MAX9492 [MAXIM]

Multiple-Output Clock Generator with Spread Spectrum; 多输出时钟发生器,带有扩频
MAX9492
型号: MAX9492
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Multiple-Output Clock Generator with Spread Spectrum
多输出时钟发生器,带有扩频

时钟发生器
文件: 总11页 (文件大小:266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3683; Rev 0; 5/05  
Multiple-Output Clock Generator  
with Spread Spectrum  
General Description  
Features  
The MAX9492 frequency synthesizer is designed to  
generate multiple clocks for clock distribution in net-  
work routers or switches. The device provides a total of  
six buffered clock outputs (CLK1 to CLK6). CLK1 is the  
buffered output of the reference clock. CLK2 through  
CLK6 are independently programmable to generate  
eight different frequencies based on a 25MHz input  
crystal: 133, 125, 83, 66, 62.5, 50, 33, and 25MHz. All  
the outputs are LVCMOS single-ended signals. Either a  
25MHz crystal or an external clock can serve as the  
input reference clock. The MAX9492 incorporates two  
phase-locked loops (PLLs) with two internal loop filters.  
Five LVCMOS Outputs with Independent  
Frequency Selections  
One Buffered Reference Clock Output  
Eight Selectable Frequencies: 133, 125, 83, 66,  
62.5, 50, 33, and 25MHz  
Crystal or an Input-Clock-Based Clock Reference  
2
Output Frequency Programmed Through I C  
Interface  
0, -1.25%, or -2.5% Selectable Downspreading  
Rate  
Select the MAX9492’s output clock frequency by pro-  
gramming on-chip registers through the MAX9492’s  
I2C* interface. The device also features spread-spec-  
trum capability to reduce electromagnetic interference  
(EMI). This technique allows spreading the fundamental  
energy over a wider frequency range, hence reducing  
the respective energy amplitude. The output frequency  
spectrum is downspread by -1.25% or -2.5%.  
Low Output Period Jitter  
(Without Spread Spectrum) < 10ps  
RMS  
<220ps Output-to-Output Skew  
Available in 20-Lead, 5mm x 5mm, TQFN Package  
+3.3V Supply  
The MAX9492 operates from a 3.3V supply and is guar-  
anteed over the extended temperature range (-40°C to  
+85°C). The device is available in a space-saving,  
20-pin, TQFN, 5mm x 5mm package.  
-40°C to +85°C Extended Temperature Range  
Applications  
Network Routers  
Ordering Information  
Telecom/Networking Equipment  
PIN-  
PACKAGE  
PKG  
CODE  
PART  
TEMP RANGE  
Storage Area Networks/Network Attached  
Storage  
20 Thin QFN-EP**  
MAX9492ETP -40°C to +85°C 5mm x 5mm x  
T2055-3  
0.8mm  
**EP = Exposed pad.  
Typical Operating Circuit and Pin Configuration appear at  
end of data sheet.  
2
*Purchase of I C components from Maxim Integrated Products, Inc., or one of its sublicensed Associated Companies, conveys a  
2
2
2
license under the Philips I C Patent Rights to use these components in an I C system, provided that the system conforms to the I C  
Standard Specification as defined by Philips.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Multiple-Output Clock Generator  
with Spread Spectrum  
ABSOLUTE MAXIMUM RATINGS  
DD_  
All Other Pins to GND.................................-0.3V to (V  
Short-Circuit Duration (all LVCMOS outputs).............Continuous  
V
to GND .........................................................-0.3V to +4.0V  
Storage Temperature Range.............................-65°C to +165°C  
Maximum Junction Temperature .....................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Lead Temperature (soldering, 10s) ................................+300°C  
+ 1.0V)  
DD  
ESD Protection (Human Body Model)................................. 2ꢀV  
