MAX9424EVKIT [MAXIM]

Evaluation Kit for the MAX9424/MAX9425/MAX9426/MAX9427 ; 评估板MAX9424 / MAX9425 / MAX9426 / MAX9427\n
MAX9424EVKIT
型号: MAX9424EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Evaluation Kit for the MAX9424/MAX9425/MAX9426/MAX9427
评估板MAX9424 / MAX9425 / MAX9426 / MAX9427\n

文件: 总6页 (文件大小:425K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2473; Rev 0; 5/02  
MAX9424 Evaluation Kit  
General Description  
Features  
o Controlled 50Coplanar Impedance Traces  
o Output Trace Lengths Matched to < 1mil  
The MAX9424 evaluation kit (EV kit) is a fully assembled  
and tested surface-mount printed circuit (PC) board.  
The EV kit includes the MAX9424, a four-channel low-  
skew PECL/LVPECL-to-ECL/LVECL translator. The EV  
kit accepts differential PECL/LVPECL input signals and  
converts these differential ECL/LVECL signals at an  
operating frequency up to 3GHz.  
-3  
(25.4 x 10 mm)  
o Frequency Range  
2GHz (min) at Asynchronous Mode  
3GHz (min) at Synchronous Mode  
The MAX9424 EV kit is a four-layer PC board with 50Ω  
controlled-impedance traces. It can also be used to  
evaluate the MAX9425/MAX9426/MAX9427 PECL/  
LVPECL-to-ECL/LVECL translators with different internal  
input and output terminations (Table 3).  
o 32-Pin TQFP 5mm x 5mm Package  
o Surface-Mount Construction  
o Fully Assembled and Tested  
Ordering Information  
PART  
TEMP RANGE  
IC PACKAGE  
MAX9424EVKIT  
0°C to +70°C  
32 TQFP 5mm 5mm  
Note: To evaluate the MAX9425EHJ/MAX9426EHJ/MAX9427EHJ,  
request a MAX9425EHJ/MAX9426EHJ/MAX9427EHJ free sample  
with the MAX9424EVKIT.  
Component List  
DESIGNATION QTY  
DESCRIPTION  
49.91% resistors (0402)  
Not installed, resistor (0402)  
DESIGNATION QTY  
DESCRIPTION  
R1, R2, R5R8  
R3, R4  
6
0
10µF 10%, 10V tantalum capacitors  
(case B)  
AVX TAJB106K010R or  
Kemet T494B106010AS  
C1, C2, C3  
3
R9R36  
28 1001% resistors (1210), 1/4W  
IN0IN3,  
IN0–IN3,  
0.1µF 10%, 16V X7R ceramic chip  
capacitors (0603)  
Taiyo Yuden EMK107BJ104KA or  
Murata GRM39X7R104K016A or  
equivalent  
OUT0OUT3,  
OUT0–OUT3,  
CLK, CLK  
18 SMA edge-mount connectors  
C4–C12  
9
MAX9424EHJ  
(32-pin TQFP 5mm x 5mm)  
U1  
1
0.01µF 10%, 16V X7R ceramic  
capacitors (0402)  
Taiyo Yuden EMK105BJ103KW or  
Murata GRM36X7R103K016AD or  
equivalent  
None  
None  
None  
None  
4
1
1
1
Shunts  
C13–C21  
JU1–JU4  
9
4
MAX9424 PC board  
MAX9424 EV kit data sheet  
MAX9424 data sheet  
3-pin headers  
Component Suppliers  
SUPPLIER  
PHONE  
FAX  
WEBSITE  
AVX  
843-946-0238  
843-626-3123  
www.avxcorp.com  
Kemet  
Murata  
864-963-6300  
770-436-1300  
800-348-2496  
864-963-6322  
770-436-3030  
847-925-0899  
www.kemet.com  
www.murata.com  
www.t-yuden.com  
Taiyo Yuden  
Note: Please indicate that you are using the MAX9424/MAX9425/MAX9426/MAX9427 when contacting these component suppliers.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
MAX9424 Evaluation Kit  
8) Connect a 3.40V power supply to the VBIAS pad.  
Connect the supply ground to the GND pad closest  
to VBAIS.  
Quick Start  
The MAX9424 EV kit is a fully assembled and tested  
surface-mount board. Follow the steps below to verify  
board operation. Do not turn on the power supplies  
until all connections are completed.  
