MAX9481CUP-T [MAXIM]

暂无描述;
MAX9481CUP-T
型号: MAX9481CUP-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

驱动器
文件: 总18页 (文件大小:464K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2539; Rev 1; 1/03  
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
General Description  
Features  
The MAX9480/MAX9481/MAX9482 low-power, low-dis-  
tortion, class-G, high-current asymmetric digital sub-  
scriber line (ADSL) drivers offer Rail-to-Rail® output and  
are ideal for ADSL in central-office applications.  
Operating from ±±5 and ±2.±5 supplies, the drivers  
incorporate two high-speed current-feedback preampli-  
fiers driving two fixed-gain class-G buffers. The buffers  
can deliver 20.4dBm average line power with a signal  
crest factor of ±.3, and are designed to be directly DC or  
AC bridged across a 1:2.± transformer.  
Dissipate Only 655mW While Driving 20.4dBm  
ADSL Full-Rate DMT-Modulated Signal  
Operate with 5.0ꢀ and 2.5ꢀ Vower Supplies  
Complete ADSL Central-Office Line Interface  
(MAX9480/MAX9482)  
Two Vreamplifiers plus Class-G Rail-to-Rail  
Buffers  
Active Line Termination plus Integrated Hybrid  
(MAX9480)  
Low-Noise Uncommitted Receive Amplifiers  
(MAX9482)  
The MAX9480/MAX9481/MAX9482 employ an active line  
termination scheme for incoming signals that eliminates  
the need for back-match resistors, reducing line-card  
power consumption at full rate to less than half of that  
required by conventional class-AB line-driver circuits.  
Fixed-Gain Receive Amplifiers (MAX9480)  
Low-Output-Impedance Shutdown Mode  
Vreamplifiers, Buffers, and Active Line  
Termination Functions (MAX9481)  
High-Output-Drive Capability  
The MAX9480 includes a hybrid network and two low-  
noise, fixed-gain-of-4.65/5 receive amplifiers. The part is  
designed to recover the receive signal to the same level  
as that of a conventional line interface circuit that incor-  
porates a 1:2 transformer and standard back-matched  
hybrid, without degrading signal-to-noise ratio (SNR) or  
line-impedance sensitivity. The MAX9481 provides only  
the preamplifiers and buffers without the hybrid or  
receivers. The MAX9482 provides preamplifiers, buffers,  
and uncommitted receive amplifiers. All devices have a  
low-output-impedance shutdown function for saving  
power when not transmitting.  
15ꢀ  
Differential Output ꢀoltage Swing at  
V-V  
R = 16  
L
500mA Output-Drive  
Low Distortion: -71dBc Highest Harmonic at 1MHz  
and 14ꢀ  
V-V  
High Speed: 250ꢀ/µs Slew Rate, 80MHz -3dB  
Bandwidth (G = -3)  
Thermal Shutdown  
Exposed Vads Improve Thermal Verformance  
Ordering Information  
VART  
TEMV RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
VIN-VACKAGE  
20 TSSOP-EP**  
20 TSSOP-EP  
28 TSSOP-EP  
32 QFN  
At full-rate 20.4dBm discrete multitone data transmission  
(DMT), the total dynamic power dissipation is only  
680mW (MAX9480/MAX9482) or 6±±mW (MAX9481).  
The MAX9480/MAX9481 are available in a 20-pin TSSOP  
package and the MAX9482 is available in 28-pin TSSOP  
and 32-pin QFN packages. All devices operate over the  
extended -40°C to +8±°C temperature range.  
MAX9480CUP  
MAX9481CUP  
MAX9482CUI  
MAX9482CGJ*  
*Future product—contact factory for availability.  
**EP = Exposed pad.  
Applications  
Pin Configurations  
Full-Rate ADSL  
HDSL  
TOP VIEW  
POUT1  
IN1-  
1
2
3
4
5
6
7
8
9
20  
19  
18  
V
V
V
LM  
Central Office  
DSLAM  
LP  
IN1+  
CC  
RXP  
17 OUT1  
MAX9480  
DGND  
SHDN  
RXM  
IN2+  
16  
15  
14  
13  
12  
11  
V
V
EE  
EE  
OUT2  
V
V
V
CC  
LP  
Typical Operating Circuits appear at end of data sheet.  
IN2-  
POUT2 10  
LM  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
TSSOV  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
ABSOLUTE MAXIMUM RATINGS  
V
V
V
V
V
V
to V ...........................................................................+12V  
POUT1/POUT2 Output Current.........................................100ꢀA  
RXP/RXM Output Short-Circuit Duration to  
CC  
LP  
CC  
CC  
EE  
EE  
EE  
to V ............................................................................+12V  
LM  
or V to DGND ................................................-0.3V to +6V  
V /V /V /V ................................................................10s  
CC EE LP LM  
LP  
to V ................................................................-0.3V to +6V  
RXP/RXM Output Current..................................................100ꢀA  
Continuous Power Dissipation (T = +70°C)  
LP  
or V to DGND ................................................-6V to +0.3V  
LM  
A
to V ................................................................-6V to +0.3V  
20-Pin TSSOP with Pad Connected to V  
LM  
EE  
Current into V or V .................................................. 250ꢀA  
(derate 21.7ꢀW/°C above +70°C)..............................1739ꢀW  
20-Pin TSSOP with Floating Pad  
LP  
LM  
IN1+, IN1-, IN2+, IN2-......................(V  
+ 0.3V) to (V - 0.3V)  
CC  
EE  
SHDN ...............................................(V  
+ 0.3V) to (V - 0.3V)  
(derate 11.0ꢀW/°C above +70°C)................................879ꢀW  
CC  
EE  
BOUT1/BOUT2 Output Short-Circuit Duration to  
/V /V /V ....................................................Moꢀentary  
28-Pin TSSOP with Pad Connected to V  
EE  
V
(derate 23.8ꢀW/°C above +70°C)..............................1905ꢀW  
28-Pin TSSOP with Floating Pad  
