MAX9504BEUT+ [MAXIM]

3V/5V, 6dB Video Amplifiers with High Output-Current Capability;
MAX9504BEUT+
型号: MAX9504BEUT+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

放大器 信息通信管理 光电二极管 商用集成电路
文件: 总16页 (文件大小:474K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3750; Rev 0; 7/05  
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
General Description  
Features  
The MAX9504A/MAX9504B 3V/5V, ground-sensing  
amplifiers with a fixed gain of 6dB provide high output  
current while consuming only 10nA of current in shut-  
down mode. The MAX9504A/MAX9504B are ideal for  
amplifying DC-coupled video inputs from current digi-  
tal-to-analog converters (DACs). The output can drive  
two DC-coupled 150back-terminated video loads in  
portable media players, security cameras, and automo-  
tive video applications. The MAX9504B features an  
internal 160mV input offset to prevent output sync tip  
clipping when the input signal is close to ground.  
DC-Coupled Input/Output  
Drives Two DC-Coupled Video Loads  
Direct Connection to Ground-Referenced DAC  
42MHz Large-Signal Bandwidth  
47MHz Small-Signal Bandwidth  
Internal 160mV Input Offset (MAX9504B)  
Single-Supply Operation from +2.7V to +5.5V  
10nA Shutdown Supply Current  
Small µDFN (2mm x 2mm) and SOT23 Packages  
The MAX9504A/MAX9504B have -3dB large-signal  
bandwidth of 42MHz and -3dB small-signal bandwidth  
of 47MHz.  
Ordering Information  
The MAX9504A/MAX9504B operate from a single +2.7V  
to +5.5V supply and consume only 5mA of supply cur-  
rent. The low-power shutdown mode reduces supply  
current to 10nA, making the MAX9504A/MAX9504B ideal  
for low-voltage, battery-powered video applications.  
PIN-  
PKG  
OFFSET TOP  
(mV)  
PART  
PACKAGE CODE  
MARK  
MAX9504AELT-T 6 µDFN-6  
L622-1  
U65-3  
L622-1  
U65-3  
0
AAJ  
ABWC  
AAK  
MAX9504AEUT+T 6 SOT23-6  
0
The MAX9504A/MAX9504B are available in tiny 6-pin  
µDFN (2mm x 2mm) and 6-pin SOT23 packages, and  
are specified over the -40°C to +85°C extended tem-  
perature range.  
MAX9504BELT-T  
6 µDFN-6  
160  
160  
MAX9504BEUT+  
6 SOT23-6  
ABWD  
Note: All devices specified over the -40°C to +85°C operating  
range.  
Applications  
+Denotes lead-free package.  
Car Navigation Systems  
Security Cameras  
Portable Media Players  
Low-Power Video Applications  
Y/C-to-CVBS Mixer  
Block Diagram  
V
CC  
Pin Configurations  
SHDN  
MAX9504A  
MAX9504B  
TOP VIEW  
160mV OFFSET  
FB  
6
SHDN  
5
OUT  
4
IN  
OUT  
FB  
MAX9504B  
ONLY  
2.3k  
MAX9504A  
MAX9504B  
580Ω  
1.2kΩ  
780Ω  
1
2
3
V
CC  
GND  
IN  
µDFN  
GND  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
ABSOLUTE MAXIMUM RATINGS  
V
to GND..............................................................-0.3V to +6V  
Operating Temperature Range ..........................-40°C to +85°C  
Junction Temperature .....................................................+150°C  
Storage Temperature Range ............................-65°C to +150°C  
Lead Temperature (soldering, 10s) ................................+300°C  
CC  
IN, OUT, FB, SHDN to GND .......................-0.3V to (V  
OUT Short-Circuit Duration to V  
Continuous Power Dissipation (T = +70°C)  
+ 0.3V)  
CC  
or GND ..............Continuous  
CC  
A
6-Pin SOT23 (derate 8.7mW/°C above +70°C)............695mW  
6-Pin µDFN (derate 4.7mW/°C above +70°C) .............377mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= 3.0V, GND = 0V, V = 0.5V, R = infinity to GND, FB connected to OUT, SHDN = V , T = -40°C to +85°C. Typical values  
