MAX9391ETJ [MAXIM]

Anything-to-LVDS Dual 2 x 2 Crosspoint Switches; 任何对LVDS双路,2 x 2交叉点开关
MAX9391ETJ
型号: MAX9391ETJ
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Anything-to-LVDS Dual 2 x 2 Crosspoint Switches
任何对LVDS双路,2 x 2交叉点开关

开关
文件: 总14页 (文件大小:371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2829; Rev 1; 7/03  
Anything-to-LVDS Dual 2 x 2  
Crosspoint Switches  
General Description  
Features  
The MAX9390/MAX9391 dual 2 x 2 crosspoint switches  
perform high-speed, low-power, and low-noise signal  
distribution. The MAX9390/MAX9391 multiplex one of two  
differential input pairs to either or both low-voltage differ-  
ential signaling (LVDS) outputs for each channel.  
Independent enable inputs turn on or turn off each differ-  
ential output pair.  
1.5GHz Operation with 250mV Differential Output  
Swing  
2ps  
(max) Random Jitter  
(RMS)  
AC Specifications Guaranteed for 150mV  
Differential Input  
Signal Inputs Accept Any Differential Signaling  
Standard  
Four LVCMOS/LVTTL logic inputs (two per channel) con-  
trol the internal connections between inputs and outputs.  
This flexibility allows for the following configurations: 2 x 2  
crosspoint switch, 2:1 mux, 1:2 splitter, or dual repeater.  
This makes the MAX9390/MAX9391 ideal for protection  
switching in fault-tolerant systems, loopback switching for  
diagnostics, fanout buffering for clock/data distribution,  
and signal regeneration.  
LVDS Outputs for Clock or High-Speed Data  
High-Level Input Fail-Safe Detection (MAX9390)  
Low-Level Input Fail-Safe Detection (MAX9391)  
+3.0V to +3.6V Supply Voltage Range  
LVCMOS/LVTTL Logic Inputs Control Signal  
Routing  
Fail-safe circuitry forces the outputs to a differential low  
condition for undriven inputs or when the common-  
mode voltage exceeds the specified range. The  
MAX9390 provides high-level input fail-safe detection  
for LVDS, HSTL, and other GND-referenced differential  
inputs. The MAX9391 provides low-level input fail-safe  
Ordering Information  
PART  
MAX9390EHJ  
MAX9390ETJ*  
MAX9391EHJ  
MAX9391ETJ*  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
32 TQFP  
32 Thin QFN  
32 TQFP  
detection for LVPECL, CML, and other V -referenced  
CC  
differential inputs.  
32 Thin QFN  
Ultra-low 82ps  
(max) pseudorandom bit sequence  
(P-P)  
*Future product—contact factory for availability.  
(PRBS) jitter ensures reliable communications in high-  
speed links that are highly sensitive to timing error,  
especially those incorporating clock-and-data recovery,  
or serializers and deserializers. The high-speed switch-  
ing performance guarantees 1.5GHz operation and less  
than 65ps (max) skew between channels.  
Pin Configurations  
TOP VIEW  
LVDS inputs and outputs are compatible with the  
TIA/EIA-644 LVDS standard. The LVDS outputs drive  
100 loads. The MAX9390/MAX9391 are offered in a  
32-pin TQFP and 5mm x 5mm thin QFN package with  
exposed paddle and operate over the extended tem-  
perature range (-40°C to +85°C).  
32 31 30 29 28 27 26 25  
ENB1  
OUTB1  
OUTB1  
GND  
1
2
3
4
5
6
7
8
24 V  
CC  
OUTA0  
23  
22 OUTA0  
21 ENA0  
20 GND  
Also refer to the MAX9392/MAX9393 with flow-through  
pinout.  
MAX9390  
MAX9391  
ENB0  
Applications  
19 OUTA1  
18 OUTA1  
17 ENA1  
OUTB0  
OUTB0  
High-Speed Telecom/Datacom Equipment  
Central-Office Backplane Clock Distribution  
DSLAM  
V
CC  
Protection Switching  
9
10 11 12 13 14 15 16  
Fault-Tolerant Systems  
TQFP  
Functional Diagram and Typical Operating Circuit appear at  
end of data sheet.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Anything-to-LVDS Dual 2 x 2  
Crosspoint Switches  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
to GND...........................................................-0.3V to +4.1V  
Junction-to-Case Thermal Resistance  
IN_ _, IN_ _, OUT_ _, OUT_ _, EN_ _,  
_SEL_ to GND.........................................-0.3V to (V  
