MAX9401 [MAXIM]

Quad ECL/PECL Differential Buffers/Receivers ; 四路ECL / PECL差分缓冲器/接收器\n
MAX9401
型号: MAX9401
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Quad ECL/PECL Differential Buffers/Receivers
四路ECL / PECL差分缓冲器/接收器\n

文件: 总13页 (文件大小:347K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2245; Rev 0; 10/01  
Quad ECL/PECL Differential  
Buffers/Receivers  
General Description  
Features  
The MAX9401/MAX9404 are extremely fast and low-  
skew quad ECL/PECL differential buffers/receivers for  
data and clock signals. The four channels can be oper-  
ated synchronously with an external clock, or in asyn-  
chronous mode, determined by the state of the SEL  
input. An enable input provides the ability to force all  
the outputs to a differential low state.  
Differential Double-Swing ECL/PECL Outputs  
Input Compatible with LVECL/LVPECL  
Guaranteed 900mV Differential Output at 3.0GHz  
Clock Rate  
365ps Propagation Delay in Asynchronous Mode  
10ps Channel-to-Channel Skew in Synchronous  
The MAX9401 has high-impedance (open) input and  
the MAX9404 has an integrated 100differential input  
termination, which reduces external component count.  
Both devices have double amplitude swing open emit-  
ter outputs suitable for driving long cables. The  
Mode  
Integrated 100Input Terminations (MAX9404)  
Compatible +3.3V/+5.0V Nominal Supplies  
MAX9401/MAX9404 operate over a V  
- V = +3.0V  
EE  
CC  
Selectable Synchronous/Asynchronous  
to +5.5V supply range, and are specified for operation  
from -40°C to +85°C. These devices are offered in  
space-saving 32-pin 5mm x 5mm QFN exposed-paddle  
(EP) and TQFP packages.  
Operation  
Ordering Information  
TEMP.  
PIN-  
PACKAGE  
INPUT  
IMPEDANCE  
PART  
RANGE  
Applications  
-40°C to  
+85°C  
32 QFN-EP**  
(5mm x 5mm)  
MAX9401EGJ*  
MAX9401EHJ  
MAX9404EGJ*  
MAX9404EHJ  
Open  
Open  
100  
100Ω  
Data and Clock Driver and Buffer  
Central Office Backplane Clock Distribution  
DSLAM Backplane  
-40°C to  
+85°C  
32 TQFP  
(5mm x 5mm)  
-40°C to  
+85°C  
32 QFN-EP**  
(5mm x 5mm)  
Base Station  
ATE  
-40°C to  
+85°C  
32 TQFP  
(5mm x 5mm)  
*Future product—contact factory for availability.  
**EP = Exposed paddle  
Functional Diagram appears at end of data sheet.  
Pin Configurations  
TOP VIEW  
32 31 30 29 28 27 26 25  
*
*
V
1
2
3
4
5
6
7
8
24 V  
CC  
CC  
V
1
2
3
4
5
6
7
8
24  
V
CC  
CC  
SEL  
SEL  
CLK  
CLK  
EN  
23 OUT1  
22 OUT1  
SEL  
SEL  
CLK  
CLK  
EN  
23 OUT1  
22 OUT1  
MAX9401/  
MAX9404  
21  
20  
V
V
21  
20  
V
EE  
V
EE  
EE  
EE  
MAX9401  
MAX9404  
19 OUT2  
18 OUT2  
19 OUT2  
18 OUT2  
EN  
*
EN  
V
CC  
17  
V
CC  
V
17 V  
CC  
CC  
*
*
9
10 11 12 13 14 15 16  
TQFP  
QFN-EP*  
*EXPOSED PAD AND CORNER PINS ARE CONNECTED TO V  
EE  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Quad ECL/PECL Differential  
Buffers/Receivers  
ABSOLUTE MAXIMUM RATINGS  
V
CC  
to V .............................................................-0.3V to +6.0V  
Junction-to-Ambient Thermal Resistance with  
EE  
All Other Pins to V ...................................-0.3V to (V  
+ 0.3V)  
500LFPM Airflow  
32-Pin TQFP..............................................................+73°C/W  
Junction-to-Case Thermal Resistance  
32-Pin TQFP..............................................................+25°C/W  
32-Pin QFN-EP… ........................................................+2°C/W  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
ESD Protection  
EE  
CC  
Differential Input Voltage…................................................. 3.0V  
Continuous Output Current.................................................70mA  
Surge Output Current…....................................................100mA  
Continuous Power Dissipation (T = +70°C)  
A
32-Pin 5mm x 5mm TQFP (derate 9.5mW/°C  
above +70°C)..............................................................761mW  
32-Pin 5mm x 5mm QFN-EP (derate 21.3mW/°C  
above +70°C)..................................................................1.7W  
Junction-to-Ambient Thermal Resistance in Still Air  
32-Pin TQFP............................................................+105°C/W  
32-Pin QFN-EP…. .....................................................+47°C/W  
Human Body Model (Inputs and Outputs).................>1.25kV  
Soldering Temperature (10s)...........................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
- V = +3.0V to +5.5V, outputs terminated with 501ꢀ to V  
