MAX9321AEKA [MAXIM]

Line Transceiver;
MAX9321AEKA
型号: MAX9321AEKA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Transceiver

文件: 总9页 (文件大小:178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2152; Rev 2; 11/02  
Differential LVPECL/LVECL/HSTL  
Receiver/Drivers  
General Description  
Features  
The MAX9321/MAX9321A are low-skew differential  
receiver/drivers designed for clock and data distribu-  
tion. The differential input can be adapted to accept a  
Improved Second Source of the MC10LVEP16  
(MAX9321)  
+2.25V to +3.8V Differential HSTL/LVPECL  
single-ended input by connecting the on-chip V sup-  
BB  
Operation  
ply to an input as a reference voltage.  
The MAX9321/MAX9321A feature ultra-low propagation  
delay (172ps) and part-to-part skew (20ps) with 24mA  
maximum supply current, making these devices ideal  
for clock buffering or repeating. For interfacing to differ-  
ential HSTL and LVPECL signals, these devices oper-  
ate over a +2.25V to +3.8V supply range, allowing  
high-performance clock and data distribution in sys-  
tems with a nominal +2.5V or +3.3V supply. For differ-  
ential LVECL operation, these devices operate from a  
-2.25V to -3.8V supply. Multiple pinouts are provided to  
simplify routing across a backplane to either side of a  
double-sided board.  
-2.25V to -3.8V Differential LVECL Operation  
Low 17mA Supply Current  
20ps Part-to-Part Skew  
172ps Propagation Delay  
Minimum 300mV Output at 3GHz  
Output Low for Open Input  
ESD Protection >2kV (Human Body Model)  
On-Chip Reference for Single-Ended Input  
Available in Thermally Enhanced Exposed-Pad  
Both devices are offered in space-saving 8-pin SOT23,  
SO, and µMAX packages.  
SO Package  
Ordering Information  
TEMP  
RANGE  
PIN-  
PACKAGE  
TOP  
MARK  
Applications  
PART  
Precision Clock Buffers  
MAX9321EKA-T -40°C to +85°C  
8 SOT23-8  
8 µMAX  
AALK  
Low-Jitter Data Repeaters  
MAX9321EUA*  
MAX9321ESA  
-40°C to +85°C  
-40°C to +85°C  
8 SO  
MAX9321AEKA-T -40°C to +85°C  
8 SOT23-8  
8 µMAX  
AAIX  
MAX9321AEUA* -40°C to +85°C  
MAX9321AESA  
-40°C to +85°C  
8 SO-EP**  
*Future product—contact factory for availability.  
**EP = Exposed pad.  
Pin Configurations  
V
Q
Q
N.C.  
D
V
1
2
3
4
8
7
1
2
3
4
8
7
MAX9321  
CC  
CC  
MAX9321  
V
CC  
V
CC  
60k  
Q
V
EE  
60kΩ  
100kΩ  
100kΩ  
N.C.  
Q
V
D
6
5
6
5
D
100kΩ  
100kΩ  
V
D
V
BB  
EE  
BB  
V
EE  
SOT23  
Pin Configurations continued at end of data sheet.  
µMAX/SO  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Differential LVPECL/LVECL/HSTL  
Receiver/Drivers  
ABSOLUTE MAXIMUM RATINGS  
V
to V ..........................................................................+4.1V  
Junction-to-Case Thermal Resistance  
CC  
EE  
D or D .................................................. V - 0.3V to V  
+ 0.3V  
8-Pin SOT23...............................................................+80°C/W  
8-Pin µMAX ................................................................+39°C/W  
8-Pin SO.....................................................................+40°C/W  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-ꢁ5°C to +150°C  
ESD Protection  
EE  
CC  
D to D ................................................................................. 3.0V  
Continuous Output Current.................................................50mA  