IN_ _ to IN_ _.......................................................................... 3V  
Short-Circuit Duration (OUT_ _, OUT_ _) ...................Continuous  
32-Pin 5mm x 5mm Thin QFN......................................+2°C/W  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
ESD Protection (Human Body Model)  
+ 0.3V)  
CC  
Continuous Power Dissipation (T = +70°C)  
A
32-Pin QFP (derate 13.1mW/°C  
(IN_ _, IN_ _, OUT_ _, OUT_ _, EN_ _, SEL_ _) ................ 2kV  
Soldering Temperature (10s)...........................................+300°C  
above +70°C).............................................................1047mW  
32-Pin 5mm x 5mm Thin QFN (derate 21.3mW/°C  
above +70°C).............................................................1702mW  
Junction-to-Ambient Thermal Resistance in Still Air  
32-Pin QFP..............................................................+76.4°C/W  
32-Pin 5mm x 5mm Thin QFN....................................+47°C/W  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, R = 100  
1%, EN_ _ = V , V  
= 0.05V to (V  
- 0.6V) (MAX9390), V  
= 0.6V to (V  
- 0.05V)  
CC  
CC  
L
CC  
CM  
CC  
CM  
(MAX9391) T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +3.3V, |V | = 0.2V, V  
= +1.2V, T = +25°C.)  
CM A  
A
CC  
ID  
(Notes 1, 2, and 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LVCMOS/LVTTL INPUTS (EN_ _, _SEL_)  
Input High Voltage  
V
2.0  
0
V
V
IH  
CC  
Input Low Voltage  
V
0.8  
20  
10  
V
IL  
Input High Current  
I
V
V
= +2.0V to V  
CC  
0
µA  
µA  
IH  
IN  
IN  
Input Low Current  
I
= 0 to +0.8V  
0
IL  
IN_ _  
DIFFERENTIAL INPUTS (IN_ _,  
)
Differential Input Voltage  
V
V
> 0 and V  
< V , Figure 1  
0.1  
0.05  
0.6  
3.0  
V
V
ID  
ILD  
IHD  
CC  
MAX9390  
MAX9391  
MAX9390  
MAX9391  
V
- 0.6  
CC  
Input Common-Mode Range  
Input Current  
V
CM  
V
- 0.05  
+10  
CC  
|V | < 3.0V  
ID  
-75  
-10  
I
I
,
IN_ _  
µA  
IN_ _  
|V | < 3.0V  
ID  
+100  
450  
50  
OUT__  
LVDS OUTPUTS (OUT_ _,  
)
Differential Output Voltage  
V
R = 100 , Figure 2  
L
250  
350  
1.0  
mV  
mV  
V
OD  
Change in Magnitude of V  
Between Complementary Output  
States  
OD  
V
Figure 2  
Figure 2  
Figure 2  
OD  
OS  
Offset Common-Mode Voltage  
V
1.125  
1.25  
1.0  
1.375  
50  
Change in Magnitude of V  
Between Complementary Output  
States  
OS  
V
mV  
OS  
2
_______________________________________________________________________________________  
Anything-to-LVDS Dual 2 x 2  
Crosspoint Switches  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, R = 100  
1%, EN_ _ = V , V  
= 0.05V to (V  
- 0.6V) (MAX9390), V  
= 0.6V to (V  
- 0.05V)  
CC  
CC  
L
CC  
CM  
CC  
CM  
(MAX9391) T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +3.3V, |V | = 0.2V, V  
= +1.2V, T = +25°C.)  
CM A  
A
CC  
ID  
(Notes 1, 2, and 3)  
PARAMETER  
SYMBOL  
|I  
CONDITIONS  
MIN  
TYP  
30  
MAX  
40  
UNITS  
V
V
or V  
= 0  
= 0  
OUT_ _  
OUT_ _  
OUT_ _  
Output Short-Circuit Current  
(Either Output Shorted to GND)  
V
= 100mV  
ID  
|
mA  
OS  
(Note 4)  
= V  
= V  
18  
24  
OUT_ _  
Output Short-Circuit Current  
(Outputs Shorted Together)  
V
= 100mV, V  
ID OUT_ _  
OUT_ _  
|I  
OSB  
|
5.0  
12  
mA  
(Note 4)  
SUPPLY CURRENT  
R = 100 , EN_ _ = V  
68  
68  
98  
98  
L
CC  
Supply Current  
I
CC  
mA  
R = 100 , EN_ _ = V , switching at  
L
CC  
670MHz (1.34Gbps)  
AC ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, f < 1.34GHz, t  
= t  
= 125ps, R = 100  
1%, |V | > 150mV, V  
= +0.075V to (V  
- 0.6V)  
CC  
CC  
IN  
R_IN  
F_IN  
L
ID  
CM  
(MAX9390 only), V  
= +0.6V to (V  
- 0.075V) (MAX9391 only), EN_ _ = V , T = -40°C to +85°C, unless otherwise noted. Typical  
CM  
CC CC A  
values are at V  
= +3.3V, |V | = 0.2V, V  
= +1.2V, f = 1.34GHz, T = +25°C.) (Note 5)  
CC  
ID  
CM  
IN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
_SEL_ to Switched Output  
t
Figure 3  
Figure 4  
1.1  
ns  
SWITCH  
Disable, Time to Differential  