- 3.3V, inputs are driven, unless otherwise noted. Typical val-  
CC  
- 1.7V, T = +25°C, unless otherwise noted.) (Notes 1, 2, 3)  
CC  
EE  
ues are at V  
- V = +3.3V, V  
= V  
- 0.9V, V  
= V  
CC  
EE  
IHD  
CC  
ILD  
CC A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INPUTS (IN_, IN_, CLK, CLK, EN, EN, SEL, SEL)  
V
2.0  
+
EE  
Differential Input High Voltage  
V
Figure 3  
V
V
IHD  
CC  
V
0.2  
-
CC  
Differential Input Low Voltage  
Differential Input Voltage  
V
Figure 3  
Figure 3  
V
V
V
ILD  
EE  
0.2  
-10  
V
3.0  
ID  
EN, EN, SEL, SEL, IN_, IN_,  
MAX9401  
MAX9404  
MAX9404  
25  
25  
CLK, or CLK = V  
or V  
ILD  
IHD  
Input Current  
I
, I  
µA  
IH IL  
EN, EN , SEL, SEL, CLK, or  
CLK = V or V  
-10  
86  
IHD  
ILD  
IN to IN Differential Input  
Resistance  
R
114  
IN  
OUTPUTS (OUT_, OUT_)  
Differential Output Voltage  
V
- V  
Figure 3  
Figure 3  
1.2  
1.4  
84  
V
V
OH  
OL  
V
-
V
1.4  
-
CC  
CC  
Output Common-Mode Voltage  
V
OCM  
1.8  
POWER SUPPLY  
Supply Current  
I
(Note 4)  
118  
mA  
EE  
2
_______________________________________________________________________________________  
Quad ECL/PECL Differential  
Buffers/Receivers  
AC ELECTRICAL CHARACTERISTICS  
(V  
- V = +3.0V to +5.5V, outputs terminated with 501ꢀ to V  
- 3.3V, outputs are enabled, input transition time = 125ps  
CC  
CC  
EE  
(20ꢀ to 80ꢀ), f  
= 3.0GHz, f = 1.5GHz, V  
= V +2.0V to V , V  
= V to V  
- 0.2V, V  
- V  
= 0.2 to 3.0V, unless oth-  
CLK  
IN  
IHD  
EE  
CC ILD  
EE  
CC  
IHD  
ILD  
erwise noted. Typical values are at V  
(Notes 1, 5)  
- V = +3.3V, V  
= V  
- 0.9V, V  
= V  
- 1.7V, T = +25°C, unless otherwise noted.)  
CC A  
CC  
EE  
IHD  
CC  
ILD  
PARAMETER  
SYMBOL  
, t  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IN to OUT Differential  
Propagation Delay  
t
SEL = high, Figure 4  
SEL = low, Figure 5  
SEL = high (Note 6)  
SEL = low (Note 6)  
300  
365  
550  
ps  
PLH1 PHL1  
CLK to OUT Differential  
Propagation Delay  
t
, t  
580  
620  
15  
758  
55  
ps  
ps  
ps  
PLH2 PHL2  
IN to OUT Channel-to-Channel  
Skew  
t
t
SKD1  
SKD2  
CLK to OUT Channel-to-  
Channel Skew  
10  
40  
Maximum Clock Frequency  
Maximum Data Frequency  
f
V
- V 900mV, SEL = low  
3.0  
1.5  
GHz  
GHz  
CLK(MAX)  
OH  
OL  
f
SEL = high, V  
- V 900mV  
OH OL  
IN(MAX)  
SEL = low, f = 1.5GHz, f  
IN  
clock  
= 3.0GHz,  
CLK  
1.4  
0.9  
20  
2.5  
2.7  
30  
ps  
(RMS)  
Added Random Jitter (Note 7)  
t
RJ  
SEL = high, f = 1.5GHz  
IN  
SEL = low, f  
= 3.0GHz, IN_ = 1.5Gbps,  
CLK  
223-1 PRBS pattern  
Added Deterministic Jitter  
(Note 7)  
t
ps  
p-p  
DJ  
SEL = high, IN_ = 1.5Gbps, 223-1 PRBS  
pattern  
36  
55  
IN to CLK Setup Time  
CLK to IN Hold Time  
Output Rise Time  
Output Fall Time  
t
Figure 5  
Figure 5  
Figure 4  
Figure 4  
80  
80  
ps  
S
H
R
t
ps  
ps  
ps  
t
116  
115  
145  
145  
t
F
Propagation Delay Temperature  
Coefficient  
t /T  
PD  
1
ps/°C  
Note 1: Measurements are made with the device in thermal equilibrium.  
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to V  
EE  
except V and V  
.
ID  
OD  
Note 3: DC parameters are production tested at T = +25°C. DC limits are guaranteed by design and characterization over the full  
A
operating range.  
Note 4: Outputs are open. Inputs driven high or low.  
Note 5: Guaranteed by design and characterization. Limits are set to 6 sigma.  
Note 6: Measured between outputs of the same part at the signal crossing points for a same-edge transition.  
Note 7: Device jitter added to the input signal.  
_______________________________________________________________________________________  
3
Quad ECL/PECL Differential  
Buffers/Receivers  
Typical Operating Characteristics  
(Outputs terminated with 50to V  
- 3.3V, V  
- V = +3.3V, V  
= V  
- 0.9V, V  
= V  
- 1.7V, output is enabled, SEL = high,  
CC  
CC  
EE  
IHD  
CC  
ILD  
CC  
SEL = low, input transition time = 125ps (20ꢀ to 80ꢀ), f  
= 3.0GHz, f = 1.5GHz, T = +25°C, unless otherwise noted.)  
CLK  
IN  
A
DIFFERENTIAL OUTPUT VOLTAGE  
(V - V ) vs. IN_ FREQUENCY  
SUPPLY CURRENT vs. TEMPERATURE  
OH  
OL  
1.6  
1.2  
0.8  
0.4  
0
100  
94  
88  
82  
76  
70  
OUTPUTS ARE OPEN; INPUTS  
ARE HIGH OR LOW  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-40  
-15  
10  
35  
60  
85  
IN_ FREQUENCY (GHz)  
TEMPERATURE (°C)  
PROPAGATION DELAY  
vs. TEMPERATURE  
TRANSITION TIME vs. TEMPERATURE  
130  
124  
118  
112  
106  
100  
700  
620  
540  
460  
380  
300  
CLK-TO-OUT DELAY  
t
R