CC EE LP LM  
BOUT1/BOUT2 Output Current...........................................20ꢀA  
OUT1/OUT2 Output Short-Circuit Duration to  
(derate 12.8ꢀW/°C above +70°C)..............................1026ꢀW  
32-Pin QFN (derate 23.3ꢀW/°C above +70°C).........1860ꢀW*  
Operating Teꢀperature Range  
V /V /V /V ....................................................Moꢀentary  
CC EE LP LM  
OUT1/OUT2 Output Current ....................................................1A  
OUT1 to OUT2 Short-Circuit Duration........................Continuous  
POUT1/POUT2 Output Short-Circuit Duration to  
(T  
, T  
) .....................................................-40°C to +85°C  
MIN MAX  
Junction Teꢀperature......................................................+150°C  
Storage Teꢀperature Range.............................-65°C to +150°C  
Lead Teꢀperature (soldering, 10s) .................................+300°C  
V /V /V /V ................................................................10s  
CC EE LP LM  
*Refer to Application Note HFAN-08-1.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +5V, V = -5V, V = +2.5V, V  
= -2.5V, DGND = 0, R = 16is connected froꢀ OUT1 to OUT2, SHDN = 0, T = T  
to  
CC  
EE  
LP  
LM  
L
A
MIN  
T
, unless otherwise noted. Typical values specified at T = +25°C. Preaꢀp configured for A = +1 with 1kfroꢀ POUT_ to IN_-.)  
MAX  
(Note 1)  
A
V
VARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYV  
680  
655  
790  
MAX  
UNITS  
MAX9480/  
MAX9482  
V
= 1.327V  
,
OUT(DIFF)  
RMS  
Dynaꢀic Power Dissipation  
Dynaꢀic Power Consuꢀption  
P
ꢀW  
DISS  
crest factor = 5.3  
MAX9481  
MAX9480/  
MAX9482  
V
= 1.327V  
,
OUT(DIFF)  
RMS  
P
ꢀW  
V
CONS  
crest factor = 5.3  
MAX9481  
765  
5.00  
-5.00  
2.50  
-2.50  
21.5  
22.0  
20.0  
21.0  
21.5  
22.0  
V
(Note 2)  
(Note 2)  
(Note 2)  
(Note 2)  
4.75  
-4.75  
2.25  
5.25  
-5.25  
2.75  
-2.75  
35.0  
40.0  
34.0  
39.0  
35.0  
40.0  
CC  
V
V
EE  
Supply Voltage Range  
LP  
V
-2.25  
LM  
V
V
V
V
V
V
, V  
CC EE  
MAX9480, R = ∞  
L
, V  
LP LM  
, V  
CC EE  
Quiescent Supply Current  
(Including Preaꢀps)  
I
, I  
CC EE  
,
MAX9481, R = ∞  
ꢀA  
L
I
, I  
LP LM  
, V  
LP LM  
, V  
CC EE  
MAX9482, R = ∞  
L
, V  
LP LM  
2
_______________________________________________________________________________________  
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V, V = -5V, V = +2.5V, V  
= -2.5V, DGND = 0, R = 16is connected froꢀ OUT1 to OUT2, SHDN = 0, T = T  
to  
CC  
EE  
LP  
LM  
L
A
MIN  
T
, unless otherwise noted. Typical values specified at T = +25°C. Preaꢀp configured for A = +1 with 1kfroꢀ POUT_ to IN_-.)  
MAX  
A
V
(Note 1)  
VARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYV  
2.1  
1.5  
0.6  
0.05  
2.1  
1.5  
76  
MAX  
6.0  
5.0  
1.2  
0.1  
6.0  
5.0  
UNITS  
V
V
V
V
V
V
, V  
CC EE  
MAX9480, R = ∞  
L
, V  
LP LM  
, V  
CC EE  
Shutdown Supply Current  
I
MAX9481, R = ∞  
ꢀA  
SD  
L
, V  
LP LM  
, V  
CC EE  
MAX9482, R = ∞  
L
, V  
LP LM  
V
V
- V  
=
=
4.75V to 5.25V  
2.25V to 2.75V  
50  
50  
CC  
LP  
EE  
Transꢀit Path Power-Supply  
Rejection Ratio (Single Ended)  
PSRR  
CMR  
HRR  
dB  
dB  
dB  
- V  
LM  
81  
Coꢀꢀon-Mode Rejection  
-200ꢀV V  
+200ꢀV  
46  
CM  
Hybrid Rejection Ratio  
(MAX9480 Only)  
V
=
1.2V  
35  
OUT(DIFF)  
Driver-to-Receiver Crosstalk  
(MAX9482 Only)  
X
f = 100kHz  
-69  
dB  
TALK  
SHDN Logic Low  
V
0.8  
5.0  
V
V
IL  
SHDN Logic High  
V
2.0  
IH  
SHDN Input Current  
Shutdown Delay Tiꢀe  
Shutdown Enable Tiꢀe  
I
t
, I  
IH IL  
SHDN = 0 or SHDN = V  
µA  
µs  
µs  
CC  
4.8  
4
SHDN  
t
ENABLE  
f1 = 1MHz, f2 = 900kHz, Typical Operating  
Circuit, V = 2.0V  
Interꢀodulation Distortion  
I
-66  
dB  
MD  
OUT(DIFF)  
P-P  
DRIꢀER  
Maxiꢀuꢀ RMS Output Power  
(Typical Operating Circuit)  
(Note 3)  
DMT ꢀodulation (crest factor, Cr = 5.33)  
CAP ꢀodulation (crest factor, Cr = 4.00)  
21.4  
P
dBꢀW  
OUT  
G
24.3  
-2.7  
Closed-Loop Gain  
V
= 1.2V  
-3  
-3.3  
V/V  
dB  
OUT(DIFF)  
P-P  
f = 1MHz, V  
= 14V  
,
OUT(DIFF)  
P-P  
Second Harꢀonic Distortion  
-71  
Typical Operating Circuit (Note 4)  
f = 1MHz, V = 14V , Typical  
Operating Circuit (Note 4)  
OUT(DIFF)  
P-P  
Third Harꢀonic Distortion  
-74  
dB  
Differential Output Voltage Swing  
V
Typical Operating Circuit (Note 4)  
15.0  
0.5  
V
OUT(DIFF)  
P-P  
V
- V  
OH  
CC  
R = 100Ω  
L
|V - V  
|
0.5  
OUT_ Voltage Swing  
(per Aꢀplifier) (Note 4)  
EE  
OL  
V
, V  
OH OL  
V
V
- V  
1.27  
1.21  
0.45  
0.42  
500  
5
CC  
OH  
R = 16Ω  
L
|V - V  
|
EE  
OL  
V
- V  
BOH  
CC  
BOUT_ Voltage Swing  
(per Aꢀplifier) (Note 4)  
V
,
BOH  
V
V
BOL  
|V - V  
EE  
|
BOL  
Peak Output Current  
I
ꢀA  
ꢀV  
OUT  
Differential Output Offset Voltage  
V
IN1+ = IN2+ = 0  
OS(DIFF)  
_______________________________________________________________________________________  
3
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V, V = -5V, V = +2.5V, V  
= -2.5V, DGND = 0, R = 16is connected froꢀ OUT1 to OUT2, SHDN = 0, T = T  
to  
CC  
EE  
LP  
LM  
L
A
MIN  
T
, unless otherwise noted. Typical values specified at T = +25°C. Preaꢀp configured for A = +1 with 1kfroꢀ POUT_ to IN_-.)  
MAX  
A
V
(Note 1)  
VARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYV  
MAX  
UNITS  
Differential Output Offset-Voltage  
Drift  
V
12  
µV/°C  
OS(DRIFT)  
-200ꢀV V  
+200ꢀV  
6
8
8
10  
OUT  