Continuous Power Dissipation (T = +70°C)  
A
20-Pin TQFN (derate 20.8mW/°C above +70°C) ......1667mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= V  
= +3.0V to +3.6V, T = -40°C to +85°C, unless otherwise noted. Typical values at V  
= V  
= +3.3V, T = +25°C,  
DDA A  
DD  
DDA  
A
DD  
with CLK1 at 25MHz, and all other CLK_ outputs at 133MHz.) (Note 1)  
PARAMETER SYMBOL CONDITIONS  
CLOCK INPUT (X1)  
MIN  
TYP  
MAX  
UNITS  
Input High Level  
V
2.0  
-20  
V
V
IH1  
Input Low Level  
V
0.8  
IL1  
Input Current  
I
, I  
V _ = 0 to V  
X DD  
+20  
µA  
IL1 IH1  
CLOCK OUTPUTS (CLK_)  
V
0.2  
-
DD  
I
= -100µA  
OH  
Output High Level  
V
V
V
OH  
I
I
I
= -4mA  
= 100µA  
= 4mA  
2.4  
-60  
2.5  
OH  
OL  
OL  
0.2  
0.4  
+69  
5
Output Low Level  
V
OL  
Output Short-Circuit Current  
Output Capacitance  
I
CLK_ = V  
(Note 2)  
or GND  
mA  
pF  
OS  
DD  
C
O
THREE-LEVEL INPUTS (SSC, SA0, SA1)  
Input High Level  
Input Low Level  
Input Open Level  
Input Current  
V
V
V
IH2  
V
0.8  
1.90  
+15  
IL2  
V
1.35  
-15  
V
IO2  
I
, I  
V
= 0 or V  
= V  
DD  
µA  
IL2 IH2  
IL2  
IH2  
SERIAL INTERFACE (SCL, SDA) (Note 3)  
0.7 x  
Input High Level  
Input Low Level  
V
V
V
IH  
V
DD  
0.3 x  
V
IL  
V
DD  
Input Leaꢀage Current  
Low-Level Output  
I
, I  
-1  
+1  
0.4  
10  
µA  
V
IH IL  
V
I
= 4mA  
OL  
SINK  
Input Capacitance  
Ci  
(Note 2)  
pF  
POWER SUPPLIES  
Digital Power-Supply Voltage  
Analog Power-Supply Voltage  
Total Supply Current  
V
3.0  
3.0  
3.6  
3.6  
76  
V
DD  
V
V
DDA  
I
C = 10pF  
60  
18  
mA  
mA  
DC  
OD  
L
Output Disabled Supply Current  
I
All clocꢀ registers = 0x0F  
24  
2
_______________________________________________________________________________________  
Multiple-Output Clock Generator  
with Spread Spectrum  
AC ELECTRICAL CHARACTERISTICS  
(V  
= V  
= +3.0V to +3.6V, C = 10pF, unless otherwise noted. Typical values at V  
= V  
= +3.3V, T = +25°C, with CLK1 at  
DDA A  
DD  
DDA  
L
DD  
25MHz and all other CLK_ outputs at 133MHz.) (Note 2)  
PARAMETER SYMBOL  
OUTPUTS (CLK_)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Crystal Frequency  
10  
15  
35  
35  
MHz  
MHz  
ppm  
Input Frequency Range  
Crystal Frequency Tolerance  
External clocꢀ  
f  
A
-50  
+50  
Output-to-Output Sꢀew  
Rise Time  
t
Any two CLK_ outputs  
220  
2.5  
2.5  
60  
ps  
ns  
ns  
%
SKO  
t
R1  
20% V  
80% V  
to 80% V  
to 20% V  
1.9  
1.3  
DD  
DD  
DD  
DD  
Fall Time  
t
F1  
Duty Cycle  
40  
RMS (SSC = 0), CLK1 is disabled to high  
impedance  
Output Period Jitter  
Power-Up Time  
J
10  
15  
ps  
ms  
%
P
t
V
> 2.8V to PLL locꢀ  
DD  
2
PO  
SSC = high  
-2.5  
-1.25  
Frequency Spread  
SSC = floating  
SERIAL INTERFACE TIMING  
(V  
= V  
= +3.3V, T = -40°C to +85°C.) (Note 1, Figure 1)  
DDA A  
DD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Serial Clocꢀ  
f
400  
ꢀHz  
SCL  
Bus Free Time Between STOP  
and START Conditions  
t
1.3  
0.6  
0.6  
µs  
µs  
µs  
BUF  
Hold Time, Repeated START  
Condition  
t
HD,STA  
Repeated START Condition  
Setup Time  
t
SU,STA  
STOP Condition Setup Time  
Data Hold Time  
t
0.6  
15  
µs  
ns  
ns  
ns  
µs  
µs  
SU,STO  
HD,DAT  
HD,DAT  
t
t
(Note 4)  
(Note 4)  
900  
900  
Data Hold Time Slave  
Data Setup Time  
15  
t
100  
1.3  
0.7  
SU,DAT  
SCL Clocꢀ Low Period  
SCL Clocꢀ High Period  
t
LOW  
t
HIGH  
Rise Time of SDA and SCL,  
Receiving  
20 +  
t
(Notes 2, 5)  
(Notes 2, 5)  
300  
300  
ns  
ns  
R
0.1C  
B
Fall Time of SDA and SCL,  
Receiving  
20 +  
0.1C  
t
F
B
_______________________________________________________________________________________  
3