t
F
IN-TO-OUT DELAY  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 8, 11, 17,  
24, 30  
Positive Supply Voltage. Bypass V  
CC  
capacitors as close to the device as possible with the smaller value capacitor closest to the device.  
to V with 0.1µF and 0.01µF ceramic capacitors. Place the  
EE  
V
CC  
Noninverting Differential Select Input. Setting SEL = high and SEL = low (differential high) enables  
all four channels to operate asynchronously. Setting SEL = low and SEL = high (differential low)  
enables all four channels to operate in synchronized mode.  
2
3
SEL  
SEL  
Inverting Differential Select Input  
Inverting Differential Clock Input. A rising edge on CLK (and falling on CLK) transfers data from the  
inputs to the outputs when SEL = low.  
4
5
CLK  
CLK  
Noninverting Differential Clock Input  
4
_______________________________________________________________________________________  
Quad ECL/PECL Differential  
Buffers/Receivers  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Noninverting Differential Output Enable Input. Setting EN = high and EN = low (differential high)  
enables the outputs. Setting EN = low and EN = high (differential low) sets the outputs to logic low.  
6
EN  
7
EN  
IN3  
Inverting Differential Output Enable Input  
Noninverting Differential Input 3  
Inverting Differential Input 3  
9
10  
IN3  
12  
OUT3  
OUT3  
Inverting Differential Output 3  
Noninverting Differential Output 3  
Negative Supply Voltage  
13  
14, 20, 21, 27  
V
EE  
15  
16  
18  
19  
22  
23  
25  
26  
28  
29  
31  
32  
IN2  
IN2  
Noninverting Differential Input 2  
Inverting Differential Input 2  
OUT2  
OUT2  
OUT1  
OUT1  
IN1  
Inverting Differential Output 2  
Noninverting Differential Output 2  
Noninverting Differential Output 1  
Inverting Differential Output 1  
Inverting Differential Input 1  
IN1  
Noninverting Differential Input 1  
Noninverting Differential Output 0  
Inverting Differential Output 0  
Inverting Differential Input 0  
OUT0  
OUT0  
IN0  
IN0  
Noninverting Differential Input 0  
EP*  
Exposed Paddle. EP is electrically connected to V . Solder EP to PC board.  
EE  
*QFN-EP package only.  
provides the ability to force all the outputs to a differen-  
tial low state.  
Detailed Description  
The MAX9401/MAX9404 are extremely fast, low-skew  
quad ECL/PECL buffers/receivers designed for high-  
speed data and clock driver applications. These  
devices feature ultra-low propagation delay of 365ps  
and channel-to-channel skew of 15ps in asynchronous  
mode with 84mA supply current, making them ideal for  
driving long cables and double termination applications  
(Functional Diagram).  
Data Input Termination  
Figure 1 shows the input and output configuration of  
the MAX9401/MAX9404. The MAX9401 has high-  
impedance inputs and requires external termination.  
The MAX9404 has integrated 100differential input  
termination resistors across each of the four inputs (IN_  
to IN_), reducing external component count.  
The four channels can be operated synchronously with  
an external clock, or in asynchronous mode, deter-  
mined by the state of the SEL input. An enable input  
Outputs  
The MAX9401/MAX9404 have double-swing open-emit-  
ter outputs as shown in Figure 1. The double-amplitude  
swing outputs can drive double-terminated links or long  
_______________________________________________________________________________________  
5
Quad ECL/PECL Differential  
Buffers/Receivers  
nal should be set to either logic low or high state to min-  
imize noise coupling.  
IN_  
IN_  
100  
Synchronous Operation  
Setting SEL = low and SEL = high enables all four  
channels to operate in synchronous mode. In this  
mode, buffered inputs are clocked into flip-flops simul-  
taneously on every rising edge of the differential clock  
input (CLK and CLK).  
IN_  
IN_  
MAX9401  
MAX9404  
V
CC  
Differential Signal Input Limit  
The maximum differential input signal magnitude is 3.0V.  
Supply Voltages  
OUT_  
OUT_  
For interfacing to differential PECL signals, the V  
CC  
range is from +3.0V to +5.5V (with V grounded). For  
EE  
interfacing to differential ECL, the V range is -3.0V to  
EE  
MAX9401  
MAX9404  
-5.5V (with V  
grounded). Output levels are refer-  
CC  
enced to V  
and are considered PECL or ECL,  
CC  
depending on the level of the V  
supply.  
Figure 1. MAX9401/MAX9404 Input and Output Configurations  
CC  
Applications Information  
cables. External termination is required. See the Output  