Output Low  
t
1.7  
1.7  
ns  
ns  
PHD  
Enable, Time to Differential  
Output High  
t
Figure 4  
PDH  
MAX  
Switching Frequency  
f
V
> 250mV  
1.50  
294  
286  
2.20  
409  
402  
GHz  
ps  
OD  
Low-to-High Propagation Delay  
High-to-Low Propagation Delay  
t
Figures 1, 5  
Figures 1, 5  
565  
530  
PLH  
PHL  
t
ps  
Pulse Skew |t  
- t  
|
t
Figures 1, 5 (Note 6)  
Figures 5, 6 (Note 7)  
7
97  
65  
ps  
ps  
ps  
PLH PHL  
SKEW  
Output-to-Output Skew  
t
10  
CCS  
Output Low-to-High Transition  
Time (20% to 80%)  
t
Figures 1, 5; f = 100MHz  
112  
112  
153  
185  
R
IN  
Output High-to-Low Transition  
Time (80% to 20%)  
t
F
Figures 1, 5; f = 100MHz  
153  
185  
ps  
IN  
Added Random Jitter  
t
f
= 1.34GHz, clock pattern (Note 8)  
2
ps  
(RMS)  
RJ  
IN_ _  
Added Deterministic Jitter  
t
1.34Gbps, 223 - 1 PRBS (Note 8)  
55  
82  
ps  
(P-P)  
DJ  
Note 1: Measurements obtained with the device in thermal equilibrium. All voltages referenced to GND except V , V , and  
V
OD  
.
ID OD  
Note 2: Current into the device defined as positive. Current out of the device defined as negative.  
Note 3: DC parameters tested at T = +25°C and guaranteed by design and characterization for T = -40°C to +85°C.  
A
A
Note 4: Current through either output.  
Note 5: Guaranteed by design and characterization. Limits set at 6 sigma.  
Note 6: t  
is the magnitude difference of differential propagation delays for the same output over same conditions. t  
=
SKEW  
SKEW  
|t  
- t  
|.  
PHL PLH  
Note 7: Measured between outputs of the same device at the signal crossing points for a same-edge transition, under the same  
conditions.  
Note 8: Device jitter added to the differential input signal.  
_______________________________________________________________________________________  
3
Anything-to-LVDS Dual 2 x 2  
Crosspoint Switches  
Typical Operating Characteristics  
(V  
= +3.3V, |V | = 0.2V, V  
= +1.2V, f = 1.34GHz, T = +25°C.)  
CM IN A  
CC  
ID  
OUTPUT RISE AND FALL TIMES  
vs. TEMPERATURE  
OUTPUT AMPLITUDE  
vs. FREQUENCY  
SUPPLY CURRENT  
vs. TEMPERATURE  
180  
400  
350  
300  
250  
200  
150  
100  
50  
82  
f
= 100MHz  
IN  
78  
74  
70  
170  
160  
150  
140  
130  
120  
t
F
V
CC  
= +3.6V  
t
R
66  
62  
58  
54  
V
= +3.3V  
60  
CC  
V
= +3V  
CC  
0
-40  
-15  
10  
35  
60  
85  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
FREQUENCY (GHz)  
-40  
-15  
10  
35  
85  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
MAX9391  
DIFFERENTIAL INPUT CURRENT  
vs. TEMPERATURE  
MAX9390  
DIFFERENTIAL INPUT CURRENT  
vs. TEMPERATURE  
PROPAGATION DELAY  
vs. TEMPERATURE  
450  
440  
430  
420  
410  
400  
390  
380  
370  
360  
350  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
5
0
V
= 3V  
IN  
V
= 3.2V  
IN  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
V
= -0.1V  
IN  
V
= 0.3V  
IN  
-10  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
MAX9391  
DIFFERENTIAL INPUT CURRENT vs. V  
MAX9390 INPUT CURRENT vs. V  
ILD  
IHD  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
5
IN_ _ OR  
IN_ _ = GND  
IN_ _ OR  
IN_ _ = V  
V
= +3.6V  
CC  
CC  
0
-5  
V
CC  
= +3V  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
V
= +3.6V  
CC  
V
CC  
= +3V  
-10  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6  
(V)  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6  
(V)  
V
IHD  
V
ILD  
4
_______________________________________________________________________________________  
Anything-to-LVDS Dual 2 x 2  
Crosspoint Switches  
Pin Description  
PIN  
NAME  
FUNCTION  
B1 Output Enable. Drive ENB1 high to enable the B1 LVDS outputs. An internal 435kresistor pulls ENB1  
low when unconnected.  
1
ENB1  
B1 LVDS Noninverting Output. Connect a 100termination resistor between OUTB1 and OUTB1 at the  
receiver inputs to ensure proper operation.  
2
3
OUTB1  
OUTB1  
GND  
B1 LVDS Inverting Output. Connect a 100termination resistor between OUTB1 and OUTB1 at the  