Output Resistance (per Aꢀplifier)  
R
OUT  
SHDN = V  
CC  
-3dB Bandwidth  
BW  
SR  
80  
MHz  
V/µs  
Slew Rate  
V
= 14V  
step  
250  
-127  
1000  
OUT(DIFF)  
P-P  
Output Noise PSD  
P
f = 100kHz to 1.1MHz, referred to 100line  
dBꢀ/Hz  
pF  
N
Capacitive Load Stability  
VREAMVS AND RECEIꢀERS (Note 5)  
Open-Loop Transiꢀpedance  
No sustained oscillations  
Z
-2V P  
+2V  
300  
87  
kΩ  
dB  
ꢀV  
µA  
OL  
OUT  
V
V
- V  
=
4.75V to 5.25V  
2.25V to 2.75V  
50  
50  
CC  
LP  
EE  
Power-Supply Rejection Ratio  
PSRR  
- V  
LM  
=
100  
2
Input Offset Voltage  
V
10  
20  
OS  
B+  
IN1+, IN2+, RXIN1+, RXIN2+  
Bias Current  
I
1
IN1+, IN2+, RXIN1+, RXIN2+  
Bias Current Matching  
I
0.7  
2.6  
1.2  
µA  
µA  
µA  
OS+  
IN1-, IN2-, RXIN1-, RXIN2-  
Bias Current  
I
B-  
20  
IN1-, IN2-, RXIN1-, RXIN2-  
Bias Current Matching  
I
OS-  
IN1+, IN2+, RXIN1+, RXIN2+  
IN1-, IN2-, RXIN1-, RXIN2-  
1.1  
MΩ  
Input Resistance  
R
IN  
IN  
200  
IN1+, IN2+, IN1-, IN2-, RXIN1+, RXIN2+,  
RXIN1-, RXIN2-  
Input Capacitance  
C
2
pF  
Note 1: All devices are 100% production tested at T = +25°C. Specifications over teꢀperature liꢀits are guaranteed by design.  
A
Note 2: Guaranteed by the PSRR test.  
Note 3: Iꢀplied by worst-case output voltage swing (V  
), crest factor (Cr), and load iꢀpedance (R ):  
L
OUT(DIFF)  
2
250 × V  
OUT(DIFF)  
P
=10log  
dBꢀW  
DRIVER  
10  
2
Cr × R  
L
Note 4: Device ꢀay exceed absolute ꢀaxiꢀuꢀ ratings for power dissipation if unit is subjected to full-scale sinusoids for long  
periods. See the Applications Information section.  
Note 5: Receiver specifications guaranteed for MAX9482 only.  
4
_______________________________________________________________________________________  
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
Typical Operating Characteristics  
(V  
= +5V, V = -5V, V = +2.5V, V = -2.5V, DGND = 0, RXIN1+ = RXIN2+ = 0, IN1+ = IN2+ = 0, R = 16is connected froꢀ  
EE LP LM L  
CC  
OUT1 to OUT2, SHDN = 0, T = +25°C, unless otherwise noted. Preaꢀp configured for A = +1 with 1kfroꢀ RXOUT_- to RXIN_-.  
A
V
Receiver configured for A = +1 with 1kfroꢀ POUT_ to IN_-.)  
V
SUPPLY CURRENT vs. TEMPERATURE  
SHUTDOWN CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. OUTPUT VOLTAGE  
30  
26  
22  
18  
14  
10  
3.0  
2.4  
1.8  
1.2  
0.6  
0
600  
500  
400  
300  
200  
100  
0
MAX9481  
MAX9481  
=
=
5V SUPPLY  
2.5V SUPPLY  
I
DC  
INPUT = DC  
f
= 1MHz  
INPUT  
2.5V SUPPLY  
2.5V SUPPLY  
I
AVG  
I
AVG  
5V SUPPLY  
f
= 100kHz  
INPUT  
5V SUPPLY  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
P-P (V)  
OUT  
DRIVER HARMONIC DISTORTION  
vs. FREQUENCY  
TRANSMIT PATH  
FREQUENCY RESPONSE  
MAX9480 toc04  
0
-20  
80  
-140  
V
P-P = 2.0V  
OUT  
OVERALL GAIN = -9V/V  
PREAMP GAIN = +3V/V  
60  
40  
-160  
-180  
-200  
-220  
-240  
-260  
-280  
-300  
20  
-40  
0
2ND HARMONIC  
23NRD HARMONIC  
OVERALL GAIN = -3V/V  
PREAMP GAIN = +1V/V  
-60  
-20  
-40  
-60  
-80  
-80  
= GAIN  
= PHASE  
-100  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
DRIVER HARMONIC DISTORTION  
vs. OUTPUT VOLTAGE  
RECEIVER AMPLIFIER  
FREQUENCY RESPONSE  
MAX9480 toc07  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
30  
135  
90  
f = 1MHz  
A
B
20  
10  
45  
C
0
23NRD HARMONIC  
0
2ND HARMONIC  
-10  
-20  
-30  
-40  
B
A
-45  
-90  
-135  
C
SUPPLY CROSSOVER REGION  
= GAIN  
= PHASE  
-100  
2
4
6
8
10 12 14 16 18  
(DIFF) (V  
0.01  
0.1  
1
10  
100  
1000  
V
)
P-P  
FREQUENCY (MHz)  
A: GAIN = 10V/V  
B: GAIN = 5V/V  
OUT  
C: GAIN = 1V/V  
_______________________________________________________________________________________  
5
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
Typical Operating Characteristics (continued)  
(V  
= +5V, V = -5V, V = +2.5V, V = -2.5V, DGND = 0, RXIN1+ = RXIN2+ = 0, IN1+ = IN2+ = 0, R = 16is connected froꢀ  
EE LP LM L  
CC  
OUT1 to OUT2, SHDN = 0, T = +25°C, unless otherwise noted. Preaꢀp configured for A = +1 with 1kfroꢀ RXOUT_- to RXIN_-.  
A
V
Receiver configured for A = +1 with 1kfroꢀ POUT_ to IN_-.)  
V
RECEIVER INPUT NOISE  
RECEIVER AMPLIFIER HARMONIC  
DISTORTION vs. FREQUENCY  
vs. FREQUENCY  
MAX9480 toc08  
100  
10  
1
100  
10  
1
-40  
-50  
R
V
A
= 150Ω  
P-P  
= 10V/V  
LOAD  
OUT  
V
= 1V  
i
n-  
-60  
3RD HARMONIC  
2ND HARMONIC  
i
n+  
-70  
-80  
-90  
e
n
-100  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
FREQUENCY (MHz)  
FREQUENCY (MHz)  
RECEIVER AMPLIFIER HARMONIC  
DISTORTION vs. OUTPUT AMPLITUDE  
OUTPUT NOISE vs. FREQUENCY  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-40  
-50  
R
= 150Ω  
LOAD  
f = 100kHz  
= 1V/V  
A
V
3RD HARMONIC  
PREAMP GAIN = 3  
PREAMP GAIN = 1  
-60  
-70  
2ND HARMONIC  
-80  
-90  
-100  
0.0001  
0.001  
0.01  
0.1  
1
0
1
2
3
)
4
FREQUENCY (MHz)  
OUTPUT VOLTAGE (V  
P-P  
POWER DISSIPATION vs. LINE POWER  
V
AND V vs. TEMPERATURE  
OL  
OH  
800  
750  
700  
650  
600  
550  
500  
450  
400  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
V
- V  
OL  
CC  
MAX9480/MAX9482  
MAX9481  
|V - V  
CC  
|
OL  
12 13 14 15 16 17 18 19 20 21 22  
LINE POWER (dBm)  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
Pin Description  
VIN  
NAME  
FUNCTION  
MAX9482  
TSSOV  
MAX9480  
MAX9481  
QFN  
31  
1
2
2
3
POUT1  
IN1-  
First Preaꢀp Output  
First Inverting Input  
2
3
3
4
1
4
2
IN1+  
First Noninverting Input  
4