Termination section.  
Input Bias  
Unused inputs should be biased to avoid noise cou-  
pling that might cause toggling at the unused outputs.  
See Figure 2 for the biasing network.  
Enable  
Setting EN = high and EN = low enables the outputs.  
Setting EN = low and EN = high forces the outputs to a  
differential low when disabled. All changes on CLK,  
SEL, and IN_ are ignored.  
Output Termination  
Terminate the outputs through 50to V  
- 3.3V or use  
CC  
an equivalent Thevenin termination. Use identical termi-  
nations on each OUT for the lowest skew. When a sin-  
gle-ended signal is taken from a differential output,  
terminate both outputs. For example, if OUT_ is used as  
a single-ended output, terminate both OUT_ and OUT_.  
Asynchronous Operation  
Setting SEL = high and SEL = low enables four chan-  
nels to operate independently as a buffer/receiver  
(CLK is ignored). In asynchronous mode, the CLK sig-  
V
CC  
V
CC  
IN_  
100Ω  
IN_  
IN_  
IN_  
100Ω  
MAX9401  
MAX9404  
1kΩ  
1kΩ  
V
V
EE  
EE  
Figure 2. Input Bias Circuits for Unused Pins for MAX9401/MAX9404  
_______________________________________________________________________________________  
6
Quad ECL/PECL Differential  
Buffers/Receivers  
V
CC  
V
(MAX)  
V
CC  
IHD  
V
V
V
V
= 0  
ID  
ID  
V
V
OH  
OL  
V
V
(MAX)  
(MIN)  
ILD  
IHD  
V
- V  
OH OL  
V
OCM  
= 0  
ID  
ID  
V
V
EE  
V
(MIN)  
EE  
ILD  
INPUT VOLTAGE DEFINITION  
OUTPUT VOLTAGE DEFINITION  
Figure 3. Input and Output Voltage Definitions  
IN_  
IN_  
V
- V  
ILD  
IHD  
t
t
PHL1  
PLH1  
OUT_  
OUT_  
V
V
- V  
OH  
OH  
OL  
OL  
- V  
- V  
80%  
80%  
V
20%  
20%  
OH  
OL  
DIFFERENTIAL OUTPUT  
WAVEFORM  
OUT_ - OUT_  
t
t
F
R
(SEL = HIGH, EN = HIGH)  
Figure 4. IN to OUT Propagation Delay Timing Diagram  
Ensure that the output currents do not exceed the cur-  
rent limits as specified in the Absolute Maximum  
Ratings. Under all operating conditions, the devices  
total thermal limits should be observed.  
possible, with the 0.01µF capacitor closest to the  
device pins. Use multiple bypass vias for connection to  
minimize inductance.  
Circuit Board Traces  
Input and output trace characteristics affect the perfor-  
mance of the MAX9401/MAX9404. Connect each of the  
inputs and outputs to a 50characteristic impedance  
trace. Avoid discontinuities in differential impedance  
and maximize common-mode noise immunity by main-  
Power-Supply Bypassing  
Adequate power-supply bypassing is necessary to  
maximize the performance and noise immunity. Bypass  
V
to V with high-frequency surface-mount ceramic  
EE  
CC  
0.1µF and 0.01µF capacitors as close to the device as  
_______________________________________________________________________________________  
7
Quad ECL/PECL Differential  
Buffers/Receivers  
CLK  
V
- V  
ILD  
IHD  
CLK  
t
t
t
H
H
S
IN_  
IN_  
V
- V  
ILD  
IHD  
t
t
PHL2  
PLH2  
OUT_  
OUT_  
V
- V  
OL  
OH  
(SEL = LOW, EN = HIGH)  
Figure 5. CLK to OUT Propagation Delay Timing Diagram  
taining the distance between differential traces and  
avoid sharp corners. Minimize the number of vias to  
prevent impedance discontinuities. Reduce reflections  
by maintaining the 50characteristic impedance  
through connectors and across cables. Minimize skew  
by matching the electrical length of the traces.  
Chip Information  
TRANSISTOR COUNT: 748  
PROCESS: Bipolar  
8
_______________________________________________________________________________________  
Quad ECL/PECL Differential  
Buffers/Receivers  
Functional Diagram  
IN0  
IN0  
1
OUT0  
D
D
Q
0
OUT0  
Q
CLK  
CLK  
IN1  
IN1  
1
0
OUT1  
OUT1  
D
Q
Q
D
CLK  
CLK  
IN2  
IN2  
1
0
OUT2  
OUT2  
D
Q
Q
D
CLK  
CLK  
IN3  
IN3  
1
0
OUT3  
OUT3  
D
Q
Q
D
CLK  
CLK  
CLK  
CLK  
SEL  
SEL  
EN  
EN  
_______________________________________________________________________________________  
9
Quad ECL/PECL Differential  
Buffers/Receivers  
Package Information  
10 ______________________________________________________________________________________  
Quad ECL/PECL Differential  
Buffers/Receivers  
Package Information (continued)  
______________________________________________________________________________________ 11  
Quad ECL/PECL Differential  
Buffers/Receivers  
Package Information (continued)  
12 ______________________________________________________________________________________  
Quad ECL/PECL Differential  
Buffers/Receivers  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9401EGJ