Multiple-Output Clock Generator  
with Spread Spectrum  
SERIAL INTERFACE TIMING (continued)  
(V  
= V  
= +3.3V, T = -40°C to +85°C.) (Note 1, Figure 1)  
DDA A  
DD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
250  
50  
UNITS  
ns  
20 +  
Fall Time of SDA, Transmitting  
t
(Notes 2, 6)  
(Notes 2, 7)  
(Note 2)  
F,TX  
0.1C  
B
Pulse Width of Spiꢀe Suppressed  
t
SP  
0
ns  
Capacitive Load for Each Bus  
Line  
C
400  
pF  
B
Note 1: All DC parameters tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 2: Guaranteed by design.  
Note 3: No high output level is specified but only the output resistance to the bus. For I2C, the high-level voltage is provided by  
pullup resistors on the bus.  
Note 4: The device provides a hold time of at least 300ns for the SDA signal (referred to V of the SCL signal) to bridge the unde-  
IL  
fined region of SCLs falling edge.  
Note 5: C = total capacitance of one bus line in pF. t and t measured between 0.3 x V  
and 0.7 x V  
.
B
R
F
DD  
DD  
Note 6: Bus sinꢀ current is less than 6mA. C is the total capacitance of one bus line in pF. t and t are measured between 0.3 x  
B
R
F
V
and 0.7 x V  
.
DD  
DD  
Note 7: Input filters on the SDA and SCL inputs suppress noise spiꢀes less than 50ns.  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT vs. TEMPERATURE  
(ALL OUTPUTS SET TO 133MHz)  
62.0  
FALL TIME vs. TEMPERATURE  
(ALL OUTPUTS SET TO 133MHz)  
RISE TIME vs. TEMPERATURE  
(ALL OUTPUTS SET TO 133MHz)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
61.6  
61.2  
60.8  
60.4  
60.0  
59.6  
59.2  
58.8  
58.4  
58.0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Multiple-Output Clock Generator  
with Spread Spectrum  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
133MHz OUTPUT WAVEFORM  
83MHz OUTPUT WAVEFORM  
PERIOD JITTER vs. TEMPERATURE  
MAX9492 toc05  
MAX9492 toc06  
20  
3.3V  
3.3V  
16  
133MHz  
62.5MHz  
33.3MHz  
12  
8
125MHz  
4
0V  
0V  
0
2ns/div  
2ns/div  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
133MHz OUTPUT 0% DOWNSPREADING  
PERIOD JITTER vs. FREQUENCY  
DUTY CYCLE vs. TEMPERATURE  
MAX9492 toc09  
20  
16  
12  
8
51.0  
50.5  
50.0  
49.5  
49.0  
48.5  
48.0  
47.5  
47.0  
10dB/REF 0dBm  
RBW = 10kHz  
VBW = 10kHz  
ATN = 20dB  
CENTER = 133MHz  
SPAN = 4MHz  
33.3MHz  
62.5MHz  
133MHz  
125MHz  
4
0
25  
50  
75  
100  
125  
150  
-40  
-15  
10  
35  
60  
85  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
133MHz OUTPUT WITH  
0% AND 1.25% DOWNSPREADING  
133MHz OUTPUT WITH  
0% AND 2.5% DOWNSPREADING  
MAX9492 toc10  
MAX9492 toc11  
10dB/REF 0dBm  
VBW = 1kHz  
CENTER = 133MHz  
RBW = 100kHz  
10dB/REF 0dBm  
VBW = 1kHz  
RBW = 100kHz  
ATN = 20dB  
ATN = 20dB  
SPAN = 15MHz  
CENTER = 133MHz SPAN = 15MHz  
_______________________________________________________________________________________  
5
Multiple-Output Clock Generator  
with Spread Spectrum  
Pin Description  
PIN  
NAME  
GNDA  
X1  
FUNCTION  
1
Analog Ground  
2
Crystal Connection or Clocꢀ Input. If using a 25MHz crystal, connect it to X1 and X2. If using a reference  
clocꢀ, connect the clocꢀ signal to X1 and leave X2 floating. See the Typical Operating Circuit.  
3
X2  
4
V
Power-Supply Input for Analog Circuits. Bypass to GNDA with a 0.1µF capacitor.  
Power-Supply Input for Digital Circuits. Bypass to GND with a 0.1µF capacitor.  
Serial Clocꢀ Input. Serial interface clocꢀ.  
DDA  
5, 13, 16  
V
DD  
6
7
SCL  
SDA  
Serial Data I/O. Data I/O of serial interface.  
8, 20  
9
GND  
CLK1  
CLK2  
CLK3  
CLK4  
CLK5  
CLK6  
Digital Ground  