receiver inputs to ensure proper operation.  
4, 9,  
20, 25  
Ground  
B0 Output Enable. Drive ENB0 high to enable the B0 LVDS outputs. An internal 435kresistor pulls ENB0  
low when unconnected.  
5
6
7
ENB0  
B0 LVDS Noninverting Output. Connect a 100termination resistor between OUTB0 and OUTB0 at the  
receiver inputs to ensure proper operation.  
OUTB0  
OUTB0  
B0 LVDS Inverting Output. Connect a 100termination resistor between OUTB0 and OUTB0 at the  
receiver inputs to ensure proper operation.  
8, 13,  
24, 29  
Power-Supply Input. Bypass each V  
bypass capacitors as close to the device as possible, with the 0.01µF capacitor closest to the device.  
to GND with 0. 1µF and 0.01µF ceramic capacitors. Install both  
CC  
V
CC  
LVDS/HSTL (MAX9390) or LVPECL/CML (MAX9391) Inverting Input. An internal 128kresistor to V pulls  
CC  
10  
11  
12  
14  
15  
16  
INB0  
INB0  
the input high when unconnected (MAX9390). An internal 68kresistor to GND pulls the input low when  
unconnected (MAX9391).  
LVDS/HSTL (MAX9390) or LVPECL/CML (MAX9391) Noninverting Input. An internal 128kresistor to V  
CC  
pulls the input high when unconnected (MAX9390). An internal 68kresistor to GND pulls the input low  
when unconnected (MAX9391).  
Input Select for B0 Output. Selects the differential input to reproduce at the B0 differential outputs. Connect  
BSEL0 to GND or leave open to select the INB0 (INB0) set of inputs. Connect BSEL0 to V  
INB1 (INB1) set of inputs. An internal 435kresistor pulls BSEL0 low when unconnected.  
to select the  
BSEL0  
INB1  
CC  
LVDS/HSTL (MAX9390) or LVPECL/CML (MAX9391) Inverting Input. An internal 128kresistor to V pulls  
CC  
the input high when unconnected (MAX9390). An internal 68kresistor to GND pulls the input low when  
unconnected (MAX9391).  
LVDS/HSTL (MAX9390) or LVPECL/CML (MAX9391) Noninverting Input. An internal 128kresistor to V  
CC  
pulls the input high when unconnected (MAX9390). An internal 68kresistor to GND pulls the input low  
when unconnected (MAX9391).  
INB1  
Input Select for B1 Output. Selects the differential input to reproduce at the B1 differential outputs. Connect  
BSEL1  
BSEL1 to GND or leave open to select the INB0 (INB0) set of inputs. Connect BSEL1 to V  
to select the  
CC  
INB1 (INB1) set of inputs. An internal 435kresistor pulls BSEL1 low when unconnected.  
_______________________________________________________________________________________  
5
Anything-to-LVDS Dual 2 x 2  
Crosspoint Switches  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
A1 Output Enable. Drive ENA1 high to enable the A1 LVDS outputs. An internal 435kresistor pulls ENA1  
low when unconnected.  
17  
ENA1  
A1 LVDS Inverting Output. Connect a 100termination resistor between OUTA1 and OUTA1 at the  
receiver inputs to ensure proper operation.  
18  
19  
21  
22  
23  
OUTA1  
OUTA1  
ENA0  
A1 LVDS Noninverting Output. Connect a 100termination resistor between OUTA1 and OUTA1 at the  
receiver inputs to ensure proper operation.  
A0 Output Enable. Drive ENA0 high to enable the A0 LVDS outputs. An internal 435kresistor pulls ENA0  
low when unconnected.  
A0 LVDS Inverting Output. Connect a 100termination resistor between OUTA0 and OUTA0 at the  
receiver inputs to ensure proper operation.  
OUTA0  
OUTA0  
A0 LVDS Noninverting Output. Connect a 100termination resistor between OUTA0 and OUTA0 at the  
receiver inputs to ensure proper operation.  
LVDS/HSTL (MAX9390) or LVPECL/CML (MAX9391) Noninverting Input. An internal 128kresistor to V  
CC  
26  
27  
28  
30  
31  
INA0  
INA0  
pulls the input high when unconnected (MAX9390). An internal 68kresistor to GND pulls the input low  
when unconnected (MAX9391).  
LVDS/HSTL (MAX9390) or LVPECL/CML (MAX9391) Inverting Input. An internal 128kresistor to V pulls  
CC  
the input high when unconnected (MAX9390). An internal 68kresistor to GND pulls the input low when  
unconnected (MAX9391).  
