPO register  
bit. Do not send a logic-low value on the serializer RX/  
SDA input (UART mode) longer than 100Fs in either base  
or bypass mode to ensure proper GPO/GPI functionality.  
Spread Spectrum  
To reduce the EMI generated by the transitions on the  
serial link, the serializer output is programmable for  
spread spectrum. If the deserializer driven by the serial-  
izer has programmable spread spectrum, do not enable  
spread for both at the same time or their interaction  
Table 5. TP/Coax Drive Current (CMLLVL = 1000)  
SINGLE-ENDED VOLTAGE SWING  
PREEMPHASIS  
LEVEL (dB)*  
PREEMP SETTING  
(0x06, D[3:0])  
I
CML  
(mA)  
I
(mA)  
PRE  
MAꢀ (mV)  
400  
MIN (mV)  
200  
-6.0  
-4.1  
-2.5  
-1.2  
0100  
0011  
0010  
0001  
12  
4
13  
3
2
1
400  
250  
14  
400  
300  
15  
400  
350  
0
0000  
16  
0
400  
400  
(power-on default)  
1.1  
2.2  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
16  
16  
16  
16  
15  
14  
13  
12  
1
2
3
4
5
6
7
8
425  
450  
475  
500  
500  
500  
500  
500  
375  
350  
325  
300  
250  
200  
150  
100  
3.3  
4.4  
6.0  
8.0  
10.5  
14.0  
*Negative preemphasis levels denote deemphasis.  
Maxim Integrated  
31  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Table 6. Serial Output Spread  
SS  
000  
001  
010  
011  
100  
101  
110  
111  
SPREAD (%)  
No spread spectrum. Power-up default.  
0.5ꢀ spread spectrum.  
1.5ꢀ spread spectrum.  
2ꢀ spread spectrum.  
No spread spectrum.  
1ꢀ spread spectrum.  
3ꢀ spread spectrum.  
4ꢀ spread spectrum.  
Table 7. Spread Limitations  
BWS = 0 MODE, PCLKIN  
FREQUENCY (MHz)  
BWS = 1 MODE PCLKIN  
FREQUENCY (MHz)  
SERIAL LINK BIT RATE  
(Mbps)  
AVAILABLE  
SPREAD RATES  
< 33.3  
< 25  
(DBL=0)  
(DBL = 0)  
< 1000  
All rates available  
1.5ꢀ, 1.0ꢀ, 0.5ꢀ  
< 66.6  
(DBL = 1)  
< 50  
(DBL = 1)  
33.3 to 50  
(DBL = 0)  
25 to 37.5  
(DBL = 0)  
R1000  
66.6 to 100  
(DBL = 1)  
50 to 75  
(DBL = 1)  
cancels benefits. The deserializer tracks the serializer’s  
spread and passes the spread to the deserializer output.  
The programmable spread-spectrum amplitudes are  
Q0.5ꢀ, Q1ꢀ, Q1.5ꢀ, Q2ꢀ, Q3ꢀ, and Q4ꢀ (Table 6).  
Some spread-spectrum amplitudes can only be used at  
lower PCLKIN frequencies (Table 7). There is no PCLKIN  
frequency limit for the Q0.5ꢀ spread rate.  
Manual Programming of the  
Spread-Spectrum Divider  
The modulation rate relates to the PCLKIN frequency as  
follows:  
f
PCLKIN  
f
= (1+ DRS)  
M
MOD x SDIV  
where:  
When the spread spectrum is turned on or off, the serial  
link stops for several microseconds and then restarts in  
order for the deserializer to lose and relock to the new  
serial-data stream.  
fM = Modulation frequency  
DRS = DRS value (0 or 1)  
f
PCLKIN = PCLKIN frequency  
The serializer includes a sawtooth divider to control the  
spread-modulation rate. Autodetection of the PCLKIN  
operation range guarantees a spread-spectrum modu-  
lation frequency within 20kHz to 40kHz. Additionally,  
manual configuration of the sawtooth divider (SDIV: 0x03,  
D[5:0]) allows the user to set a modulation frequency  
according to the PCLKIN frequency. When ranges are  
manually selected, program the SDIV value for a fixed  
modulation frequency around 20kHz.  
MOD = Modulation coefficient given in Table 8  
SDIV = 6-bit SDIV setting, manually programmed by the FC  
To program the SDIV setting, first look up the modula-  
tion coefficient according to the desired bus-width and  
spread-spectrum settings. Solve the above equation for  
SDIV using the desired pixel clock and modulation fre-  
quencies. If the calculated SDIV value is larger than the  
maximum allowed SDIV value in Table 8, set SDIV to the  
maximum value.  
Maxim Integrated  
32  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
The parity bit is still added when CRC is enabled,  
Table ±. Modulation Coefficients and  
Maximum SDIV Settings  
because it is used for word-boundary detection. When  
CRC is enabled, each data word is scrambled and then  
the 6-bit CRC and 1-bit parity are added before the  
8b/10b encoding.  
SPREAD-  
SPECTRUM  
SETTING (%)  
MODULATION  
COEFFICIENT  
(dec)  
SDIV UPPER  
LIMIT (dec)  
BWS  
At the deserializer, the CRC code is recalculated. If the  
recalculated CRC code does not match the received CRC  
code, an error is flagged. This CRC error is reported to the  
error counter.  
1
0.5  
3
104  
104  
152  
152  
204  
204  
80  
40  
63  
27  
54  
15  
30  
52  
63  
37  
63  
21  
42  
1
1.5  
4
Hamming Code  
Hamming code is a simple and effective error-correction  
code to detect and/or correct errors. The MAX9273 seri-  
alizer (when used with the MAX9272 GMSL deserializer)  
uses single-error correction/double-error detection per  
pixel hamming-code scheme.  
2
1
0.5  
3
80  
112  
112  
152  
152  
0
The serializer uses data interleaving for burst-error toler-  
ance. Burst errors up to 11 consecutive bits on the serial  
link are corrected, and burst errors up to 31 consecutive  
bits are detected.  
1.5  
4
2
Hamming code adds overhead similar to CRC. See Table 2  
for details regarding the available input word size.  
Additional Error Detection and Correction  
In default mode (additional error detection and correction  
disabled), data encoding/decoding is the same as in pre-  
vious GMSL serializers/deserializers (parity only). At the  
serializer, the parallel input word is scrambled and a par-  
ity bit added. The scrambled word is divided into 3 or 4  
bytes (depending on the BWS setting), 8b/10b encoded,  