Surge Output Current........................................................100mA  
V
Sink/Source Current ................................................. 0.ꢁmA  
BB  
Junction-to-Ambient Thermal Resistance in Still Air  
8-Pin SOT23.............................................................+112°C/W  
8-Pin µMAX ..............................................................+221°C/W  
8-Pin SO-EP ...............................................................+53°C/W  
Junction-to-Ambient Thermal Resistance with  
Human Body Model (D, D, Q, Q, V ).............................>2kV  
BB  
Soldering Temperature (10s)...........................................+300°C  
500 LFPM Airflow  
8-Pin SOT23...............................................................+78°C/W  
8-Pin µMAX ..............................................................+155°C/W  
8-Pin SO.....................................................................+99°C/W  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
- V = +2.25V to +3.8V, outputs loaded with 501ꢀ to V  
- 2.0V. Typical values are at V  
- V = +3.3V, V  
EE  
= V  
- 1V,  
CC  
EE  
= V  
CC  
CC  
IHD  
CC  
V
- 1.5V, unless otherwise noted.) (Notes 1–5)  
ILD  
CC  
-40°C  
+25°C  
+85°C  
PARAMETER SYMBOL  
CONDITIONS  
UNITS  
MIN  
TYP  
MAX MIN  
TYP  
MAX MIN  
TYP MAX  
DIFFERENTIAL INPUT (D, D)  
V
connected to D  
BB  
IL  
Single-Ended  
Input High  
Voltage  
V
-
V
-
V
-
CC  
CC  
CC  
(V for V  
connected to D),  
Figure 1  
BB  
V
V
V
V
V
V
IH  
CC  
CC  
CC  
1.210  
1.145  
1.085  
V
connected to D  
BB  
IH  
Single-Ended  
Input Low  
Voltage  
V
1.65  
-
V
-
V
-
CC  
1.485  
CC  
CC  
(V for V  
connected to D),  
Figure 1  
BB  
V
V
V
V
IL  
EE  
EE  
EE  
1.545  
High Voltage of  
Differential  
Input  
Low Voltage of  
Differential  
Input  
V
1.2  
+
V
1.2  
+
V
1.2  
+
EE  
EE  
EE  
V
V
V
V
V
V
IHD  
CC  
CC  
CC  
V
V
-
V
V
-
V
V
-
CC  
0.1  
CC  
0.1  
CC  
0.1  
V
V
V
V
ILD  
EE  
EE  
EE  
-
EE  
-
EE  
-
EE  
CC  
V
CC  
V
CC  
V
For V  
- V < 3.0V  
EE  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
CC  
V
-
Differential  
Input Voltage  
IHD  
V
V
ILD  
For V  
- V 3.0V  
3.0  
3.0  
3.0  
CC  
EE  
Input High  
Current  
I
150  
150  
100  
150  
100  
+150  
µA  
µA  
µA  
IH  
D Input Low  
Current  
I
-10  
100  
-10  
-10  
ILD  
D Input Low  
Current  
I
-150  
+150  
-150  
+150  
-150  
ILD  
2
_______________________________________________________________________________________  
Differential LVPECL/LVECL/HSTL  
Receiver/Drivers  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
- V = +2.25V to +3.8V, outputs loaded with 501ꢀ to V  
- 2.0V. Typical values are at V  
- V = +3.3V, V  
EE  
= V  
- 1V,  
CC  
CC  
EE  
= V  
CC  
CC  
IHD  
V
- 1.5V, unless otherwise noted.) (Notes 15)  
ILD  
CC  
-40°C  
+25°C  
+85°C  
PARAMETER SYMBOL  
CONDITIONS  
UNITS  
MIN  
TYP  
MAX MIN  
TYP  
MAX MIN  
TYP  
MAX  
DIFFERENTIAL OUTPUT (Q, Q)  
Single-Ended  
V
-
V
-
V
1.07  
-
-
V
0.82  
-
V
1.01  
-
-
V
0.76  
-
CC  
CC  
CC  
CC  
CC  
CC  
V
Figure 1  
V
Output High  
Voltage  
OH  
1.135  
0.885  
Single-Ended  
Output Low  
Voltage  
V
-
V
-
V
1.87  
V
1.62  
-
V
1.81  
V
1.56  
-
CC  
CC  
CC  
CC  
CC  
CC  
V
Figure 1  
Figure 1  
V
OL  
1.935  
1.685  
V
-
Differential  
Output Voltage  
OH  
550  
550  
550  
mV  
V
OL  
REFERENCE (V  
)