Clocꢀ 1 Output. Buffered reference clocꢀ output.  
Clocꢀ 2 Output. Frequency-selectable clocꢀ output.  
Clocꢀ 3 Output. Frequency-selectable clocꢀ output.  
Clocꢀ 4 Output. Frequency-selectable clocꢀ output.  
Clocꢀ 5 Output. Frequency-selectable clocꢀ output.  
Clocꢀ 6 Output. Frequency-selectable clocꢀ output.  
10  
11  
12  
14  
15  
Spread-Spectrum-Select Input. Selects the spectrum-spread percentage. When SSC is low, spread  
spectrum is disabled. When SSC is floating, spread spectrum is set to -1.25%. When SSC is high, spread  
spectrum is set to -2.5%.  
17  
SSC  
18  
19  
EP  
SA1  
SA0  
Address-Select Inputs for Serial Interface. SA0 and SA1 select the serial interface address, as shown in  
Table 1. SA0 and SA1 are three-level inputs, maꢀing nine possible address combinations.  
GND  
Exposed pad. Connect to GND.  
Block Diagram  
V
V
DDA  
DD  
SCL  
SDA  
CLK1  
CLK2  
2
I C  
SA0  
SA1  
MUX  
266MHz  
PLL1  
DIVIDE BY  
2, 4, 8  
X1  
X2  
25MHz  
OSC  
250MHz  
PLL2  
DIVIDE BY  
2, 3, 4, 5, 10  
MUX  
MUX  
CLK5  
CLK6  
SSC  
SPREAD  
SPECTRUM  
MAX9492  
AGND  
GND  
6
_______________________________________________________________________________________  
Multiple-Output Clock Generator  
with Spread Spectrum  
Power-Up State  
Detailed Description  
At power-up, the CLK1 output is enabled and free run-  
ning, the CLK2 to CLK4 outputs are set at 33.3MHz,  
and the other CLK outputs are disabled at logic-low.  
The output states can be overridden by writing to the  
registers through the I2C interface.  
The MAX9492 frequency synthesizer is designed to gen-  
erate multiple clocꢀs for clocꢀ distribution in networꢀ  
routers or switches. The device provides a total of six  
buffered clocꢀ outputs (CLK1 to CLK6). CLK1 is the  
buffered output of the reference clocꢀ. CLK2 through  
CLK6 are independently programmable to generate eight  
different frequencies based on a 25MHz input crystal:  
133, 125, 83, 66, 62.5, 50, 33, and 25MHz. All the outputs  
are LVCMOS single-ended signals.  
Serial Interface  
The MAX9492 is programmed through its I2C serial  
interface. This interface has a clocꢀ, SCL, and a bidi-  
rectional data line, SDA. In an I2C system, a master,  
typically a microcontroller, initiates all data transfers to  
and from slave devices, and generates the clocꢀ to  
synchronize the data transfers.  
Select the MAX9492s output frequency by program-  
ming on-chip registers through the I2C interface. The  
MAX9492 also features spread-spectrum capability to  
reduce EMI. Output frequency spectrum can be down-  
spread by -2.5% or -1.25%. The 25MHz reference  
comes from either a crystal or an external clocꢀ. The  
MAX9492 incorporates two PLLs with two internal loop  
filters. The MAX9492 operates from a 3.3V supply.  
The MAX9492 operates as a slave device. The timing of  
the SDA and SCL signals is detailed in Figure 1. SDA  
operates as both an input and an open-drain output. A  
pullup resistor, typically 4.7ꢀ, is required on SDA. SCL  
operates only as an input. A pullup resistor, typically  
4.7ꢀ, is required on SCL.  
Reference Frequency Input  
The MAX9492 requires a reference frequency. The ref-  
erence can be a 25MHz crystal or an external clocꢀ  
signal. If using a 25MHz crystal, connect it across X1  
and X2, and connect loading capacitors from X1 and  
X2 to GND (refer to the crystal manufacturers specifi-  
cation). If using an external clocꢀ, connect the signal to  
X1 and leave X2 floating.  
START and STOP Conditions  
A master signals the beginning of a transmission with a  
START condition by transitioning SDA from high to low  