and then transmitted serially. At the deserializer, the same  
operations are performed in reverse order. The parity bit  
is used by the deserializer to find the word boundary and  
for error detection. Errors are counted in an error counter  
register and an error pin indicates errors.  
HS/VS Encoding and/or Tracking  
HS/VS encoding by a GMSL serializer allows horizontal  
and vertical synchronization signals to be transmitted  
while conserving pixel data bandwidth. With HS/VS  
encoding enabled, 10-bit pixel data with a clock up to  
100MHz can be transmitted using 1 pixel of data per HS/  
VS transition, versus 8-bit data with a clock up to 100MHz  
without HS/VS encoding. The deserializer performs HV  
decoding, tracks the period of the HV signals, and uses  
voting to filter HS/VS bit errors. When using HV encod-  
ing, use a minimum low-pulse duration of two PCLKIN  
cycles when DBL = 0 on the MAX9271/MAX9273. When  
DBL = 1, use a minimum HS/VS low-pulse duration of  
five PCLKIN cycles and a minimum high-pulse duration  
of two PCLKIN cycles. When using hamming code and  
HS/VS encoding, do not send more than two transitions  
every 16 PCLKIN cycles.  
The serializer can use of of two additional error-detection/  
correction methods (selectable by register setting):  
1) 6-bit cyclic redundancy check  
2) 6-bit hamming code with 16-word interleaving  
Cyclic Redundancy Check (CRC)  
When CRC is enabled, the serializer adds 6 bits of CRC to  
the input data. This reduces the available bits in the input  
data word by 6, compared to the non-CRC case (see  
Table 2 for details). For example, 16 bits are available for  
input data instead of 22 bits when BWS = 0, and 24 bits  
instead of 30 bits when BWS = 1.  
When the serializer uses double-input mode (DBL = 1),  
the active duration, plus the blanking duration of HS or  
VS signals, should be an even number of PCLKIN cycles.  
If HS/VS tracking is used without HV encoding, use DIN0  
for HSYNC and DIN1 for VSYNC. In this case, if DBL  
values on the serializer and the deserializer are different,  
set the deserializer’s UNEQDBL register bit to 1. If the  
The CRC generator polynomial is x6 + x + 1 (as used in  
the ITU-T G704 telecommunication standard).  
Maxim Integrated  
33  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
serializer and deserializer have unequal DBL settings  
attached peripherals. Assign a unique device address to  
send control data to one deserializer. Leave all unused  
IN_ pins unconnected, or connect them to ground  
through 50Iand a capacitor for increased power-supply  
rejection. If OUT- is not used, connect OUT- to AVDD  
through a 50I resistor (Figure 32). When there are FCs  
at the serializer, and at each deserializer, only one FC  
can communicate at a time. Disable one splitter control-  
channel link to prevent contention. Use the DIS_REV_P or  
DIS_REV_N register bits to disable a control-channel link.  
and HVEN = 0, then HS/VS inversion should only be used  
on the side that has DBL = 1. HS/VS encoding sends  
packets when HSYNC or VSYNC is low, use HS/VS inver-  
sion register bits if the input HSYNC and VSYNC signals  
use an active-low convention to send data packets dur-  
ing the inactive pixel clock periods.  
Serial Output  
The driver output is programmable for two types of cable:  
100I twisted pair and 50I coax (contact the factory for  
serializers with 75Icable drive).  
Configuration Inputs (CONF1, CONF0)  
CONF1 and CONF0 determine the power-up values of the  
serial output type, the input data latch, and the control-  
channel interface type (Table 9). These functions can  
be changed after power-up by writing to the appropriate  
register bits  
Coax-Mode Splitter  
In coax mode, OUT+ and OUT- are active. This enables  
use as a 1:2 splitter (Figure 31). In coax mode, connect  
OUT+ to IN+ of the deserializer. Connect OUT- to IN- of  
the second deserializer. Control-channel data is broad-  
cast from the serializer to both deserializers and their  
GMSL  
DESERIALIZER  
MAX9273  
MAX9273  
GMSL  
DESERIALIZER  
OUT+  
OUT-  
IN+  
IN-  
OUT+  
OUT-  
IN+  
IN-  
AVDD  
GMSL  
DESERIALIZER  
50I  
IN+  
IN-  
Figure 31. 2:1 Coax-Mode Splitter Connection Diagram  
Figure 32. Coax-Mode Connection Diagram  
Table 9. Configuration Input Map  
CꢀTP  
ES  
I2CSEL  
(CONTROL-CHANNEL TYPE)  
CONF1  
CONF0  
(OUT+/OUT- OUTPUT TYPE)  
(PCLKIN LATCH EDGE)  
Low  
Low  
Low  
Mid  
Low  
Mid  
1 (coax)  
1 (falling)  
1 (falling)  
0 (rising)  
0 (rising)  
1 (falling)  
1 (falling)  
0 (rising)  
0 (rising)  
Do not use  
1 (I2C-to-I2C)  
0 (UART-to-I2C/UART)  
1 (I2C-to-I2C)  
0 (UART-to-I2C/UART)  
1 (I2C-to-I2C)  
0 (UART-to-I2C/UART)  
1 (I2C-to-I2C)  
0 (UART-to-I2C/UART)  
1 (coax)  
High  
Low  
Mid  
1 (coax)  
1 (coax)  
Mid  
0 (STP)  
Mid  
High  
Low  
Mid  
0 (STP)  
High  
High  
High  
0 (STP)  
0 (STP)  
High  
Do not use  
Do not use  
Maxim Integrated  
34  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
disabled, the device can only be woken up from the local  
control channel. To wake up the device, send an arbitrary  
control-channel command to the serializer. Wait 5ms  
for the chip to power up and then write 0 to the SLEEP  
register bit to make the wake-up permanent.  
Sleep Mode  
The serializer includes a sleep mode to reduce power  
consumption. The device enters or exits sleep mode by  
a command from a local FC or a remote FC using the  
control channel. Set the SLEEP bit to 1 to initiate sleep  