BB  
Reference  
Voltage Output  
(Note 6)  
V
1.55  
-
V
1.31  
-
V
-
V
-
V
-
V
-
CC  
CC  
CC  
CC  
CC  
CC  
V
I
= 0.5mA  
BB  
V
BB  
1.445  
1.245  
1.385  
1.185  
POWER SUPPLY  
Supply Current  
(Note 7)  
I
16  
24  
17  
24  
18  
24  
mA  
EE  
AC ELECTRICAL CHARACTERISTICS  
(V  
- V = +2.25V to +3.8V, outputs loaded with 501ꢀ to V  
- 2V, input frequency = 1.5GHz, input transition time = 125ps  
CC  
CC  
EE  
(20ꢀ to 80ꢀ), V  
= V + 1.2V to V , V  
= V to V  
- 0.15V, V  
- V  
= 0.15V to the smaller of 3V or V - V . Typical  
IHD  
EE  
CC ILD  
EE  
CC  
IHD  
ILD  
CC EE  
values are at V  
- V = 3.3V, V  
= V  
- 1V, V  
= V  
- 1.5V, unless otherwise noted.) (Notes 8, 11)  
CC  
EE  
IHD  
CC  
ILD  
CC  
-40°C  
+25°C  
+85°C  
PARAMETER SYMBOL  
CONDITIONS  
UNITS  
MAX  
MIN  
145  
TYP  
MAX MIN  
TYP  
MAX MIN  
TYP  
Differential  
t
t
,
PLHD  
Input-to-  
Figure 2  
184  
235  
145  
172  
245  
130  
167  
230  
ps  
ps  
PHLD  
Output Delay  
Part-to-Part  
Skew (Note 9)  
t
25  
1.7  
0.6  
90  
2.8  
1.5  
20  
1.7  
0.6  
100  
2.8  
1.5  
20  
1.7  
0.6  
100  
2.8  
1.5  
SKPP  
f
= 1.5GHz, Clock  
pattern  
IN  
Added  
Random Jitter  
(Note 10)  
ps  
t
RJ  
(RMS)  
f
= 3.0GHz, Clock  
pattern  
IN  
_______________________________________________________________________________________  
3
Differential LVPECL/LVECL/HSTL  
Receiver/Drivers  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
- V = +2.25V to +3.8V, outputs loaded with 501ꢀ to V  
- 2V, input frequency = 1.5GHz, input transition time = 125ps  
CC  
EE  
CC  
(20ꢀ to 80ꢀ), V  
= V + 1.2V to V , V  
= V to V  
- 0.15V, V  
- V  
= 0.15V to the smaller of 3V or V - V . Typical  
CC EE  
IHD  
EE  
CC ILD  
EE  
CC  
IHD  
ILD  
values are at V  
- V = 3.3V, V  
= V  
- 1V, V  
= V  
- 1.5V, unless otherwise noted.) (Notes 8, 11)  
CC  
EE  
IHD  
CC  
ILD  
CC  
-40°C  
+25°C  
+85°C  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
MAX  
MIN  
TYP  
MAX MIN  
TYP  
MAX MIN  
TYP  
Added  
Deterministic  
Jitter (Note 10)  
3.0Gbps  
ps  
80  
t
57  
80  
57  
80  
57  
DJ  
223 -1 PRBS pattern  
(p-p)  
V
- V 300mV,  
OL  
OH  
3.0  
2.0  
50  
3.0  
2.0  
3.0  
2.0  
Clock pattern,  
Figure 2  
Switching  
Frequency  
f
GHz  
MAX  
V
- V 550mV,  
OL  
OH  
Clock pattern,  
Figure 2  
Output Rise/  
Fall Time  
(20ꢀ to 80ꢀ)  
t , t  
R
Figure 2  
88  
120  
50  
89  
120  
50  
90  
120  
ps  
F
Note 1: Guaranteed by design and characterization.  
Note 2: Measurements are made with the device in thermal equilibrium.  
Note 3: Current into a pin is defined as positive. Current out of a pin is defined as negative.  
Note 4: DC parameters production tested at T = +25°C. Guaranteed by design and characterization over the full operating temp-  
A
erature range.  
Note 5: Single-ended input operation is limited to V  
- V 3.0V.  
EE  
CC  
Note 6: Use V as a reference for inputs on the same device only.  
BB  
Note 7: All pins open except V  
and V  
.
EE  
CC  
Note 8: Guaranteed by design and characterization. Limits are set at 6 sigma.  
Note 9: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.  
Note 10: Device jitter added to the input signal.  
4
_______________________________________________________________________________________  
Differential LVPECL/LVECL/HSTL  
Receiver/Drivers  
Typical Operating Characteristics  