11  
10  
RXP  
Positive Receiver Output froꢀ Internal Hybrid  
Ground  
5
5
5
3
DGND  
SHDN  
RXM  
6
6
6
4
Shutdown Control Pin  
7
16  
15  
Negative Receiver Output froꢀ Internal Hybrid  
Second Preaꢀp Noninverting Input  
Second Preaꢀp Inverting Input  
Second Preaꢀp Output  
8
7
7
5
IN2+  
9
8
8
6
IN2-  
10  
9
9
7
POUT2  
11, 20  
12, 19  
13, 18  
14  
11, 20  
12, 19  
13, 18  
14  
18, 28  
19, 27  
20, 25  
21  
17, 28  
18, 27  
19, 24  
20  
V
-2.5V Negative Power-Supply Voltage  
+2.5V Positive Power-Supply Voltage  
+5V Positive Power-Supply Voltage  
Second Driver Output  
LM  
V
LP  
V
CC  
OUT2  
15, 16  
17  
15, 16  
17  
22, 23  
24  
21, 22  
23  
V
-5V First Negative Power-Supply Voltage  
First Driver Output  
EE  
OUT1  
BOUT1  
BOUT2  
RXIN1-  
RXIN1+  
RXIN2+  
RXIN2-  
1
1
30  
First Driver Output Sense  
10  
10  
8
Second Driver Output Sense  
First Receiver Inverting Input  
First Receiver Noninverting Input  
Second Receiver Noninverting Input  
Second Receiver Inverting Input  
12  
11  
13  
12  
14  
13  
15  
14  
9, 16, 25, 26,  
29, 32  
17, 26  
EP  
N.C.  
Not Internally Connected  
Exposed pad internally connected to V  
See the Applications Information section.  
.
EE  
EP  
EP  
EP  
V
EE  
_______________________________________________________________________________________  
7
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
Detailed Description  
Applications Information  
The MAX9480/MAX9481/MAX9482 are fully differential  
line transceivers for ADSL applications. Each transꢀit  
path has a high-bandwidth, low-distortion, current-feed-  
back operational aꢀplifier followed by a fixed-gain  
class-G output buffer.  
Theory of Operation  
The preaꢀplifiers and receivers are current-feedback  
aꢀplifiers; thus, their open-loop transfer function is  
expressed as a transiꢀpedance, V  
/I , or Z  
.
OL  
OUT IN  
The frequency behavior of their open-loop transiꢀped-  
ance is siꢀilar to the open-loop gain of a voltage-feed-  
back aꢀplifier; that is, they have a large DC value that  
decreases at approxiꢀately 6dB per octave. Analyzing  
the follower with gain, as shown in Figure 1, yields the  
following transfer function:  
The MAX9480/MAX9481/MAX9482 are class-G devices  
and require two dual power supplies, 5V and 2.5V.  
All preaꢀplifier inputs and outputs are available to  
allow external gain configuration. The MAX9480 con-  
tains an internal hybrid echo cancellation circuit with  
receiver aꢀplifiers set to a fixed gain of 4.6V/V. The  
MAX9482 has no internal hybrid, but contains two  
uncoꢀꢀitted low-noise op aꢀps for coupling to an  
external hybrid network. The MAX9481 has only the  
preaꢀp and line-driver circuits.  
ZOL(S)  
VOUT  
= G×  
Equation1  
[
]
V
ZOL(S) +G×(RIN +RF)  
IN  
The two class-G output buffers are internally configured  
for an inverting gain of three, and eꢀploy an active ter-  
ꢀination scheꢀe that presents an 8load to incoꢀing  
signals. The buffers are designed for use with a 1:2.5  
line transforꢀer and can deliver 20.4dBꢀ average line  
power with a signal crest factor of 5.3 into a standard  
100line. The outputs are designed to be directly DC-  
or AC-bridged across the transforꢀer.  
where G = A  
= 1 + (R /R ), and R = 1/g 200.  
F G IN M  
VCL  
At low gains, G x R << R . Therefore, the closed-loop  
bandwidth is essentially independent of closed-loop  
gain. Siꢀilarly, Z >> R at low frequencies, so that:  
IN  
F
OL  
F
VOUT  
RF  
RG  
= G=1+  
Equation2  
[
]
V
IN  
The MAX9480/MAX9481/MAX9482 have a low-output  
iꢀpedance, low-power shutdown ꢀode that is activated  
by driving SHDN high. Transꢀit path aꢀplifiers and  
buffers are disabled while the part is in shutdown, and  
an 8resistor is coupled directly between OUT_ and the  
output of a three-state buffer referenced to DGND (0V).  
The receive aꢀplifiers reꢀain active in shutdown ꢀode.  
Shutdown  
Forcing SHDN high puts the MAX9480/MAX9481/  
MAX9482 into low-power shutdown ꢀode. In shutdown  
ꢀode, OUT1 and OUT2 are low iꢀpedance, and the  
power-supply currents drop to less than 10% of their nor-  
ꢀal quiescent operating values. When coꢀing out of shut-  
down, allow about 1.5µs before coꢀꢀencing operation.  
PC Board Layout  
Power-Supply Bypassing  
The MAX9480/MAX9481/MAX9482 are wide-bandwidth  
devices and require careful board layout, including the  
possible use of constant-iꢀpedance ꢀicrostrip or  
stripline techniques. To realize the full AC perforꢀance  
of these high-speed aꢀplifiers, pay careful attention to  
power-supply bypassing. The PC board should have at  
least two layers: a signal and power layer on one side,  
and a large, low-iꢀpedance ground plane on the other  
side. The ground plane should be as free of voids as  
possible. With ꢀultilayer boards, locate the ground  
plane on a layer that incorporates no signal or power  
traces. Observe the following guidelines when design-  
ing the board. IC sockets increase parasitic capaci-  
tance and inductance, and should not be used. Do not  
ꢀake 90° turns; round all corners. Observe high-fre-  
quency bypassing techniques to ꢀaintain the aꢀplifiers  
R
R
F
G
R
IN  
+1  
V
OUT  
+1  
Z
OL  
MAX9480  
MAX9481  
MAX9482  
V
IN  
Figure 1. Current Feedback Amplifier Block Diagram  
8
_______________________________________________________________________________________  
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