mode. The serializer sleeps immediately after setting  
its SLEEP = 1. The OUT+ and OUT- serial outputs each  
have wake-up receiver to accept wake-up commands  
from the attached deserializers. On power-up, the OUT+  
wake-up receiver is enabled and the OUT- wake-up  
receiver is disabled. Disable the wake-up receivers  
(through ENWAKEP or ENWAKEN) if the devices are  
disconnected or wake-up is not used in order to reduce  
sleep-mode current. If both wake-up receivers are  
Power-Down Mode  
The serializer has a power-down mode that further reduc-  
es power consumption compared to sleep mode. Set  
PWDN low to enter power-down mode. In power-down  
mode, the serial outputs are in high impedance. Entering  
power-down resets the device’s registers. Upon exiting  
power-down, the state of the MS, DRS, CONF0, CONF1,  
and AUTOS pins are latched.  
Table 10. Startup Procedure for Video-Display Applications  
NO.  
µC  
FC connected to serializer.  
Powers up.  
SERIALIZER  
DESERIALIZER  
Sets all configuration inputs. If any  
configuration inputs are available  
on one end of the link but not on  
the other, always connects that  
configuration input low.  
Sets all configuration inputs. If any  
configuration inputs are available  
on one end of the link but not on  
the other, always connects that  
configuration input low.  
1
2
Powers up and loads default settings.  
Powers up and loads default settings.  
Enables configuration link by  
setting CLINKEN = 1 (if not  
enabled automatically) and gets Establishes configuration link.  
an acknowledge. Waits for link  
Locks to configuration link signal.  
to be established (~3ms).  
Writes one link configuration  
bit (DRS, BWS, or EDC) in  
the deserializer and gets an  
acknowledge.  
Configuration changed from default  
settings (loss-of-lock occurs if BWS or  
EDC changes).  
3
4
5
6
7
Writes corresponding serializer  
Configuration changed from default  
link configuration bit and gets  
settings.  
Relocks to configuration link signal.  
an acknowledge.  
Waits for link to be established  
(~3ms) and then repeats steps  
3 through 4 until all serial link  
bits are configured.  
Writes remaining configuration  
Configuration changed from default  
bits in the serializer/deserializer  
settings.  
Configuration changed from default  
settings.  
and gets an acknowledge.  
Enables video link by setting  
SEREN = 1 and gets an  
Begins serializing data.  
acknowledge. Waits for link to  
Locks to serial link signal and begins  
deserializing data.  
be established (~3ms).  
Maxim Integrated  
35  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Table 11. Startup Procedure for Image-Sensing Applications  
NO.  
µC  
SERIALIZER  
DESERIALIZER  
Sets all configuration inputs. If any  
inputs are available on one chip but  
not on the other, always connects  
input low.  
Sets all configuration inputs. If any  
inputs are available on one chip but  
not on the other, always connects  
input low.  
FC connected to deserializer.  
Powers up and loads default settings.  
Establishes serial link.  
Powers up and loads default settings.  
Locks to serial link signal.  
1
3
Powers up.  
Configuration changed from default  
settings (loss-of-lock occurs if BWS or  
EDC changes).  
Writes deserializer configuration  
bits and gets an acknowledge.  
Writes serializer configuration  
bits. Does not get an  
acknowledge (or gets a dummy  
acknowledge) if loss-of-lock  
occurred.  
Configuration changed from default  
settings.  
4
5
Relocks to serial link signal.  
Enables video link by setting  
SEREN = 1 (if not enabled  
automatically). Cannot get an  
acknowledge (or gets a dummy  
acknowledge) if loss-of-lock  
occurred. Waits for link to be  
established (~3ms).  
Locks to serial link signal and begins  
deserializing data.  
Begins serializing data.  
SEREN POWER-UP  
VALUE  
AUTOS PIN  
SETTING  
LOW  
HIGH  
1
0
CLINKEN = 0 OR  
SEREN = 1  
CLINKEN = 0 OR  
SLEEP = 1  
FOR > 8ms  
SEREN = 1  
CONFIG LINK  
CONFIG LINK  
UNLOCKED  
SLEEP = 0,  
SEREN = 0  
OPERATING  
POWER-ON  
IDLE  
CONFIG  
LINK STARTED  
SLEEP  
WAKE-UP  
PROGRAM  
REGISTERS  
CLINKEN = 1  
CONFIG LINK  
LOCKED  
WAKE-UP SIGNAL  
SEREN = 1,  
PCLKIN RUNNING  
SEREN = 0 OR  
NO PCLKIN  
SLEEP = 0,  
SEREN = 1  
SLEEP = 1  
SEREN = 0 OR  
NO PCLKIN  
PWDN = HIGH,  
POWER-ON  
PRBSEN = 0  
PRBSEN = 1  
POWER-DOWN  
OR  
POWER-OFF  
VIDEO LINK  
LOCKED  
PWDN = LOW OR  
POWER-OFF  
VIDEO  
LINK LOCKING  
VIDEO LINK  
OPERATING  
VIDEO LINK  
PRBS TEST  
ALL STATES  
AUTOS = LOW  
VIDEO LINK  
UNLOCKED  
PWDN = HIGH,  
POWER-ON  
AUTOS = HIGH  
Figure 33. State Diagram, All Applications  
Maxim Integrated  
36  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
acknowledge frame is not generated when communica-  
tion fails due to contention. If communication across the  
serial link is not required, the FCs can disable the forward  
and reverse control channel using the FWDCCEN and  
REVCCEN bits (0x04, D[1:0]) in the serializer/deserial-  
izer. Communication across the serial link is stopped and  
contention between FCs cannot occur.  
As an example of dual FC use in an image-sensing appli-  
cation, the serializer can be in sleep mode, waiting for  
wake-up by the FC on the deserializer side. After wake-  
up, the serializer-side FC assumes master control of the  
serializer’s registers.  
Configuration Link  
The control channel can operate in a low-speed mode  
called configuration link in the absence of a clock input.  