Input Select for A0 Output. Selects the differential input to reproduce at the A0 differential outputs. Connect  
ASEL0 to GND or leave open to select the INA0 (INA0) set of inputs. Connect ASEL0 to V  
INA1 (INA1) set of inputs. An internal 435kresistor pulls ASEL0 low when unconnected.  
to select the  
ASEL0  
INA1  
CC  
LVDS/HSTL (MAX9390) or LVPECL/CML (MAX9391) Noninverting Input. An internal 128kresistor to V  
CC  
pulls the input high when unconnected (MAX9390). An internal 68kresistor to GND pulls the input low  
when unconnected (MAX9391).  
LVDS/HSTL (MAX9390) or LVPECL/CML (MAX9391) Inverting Input. An internal 128kresistor to V pulls  
CC  
the input high when unconnected (MAX9390). An internal 68kresistor to GND pulls the input low when  
INA1  
unconnected (MAX9391).  
Input Select for A1 Output. Selects the differential input to reproduce at the A1 differential outputs. Connect  
32  
ASEL1  
EP  
ASEL1 to GND or leave open to select the INA0 (INA0) set of inputs. Connect ASEL1 to V  
INA1 (INA1) set of inputs. An internal 435kresistor pulls ASEL1 low when unconnected.  
to select the  
CC  
Exposed Paddle (QFN Package Only). Connect to GND for optimal thermal and EMI characteristics.  
6
_______________________________________________________________________________________  
Anything-to-LVDS Dual 2 x 2  
Crosspoint Switches  
V
V
V
IN_ _  
IHD  
V
t
= 0  
V
= 0  
ID  
ID  
V
ILD  
IN_ _  
OUT_ _  
V
OD  
OS  
t
PHL  
1/4 MAX9390/MAX9391  
PLH  
V
V
OUT_ _  
R /2  
L
V
OD  
= 0  
V
OD  
= 0  
IN_ _  
IN_ _  
V
OUT_ _  
R /2  
L
80%  
= 0  
80%  
50%  
EN_ _ = HIGH  
= V - V  
IN_ _  
V
ID  
IN_ _  
OUT_ _  
50%  
20%  
V
V
= 0  
OD  
OD  
20%  
V
V
=
=
V
- V *  
OD  
OS  
OD  
OS  
OD  
OS  
V
- V *  
t
t
F
R
V
V
AND V ARE MEASURED WITH V = +100mV  
OD  
OD  
OS ID  
* AND V * ARE MEASURED WITH V = -100mV  
OS  
ID  
V
V
= V  
- V  
ID  
IN_ _ IN_ _  
= V  
- V  
OUT_ _  
OD  
OUT_ _  
t
AND t MEASURED FOR ANY COMBINATION OF _SEL0 AND _SEL1.  
PHL  
PLH  
Figure 1. Output Transition Time and Propagation Delay Timing  
Diagram  
Figure 2. Test Circuit for V and V  
OD OS  
V
IHD  
IN_0  
V
V
= 0  
= 0  
ID  
V
ILD  
IN_0  
V
IHD  
IN_1  
IN_1  
ID  
V
ILD  
V
V
IH  
1.5V  
IN_0  
1.5V  
IL  
_SEL_  
OUT_ _  
OUT_ _  
V
OD  
= 0  
IN_1  
IN_0  
V
OD  
= 0  
t
t
SWITCH  
SWITCH  
EN_0 = EN_1 = HIGH  
= V - V  
V
ID  
IN_ _  
IN_ _  
Figure 3. Input to Rising/Falling Edge Select and Mux Switch Timing Diagram  
_______________________________________________________________________________________  
7
Anything-to-LVDS Dual 2 x 2  
Crosspoint Switches  
3V  
0
OUT_ _  
1.5V  
1.5V  
V
EN_ _  
1/4 MAX9390/MAX9391  
C
L
R /2  
L
IN_ _  
IN_ _  
t
t
t
PHD  
PDH  
V
V
WHEN V = +100mV  
ID  
OUT_ _  
50%  
50%  
50%  
50%  
+1.25V  
R /2  
L
WHEN V = -100mV  
OUT_ _  
ID  
PULSE  
GENERATOR  
OUT_ _  
V
V
WHEN V = -100mV  
ID  
OUT_ _  
C
L
WHEN V = +100mV  
50  
OUT_ _  
ID  
t
PHD  
PDH  
R = 100  
L
1%  
L
C = 1.0pF  
V
ID  
= V  
- V  
IN_ _ IN_ _  
Figure 4. Output Active-to-Disable and Disable-to-Active Test Circuit and Timing Diagram  
_SEL0  
IN_0  
C
L
0
OUT_0  
OUT_0  
IN_0  
R
L
1
C
L
PULSE  
GENERATOR  
MAX9390  
MAX9391  
50  
50  
C
L
OUT_1  
OUT_1  
0
1
R
L
IN_1  
IN_1  
C
L
_SEL1  
EN_0 = EN_1 = HIGH  
1 CHANNEL SHOWN  
R = 100  
L
1%  
L
C = 1.0pF  
Figure 5. Output Transition Time, Propagation Delay, and Output Channel-to-Channel Skew Test Circuit  
8
_______________________________________________________________________________________  
Anything-to-LVDS Dual 2 x 2  
Crosspoint Switches  
V
V
V
V
OUT_0  
OUT_0  
OUT_1  
OUT_1  
IN_0  
IN_1  
OUT_0  
OUT_1  
V
= 0  
V
= 0  
OD  
OD  
t
t
CCS  
CCS  
2 x 2 CROSSPOINT  
V
OD  
= 0  
V
= 0  
OD  
V
= V  
- V  
OD  
OUT_ _ OUT_ _  
IN_0  
IN_1  
t
MEASURED WITH _SEL0 = _SEL1 = HIGH OR LOW  
(1:2 SPLITTER CONFIGURATION).  
CCS  
OUT_0 OR OUT_1  
Figure 6. Output Channel-to-Channel Skew  
2:1 MUX  
Detailed Description  
OUT_0  