9) Connect CLK and all unused positive inputs (IN0,  
IN2, IN3) to the VBIAS pad.  
10) Connect CLK and all unused negative inputs (IN0,  
IN2, IN3) to VGG.  
Recommended Equipment  
Signal generator (e.g., Agilent 8133A 3GHz pulse  
generator)  
11) Turn on the power supplies in the following order:  
VCC, VGG, VEE, then VBIAS.  
12GHz (min) bandwidth oscilloscope with internal  
50termination (e.g., Tektronix11801C digital sam-  
pling oscilloscope with the SD-24 sampling head)  
12) Enable the pulse generator and verify the differen-  
tial output signal:  
a) Frequency = 2GHz  
Three power supplies:  
b) V  
400mV  
OD  
a) One 2.0V 0.001V with 1A current capability  
c) Duty cycle = 50%  
b) One adjustable -3.50V to -0.375V with 200mA cur-  
rent capability  
Note: To evaluate other channels, make sure corre-  
sponding output termination resistors on the EV kit  
board are removed, and the unused outputs are termi-  
nated with a 50termination resistor. To eliminate sig-  
nal distortion, use matched cables of the same type  
and length for both the inputs and outputs. All unused  
inputs should be biased.  
c) One adjustable 4.375V to 7.50V with 300mA cur-  
rent capability  
Additional power supply (for VBAIS): one adjustable  
2.50V to 5.00V with 1A current capability  
Asynchronous Operation  
1) Verify that shunts are across jumpers JU1 (SEL)  
and JU3 (EN) pins 1 and 2, and jumpers JU2 (SEL)  
and JU4 (EN), pins 2 and 3.  
Detailed Description  
The MAX9424 EV kit contains an extremely fast, low-  
skew quad PECL/LVPECL-to-ECL/LVECL translator.  
The EV kit demonstrates ultra-low propagation delay  
and channel-to-channel skew, and can be operated  
synchronously with an external clock, or in asynchro-  
nous mode, depending on the state of the SEL input.  
2) Connect two matched coax cables to OUT1 and  
OUT1. Connect the other end of the cables to an  
oscilloscope.  
3) Connect two matched coax cables to IN1 and IN1.  
Connect the other end of the cables to a signal  
generator that provides differential square waves  
with the following settings:  
Power Supply  
MAX9424MAX9427 are specified with outputs termi-  
nated with 50to V  
- 2V. In order to terminate the  
CC  
a) Frequency = 2GHz  
outputs with 50to V  
- 2V using the 50oscillo-  
CC  
b) V = 3.4V, V = 3.2V  
IH  
IL  
scope input termination, VGG is set to 2.000V. An addi-  
tional 2.50V to 5.00V power supply is required to bias  
all unused positive inputs to a known state. All unused  
negative inputs should be connected to VGG. To avoid  
damaging the IC, turn on the power supply in the fol-  
lowing sequence: VCC, VGG, VEE, then VBIAS. In an  
c) Duty cycle = 50%  
4) Connect one coax cable to the trigger output of the  
signal generator. Connect the other end to the trig-  
ger input of the oscilloscope.  
5) Connect a 2.000V power supply to the VGG pad.  
Connect the supply ground to the GND pad closest  
to VGG.  
actual application, V , V , and V can have differ-  
CC GG  
EE  
ent supplies (refer to the MAX9424MAX9427 data  
sheet), and VBIAS can be eliminated.  
6) Connect a 5.30V power supply to the VCC pad.  
Connect the supply ground to the GND pad closest  
to VCC.  
Enable and Select  
The MAX9424 provides pins EN and EN to enable the  