This allows a microprocessor to program configura-  
tion registers before starting the video link. An internal  
oscillator provides the clock for configuration link. Set  
CLINKEN = 1 on the serializer to enable configuration  
link. Configuration link is active until the video link is  
enabled. The video link overrides the configuration link  
and attempts to lock when SEREN = 1.  
Link Startup Procedure  
Table 10 lists the start-up procedure for video-display  
applications. Table 11 lists the startup procedure for  
image-sensing applications. The control channel is avail-  
able after the video link or the configuration link is estab-  
lished. If the deserializer powers up after the serializer,  
the control channel becomes unavailable until 2ms after  
power-up.  
Jitter-Filtering PLL  
In some applications, the clock input (PCLKIN) includes  
noise, which reduces link reliability. The clock input has a  
programmable narrowband jitter-filter PLL that attenuates  
frequencies higher than 100kHz (typ). Enable the jitter-  
filter by setting ENJITFILT = 1 (0x05, D6).  
PCLKIN Spread Tracking  
The serializer can operate with a spread PCLKIN signal.  
When using a spread PCLKIN signal, disable the jitter-  
filter by setting ENJITFILT = 0 (0x05, D6). Do not exceed  
the spread limitations in Table 7 and keep modulation  
less than 40kHz. In addition, turn off spread spectrum  
in the serializer/deserializer. The serializer/deserializer  
track the spread on PCLKIN.  
Applications Information  
PRBS Test  
The serializer includes a PRBS pattern generator that  
works with bit-error verification in the deserializer. To run  
the PRBS test, set PRBSEN = 1 (0x04, D5) in the deserial-  
izer and then in the serializer. To exit the PRBS test, set  
PRBSEN = 0 (0x04, D5) in the serializer.  
Changing the Clock Frequency  
It is recommended that the serial link be enabled after  
the video clock (fPCLKIN) and the control-channel clock  
(fUART/fI2C) are stable. When changing clock frequency,  
stop the video clock for 5Fs, apply the clock at the new  
frequency, then restart the serial link or toggle SEREN.  
On-the-fly changes in clock frequency are possible if  
the new frequency is immediately stable and without  
glitches. The reverse control channel remains unavail-  
able for 350Fs after serial link start or stop. When using  
the UART interface, limit on-the-fly changes in fUART to  
factors of less than 3.5 at a time to ensure that the device  
recognizes the UART sync pattern. For example, when  
lowering the UART frequency from 1Mbps to 100kbps,  
first send data at 333kbps, then at 100kbps for reduction  
ratios of 3 and 3.333, respectively.  
Error Generator  
The serializer contains an error generator that enables  
repeatable testing of the error-detection/correction fea-  
tures of the GMSL link. Register 0x11 stores the configu-  
ration bits for the error generator. A FC sets the error-  
generation rate, type of errors, and the total number of  
errors. The error generator is off by default.  
Dual µC Control  
Usually systems have one FC to run the control channel,  
located on the serializer side for video-display appli-  
cations or on the deserializer side for image-sensing  
applications. However, a FC can reside on each side  
simultaneously and trade off running the control channel.  
In this case, each FC can communicate with the serializer  
and deserializer and any peripheral devices.  
Fast Detection of Loss-of-Synchronization  
A measure of link quality is the recovery time from loss-of-  
synchronization. The host can be quickly notified of loss-  
of-lock by connecting the deserializer’s LOCK output to  
the deserializer’s GPI input. If LOCK is lost, GPO on the  
Contention occurs if both FCs attempt to use the control  
channel at the same time. It is up to the user to prevent  
this contention by implementing a higher-level protocol.  
In addition, the control channel does not provide arbitra-  
tion between I2C masters on both sides of the link. An  
Maxim Integrated  
37  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
serializer follows the transition of LOCK at GPI. If other  
corresponding register on the other device (register 0x00  
of the deserializer for serializer device address change,  
or register 0x01 of the serializer for deserializer device  
address change).  
sources also use the GPI input, the FC can implement  
a routine to distinguish between interrupts from loss-of-  
lock and normal interrupts. The control channel does not  
require an active video link and thus can always monitor  
LOCK. LOCK asserts for a synchronized video link but  
not for the configuration link.  
Three-Level Configuration Inputs  
CONF1 and CONF0 are three-level inputs that control  
the serial interface configuration and power-up defaults.  
Connect CONF1or CONF0 through a pullup resistor to  
IOVDD to set a high level, a pulldown resistor to GND to  
set a low level, or IOVDD/2 or open to set a midlevel. For  
digital control, use three-state logic to drive the three-  
level logic inputs.  
Providing a Frame Sync  
(Camera Applications)  
The GPI/GPO provides a simple solution for camera  
applications that require a frame sync signal from the  
ECU (e.g., surround-view systems). Connect the ECU  
frame sync signal to the GPI input and connect the GPO  
output to the camera frame sync input. GPI/GPO have a  
typical delay of 275Fs. Skew between multiple GPI/GPO  
channels is maximum 115Fs. If a lower skew signal is  