OUT_1  
The LVDS interface standard provides a signaling  
method for point-to-point communication over a con-  
trolled-impedance medium as defined by the ANSI  
TIA/EIA-644 standard. LVDS utilizes a lower voltage  
swing than other communication standards, achieving  
higher data rates with reduced power consumption,  
while reducing EMI emissions and system susceptibility  
to noise.  
IN_0 OR IN_1  
1:2 SPLITTER  
IN_0  
IN_1  
OUT_0  
OUT_1  
The MAX9390/MAX9391 1.5GHz dual 2 x 2 crosspoint  
switches optimize high-speed, low-power, point-to-  
point interfaces. The MAX9390 accepts LVDS and  
HSTL signals, while the MAX9391 accepts LVPECL and  
CML signals. Both devices route the input signals to  
either or both LVDS outputs.  
DUAL REPEATER  
When configured as a 1:2 splitter, the outputs repeat  
the selected inputs. This configuration creates copies  
of signals for protection switching. When configured as  
a repeater, the device operates as a two-channel  
buffer. Repeating restores signal amplitude, allowing  
isolation of media segments or longer media drive.  
When configured as a 2:1 mux, select primary or back-  
up signals to provide a protection-switched, fault-toler-  
ant application.  
Figure 7. Programmable Configurations  
Select Function  
The _SEL_ logic inputs control the input and output sig-  
nal connections. Two logic inputs control the signal rout-  
ing for each channel. _SEL0 and _SEL1 allow the  
devices to be configured as a differential crosspoint  
switch, 2:1 mux, dual repeater, or 1:2 splitter (Figure 7).  
See Table 1 for mode-selection settings (insert A or B for  
the _). Channels A and B possess separate select  
inputs, allowing different configurations for each channel.  
Input Fail-Safe  
The differential inputs of the MAX9390/MAX9391 pos-  
sess internal fail-safe protection. Fail-safe circuitry  
forces the outputs to a differential low condition for  
undriven inputs or when the common-mode voltage  
exceeds the specified range. The MAX9390 provides  
high-level input fail-safe detection for LVDS, HSTL, and  
other GND-referenced differential inputs. The MAX9391  
provides low-level input fail-safe detection for LVPECL,  
Enable Function  
The EN_ _ logic inputs enable and disable each set of  
differential outputs. Connect EN_ 0 to V  
to enable  
CC  
the OUT_0/OUT_0 differential output pair. Connect  
EN_0 to GND to disable the OUT_0/OUT_0 differential  
output pair. The differential output pairs assert to a dif-  
ferential low condition when disabled.  
CML, and other V -referenced differential inputs.  
CC  
_______________________________________________________________________________________  
9
Anything-to-LVDS Dual 2 x 2  
Crosspoint Switches  
Table 1. Input/Output Function Table  
_SEL0  
_SEL1  
OUT_0 / OUT_0  
IN_0 / IN_0  
IN_0 / IN_0  
IN_1 / IN_1  
IN_1 / IN_1  
OUT_1 / OUT_1  
IN_0 / IN_0  
IN_1 / IN_1  
IN_0 / IN_0  
IN_1 / IN_1  
MODE  
1:2 splitter  
Repeater  
Switch  
0
0
1
1
0
1
0
1
1:2 splitter  
Output Termination  
Applications Information  
Terminate LVDS outputs with a 100 resistor between  
the differential outputs at the receiver inputs. LVDS out-  
puts require 100 termination for proper operation.  
Differential Inputs  
The MAX9390/MAX9391 inputs accept any differential  
signaling standard within the specified common-mode  
voltage range. The fail-safe feature detects common-  
mode input signal levels and generates a differential  
output low condition for undriven inputs or when the  
common-mode voltage exceeds the specified range.  
Ensure that the output currents do not exceed the cur-  
rent limits specified in the Absolute Maximum Ratings.  
Observe the total thermal limits of the MAX9390/  
MAX9391 under all operating conditions.  
Leave unused inputs unconnected or connect to V  
for the MAX9390 or to GND for the MAX9391.  
CC  
Cables and Connectors  
Use matched differential impedance for transmission  