while SCL is high (Figure 2). When communication is  
complete, a master issues a STOP condition by transi-  
tioning SDA from low to high while SCL is high. The bus  
is then free for another transmission.  
SDA  
t
BUF  
t
t
SU,STA  
SU,DAT  
t
HD,STA  
t
LOW  
t
t
SU,STO  
HD,DAT  
SCL  
t
HIGH  
t
HD,STA  
t
t
F
R
START  
CONDITION  
REPEATED  
START CONDITION  
STOP  
CONDITION  
START  
CONDITION  
Figure 1. Serial-Interface Timing Diagram  
_______________________________________________________________________________________  
7
Multiple-Output Clock Generator  
with Spread Spectrum  
NOT ACKNOWLEDGE  
A0 R/W  
SDA  
1
1
A4  
A3  
A2  
A1  
ACK  
ACKNOWLEDGE  
LSB  
MSB  
SCL  
START  
2
Figure 2. I C Address and Acknowledge  
Bit Transfer  
Device Address  
One data bit is transferred during each SCL clocꢀ  
cycle. SDA must remain stable during the high period  
of SCL, as changes in SDA while SCL is high are  
START and STOP control signals. Idle the interface by  
pulling both SDA and SCL high.  
The MAX9492 features a 7-bit device address, config-  
ured by the two three-level address inputs, SA1 and  
SA0. To select the device address, connect SA1 and  
SA0 to V , GND, or leave floating, as indicated in  
DD  
Table 1. The MAX9492 has nine possible addresses,  
allowing up to nine MAX9492 devices to share the  
same interface bus.  
After 8 bits are transferred, the receiving device gener-  
ates an acꢀnowledge signal by pulling SDA low for the  
entire duration of the 9th clocꢀ pulse. If the receiving  
device does not pull SDA low, a not acꢀnowledge is  
indicated (Figure 2).  
Writing to the MAX9492  
Writing to the MAX9492 begins with a START condition  
(Figure 3). Following the START condition, each pulse  
on SCL transfers 1 bit of data. The first 7 bits comprise  
the device address (see the Device Address section).  
The 8th bit is low to indicate a write operation. An  
acꢀnowledge bit is then generated by the MAX9492,  
signaling that it recognizes its address. The next 8 bits  
form the register address byte (Table 2) and determine  
which control register receives the following data byte.  
The MAX9492 then generates another acꢀnowledge bit.  
The data byte is then written into the addressed register  
of the MAX9492. An acꢀnowledge bit by the MAX9492  
followed by a required STOP condition by the master  
completes the communication. To write to the device  
again, the entire write procedure is repeated; I2C burst-  
write mode is not supported by the MAX9492.  
2
Table 1. Device I C Address Selection  
SA0  
Open  
Low  
SA1  
Open  
Open  
Open  
Low  
DEVICE ADDRESS  
110 1000  
110 0100  
High  
Open  
Low  
110 0010  
110 1100  
Low  
110 1001  
High  
Open  
Low  
Low  
111 0000  
High  
High  
High  
111 0001  
111 0010  
High  
111 0100  
8
_______________________________________________________________________________________  
Multiple-Output Clock Generator  
with Spread Spectrum  
MASTER-WRITE DATA STRUCTURE  
START  
DEVICE ADDRESS  
R/W  
0
REGISTER ADDRESS  
DATA IN  
STOP  
S
1
1
A4 A3 A2 A1 A0  
ACK RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0 ACK  
D6 D5 D4 D3 D2 D1 D0 ACK  
P
D7  
MASTER-READ DATA STRUCTURE  
START  
DEVICE ADDRESS  
R/W  
0
REGISTER ADDRESS  
S
1
1
A4 A3 A2 A1 A0  
ACK RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0 ACK  
DEVICE ADDRESS  
1 A4 A3 A2 A1 A0  
R/W  
1
DATA OUT  
ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
STOP  
P
RS  
1
S = START CONDITION  
A_ = DEVICE ADDRESS  
ACK = ACKNOWLEDGE  
ACK = NOT-ACKNOWLEDGE  
RA_ = REGISTER ADDRESS  