required, connect the camera’s frame sync input to one  
of the serializer’s GPIOs and use an I2C broadcast write  
command to change the GPIO output state. This has a  
maximum skew of 1.5Fs, independent from the used I2C  
bit rate.  
Configuration Blocking  
The serializer can block changes to registers. Set  
CFGBLOCK to make all registers read only. Once set, the  
registers remain blocked until the supplies are removed  
or until PWDN is low.  
Compatibility with Other GMSL Devices  
The MAX9273 serializer is designed to pair with the  
MAX9272 deserializer, but interoperates with any GMSL  
deserializer. See Table 12 for operating limitations.  
Software Programming of the  
Device Addresses  
GPIOs  
The serializer has five open-drain GPIOs available when  
not used as data or configuration inputs. Setting the GPIO  
enable bits (register 0x0E) to 1 enables the GPIOs and  
internally connects the respective data or configuration  
input low. Setting the GPIO output bits to 0 pulls the output  
low, while setting the bits to 1 leaves the output undriven,  
and pulled high through internal/external pullup resistors.  
The GPIO input buffers are enabled when the GPIO is  
enabled. The input states are stored in register 0x10. Set  
GPIO_OUT to 1 when using a GPIO_ as an input.  
The serializer and deserializer have programmable device  
addresses. This allows multiple GMSL devices, along with  
I2C peripherals, to coexist on the same control channel.  
The serializer device address is in register 0x00 of each  
device, while the deserializer device address is in register  
0x01 of each device. To change a device address, first  
write to the device whose address changes (register 0x00  
of the serializer for serializer device address change, or  
register 0x01 of the deserializer for deserializer device  
address change). Then write the same address into the  
Table 12. MAꢀ9273 Feature Compatibility  
MAꢀ9273 FEATURE  
GMSL DESERIALIZER  
HSYNC/VSYNC encoding  
If feature not supported in deserializer, must be turned off in the serializer.  
Hamming-code error  
correction  
If feature not supported in deserializer, must be turned off in the serializer.  
I2C-to-I2C  
If feature not supported in deserializer, must use UART-to-I2C or UART-to-UART.  
If feature not supported in deserializer, must be turned off in the serializer.  
CRC error detection  
If feature not supported in deserializer, data is output as a single word at half the input  
frequency.  
Double input  
If feature not supported in deserializer, must connect unused serial input through 200nF and  
50Iin series to AVDD and set the reverse control-channel amplitude to 100mV.  
Coax  
I2S encoding  
If supported in the deserializer, disable I2S in the deserializer.  
Maxim Integrated  
38  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
and the series AC-coupling capacitors (C). The RC time  
constant for four equal-value series capacitors is (C x  
(RTD + RTR))/4. RTD and RTR are required to match the  
transmission line impedance (usually 100I differential,  
50I single-ended). This leaves the capacitor selection  
to change the system time constant. Use 0.2FF or larger  
high-frequency surface-mount ceramic capacitors, with  
sufficient voltage rating to withstand a short to battery, to  
pass the lower speed reverse control-channel signal. Use  
capacitors with a case size less than 3.2mm x 1.6mm to  
have lower parasitic effects to the high-speed signal.  
Internal Input Pulldowns  
The control and configuration inputs (except three-level  
inputs) include a pulldown resistor to GND. External pull-  
down resistors are not needed.  
Choosing I2C/UART Pullup Resistors  
The I2C and UART open-drain lines require a pullup  
resistor to provide a logic-high level. There are tradeoffs  
between power dissipation and speed, and a compro-  
mise may be required when choosing pullup resistor  
values. Every device connected to the bus introduces  
some capacitance even when the device is not in opera-  
tion. I2C specifies 300ns rise times (30ꢀ to 70ꢀ) for fast  
mode, which is defined for data rates up to 400kbps (see  
the I2C specifications in the AC Electrical Characteristics  
table for details). To meet the fast-mode rise-time require-  
Power-Supply Circuits and Bypassing  
The serializer uses an AVDD and DVDD of 1.7V to 1.9V.  
All inputs and outputs, except for the serial output, derive  
power from an IOVDD of 1.7V to 3.6V that scales with  
IOVDD. Proper voltage-supply bypassing is essential for  
high-frequency circuit stability.  
ment, choose the pullup resistors so that rise time tR  
=
0.85 x RPULLUP x CBUS < 300ns. The waveforms are not  
recognized if the transition time becomes too slow. The  
serializer supports I2C/UART rates up to 1Mbps (UART-  
to-I2C mode) and 400kbps (I2C-to-I2C mode).  
Power-Supply Table  
Power-supply currents shown in the Electrical  
Characteristics table are the sum of the currents from  
AVDD, DVDD, and IOVDD. Typical currents from the  
individual power supplies are shown in Table 13.  
AC-Coupling  
AC-coupling isolates the receiver from DC voltages up  
to the voltage rating of the capacitor. Capacitors at the  
serializer output and at the deserializer input are needed  
for proper link operation and to provide protection if  
either end of the cable is shorted to battery. AC-coupling  
blocks low-frequency ground shifts and low-frequency  
common-mode noise.  
Cables and Connectors  
Interconnect for CML typically has a differential imped-  