media. Use cables and connectors with matched differ-  
ential impedance to minimize impedance discontinu-  
ities. Avoid the use of unbalanced cables. Balanced  
cables such as twisted pair offer superior signal quality  
and tend to generate less EMI due to canceling effects.  
Expanding the Number of LVDS Output  
Ports  
Cascade devices to make larger switches. Consider  
the total propagation delay and total jitter when deter-  
mining the maximum allowable switch size.  
Board Layout  
Use a four-layer printed circuit (PC) board providing  
separate signal, power, and ground planes for high-  
Power-Supply Bypassing  
Bypass each V  
to GND with high-frequency surface-  
CC  
mount ceramic 0.1µF and 0.01µF capacitors in parallel  
as close to the device as possible. Install the 0.01µF  
capacitor closest to the device.  
speed signaling applications. Bypass V  
to GND as  
CC  
close to the device as possible. Install termination  
resistors as close to receiver inputs as possible. Match  
the electrical length of the differential traces to minimize  
signal skew.  
Differential Traces  
Input and output trace characteristics affect the perfor-  
mance of the MAX9390/MAX9391. Connect each input  
and output to a 50 characteristic impedance trace.  
Maintain the distance between differential traces and  
eliminate sharp corners to avoid discontinuities in dif-  
ferential impedance and maximize common-mode  
noise immunity. Minimize the number of vias on the dif-  
ferential input and output traces to prevent impedance  
discontinuities. Reduce reflections by maintaining the  
50 characteristic impedance through connectors and  
across cables. Minimize skew by matching the electri-  
cal length of the traces.  
10 ______________________________________________________________________________________  
Anything-to-LVDS Dual 2 x 2  
Crosspoint Switches  
Typical Operating Circuit  
+3.0V TO  
+3.6V  
0.1 F  
0.01 F  
INA0  
V
CC  
Z = 50  
0
Z = 50  
OUTA0  
0
100  
100  
MAX9390  
MAX9391  
OUTA0  
OUTA1  
Z = 50  
0
Z = 50  
0
INA0  
LVDS  
RECEIVER  
INA1  
INA1  
INB0  
INB0  
INB1  
INB1  
Z = 50  
0
MAX9173  
Z = 50  
0
OUTA1  
OUTB0  
Z = 50  
0
ENA0  
ENA1  
ENB0  
ENB1  
OUTB0  
OUTB1  
Z = 50  
0
Z = 50  
0
LVCMOS/LVTTL  
LOGIC INPUTS  
ASEL0  
ASEL1  
BSEL0  
BSEL1  
Z = 50  
0
OUTB1  
GND GND GND GND  
______________________________________________________________________________________ 11  
Anything-to-LVDS Dual 2 x 2  
Crosspoint Switches  
Functional Diagram  
Pin Configurations (continued)  
TOP VIEW  
INA0  
MAX9390  
0
1
MAX9391  
INA0  
OUTA0  
32 31 30 29 28 27 26 25  
OUTA0  
ENA0  
ENB1  
OUTB1  
OUTB1  
GND  
1
2
3
4
5
6
7
8
24  
23  
V
CC  
ASEL0  
OUTA0  
22 OUTA0  
21 ENA0  
20 GND  
INA1  
INA1  
1
0
OUTA1  
MAX9390  
MAX9391  
ENB0  
OUTA1  
ENA1  
19 OUTA1  
18 OUTA1  
17 ENA1  
OUTB0  
OUTB0  
ASEL1  
*EXPOSED PADDLE  
V
CC  
INB0  
INB0  
9
10 11 12 13 14 15 16  
0
1
OUTB0  
OUTB0  
ENB0  
THIN QFN  
*CONNECT EXPOSED PADDLE TO GND.  
BSEL0  
INB1  
INB1  
1
0
OUTB1  
OUTB1  
ENB1  
Chip Information  
TRANSISTOR COUNT: 1565  
BSEL1  
PROCESS: Bipolar  
12 ______________________________________________________________________________________  
Anything-to-LVDS Dual 2 x 2  
Crosspoint Switches  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
D2  
0.15  
C A  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
PIN # 1  
I.D.  
0.15  
C
B
PIN # 1 I.D.  
0.35x45  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
k
L
DETAIL A  
e
(ND-1) X  
e
C
C
L
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0140  
C
2
COMMON DIMENSIONS  
EXPOSED PAD VARIATIONS  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220.  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
21-0140  
C
2
______________________________________________________________________________________ 13  
Anything-to-LVDS Dual 2 x 2  
Crosspoint Switches  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9391ETJ-T