(SO packages) (V  
= +3.3V, V = 0, input transition time = 125ps (20ꢀ to 80ꢀ), V  
= V  
- 1V, V  
= V  
- 1.5V, f  
IN  
=
CC  
EE  
IHD  
CC  
ILD  
CC  
1.5GHz, outputs loaded with 50to V  
- 2V, T = +25°C, unless otherwise noted.)  
CC  
A
OUTPUT AMPLITUDE, V - V  
OH  
OL  
vs. FREQUENCY  
TRANSITION TIME vs. TEMPERATURE  
SUPPLY CURRENT, I vs. TEMPERATURE  
EE  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
20  
90  
89  
88  
19  
18  
17  
16  
15  
14  
t
F
t
R
87  
0
500 1000 1500 2000 2500 3000 3500  
FREQUENCY (MHz)  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
PROPAGATION DELAY vs. HIGH VOLTAGE  
OF DIFFERENTIAL INPUT, V  
PROPAGATION DELAY vs. TEMPERATURE  
IHD  
200  
200  
190  
V
- V = 0.5V  
ILD  
IHD  
195  
190  
185  
180  
175  
170  
165  
160  
155  
150  
180  
170  
t
t
PLHD  
PHLD  
t
PLHD  
160  
150  
140  
t
PHLD  
130  
120  
1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8  
(V)  
-40  
-15  
10  
35  
60  
85  
V
IHD  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Differential LVPECL/LVECL/HSTL  
Receiver/Drivers  
Pin Description (MAX9321)  
PIN  
µMAX/SO  
NAME  
FUNCTION  
SOT23  
1
2
3
6
3
4
N.C.  
D
No Connection  
Noninverting Differential Input. 100kpulldown to V  
.
EE  
D
Inverting Differential Input. 60kpullup to V  
and 100kpulldown to V  
.
CC  
EE  
Reference Output Voltage. Connect to the inverting or noninverting input to provide a  
reference for single-ended operation. When used, bypass with a 0.01µF ceramic  
capacitor to V ; otherwise leave open.  
CC  
4
5
V
V
BB  
5
6
7
2
7
8
Negative Supply Voltage  
EE  
Q
Inverting Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Q
Noninverting Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Positive Supply Voltage. Bypass from V  
to V with 0.1µF and 0.01µF ceramic  
EE  
CC  
8
1
V
capacitors. Place the capacitors as close to the device as possible with the smaller  
value capacitor closest to the device.  
CC  
Pin Description (MAX9321A)  
PIN  
NAME  
FUNCTION  
µMAX/SO  
SOT23  
1
2
3
6
3
4
N.C.  
D
No Connection  
Inverting Differential Input. 60kpullup to V  
and 100kpulldown to V  
.
CC  
EE  
D
Noninverting Differential Input. 100kpulldown to V  
.
EE  
Reference Output Voltage. Connect to the inverting or noninverting input to provide a  
reference for single-ended operation. When used, bypass with a 0.01µF ceramic  
capacitor to V ; otherwise leave open.  
CC  
4
5
V
BB  
EE  
5
6
7
2
8
7
V
Negative Supply Voltage  
Q
Noninverting Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Q
Inverting Output. Typically terminate with 50resistor to V  
- 2V.  
CC  
Positive Supply Voltage. Bypass from V  
to V with 0.1µF and 0.01µF ceramic  
EE  
CC  
8
1
V
capacitors. Place the capacitors as close to the device as possible with the smaller  
value capacitor closest to the device.  
CC  
6
_______________________________________________________________________________________  
Differential LVPECL/LVECL/HSTL  
Receiver/Drivers  
D
D
V
IH  
V
BB  
V
IL  
(CONNECTED TO D)  
V
Q
Q
OH  
V
- V  
OH OL  
V
OL  
Figure 1. Switching with Single-Ended Input  
D
D
V
IHD  
V
- V  
ILD  
IHD  
V
ILD  
t
t
PHLD  
PLHD  
Q
Q
V
OH  
V
- V  
OH  
OL  
V
OL  
80%  
0 (DIFFERENTIAL)  
80%  
0 (DIFFERENTIAL)  
20%  
20%  
(Q) - (Q)  
t
t
F
R
Figure 2. Differential Transition Time and Propagation Delay Timing Diagram  