A
CC  
IN L CC A  
are at T = +25°C, unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by PSRR  
MIN  
TYP  
MAX  
5.5  
9
UNITS  
Supply Voltage Range  
V
2.7  
V
CC  
V
V
= 3V  
= 5V  
5
5
CC  
CC  
Quiescent Supply Current  
Shutdown Supply Current  
Input Voltage Range  
I
mA  
µA  
V
CC  
9
I
SHDN = 0V  
0.01  
1
SHDN  
MAX9504A  
MAX9504B  
0.10  
0
1.25  
1.10  
+25  
200  
20  
Inferred from  
voltage gain  
V
IN  
MAX9504A  
MAX9504B  
-25  
120  
0
160  
5
Input Offset Voltage  
V
mV  
OS  
Input Bias Current  
Input Resistance  
I
V
= 0V  
IN  
µA  
BIAS  
R
0 < V < 1.45V  
4
M  
IN  
IN  
V
= 2.7V,  
CC  
1.9  
1.9  
2.0  
2.0  
2
2.1  
2.1  
0.1V < V < 1.10V  
IN  
R = 150Ω  
L
V
= 3.0V,  
CC  
(Note 2),  
MAX9504A  
0.1V < V < 1.25V  
IN  
V
= 4.5V,  
CC  
0.1V < V < 1.90V  
IN  
Voltage Gain  
A
V/V  
V
V
= 2.7V,  
IN  
CC  
1.9  
1.9  
2.0  
2.0  
2
2.1  
2.1  
0 < V < 0.95V  
R = 150Ω  
(Note 2),  
MAX9504B  
L
V
= 3.0V,  
CC  
0 < V < 1.10V  
IN  
V
= 4.5V,  
CC  
0 < V < 1.75V  
IN  
MAX9504A  
MAX9504B  
60  
50  
45  
40  
80  
61  
Power-Supply Rejection  
Ratio  
PSRR  
2.7V < V  
< 5.5V  
dB  
CC  
Sourcing, R = 20to GND  
85  
L
Output Current  
I
mA  
OUT  
Sinking, R = 20to V  
110  
130  
L
CC  
Output Short-Circuit Current  
SHDN Logic-Low Threshold  
SHDN Logic-High Threshold  
SHDN Input Current  
I
OUT shorted to V  
or GND  
CC  
mA  
V
SC  
V
V
x 0.3  
CC  
IL  
V
V
x 0.7  
V
IH  
CC  
I
SHDN = 0V or V  
SHDN = 0V  
0.003  
4
1.000  
µA  
IN  
CC  
Shutdown Output  
Impedance  
R
OUT  
kΩ  
(Disabled)  
2
_______________________________________________________________________________________  
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
AC ELECTRICAL CHARACTERISTICS  
(V  
= 3.0V, GND = 0V, V = 0.5V, R = 150to GND, FB connected to OUT, SHDN = V , T = +25°C, unless otherwise noted.)  
CC  
IN  
L
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Small-Signal -3dB  
Bandwidth  
BW  
V
V
V
V
= 100mV  
47  
MHz  
SS  
LS  
OUT  
OUT  
OUT  
OUT  
P-P  
Large-Signal -3dB  
Bandwidth  
BW  
= 2V  
42  
10  
12  
MHz  
MHz  
MHz  
P-P  
Small-Signal 0.1dB Gain  
Flatness  
BW  
BW  
= 100mV  
P-P  
0.1dBSS  
Large-Signal 0.1dB Gain  
Flatness  
= 2V  
0.1dBLS  
P-P  
Slew Rate  
SR  
V
V
= 2V step  
= 2V step  
165  
25  
V/µs  
ns  
OUT  
OUT  
Settling Time to 1%  
t
S
MAX9504A  
MAX9504B  
75  
Power-Supply Rejection  
Ratio  
PSRR  
f = 100kHz  
f = 5MHz  
NTSC  
dB  
49  
Output Impedance  
Z
2.5  
0.1  
0.1  
0.3  
0.3  
OUT  
V
V
V
V
= 3V  
= 5V  
= 3V  
= 5V  
CC  
CC  
CC  
CC  
Differential Gain  
DG  
DP  
%
Differential Phase  
NTSC  
degrees  
2T = 250ns, bar time is 18µs, the beginning  
2.5% and the ending 2.5% of the bar time  
are ignored  
2T Pulse-to-Bar K Rating  
2T Pulse Response  
2T Bar Response  
0.2  
0.1  
0.1  
K%  
K%  
K%  
2T = 250ns  
2T = 250ns, bar time is 18µs, the beginning  
2.5% and the ending 2.5% of the bar time  
are ignored  
Nonlinearity  
5-step staircase  
0.1  
2
%
ns  
dB  
ns  
ns  
Group Delay Distortion  
D/dT  
SNR  
f = 100kHz to 5.5MHz  
Peak Signal-to-RMS Noise  
Enable Time  
V
V
V
= 1V , 100kHz < f < 5MHz  
65  
300  
85  
IN  
IN  
IN  
P-P  
= 1V, V  
= 1V, V  
settled to 1% of nominal  
t
OUT  
OUT  
ON  
settled to 1% of nominal  
Disable Time  
t
OFF  
Note 1: All devices are 100% production tested at T = +25°C. Specifications over temperature limits are guaranteed by design.  