ance of 100I. Use cables and connectors that have  
matched differential impedance to minimize impedance  
discontinuities. Coax cables typically have a characteristic  
impedance of 50I(contact the factory for 75Ioperation).  
Table 14 lists the suggested cables and connectors used  
in the GMSL link.  
Selection of AC-Coupling Capacitors  
Voltage droop and the digital sum variation (DSV) of trans-  
mitted symbols cause signal transitions to start from dif-  
ferent voltage levels. Because the transition time is fixed,  
starting the signal transition from different voltage levels  
causes timing jitter. The time constant for an AC-coupled  
link needs to be chosen to reduce droop and jitter to an  
acceptable level. The RC network for an AC-coupled link  
consists of the CML/coax receiver termination resistor  
(RTR), the CML/coax driver termination resistor (RTD),  
Table 13. Typical Power-Supply Currents  
(Using Worst-Case Input Pattern)  
PCLK  
(MHz)  
AVDD  
(mA)  
DVDD  
(mA)  
IOVDD  
(mA)  
25  
50  
29.5  
34.9  
9.4  
0.2  
0.3  
14.4  
Table 14. Suggested Connectors and Cables for GMSL  
SUPPLIER  
Rosenberger  
CONNECTOR  
59S2AX-400A5-Y  
MX38-FF  
CABLE  
RG174  
TYPE  
Coax  
STP  
JAE  
A-BW-Lxxxxx  
Nissei  
GT11L-2S  
F-2WME AWG28  
Dacar 538  
STP  
Rosenberger  
D4S10A-40ML5-Z  
STP  
Maxim Integrated  
39  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
do not have 100I differential impedance when brought  
close together—the impedance goes down when the  
traces are brought closer. Use a 50Itrace for the single-  
ended output when driving coax.  
Board Layout  
Separate the LVCMOS logic signals and CML/coax high-  
speed signals to prevent crosstalk. Use a four-layer PCB  
with separate layers for power, ground, CML/coax, and  
LVCMOS logic signals. Layout PCB traces close to each  
other for a 100I differential characteristic impedance.  
The trace dimensions depend on the type of trace used  
(microstrip or stripline). Note that two 50I PCB traces  
Route the PCB traces for differential CML in parallel to  
maintain the differential characteristic impedance. Avoid  
vias. Keep PCB traces that make up a differential pair  
equal length to avoid skew within the differential pair.  
ESD Protection  
ESD tolerance is rated for Human Body Model, IEC  
61000-4-2, and ISO 10605. The ISO 10605 and IEC  
61000-4-2 standards specify ESD tolerance for electronic  
systems. The serial outputs are rated for ISO 10605 ESD  
protection and IEC 61000-4-2 ESD protection. All pins  
are tested for the Human Body Model. The Human Body  
Model discharge components are CS = 100pF and RD =  
1.5kI(Figure 34). The IEC 61000-4-2 discharge compo-  
nents are CS = 150pF and RD = 330I (Figure 35). The  
ISO 10605 discharge components are CS = 330pF and  
RD = 2kI (Figure 36).  
R
D
1MI  
1.5kI  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
100pF  
S
STORAGE  
CAPACITOR  
SOURCE  
Figure 34. Human Body Model ESD Test Circuit  
R
R
D
D
330I  
2kI  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
C
S
C
S
330pF  
STORAGE  
CAPACITOR  
STORAGE  
CAPACITOR  
150pF  
SOURCE  
SOURCE  
Figure 35. IEC 61000-4-2 Contact Discharge ESD Test Circuit  
Figure 36. ISO 10605 Contact Discharge ESD Test Circuit  
Maxim Integrated  
40  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Table 15. Register Table (see Table 1)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
D[7:1]  
D0  
NAME  
SERID  
VALUE  
FUNCTION  
Serializer device address.  
XXXXXXX  
0
1000000  
0x00  
0x01  
Normal operation.  
CFGBLOCK  
0
1
Registers 0x00 to 0x1F are read only.  
Deserializer device address.  
Reserved.  
D[7:1]  
D0  
DESID  
XXXXXXX  
0
1001000  
0
000  
001  
010  
011  
100  
101  
110  
111  
1
No spread spectrum.  
0.5ꢀ spread spectrum.  
1.5ꢀ spread spectrum.  
2ꢀ spread spectrum.  
D[7:5]  
SS  
000  
No spread spectrum.  
1ꢀ spread spectrum.  
3ꢀ spread spectrum.  
4ꢀ spread spectrum.  
0x02  
D4  
Reserved.  
1
00  
12.5MHz to 25MHz pixel clock.  
25MHz to 50MHz pixel clock.  
Automatically detect the pixel clock range.  
Automatically detect the pixel clock range.  
0.5 to 1Gbps serial-bit rate.  
1 to 2Gps serial-bit rate.  
Automatically detect serial-bit rate.  
Automatically detect serial-bit rate.  
01  
D[3:2]  
PRNG  
11  
10  
11  
00  
01  
D[1:0]  
SRNG  
11  
10  
11  
Calibrate spread-modulation rate only once after  
locking.  
00  
01  
10  
Calibrate spread-modulation rate every 2ms after  
locking.  
D[7:6]  
D[5:0]  
AUTOFM  
00  
Calibrate spread-modulation rate every 16ms after  
locking.  
0x03  
Calibrate spread-modulation rate every 256ms after  
locking.  
11  
000000  
XXXXXX  
Autocalibrate sawtooth divider.  
SDIV  
000000  
Manual SDIV setting. See the Manual Programming  
of the Spread-Spectrum Divider section.  
Maxim Integrated  
41  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Table 15. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
FUNCTION  
Disable serial link. Power-up default when AUTOS  
= high. Reverse control-channel communication  
remains unavailable for 350Fs after the serializer  
starts/stops the serial link.  
0
D7  
SEREN  
0, 1  
Enable serial link. Power-up default when AUTOS  
= low. Reverse control-channel communication  
remains unavailable for 350Fs after the serializer  
starts/stops the serial link.  
1
0
Disable configuration link.  
Enable configuration link.  
D6  
D5  
D4  
CLINKEN  
PRBSEN  
SLEEP  
0
0
0
1
0
1
Disable PRBS test.  
Enable PRBS test.  
0
Normal mode.  
0x04  
1
Activate sleep mode.  