V
to D and connecting the single-ended input to D.  
BB  
Detailed Description  
With the differential input configured as single ended  
(using V ), the single-ended input can be driven to  
The MAX9321/MAX9321A are low-skew differential  
receiver/drivers designed for clock and data distribu-  
tion. For interfacing to differential HSTL and LVPECL  
signals, these devices operate over a +2.25V to +3.8V  
supply range, allowing high-performance clock and  
data distribution in systems with a nominal +2.5V or  
+3.3V supply. For differential LVECL operation, these  
devices operate from a -2.25V to -3.8V supply.  
BB  
and V  
V
or with a single-ended LVPECL/LVECL  
EE  
CC  
signal.  
When the differential input is configured as a single-  
ended input (using V ), the approximate supply range  
BB  
is V  
- V = 3.0V to 3.8V. This is because one of the  
CC  
EE  
inputs must be V + 1.2V or higher for proper opera-  
EE  
tion of the input stage. V must be at least V + 1.2V  
BB  
EE  
Inputs  
because it becomes the high-level input when the other  
(single-ended) input swings below it. Therefore, mini-  
The differential input can be configured to accept a sin-  
mum V = V + 1.2V.  
BB  
EE  
gle-ended input when operating at approximately V  
-
CC  
V
= 3.0V to 3.8V. This is accomplished by connect-  
EE  
The minimum V  
the minimum V  
minimum supply of 2.71V. Rounding up to a standard  
supply gives the single-ended operating supply range  
of V  
output is V  
- 1.510V. Substituting  
BB  
BB  
CC  
ing the on-chip reference voltage, V , to an input as a  
BB  
into V  
= V  
+ 1.2V results in a  
EE  
BB  
reference. For example, the differential D, D input is  
converted to a noninverting, single-ended input by con-  
necting V  
to D and connecting the single-ended  
BB  
- V = 3.0V to 3.8V.  
EE  
CC  
input to D. An inverting input is obtained by connecting  
_______________________________________________________________________________________  
7
Differential LVPECL/LVECL/HSTL  
Receiver/Drivers  
When using the V  
reference output, bypass it with a  
capacitor closest to the device. Use multiple parallel  
vias for low inductance. When using the V reference  
BB  
0.01µF ceramic capacitor to V . If the V  
reference  
CC  
BB  
BB  
is not used, it can be left open. The V  
reference can  
output, bypass it with a 0.01µF ceramic capacitor to  
BB  
source or sink 0.5mA. Use V  
only for an input on the  
V
(if the V reference is not used, it can be left  
BB  
BB  
CC  
same device as the V reference.  
open).  
BB  
The maximum magnitude of the differential input from D  
Traces  
to D is 3.0V or V  
- V , whichever is less. This limit  
EE  
CC  
Input and output trace characteristics affect the perfor-  
mance of the MAX9321/MAX9321A. Connect each sig-  
nal of a differential input or output to a 50  
characteristic impedance trace. Minimize the number of  
vias to prevent impedance discontinuities. Reduce  
reflections by maintaining the 50characteristic  
impedance through connectors and across cables.  
Reduce skew within a differential pair by matching the  
electrical length of the traces.  
also applies to the difference between any reference  
voltage input and a single-ended input.  
The differential input has bias resistors that drive the  