D_ = DATA  
DATA DIRECTION  
= MASTER TO SLAVE  
= SLAVE TO MASTER  
P = STOP CONDITION  
RS = REPEATED START  
2
Figure 3. I C Interface Data Structure  
Device Control Registers  
Reading from the MAX9492  
The MAX9492 has eight control registers. The register  
addresses and functions are shown in Table 2. The first  
seven registers are used to set the six outputs, with  
register 0x00 controlling all outputs simultaneously, and  
the rest are mapped to individual outputs. All other  
addresses are reserved and are not to be used.  
Reading from the MAX9492 registers begins with a  
START condition and a device address with the write bit  
set low, then the register address that is to be read, fol-  
lowed by a repeated START condition and a device  
address with the write bit set high, and finally the data  
are shifted out (Figure 3). Following a START condition,  
the first 7 bits comprise the device address. The 8th bit  
is low to indicate a write operation (to write in the follow-  
ing register address). An acꢀnowledge bit is then gener-  
ated by the MAX9492, signaling that it recognizes its  
address. The next 8 bits form the register address, indi-  
cating the location of the data to be read, followed by  
another acꢀnowledge, again generated by the  
MAX9492. The master then produces a repeated START  
condition and readdresess the device, with the R/W bit  
high to indicate a read operation (Figure 3). The  
MAX9492 generates an acꢀnowledge bit, signaling that it  
recognizes its address. The data byte is then clocꢀed  
out of the MAX9492. A final not-acꢀnowledge bit, gener-  
ated by the master (not required), and a STOP condition,  
also generated by the master, complete the communica-  
tion. To read from the device again, the entire read pro-  
cedure is repeated; I2C burst-read mode is not  
supported by the MAX9492.  
Table 2. Register Address Mapping  
REGISTER  
OUTPUT PORT  
ADDRESS  
00  
01  
Broadcast to all CLK registers  
CLK1  
CLK2  
02  
03  
CLK3  
04  
CLK4  
05  
CLK5  
06  
CLK6  
All others  
Reserved  
_______________________________________________________________________________________  
9
Multiple-Output Clock Generator  
with Spread Spectrum  
Setting the Clock Frequencies  
Spread-Spectrum Control  
Each CLK_ output has an associated control register.  
The contents of the registers determine the frequencies  
of their associated outputs. Table 3 provides the fre-  
quency mapping for the registers. CLK1 only responds  
to the 25MHz and high-impedance settings in Table 3.  
For example, writing 03h to the CLK1 control register  
does not change CLK1s output frequency to  
133.3MHz. The CLK1 output continues to output a  
buffered reference clocꢀ signal.  
The MAX9492 features spread-spectrum output struc-  
tures to spread radiated emissions over the frequency  
band. A programmable triangle-wave generator injects  
an offset element into the master oscillator to dither its  
output by -1.25% or -2.5%. The dither is controlled by  
the SSC input. When SSC is low, spread spectrum is  
disabled. When SSC is floating, spread spectrum is set  
to -1.25%. When SSC is high, spread spectrum is set  
to -2.5%.  
Power Supply  
Table 3. Output Frequency Selection for  
CLK1CLK6  
The MAX9492 uses a 3.0V to 3.6V power supply con-  
nected to V , and 3.0V to 3.6V connected to V .  
DDA  
DD  
Bypass V  
and V  
at the device with a 0.1µF  
DD  
DDA  
BITS IN CLKn  
REGISTERS  
OUTPUT FREQUENCY  
(MHz)  
capacitor. Additionally, use bulꢀ bypass capacitors of  
10µF where power enters the circuit board.  
00  
01  
02  
03  
04  