00  
01  
10, 11  
Local control channel uses I2C when I2CSEL = 0.  
Local control channel uses UART when I2CSEL = 0.  
Local control channel disabled.  
D[3:2]  
D1  
INTTYPE  
00  
1
Disable reverse control channel from deserializer  
(receiving).  
0
1
0
1
0
REVCCEN  
Enable reverse control channel from deserializer  
(receiving).  
Disable forward control channel to deserializer  
(sending).  
D0  
D7  
FWDCCEN  
1
0
Enable forward control channel to deserializer  
(sending).  
I2C conversion sends the register address when  
converting UART to I2C.  
Disable sending of I2C register address when  
converting UART-to-I2C (command-byte  
-only mode).  
I2CMETHOD  
1
0
1
Jitter filter disabled.  
D6  
ENJITFILT  
PRBSLEN  
0
Jitter filter active.  
00  
01  
10  
11  
00  
0
Continuous PRBS length.  
9.83Mbit PRBS length.  
0x05  
D[5:4]  
00  
167.1Mbit PRBS length.  
1341.5Mbit PRBS length.  
Reserved.  
D[3:2]  
D1  
00  
0
Disable wake-up receiver.  
Enable OUT- wake-up receiver during sleep mode.  
Disable wake-up receiver.  
Enable OUT- wake-up receiver during sleep mode.  
ENWAKEN  
1
0
D0  
ENWAKEP  
1
1
Maxim Integrated  
42  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Table 15. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
FUNCTION  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Do not use.  
Do not use.  
100mV output level.  
150mV output level.  
200mV output level.  
250mV output level.  
300mV output level  
350mV output level.  
400mV output level. Power-up default when  
twisted-pair output is selected (Table 9).  
D[7:4]  
CMLLVL  
1000  
1001  
1010  
1000, 1010  
450mV output level  
500mV output level. Power-up default when coax  
output is selected (Table 9).  
1011  
1100  
1101  
1110  
1111  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Do not use.  
Do not use.  
Do not use.  
Do not use.  
0x06  
Do not use.  
Preemphasis off.  
-1.2dB preemphasis.  
-2.5dB preemphasis.  
-4.1dB preemphasis.  
-6.0dB preemphasis.  
Do not use.  
Do not use.  
Do not use.  
D[3:0]  
PREEMP  
0000  
1.1dB preemphasis.  
2.2dB preemphasis.  
3.3dB preemphasis.  
4.4dB preemphasis.  
6.0dB preemphasis.  
8.0dB preemphasis.  
10.5dB preemphasis.  
14.0dB preemphasis.  
Maxim Integrated  
43  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Table 15. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
FUNCTION  
0
1
0
1
0
1
Single-input mode.  
Double-input mode.  
D7  
DBL  
0
0
0
High data-rate mode.  
Low data-rate mode.  
24-bit mode.  
D6  
DRS  
D5  
BWS  
32-bit mode.  
Input data latched on rising edge of PCLKIN.  
Power-up default determined by CONF1 and  
CONF0 (Table 9). Do not change this value while  
the pixel clock is running.  
0
1
D4  
ES  
0, 1  
Input data latched on falling edge of PCLKIN.  
Power-up default determined by CONF1 and  
CONF0 (Table 9). Do not change this value while  
the pixel clock is running.  
0x07  
D3  
D2  
0
0
1
Reserved.  
0
0
HS/VS encoding disabled.  
HS/VS encoding enabled.  
HVEN  
1-bit parity error detection  
(GMSL compatible).  
00  
01  
10  
6-bit CRC error detection.  
D[1:0]  
EDC  
00  
6-bit hamming code (single-bit error correct,  
double-bit error detect) and 16- word interleaving.  
11  
0
Do not use.  
No VS or DIN0 inversion.  
Invert VS when HVEN = 1.  
Invert DIN0 when HVEN = 0.  
Do not use if DBL = 0 in the serializer and  
D7  
D6  
INVVS  
INVHS  
0
0
1
0
1
DBL = 1 in the deserialize  
r.  
0x08  
No HS or DIN1 inversion  
Invert HS when HVEN = 1.  
Invert DIN1 when HVEN = 0.  
Do not use if DBL = 0 in the serializer and  
DBL = 1 in the deserializer.  
D[5:0]  
D[7:1]  
D0  
I2CSRCA  
000000  
Reserved.  
I2C address translator source A.  
000000  
XXXXXXX  
0000000  
0x09  
0x0A  
0x0B  
0
Reserved.  
I2C address translator destination A.  
Reserved.  
0
D[7:1]  
D0  
I2CDSTA  
XXXXXXX  
0000000  
0
XXXXXXX  
0
0
0000000  
0
D[7:1]  
D0  
I2CSRCB  
I2C address translator source B.  
Reserved.  
Maxim Integrated  
44  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Table 15. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
FUNCTION  
D[7:1]  
D0  
I2CDSTB  
XXXXXXX  
0
I2C address translator destination B.  
Reserved.  
0000000  
0
0x0C  
Acknowledge not generated when forward channel  
is not available.  
0
1
D7  
I2CLOCACK  
I2CSLVSH  
1
I2C-to-I2C slave generates local acknowledge  
when forward channel is not available.  
00  
01  
10  
11  
000  
001  
010  
011  
100  
101  
110  
111  
00  
01  
10  
11  
0
352ns/117ns I2C setup/hold time.  
469ns/234ns I2C setup/hold time.  
938ns/352ns I2C setup/hold time.  
1046ns/469ns I2C setup/hold time.  
8.47kbps (typ) I2C-to-I2C master bit-rate setting.  
28.3kbps (typ) I2C-to-I2C master bit-rate setting.  
84.7kbps (typ) I2C-to-I2C master bit-rate setting.  
105kbps (typ) I2C-to-I2C master bit-rate setting.  
173kbps (typ) I2C-to-I2C master bit-rate setting.  
339kbps (typ) I2C-to-I2C master bit-rate setting.  
533kbps (typ) I2C-to-I2C master bit-rate setting.  
837kbps (typ) I2C-to-I2C master bit-rate setting.  
64Fs (typ) I2C-to-I2C slave remote timeout.  
256Fs (typ) I2C-to-I2C slave remote timeout.  
1024Fs (typ) I2C-to-I2C slave remote timeout.  
No I2C-to-I2C slave remote timeout.  
OUT+ reverse channel receiver enabled.  
OUT+ reverse channel receiver disabled.  
OUT- reverse channel receiver enabled.  
OUT- reverse channel receiver disabled.  
Disable GPIO5.  
D[6:5]  
01  
0x0D  
D[4:2]  
I2CMSTBT  
101  
D[1:0]  
I2CSLVTO  
10  
D7  
D6  
D5  
D4  
D3  
D2  
DIS_REV_P  
DIS_REV_N  