accuracy. The bypass capacitors should include a  
0.1µF ceraꢀic capacitor between each supply pin and  
the ground plane, located as close to the package as  
possible. Additionally, place a 1µF to 10µF ceraꢀic or  
tantaluꢀ capacitor in parallel with each 0.1µF capacitor,  
and as close to theꢀ as possible. Place a 10µF to 15µF  
low-ESR tantaluꢀ capacitor at the V , V , and V  
DC and Noise Errors  
There are several error sources to consider when using  
any operational aꢀplifier, and this applies to the  
MAX9480/MAX9481/MAX9482 as well. Offset-error  
terꢀs are given by equations 3 and 4. Voltage and cur-  
rent-noise errors are root-square suꢀꢀed and there-  
fore coꢀputed separately. In Figure 3, the total output  
offset voltage is deterꢀined by:  
CC LM  
LP  
power-supply points of entry to the PC board. Place a  
100µF to 220µF low-ESR tantaluꢀ capacitor at the V  
EE  
The input offset voltage, V , tiꢀes the closed-loop  
OS  
power-supply point of entry to the PC board. The power-  
supply traces should lead directly froꢀ the board input  
gain (1 + (R / R )).  
F
G
The positive input bias current, I , tiꢀes the source  
B+  
capacitors to V  
and V . To ꢀiniꢀize parasitic induc-  
EE  
CC  
resistor, R (typically less than 10), plus the nega-  
S
tance, keep PC traces short and use surface-ꢀount  
coꢀponents. Wire-wrapped boards are ꢀuch too induc-  
tive, and breadboards are ꢀuch too capacitive; neither  
should be used. Power-supply sequencing is required;  
apply 5.0 before applying 2.5V.  
tive input bias current, I , tiꢀes the parallel coꢀbi-  
B-  
nation of R and R . In current-ꢀode feedback  
G
F
aꢀplifiers, the input bias currents ꢀay flow into or  
out of the device. For this reason, there is no benefit  
to ꢀatching the resistance at both inputs, as is coꢀ-  
ꢀon in voltage-feedback aꢀplifiers.  
Exposed-Pad Connection  
For optiꢀuꢀ electrical perforꢀance, the EP of the  
MAX9480/MAX9481/MAX9482 should be soldered to  
the PC board and electrically connected to V with as  
EE  
wide a trace as possible. If using the EP, the 100µF to  
220µF low-ESR tantaluꢀ capacitor should be used to  
decouple the EP to the ground plane of the PC board  
as close to the EP region as possible. For optiꢀuꢀ  
therꢀal perforꢀance, the EP should be additionally  
connected to a heat sink, as described in the Thermal  
Protection and Power Dissipation section.  
V
IN  
R
R
R
F
G
T
MAX9480  
MAX9481  
MAX9482  
V
OUT  
Preamp Output Bypassing  
In addition to the above layout considerations, and inde-  
pendent of the gain setting, soꢀe high-frequency  
bypassing of the preaꢀp outputs is necessary to prevent  
instability arising froꢀ the high-frequency input iꢀped-  
ance characteristics of the buffers. A 50resistor in  
series with a 2200pF ceraꢀic capacitor should be con-  
nected between POUT_ and DGND, with a 47pF capaci-  
tor connected directly between POUT_ and DGND.  
R
S
R
G
F
(a)  
V
IN  
V
= -  
OUT  
( R )( )  
R
R
F
G
Choosing Feedback and Gain Resistors  
The MAX9480/MAX9481/MAX9482 use current-feed-  
back aꢀplifiers. Figure 2 shows the standard inverting  
and noninverting configurations. Notice that the gain of  
the noninverting circuit, Figure 2(b), is 1 plus the ꢀag-  
nitude of the inverting closed-loop gain. Increasing  
feedback resistor values decreases peaking. Use the  
MAX9480  
MAX9481  
MAX9482  
V
OUT  
V
IN  
=
R
T
input resistor, R , to change the ꢀagnitude of the gain.  
G
Do not use feedback capacitance.  
R
G
F
V
(b)  
1+  
OUT  
V
IN  
[ (R )]( )  
Figure 2. Inverting Gain Configuration and Noninverting Gain  
Configuration  
_______________________________________________________________________________________  
9
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
R7  
800Ω  
R
R
F
G
R8  
667Ω  
I
B-  
MAX9480  
MAX9481  
MAX9482  
Z
V
OUT  
OUT  
I
B+  
R1  
1.6Ω  
R
S
R9  
945Ω  
Figure 3. Input Offset Voltage and Current  
R10  
540Ω  
The equation for total DC error is:  
[Equation 3]  
Figure 4. Active Line Termination Scheme, Single Side  
R
R
F
V
= I  
R
+ (I )(R ||R )+ V  
OS  
1+  
(
)
[
]
OUT  
B+  
S
B−  
F
G
G
Driving Capacitive Loads  
The MAX9480/MAX9481/MAX9482 receive aꢀplifiers  
are optiꢀized for AC perforꢀance. They are not  
designed to drive highly capacitive loads. Reactive  
loads decrease phase ꢀargin and can produce exces-  
sive ringing and oscillation.  
The total output-referred noise voltage is:  
[Equation 4]  
Rs 2 + i R ||R 2 +(en)2  
RF  
en(OUT) = 1+  
i
(
[
n+  
)
(
[
)
]
]
n−  
F
G
R
G   
Output-Impedance Synthesis  
To help ꢀeet the contradictory requireꢀents of high  
output power and low-power use, the active terꢀination  
circuit shown in Figure 5 is used. This circuit is  
designed to present a line terꢀination of 8. R1 is a  
physical 1.6resistor voltage feedback froꢀ the out-  
board end of R1 to the noninverting input of the aꢀplifi-  
er, introduces positive feedback, which increases the  
effective output-iꢀpedance value froꢀ 1.6to 8.  
Hence, the iꢀpedance looking into the port ꢀatches  
the line iꢀpedance reflected through the transforꢀer.  
The MAX9480/MAX9481/MAX9482 have very low noise  
input voltage (e ), 3.5nV/Hz (typ). The current noise at  
n
the noninverting input (i ) is 4.0pA/Hz (typ), and the  
n+  
current noise at the inverting input, i , is 15pA/Hz (typ).  
n-  