Cross Point Switch, 2 Func, 2 Channel, BIPolar, 5 X 5 MM, 0.80 MM HEIGHT, TQFN-32
MAXIM

MAX9392

Anything-to-LVDS Dual 2 x 2 Crosspoint Switches
MAXIM

MAX9392EHJ

Anything-to-LVDS Dual 2 x 2 Crosspoint Switches
MAXIM

MAX9392EHJ+

Anything-to-LVDS Dual 2 x 2 Crosspoint Switches
MAXIM

MAX9392EHJ-T

Cross Point Switch, 2 Func, 2 Channel, BIPolar, PQFP32, 5 X 5 MM, 1 MM HEIGHT, MS-026, TQFP-32
MAXIM

MAX9392ETJ

Anything-to-LVDS Dual 2 x 2 Crosspoint Switches
MAXIM

MAX9392ETJ*

Anything-to-LVDS Dual 2 x 2 Crosspoint Switches
MAXIM

MAX9392EVKIT

Fully Assembled and Tested
MAXIM

MAX9392EVKIT+

Fully Assembled and Tested
MAXIM

MAX9392_07

Anything-to-LVDS Dual 2 x 2 Crosspoint Switches
MAXIM

MAX9392|MAX9393

Anything-to-LVDS Dual 2 x 2 Crosspoint Switches
MAXIM

MAX9393

Anything-to-LVDS Dual 2 x 2 Crosspoint Switches
MAXIM