outputs, and pins SEL and SEL to select asynchronous  
or synchronous operation. The MAX9424 EV kit incor-  
porates jumpers JU1JU4 to drive these pins to either  
VBIAS or VGG (see Tables 1 and 2).  
7) Connect a -1.30V power supply to the VEE pad.  
Connect the supply ground to the GND pad closest  
to VEE.  
2
_______________________________________________________________________________________  
MAX9424 Evaluation Kit  
Table 1. Jumpers JU1 and JU2 Functions  
JU1  
SHUNT  
LOCATION  
JU2  
SHUNT  
LOCATION  
MAX9424  
MAX9424  
SEL PIN  
MAX9424  
OPERATING  
SEL PIN  
MODE  
Asynchronous mode  
Synchronous mode  
Undefined  
1 and 2  
2 and 3  
Connected to VBIAS  
Connected to VGG  
2 and 3  
Connected to VGG  
Connected to VBIAS  
1 and 2  
All other combinations (not driven externally)  
Table 2. Jumpers JU3 and JU4 Functions  
JU3  
SHUNT  
LOCATION  
JU4  
SHUNT  
LOCATION  
MAX9424  
EN PIN  
MAX9424  
EN PIN  
MAX9424  
OUTPUTS  
1 and 2  
2 and 3  
Connected to VBIAS  
Connected to VGG  
2 and 3  
1 and 2  
Connected to VGG  
Connected to VBIAS  
Enabled  
Disabled  
Undefined  
All other combinations (not driven externally)  
An external signal can be used to drive any of the EN,  
EN, SEL, and SEL control pins by removing the shunt  
completely from the appropriate jumpers and connect-  
ing the external signal to the appropriate SMA connec-  
tor. The MAX9424 EV kit does not provide SMA  
connectors for EN, EN, SEL, and SEL. Before connect-  
ing external signals to the EN, EN, SEL, and SEL pins,  
verify there are no shunts across jumpers JU1–JU4,  
and add SMA connectors to the appropriate pads.  
To evaluate the MAX9425, replace the MAX9424EHJ  
with a MAX9425EHJ and remove all output termination  
resistors R1 to R8. The output is half-amplitude com-  
pared to an open output because of the voltage-  
divider formed by the on-chip series 50and the 50Ω  
oscilloscope input.  
To evaluate the MAX9426, replace the MAX9424EHJ  
with a MAX9426EHJ and remove all input termination  
resistors R9 to R24.  
To evaluate the MAX9427, replace the MAX9424EHJ  
with a MAX9427EHJ and remove all input and output  
termination resistors R1 to R24. The output is half-  
amplitude compared to an open output because of  
the voltage-divider formed by the on-chip series 50Ω  
and the 50oscilloscope input.  
Evaluating the  
MAX9425/MAX9426/MAX9427  
The MAX9424 EV kit is a four-layer PC board with 50Ω  
controlled-impedance input traces with 50termination  
(two parallel 100resistors). All output signal traces  
are also 50controlled-impedance traces with 49.9Ω  
termination resistors.  
The MAX9424 EV kit can be used to evaluate the  
MAX9425/MAX9426/MAX9427 after some modifications.  
Table 3 shows the on-chip input and output termination  
resistor arrangement for each part.  
Table 3. On-Chip Input and Output  
Termination  
INPUT  
TERMINATION  
RESISTOR  
Open  
OUTPUT  
TERMINATION  
RESISTOR  
Open  
PART  
MAX9424  
MAX9425  
MAX9426  
MAX9427  
Open  
100Ω  
100Ω  
50Ω  
Open  
50Ω  
_______________________________________________________________________________________  
3
MAX9424 Evaluation Kit  
OUT0  
SMA  
OUT0  
SMA  
R1  
49.9  
1%  
R2  
49.9Ω  
1%  
IN0  
IN1  
IN1  