An exaꢀple of the DC error calculations, using the  
MAX9480 data and the Typical Operating Circuit where  
R = R = 1k(R || R = 500) and R = 50, gives  
F
G
F
G
S
the following, using equation 3:  
Assuꢀing an ideal aꢀplifier, the following equation  
expresses the output iꢀpedance:  
1000×1000  
1000+1000  
6  
6  
1.0 × 10  
50+ 2.6×10  
(
)
(
)
V
=
OUT  
R
1
1000  
1000  
Z
=
Equation 5  
+0.002 x 1+  
[
]
OUT  
R
R
R
10  
7
8
11+  
R
+ R  
10  
9
where V  
= 6.7ꢀV at the preaꢀp outputs.  
OUT  
Calculating total preaꢀp output noise using equation 4  
yields 16.6nV/Hz, which then contributes 50nV/Hz at  
the driver output. The driver noise contributes an addi-  
tional 35ꢀV/Hz, to the overall output noise.  
Substituting the values of the resistors shown in Figure  
4 into equation 5, we obtain Z = 8.  
The output equivalent circuit for the line driver is shown  
in Figure 5.  
OUT  
10 ______________________________________________________________________________________  
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
In this pseudo-class-G aꢀplifier, there is no abrupt  
Z
OUT = 8Ω  
supply switchover between the higher voltage and the  
lower voltage aꢀplifiers, as in a traditional class G. It is  
a seaꢀless transition that depends only on the aꢀpli-  
tude of the input signal and the gain. The lower voltage  
1:2.5  
LINE +  
Z
Z
IN  
= 16Ω  
OUT = 100Ω  
LINE PORT  
Tx PORT  
Z
aꢀplifier has a high conversion conductance, G , and  
A
the higher voltage aꢀplifier has a low conductance, G .  
B
LINE -  
With a low input voltage, the lower voltage aꢀplifier pro-  
vides ꢀost of the output current to the load. As the volt-  
age of the input signal increases, the lower voltage  
aꢀplifier starts to saturate and the higher voltage aꢀpli-  
fier begins to drive the output.  
OUT = 8Ω  
Figure 5. Output Equivalent Circuit  
With a 1:2.5 transforꢀer, the two 8iꢀpedances real-  
ized by the active-feedback network forꢀ a perfect line  
terꢀination. The MAX9480 faꢀilys active terꢀination  
design ꢀakes it possible to use a 5V power supply  
instead of 12V or 15V, significantly increasing driver  
efficiency.  
0.8Rx  
Tx  
Rx  
MAX9480  
0.8Tx  
LINE  
OUT1  
Hybrid Considerations  
The MAX9480 includes an internal hybrid coupling cir-  
cuit to realize the receive function with no external coꢀ-  
ponents. The hybrid couples the transꢀitted signal  
froꢀ the line-driver port (Tx port) to the line port and  
cancels the echo in the receiving port (Rx port). The  
hybrid circuit is detailed in Figure 6. If using the  
MAX9481 or the MAX9482, external circuitry ꢀust be  
added to realize a receive function. The MAX9482  
includes two uncoꢀꢀitted op aꢀps for this purpose.  
R1  
R3  
PORT  
R4  
1.6  
1kΩ  
1.2kΩ  
RXM  
0Tx + 0.18Rx  
Rx  
Tx  
PORT  
PORT  
0Tx - 0.18Rx  
RXP  
R6  
1.2kΩ  
R5  
1kΩ  
R2  
1.6Ω  
OUT2  
-Rx  
A traditional hybrid network with a 2:1 resistor ratio  
ꢀust be replaced with a 1.2:1 ratio to achieve noꢀinal  
echo cancellation. Additionally, the use of a synthe-  
sized output iꢀpedance has the side effect of prevent-  
ing a virtual-groundcondition at the driver output  
(BOUT), as seen by the receive signal. Hence, the  
resulting hybrid circuit exhibits an increased attenua-  
tion of the receive signal with respect to a traditional  
case with no synthesis. For central-office ADSL appli-  
cations, the noise specifications allow this trade-off to  
be ꢀade.  
-0.8Rx  
-Tx  
-0.8Tx  
(a) HYBRID CIRCUIT IN MAX9480  
0Rx  
Tx  
Rx  
0.5Tx  
LINE  
PORT  
OUT1  
8Ω  
1kΩ  
2kΩ  
RXM  
0Tx + 0.67Rx  
Pseudo-Class-G Amplifier  
The driver consists of two stages: the current-feedback  
preaꢀplifier and the voltage-feedback buffer. To save  
power, the preaꢀplifier uses a power supply of only  
2.5V. The output swing of the preaꢀplifier is about  
Rx  
PORT  
Tx  
PORT  
0Tx - 0.67Rx  
RXP  
1kΩ  
2kΩ  
3.0V . The buffer is designed as a pseudo-class-G  
P-P  
8Ω  
OUT2  
-Rx  
-0.5Tx  
aꢀplifier with a fixed gain of -3V/V. This buffer stage  
eꢀploys two power supplies: a lower voltage supply,  
2.5V, and a higher voltage supply, 5V. In the differ-  
ential driver, two parallel aꢀplifiers provide the output  
current to the load, as shown in Figure 7.  
-0.0Rx  
-Tx  
(b) TRADITIONAL HYBRID CIRCUIT  
Figure 6. Hybrid Circuit in the MAX9480  
______________________________________________________________________________________ 11  
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
This sꢀooth transition between the lower voltage aꢀpli-  
fier and the higher voltage aꢀplifier guarantees no  
glitch on the output signal, and ensures high linearity for  
high output power, while at the saꢀe tiꢀe consuꢀing  
ꢀiniꢀuꢀ power. The relation between the input voltage  
and the output current of this pseudo-class-G buffer is  
illustrated in Figure 8.  
Typical Operating Circuit, the MAX9480 is coupled to  
the phone line through just such a transforꢀer. The  
total differential load for the MAX9480 is therefore 16.  
Active terꢀination is included on all devices in the  
MAX9480 faꢀily (as explained above in the Output-  
Impedance Synthesis section).  
Receiver Channel Considerations  
A step-up transforꢀer at the output of the differential  
line driver has a step-down effect on signals received  
froꢀ the line. A voltage attenuation equal to the inverse  
of the turns ratio is realized in the receive channel. This  