05  
06  
07  
08  
0F  
Logic-Low  
Applications Information  
133.3  
Board Layout Considerations  
As with all high-frequency devices, board layout is criti-  
cal to proper operation. Place the crystal as close as  
possible to X1 and X2, and minimize parasitic capaci-  
tance around the crystal leads. Ensure that the exposed  
pad maꢀes good contact with GND.  
125  
83.3  
66.6  
62.5  
50  
33.3  
25  
Chip Information  
PROCESS: BiCMOS  
High Impedance  
Typical Operating Circuit  
Pin Configuration  
+3.3V  
+3.3V  
TOP VIEW  
µ
µ
0.1 F  
0.1 F  
V
DDA  
V
DD  
µ
0.1 F  
15 14 13 12 11  
V
DD  
V
DD  
µ
0.1 F  
X1  
V
DD  
16  
10 CLK2  
10pF  
10pF  
25MHz  
SSC 17  
SA1 18  
SA0 19  
GND 20  
9
8
7
6
CLK1  
GND  
SDA  
SCL  
MAX9492  
MAX9492  
CLK1  
CLK6  
X2  
CLOCK  
OUTPUTS  
SERIAL  
INTERFACE  
SDA  
SCL  
SA0  
SA1  
SSC  
EXPOSED PADDLE (GND)  
1
2
3
4
5
AGND  
GND  
THIN QFN  
10 ______________________________________________________________________________________  
Multiple-Output Clock Generator  
with Spread Spectrum  
Package Information  
(The pacꢀage drawing(s) in this data sheet may not reflect the most current specifications. For the latest pacꢀage outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
XXXXX  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45¡  
DETAIL A  
e/2  
PIN # 1  
I.D.  
e
(ND-1) X  
e
DETAIL B  
e
L
C
C
L
L1  
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
1
21-0140  
H
-DRAWING NOT TO SCALE-  
2
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
MIN. NOM. MAX. MIN. NOM. MAX. –0.15  
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
40L 5x5  
DOWN  
BONDS  
ALLOWED  
L
PKG.  
CODES  
A
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
T1655-1  
T1655-2  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
**  
**  
**  
**  
A1  
A3  
b
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
T2055-2  
T2055-3  
T2055-4  
T2055-5  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
D
E
**  
**  
e
0.80 BSC.  
0.25  
0.65 BSC.  
0.25  
0.50 BSC.  
0.25  
0.50 BSC.  
0.25  
0.40 BSC.  
YES  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
k
-
-
-
-
-
-
-
-
0.25 0.35 0.45  
T2855-1  
T2855-2  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
NO  
NO  
L
**  
**  
**  
**  
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
0.30 0.40 0.50  
40  
T2855-3  
T2855-4  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
YES  
YES  
NO  
N
ND  
NE  
16  
20  
28  
32  
4
4
5
5
7
7
8
8
10  
10  
T2855-5  
T2855-6  
T2855-7  
T2855-8  
**  
**  
**  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
-----  
JEDEC  
NO  
YES  
YES  
NO  
NO  
2.80  
3.35  
3.35  
3.20  
2.60 2.70  
3.15 3.25  
2.60 2.70 2.80  
3.15 3.25 3.35  
3.15 3.25 3.35  
3.00 3.10 3.20  
0.40  
NOTES:  
T2855N-1 3.15 3.25  
**  
**  
**  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
T3255-2  
T3255-3  
T3255-4  
3.00 3.10  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
YES  
NO  
**  
**  
**  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
NO  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
T4055-1 3.20 3.30 3.40 3.20 3.30 3.40  
YES  
**SEE COMMON DIMENSIONS TABLE  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN  
0.25 mm AND 0.30 mm FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1,  
T2855-3, AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", –0.05.  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
H
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 11  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademarꢀ of Maxim Integrated Products, Inc.  