A
Note 2: Voltage gain (A ) is referenced to the input offset voltage; i.e., an input voltage of V would produce an output voltage of  
V
IN  
V
= A x (V + V ).  
OUT  
V IN OS  
_______________________________________________________________________________________  
3
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
Typical Operating Characteristics  
(V  
= 3.0V, GND = 0V, V = 0.5V, R = 150to GND, FB connected to OUT, SHDN = V , T = +25°C, unless otherwise noted.)  
CC  
IN  
L
CC  
A
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
SMALL-SIGNAL GAIN FLATNESS  
vs. FREQUENCY  
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
3
3
0.3  
0.2  
V
V
= 100mV  
P-P  
= 3V  
OUT  
CC  
V
V
= 100mV  
= 3V  
V
V
= 100mV  
OUT P-P  
OUT  
CC  
P-P  
2
1
2
1
= 5V  
CC  
0.1  
0
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-1  
-2  
-3  
-4  
-5  
-6  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
LARGE-SIGNAL GAIN  
vs. FREQUENCY  
LARGE-SIGNAL GAIN FLATNESS  
vs. FREQUENCY  
SMALL-SIGNAL GAIN FLATNESS  
vs. FREQUENCY  
4
3
0.3  
0.2  
0.3  
0.2  
V
V
= 2V  
P-P  
OUT  
V
V
= 2V  
P-P  
OUT  
V
V
= 100mV  
P-P  
OUT  
= 3V  
CC  
= 3V  
CC  
= 5V  
CC  
2
0.1  
0.1  
1
0
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-1  
-2  
-3  
-4  
-5  
-6  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
LARGE-SIGNAL GAIN  
vs. FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
LARGE-SIGNAL GAIN FLATNESS  
vs. FREQUENCY  
4
3
0.3  
0.2  
10  
0
V
V
= 2V  
P-P  
OUT  
V
= 3V  
CC  
V
V
= 2V  
P-P  
OUT  
= 5V  
CC  
= 5V  
CC  
2
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0.1  
1
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-1  
-2  
-3  
-4  
-5  
-6  
MAX9504B  
MAX9504A  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
4
_______________________________________________________________________________________  
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, GND = 0V, V = 0.5V, R = 150to GND, FB connected to OUT, SHDN = V , T = +25°C, unless otherwise noted.)  
IN L CC A  
CC  
MAX9504B INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
QUIESCENT SUPPLY CURRENT  
vs. TEMPERATURE  
0.19  
10  
5.50  
5.45  
5.40  
5.35  
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
V
= 5V  
CC  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0.18  
0.17  
0.16  
0.15  
0.14  
V
= 5V  
CC  
V
= 5V  
CC  
MAX9504B  
V
= 3V  
CC  
V
= 3V  
CC  
MAX9504A  
1
-40  
-15  
10  
35  
60  
85  
0.001  
0.01  
0.1  
10  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
VOLTAGE GAIN  
vs. TEMPERATURE  
LARGE-SIGNAL STEP RESPONSE  
MAX9504 toc14  
2.10  
2.05  
2.00  
1.95  
1.90  
V
= 3V and 5V  
CC  
V
IN  
500mV/div  
V
OUT  
1V/div  
-40  
-15  
10  
35  
60  
85  
10ns/div  
TEMPERATURE (°C)  
DIFFERENTIAL GAIN AND PHASE  
0.2  
SMALL-SIGNAL STEP RESPONSE  
MAX9504 toc15  
0.1  
0
-0.1  
-0.2  
0.4  
V
IN  
25mV/div  
1
2
3
4
5
6
0.2  
0
V
OUT  
-0.2  
-0.4  
50mV/div  
1
2
3
4
5
6
10ns/div  
_______________________________________________________________________________________  
5
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, GND = 0V, V = 0.5V, R = 150to GND, FB connected to OUT, SHDN = V , T = +25°C, unless otherwise noted.)  