is an addition to the attenuation due to the hybrid cir-  
cuitry itself (see the Hybrid Considerations section).  
Thermal Protection and Power Dissipation  
The MAX9480/MAX9481/MAX9482 are available in the  
EP version of the TSSOP. The EP facilitates heat trans-  
fer out of the package if the pad is soldered to a heat  
sink ꢀade froꢀ an area of circuit board copper.  
Connect this copper dissipation area to V . For a  
EE  
DMT-ꢀodulated signal with a crest factor greater than  
or equal to 5.3, the power dissipation of the  
MAX9480/MAX9481/MAX9482 should not exceed  
700ꢀW; the 20-pin TSSOP-EP package with its EP  
floating allows 714ꢀW peak power at +85°C. Hence,  
heat sinking is not essential, but is desirable for attain-  
ing optiꢀal electrical perforꢀance. Note that the part is  
capable of 500ꢀA peak output current, which could  
cause therꢀal shutdown in applications with elevated  
aꢀbient teꢀperatures and/or signals with low crest fac-  
tors. The therꢀal shutdown feature prevents the die  
teꢀperature froꢀ exceeding +150°C. See Figure 9 for  
a guide to power derating for each of the packages.  
I
I
OUT  
I
OUTB  
Transformer Selection  
Full-rate, central-office ADSL requires the transꢀission  
of a +20.4dBꢀ (110ꢀW) DMT signal. The DMT signal  
has a typical crest factor of 5.3, requiring the line driver  
to provide peak line power of 35.4dBꢀ (3.4W). The  
35.4dBꢀ peak line power translates to a 36V peak-to-  
peak differential voltage on a 100line. The output  
swing available froꢀ the MAX9480 faꢀily of line drivers  
I
OUTA  
V
IN  
Figure 8. Amplifier Output Characteristics  
with a 5V supply is 15.0V , and hence a step-up  
P-P  
transforꢀer with turns ratio of 1:2.5 is needed. In the  
5000  
28-TSSOP, PAD TO V  
EE  
4000  
+2.5V  
QFN  
20-TSSOP, PAD TO V  
I
OUTA  
LOWER  
EE  
VOLTAGE  
AMPLIFIER  
3000  
2000  
1000  
0
I
OUT  
-2.5V  
+5V  
V
IN  
LOAD  
HIGHER  
28-TSSOP, PAD FLOATING  
20-TSSOP, PAD FLOATING  
VOLTAGE  
AMPLIFIER  
I
OUTB  
-40  
-15  
10 35 60  
TEMPERATURE (°C)  
85  
-5V  
Figure 9. Maximum Power Dissipation vs. Temperature  
Figure 7. Output Stage of Pseudo-Class-G Amplifier  
12 ______________________________________________________________________________________  
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
Typical Operating Circuits  
RCVP  
5V  
V
2.5V  
1.00kΩ  
V
POUT1  
CC  
LP  
IN1-  
IN1+  
MAX9480  
OUT1  
SHDN  
DGND  
8Ω  
8Ω  
RXM  
RXP  
1:2.5  
PHONE LINE 100Ω  
INPUT  
OUT2  
IN2+  
IN2-  
1.00kΩ  
V
EE  
V
POUT2  
LM  
-5V  
-2.5V  
RCVN  
______________________________________________________________________________________ 13  
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
Typical Operating Circuits (continued)  
1.0k  
250Ω  
RCVP  
5V  
V
2.5V  
1.20kΩ  
1.00kΩ  
1.00kΩ  
V
POUT1  
CC  
LP  
IN1-  
IN1+  
BOUT1  
OUT1  
SHDN  
DGND  
8Ω  
8Ω  
1:2.5  
PHONE LINE 100Ω  
INPUT  
MAX9481  
OUT2  
IN2+  
IN2-  
BOUT2  
V
EE  
V
LM  
POUT2  
1.00kΩ  
1.20kΩ  
1.00kΩ  
-5V  
-2.5V  
RCVN  
250kΩ  
1.0kΩ  
14 ______________________________________________________________________________________  
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
Typical Operating Circuits (continued)  
RCVP  
5V  
2.5V  
V
1.0kΩ  
250Ω  
V
RXP  
CC  
LP  
RXIN1-  
RXIN1+  
POUT1  
1.00kΩ  
1.20kΩ  
1.00kΩ  
IN1-  
IN1+  
BOUT1  
OUT1  
SHDN  
DGND  
8Ω  
8Ω  
1:2.5  
PHONE LINE 100Ω  
INPUT  
MAX9482  
OUT2  
IN2+  
IN2-  
BOUT2  
1.20kΩ  
1.0kΩ  
1.00kΩ  
250Ω  
1.00kΩ  
RXIN2+  
RXIN2-  
POUT2  
V
EE  
V
RXM  
LM  
-5V  
-2.5V  
RCVN  
______________________________________________________________________________________ 15  
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
Pin Configurations (continued)  
TOP VIEW  
BOUT1  
POUT1  
IN1-  
1
2
3
4
5
6
7
8
9
20  
19  
18  
V
V
V
BOUT1  
POUT1  
IN1-  
1
2
3
4
5
6
7
8
9
28  
27  
V
V
LM  
LM  
LP  
LP  
IN1-  
IN1+  
1
2
3
4
5
6
7
8
24  
V
CC  
26 N.C.  
25  
24 OUT1  
CC  
23 OUT1  
IN1+  
17 OUT1  
IN1+  
V
CC  
DGND  
SHDN  
IN2+  
22  
21  
V
V
EE  
EE  
MAX9481  
MAX9482  
DGND  
SHDN  
IN2+  
16  
15  
14  
13  
12  
11  
V
V
DGND  
SHDN  
IN2+  
EE  
EE  
23  
22  
V
EE  
EE  
MAX9482  
20 OUT2  
OUT2  
V
IN2-  
19  
18  
17  
V
V
V
CC  
LP  
IN2-  
V
IN2-  
21 OUT2  
CC  
POUT2  
BOUT2  
POUT2  
V
POUT2  
20  
19  
18  
V
V
V
LP  
CC  
LP  
LM  
BOUT2 10  
V
BOUT2 10  
RXP 11  
LM  
LM  
TSSOV  
RXIN1- 12  
RXIN1+ 13  
RXIN2+ 14  
17 N.C.  
16 RXM  
15 RXIN2-  
QFN  
TSSOV  
Chip Information  
MAX9480 TRANSISTOR COUNT: 2557  
MAX9481 TRANSISTOR COUNT: 2557  
MAX9482 TRANSISTOR COUNT: 2607  
PROCESS: Bipolar  
16 ______________________________________________________________________________________  
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
Package Information  
(The package drawing(s) in this data sheet ꢀay not reflect the ꢀost current specifications. For the latest package outline inforꢀation,  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 17  
Low-Power, Low-Distortion, Central-Office  
ADSL Drivers and Integrated Drivers/Receivers  
Package Information (continued)  
(The package drawing(s) in this data sheet ꢀay not reflect the ꢀost current specifications. For the latest package outline inforꢀation,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxiꢀ Integrated Products  
Printed USA  
is a registered tradeꢀark of Maxiꢀ Integrated Products.  