相关型号:

MAX9492ETP

Multiple-Output Clock Generator with Spread Spectrum
MAXIM

MAX9492ETP+

Clock Generator, 133MHz, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220WHHC, TQFN-20
MAXIM

MAX9500

Triple-Channel HDTV Filters
MAXIM

MAX9500EEE+

Triple-Channel HDTV Filters
MAXIM

MAX9500EEE+T

Buffer/Inverter Based Peripheral Driver, PDSO16, 0.150 INCH, 0.25 MM PITCH, MO-137AB, QSOP-16
MAXIM

MAX9500ESE+

Triple-Channel HDTV Filters
MAXIM

MAX9500_V01

Triple-Channel HDTV Filters
MAXIM

MAX9501EEE+

Triple-Channel HDTV Filters
MAXIM

MAX9501EEE+T

Buffer/Inverter Based Peripheral Driver, BIPolar, PDSO16, 0.150 INCH, 0.25 MM PITCH, ROHS COMPLIANT, MO-137AB, QSOP-16
MAXIM

MAX9501ESE

Buffer/Inverter Based Peripheral Driver, BIPolar, PDSO16, 0.150 INCH, MS-012AC, SOP-16
MAXIM

MAX9501ESE+

Triple-Channel HDTV Filters
MAXIM

MAX9501ESE-T

Buffer/Inverter Based Peripheral Driver, BIPolar, PDSO16, 0.150 INCH, SOP-16
MAXIM