GPIO5EN  
GPIO4EN  
GPIO3EN  
GPIO2EN  
0
1
0
0
0
0
1
0
1
0
1
Enable GPIO5.  
0
Disable GPIO4.  
0x0E  
1
Enable GPIO4.  
0
Disable GPIO3.  
1
Enable GPIO3.  
0
Disable GPIO2.  
1
Enable GPIO2.  
0
Disable GPIO1.  
D1  
D0  
GPIO1EN  
1
0
1
Enable GPIO1.  
0
Reserved.  
Maxim Integrated  
45  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Table 15. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
D[7:6]  
D5  
NAME  
VALUE  
FUNCTION  
11  
0
Reserved.  
11  
Set GPIO5 low.  
Set GPIO5 high.  
Set GPIO4 low.  
Set GPIO4 high.  
Set GPIO3 low.  
Set GPIO3 high.  
Set GPIO2 low.  
Set GPIO2 high.  
Set GPIO1 low.  
Set GPIO1 high.  
Set GPO low.  
Set GPO high.  
Reserved.  
GPIO5OUT  
1
1
0
D4  
D3  
D2  
D1  
GPIO4OUT  
GPIO3OUT  
GPIO2OUT  
GPIO1OUT  
1
1
1
1
1
0
0x0F  
1
0
1
0
1
0
D0  
D[7:6]  
D5  
SETGPO  
0
1
00  
0
00  
GPIO5 is low.  
GPIO5 is high.  
GPIO4 is low.  
GPIO4 is high.  
GPIO3 is low.  
GPIO3 is high.  
GPIO2 is low.  
GPIO2 is high.  
GPIO1 is low.  
GPIO1 is high.  
GPO is set low.  
GPO is set high.  
1
GPIO5IN  
(read only)  
1
0
1
D4  
D3  
D2  
D1  
D0  
GPIO4IN  
GPIO3IN  
GPIO2IN  
GPIO1IN  
GPO_L  
(read only)  
1
0
1
(read only)  
0x10  
1
0
1
(read only)  
1
0
1
(read only)  
1
0
0
(read only)  
1
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
0
Generate an error every 2560 bits.  
Generate an error every 40,960 bits.  
Generate an error every 655,360 bits.  
Generate an error every 10,485,760 bits.  
Generate single-bit errors.  
D[7:6]  
D[5:4]  
D[3:2]  
ERRGRATE  
ERRGTYPE  
ERRGCNT  
00  
00  
00  
Generate 2 (8b/10b) symbol errors.  
Generate 3 (8b/10b) symbol errors.  
Generate 4 (8b/10b) symbol errors.  
Continuously generate errors.  
16 generated errors.  
0x11  
128 generated errors.  
1024 generated errors.  
Disable periodic error generation.  
Enable periodic error generation.  
Disable error generator.  
D1  
D0  
ERRGPER  
ERRGEN  
0
0
1
0
1
Enable error generator.  
Maxim Integrated  
46  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Table 15. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
FUNCTION  
0x12  
0x13  
D[7:0]  
D[7:0]  
01000000  
00100010  
Reserved.  
Reserved  
01000000  
00100010  
00000000  
(read only)  
0x14  
D[7:0]  
D7  
CXTP  
I2CSEL  
LCCEN  
XXXXXXXX  
Reserved.  
0
1
0
1
0
1
CXTP input is low.  
CXTP input is high.  
Input is high.  
0
(read only)  
0
D6  
(read only)  
Input is low.  
Input is high.  
0
D5  
(read only)  
Input is low.  
0x15  
000  
(read only)  
D[4:2]  
D1  
000  
Reserved.  
0
1
0
1
Output disabled.  
Output enabled.  
0
OUTPUTEN  
PCLKDET  
(read only)  
Valid PCLKIN detected.  
0
D0  
(read only)  
Valid PCLKIN not detected.  
00000000  
(read only)  
0x16  
0x17  
0x1E  
D[7:0]  
D[7:0]  
D[7:0]  
D[7:5]  
XXXXXXXX  
XXXXXXXX  
00001011  
000  
Reserved.  
00000000  
(read only)  
Reserved.  
00001011  
(read only)  
ID  
Device identifier (MAX9273 = 0x0B).  
Reserved.  
000  
(read only)  
0x1F  
0
1
Not HDCP capable.  
HDCP capable.  
Device revision.  
0
D4  
CAPS  
(read only)  
D[3:0]  
REVISION  
XXXX  
(read only)  
Maxim Integrated  
47  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Typical Application Circuit  
PCLKIN  
PCLK  
PCLK  
PCLKIN  
DOUT0–DOUT21  
RGBHV  
DIN0–DIN21  
RGBHV  
CONF1  
CONF0  
CX/TP  
DISPLAY  
GPU  
MAX9273  
MAX9272  
ECU  
TX  
RX  
RX/SDA  
TX/SCL  
UART  
TO PERIPHERALS  
GPI  
OUT+  
OUT-  
IN+  
IN-  
RX/SDA/EDC  
TX/SCL/ES  
INT  
MS  
GPO  
MS  
LOCK  
NOTE: NOT ALL PULLUP/PULLDOWN RESISTORS ARE SHOWN. SEE PIN DESCRIPTION FOR DETAILS.  
VIDEO-DISPLAY APPLICATION  
Ordering Information  
Package Information  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the  
drawing pertains to the package regardless of RoHS status.  
PART  
TEMP RANGE  
-40NC to +105NC  
-40NC to +105NC  
PIN-PACKAGE  
40 TQFN-EP*  
40 TQFN-EP*  
MAX9273GTL+  
MAX9273GTL/V+**  
/V denotes an automotive qualified part.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
**Future product—contact factory for availability.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
40 TQFN-EP  
T4066+3  
21-0141  
90-0054  
Chip Information  
PROCESS: CMOS  
Maxim Integrated  
48  
MAX9273  
22-Bit GMSL Serializer with Coax or  
STP Cable Drive  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
6/12  
Initial release  
Added nonautomotive package to Ordering Information.  
11/12  
48  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max  
limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
49  
©
2012 Maxim Integrated  
The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.  

相关型号:

MAX9273GTL/V+

22-Bit GMSL Serializer with Coax or STP Cable Drive
MAXIM

MAX9273_V01

22-Bit GMSL Serializer with Coax or STP Cable Drive
MAXIM

MAX9275

3.12Gbps GMSL Serializers for Coax or STP Output Drive and Parallel Input
MAXIM

MAX9276A

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output
MAXIM

MAX9276AGTN+

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output
MAXIM

MAX9276AGTN/V+

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output
MAXIM

MAX9276AGTN/VY+

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output
MAXIM

MAX9276GGN/VY+

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output
MAXIM

MAX9276GTN+

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output
MAXIM

MAX9276GTN/V+

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output
MAXIM

MAX9276_V01

3.12Gbps GMSL Deserializers for Coax or STP Input and Parallel Output
MAXIM

MAX9278A

3.12Gbps GMSL Deserializers
MAXIM