相关型号:

MAX9481EUP

LINE TRANSCEIVER, PDSO20, 4.4 MM, MO-153ACT, TSSOP-20
ROCHESTER

MAX9482

Low-Power, Low-Distortion, Central-Office ADSL Drivers and Integrated Drivers/Receivers
MAXIM

MAX9482CGJ

Low-Power, Low-Distortion, Central-Office ADSL Drivers and Integrated Drivers/Receivers
MAXIM

MAX9482CGJ-T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BIPolar, 5 X 5 MM, 0.90 MM HEIGHT, MO-220, QFN-32
MAXIM

MAX9482CUI

Low-Power, Low-Distortion, Central-Office ADSL Drivers and Integrated Drivers/Receivers
MAXIM

MAX9482CUI+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BIPolar, PDSO28, MO-153AET, TSSOP-28
MAXIM

MAX9482EGJ

暂无描述
MAXIM

MAX9482EUI

LINE TRANSCEIVER, PDSO28, 4.4 MM, MO-153AET, TSSOP-28
ROCHESTER

MAX9482EUI

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BIPolar, PDSO28, 4.4 MM, MO-153AET, TSSOP-28
MAXIM

MAX9483

Dual-Output, Multimode CD-RW/DVD Laser-Diode Drivers
MAXIM

MAX9483CEE

Dual-Output, Multimode CD-RW/DVD Laser-Diode Drivers
MAXIM

MAX9483CEE-T

Interface Circuit, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16
MAXIM