output to a differential low when the inputs are open.  
The inverting input is biased with a 60kpullup to V  
CC  
and a 100kpulldown to V . The noninverting input is  
EE  
biased with a 100kpulldown to V  
.
EE  
Specifications for the high and low voltage of the differ-  
ential input (V  
and V ) and the differential input  
ILD  
The exposed-pad (EP) SO package can be soldered to  
the PC board for enhanced thermal performance. If the  
EP is not soldered to the PC board, the thermal resis-  
tance is the same as the regular SO package. The EP is  
IHD  
voltage (V  
IHD  
- V ) apply simultaneously (V  
cannot  
ILD  
ILD  
be higher than V  
).  
IHD  
Outputs  
connected to the chip V supply. Be sure that the pad  
EE  
Output levels are referenced to V  
and are consid-  
CC  
does not touch signal lines or other supplies.  
ered LVPECL or LVECL, depending on the level of the  
Contact Maxim's Packaging department for guidelines  
on the use of EP packages.  
V
supply. With V  
connected to a positive supply  
CC  
CC  
and V connected to GND, the output is LVPECL. The  
EE  
output is LVECL when V  
EE  
is connected to GND and  
CC  
Output Termination  
V
is connected to a negative supply.  
Terminate outputs through 50to V  
- 2V or use an  
CC  
A single-ended input of at least V  
100mV or a differ-  
ential input of at least 100mV switches the outputs to  
the V and V levels specified in the DC Electrical  
equivalent Thevenin termination. When a single-ended  
signal is taken from the differential output, terminate  
both outputs. For example, when Q is used as a single-  
ended output, terminate both Q and Q.  
BB  
OH  
OL  
Characteristics table.  
Applications Information  
Chip Information  
Supply Bypassing  
to V with high-frequency surface-mount  
EE  
Bypass V  
TRANSISTOR COUNT: 162  
CC  
ceramic 0.1µF and 0.01µF capacitors in parallel as  
close to the device as possible, with the 0.01µF value  
Pin Configurations (continued)  
V
CC  
V
1
2
3
4
8
7
6
5
Q
1
2
3
4
8
7
N.C.  
D
V
CC  
MAX9321A  
MAX9321A  
CC  
V
CC  
60kΩ  
Q
V
Q
EE  
60kΩ  
100kΩ  
100kΩ  
D
N.C.  
D
6
5
Q
V
100kΩ  
100kΩ  
D
V
V
BB  
BB  
EE  
V
EE  
SOT23  
µMAX/SO  
8
_______________________________________________________________________________________  
Differential LVPECL/LVECL/HSTL  
Receiver/Drivers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ______________________9  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9321AEKA+T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO8, SOT-23, 8 PIN
MAXIM

MAX9321AEKA-T

Differential LVPECL/LVECL/HSTL Receiver/Drivers
MAXIM

MAX9321AESA

Differential LVPECL/LVECL/HSTL Receiver/Drivers
MAXIM

MAX9321AESA+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO8, 0.150 INCH, EXPOSED PAD, SOIC-8
MAXIM

MAX9321AESA+T

Line Transceiver
MAXIM

MAX9321AEUA+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO8, MICRO MAX-8
MAXIM

MAX9321AEUA-T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO8, MICRO MAX-8
MAXIM

MAX9321B

Differential PECL/ECL/LVPECL/LVECL Receiver/Driver
MAXIM

MAX9321BESA

Differential PECL/ECL/LVPECL/LVECL Receiver/Driver
MAXIM

MAX9321BESA+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO8, SO-8
MAXIM

MAX9321BESA+T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO8, SO-8
MAXIM

MAX9321BESA-T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO8, SO-8
MAXIM