SMA  
SMA  
SMA  
VEE  
R12  
100Ω  
1%  
R11  
100Ω  
1%  
VGG  
R13  
100Ω  
1%  
R14  
100Ω  
1%  
C12  
0.1µF  
C11  
0.1µF  
IN0  
SMA  
VBIAS  
C21  
0.01µF  
C20  
0.01µF  
VBIAS  
GND  
VCC  
R10  
100Ω  
1%  
R9  
100Ω  
1%  
R15  
100Ω  
1%  
R16  
100Ω  
1%  
32  
IN0  
31  
IN0  
30  
29  
28  
27  
V
26  
IN1  
25  
IN1  
VGG  
V
OUT0  
OUT0  
GG  
EE  
24  
23  
22  
21  
20  
1
V
V
GG  
CC  
C1  
10µF  
10V  
C4  
0.1µF  
C13  
0.01µF  
C19  
C10  
0.01µF  
0.1µF  
GND  
VBIAS  
SEL  
1
2
OUT1  
OUT1  
JU1  
2
3
4
5
6
7
8
SMA  
SEL  
SEL  
CLK  
CLK  
EN  
OUT1  
OUT1  
SMA  
3
R35  
R36  
R3  
OPEN  
100Ω  
100Ω  
VBIAS  
1
1%  
1%  
VGG  
SEL  
JU2  
2
3
SMA  
SMA  
R33  
100Ω  
1%  
R34  
100Ω  
1%  
R4  
OPEN  
VGG  
CLK  
CLK  
SMA  
SMA  
V
V
EE  
R31  
100Ω  
1%  
R32  
100Ω  
1%  
U1  
MAX9424  
VEE  
C3  
C18  
0.01µF  
C9  
0.1µF  
10µF  
10V  
GND  
EE  
R29  
100Ω  
1%  
R30  
100Ω  
1%  
VBIAS  
1
EN  
OUT2  
JU3  
2
3
19  
18  
17  
SMA  
OUT2  
OUT2  
SMA  
R27  
100Ω  
1%  
R28  
100Ω  
1%  
R5  
49.9Ω  
1%  
VBIAS  
1
VGG  
EN  
OUT2  
JU4  
2
3
SMA  
EN  
SMA  
R25  
100Ω  
1%  
R26  
100Ω  
1%  
R6  
49.9Ω  
1%  
VGG  
VGG  
GND  
V
GG  
VCC  
V
CC  
IN3  
C2  
C17  
C8  
0.1µF  
IN3  
10  
V
OUT3  
12  
OUT3  
13  
V
EE  
IN2  
15  
IN2  
GG  
10µF  
0.01µF  
9
11  
14  
16  
10V  
C15  
C16  
0.01µF  
C5  
0.1µF  
C14  
0.01µF  
0.01µF  
IN3  
IN2  
VGG  
VEE  
C6  
0.1µF  
C7  
0.1µF  
SMA  
SMA  
R23  
100Ω  
1%  
R24  
100Ω  
1%  
R17  
R18  
100Ω  
100Ω  
1%  
1%  
OUT3  
OUT3  
SMA  
IN3  
IN2  
SMA  
SMA  
SMA  
R8  
49.949.9Ω  
1% 1%  
R7  
R21  
R22  
100Ω  
1%  
R19  
R20  
100Ω  
1%  
100Ω  
100Ω  
1%  
1%  
Figure 1. MAX9424 EV Kit Schematic  
4
_______________________________________________________________________________________  
MAX9424 Evaluation Kit  
Figure 2. MAX9424 EV Kit Component Placement Guide—  
Component Side  
Figure 3. MAX9424 EV Kit PC Board Layout—Component Side  
Figure 4. MAX9424 EV Kit PC Board Layout—Inner Layer 2  
(GND Layer)  
_______________________________________________________________________________________  
5
MAX9424 Evaluation Kit  
Figure 5. MAX9424 EV Kit PC Board Layout—Inner Layer 3  
(VCC Layer)  
Figure 6. MAX9424 EV Kit PC Board Layout—Solder Side  
Figure 7. MAX9424 EV Kit Component Placement Guide—  
Solder Side  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
6 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9425

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9425EGJ

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9425EGJ-T

PECL to ECL Translator, 4 Func, Complementary Output, BIPolar, CQCC32, 5 X 5 MM, 0.90 MM HEIGHT, QFN-32
MAXIM

MAX9425EHJ

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9425EHJ+T

PECL to ECL Translator,
MAXIM

MAX9426

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9426EGJ

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9426EGJ-T

暂无描述
MAXIM

MAX9426EHJ

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9427

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9427EGJ

Lowest Jitter Quad PECL-to-ECL Differential Translators
MAXIM

MAX9427EGJ-T

PECL to ECL Translator, 4 Func, Complementary Output, BIPolar, CQCC32, 5 X 5 MM, 0.90 MM HEIGHT, QFN-32
MAXIM