Quad ECL/PECL Differential Buffers/Receivers
MAXIM

MAX9401EHJ

Quad ECL/PECL Differential Buffers/Receivers
MAXIM

MAX9401EHJ-T

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, BIPolar, PQFP32, 5 X 5 MM, 1 MM HEIGHT, EXPOSED PAD, TQFP-32
MAXIM

MAX9402

Quad Differential LVECL/LVPECL Buffer/Receivers
MAXIM

MAX9402EGJ

Quad Differential LVECL/LVPECL Buffer/Receivers
MAXIM

MAX9402EGJ-T

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, BIPolar, CQCC32, 5 X 5 MM, 0.90 MM HEIGHT, EXPOSED PAD, QFN-32
MAXIM

MAX9402EHJ

Quad Differential LVECL/LVPECL Buffer/Receivers
MAXIM

MAX9402EHJ-T

Line Transceiver, 4 Func, 4 Driver, 4 Rcvr, BIPolar, PQFP32, 5 X 5 MM, 1 MM HEIGHT, TQFP-32
MAXIM

MAX9403

Quad Differential LVECL/LVPECL Buffer/Receivers
MAXIM

MAX9403EGJ

Quad Differential LVECL/LVPECL Buffer/Receivers
MAXIM

MAX9403EHJ

Quad Differential LVECL/LVPECL Buffer/Receivers
MAXIM

MAX9404

Quad ECL/PECL Differential Buffers/Receivers
MAXIM