IN L CC A  
CC  
OUT RESPONSE TO NTC-7  
TEST SIGNAL (MAX9504B)  
OUT RESPONSE TO NTC-7  
TEST SIGNAL (MAX9504B)  
MAX9504 toc18  
MAX9504 toc17  
V
IN  
V
IN  
500mV/div  
500mV/div  
GND  
GND  
GND  
GND  
V
OUT  
V
OUT  
1V/div  
1V/div  
V = 5V  
CC  
V
= 3V  
CC  
10µs/div  
10µs/div  
OUT RESPONSE TO A FIELD  
SQUARE WAVE (MAX9504B)  
OUT RESPONSE TO A FIELD  
SQUARE WAVE (MAX9504B)  
MAX9504 toc19  
MAX9504 toc20  
V
= 3V  
V
= 5V  
CC  
CC  
V
IN  
V
IN  
500mV/div  
500mV/div  
GND  
GND  
GND  
GND  
V
OUT  
V
OUT  
1V/div  
1V/div  
2ms/div  
2ms/div  
Pin Description  
PIN  
NAME  
FUNCTION  
SOT23  
µDFN  
1
2
3
4
5
6
4
2
3
1
5
6
OUT  
GND  
IN  
Video Output  
Ground  
Video Input  
V
Power-Supply Input. Bypass V  
with a 0.1µF capacitor to ground as close as possible to V  
.
CC  
CC  
CC  
SHDN  
Shutdown Input. Pull SHDN low to place the device in low-power shutdown mode.  
FB  
Feedback. Connect FB to OUT.  
6
_______________________________________________________________________________________  
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
Typical Application Circuit  
V
2.7V TO 5.5V  
CC  
0.1µF  
V
CC  
3-POLE RECONSTRUCTION LPF  
C3  
SHDN  
MAX9504A  
MAX9504B  
Z = 75  
0
75Ω  
75Ω  
160mV OFFSET  
L1  
VIDEO  
CURRENT  
DAC  
IN  
OUT  
FB  
75Ω  
75Ω  
MAX9504B  
ONLY  
C2  
C1  
R1  
R2  
Z = 75Ω  
0
GND  
Input Offset (MAX9504B)  
Detailed Description  
The MAX9504A/MAX9504B amplify DC-coupled video  
signals with a gain of +2V/V (+6dB). The MAX9504B  
The MAX9504A/MAX9504B 3V/5V, 6dB video amplifiers  
with low-power shutdown mode accept DC-coupled  
inputs and drive up to two DC-coupled, 150back-ter-  
minated video loads. The MAX9504B provides an inter-  
nal input offset voltage of 160mV, which allows  
DC-coupled input signals down to ground without clip-  
ping the output sync tip.  
features a 160mV input offset voltage (V ) that allows  
OS  
a video signal input range to ground without clipping  
the output sync tip. The MAX9504B output voltage is  
the sum of the input voltage and the input offset voltage  
gained up by a factor of 2.  
V
= 2 x (V + V  
)
OUT  
IN  
OS  
The MAX9504A/MAX9504B operate from a single +2.7V  
to +5.5V supply and consume only 5mA of supply cur-  
rent. The low-power shutdown mode reduces supply cur-  
rent to less than 1µA, making the MAX9504A/MAX9504B  
ideal for low-voltage, battery-powered video applications.  
For example, if V = 1V and V = 0.16V then:  
IN  
OS  
V
= 2 x (1V + 0.16V) = 2.32V  
OUT  
Shutdown Mode  
The MAX9504A/MAX9504B feature a low-power shut-  
down mode (I < 1µA) for battery-powered/  
portable applications. Driving SHDN high enables the  
output. Driving SHDN low disables the output and  
places the MAX9504A/MAX9504B into a low-power  
shutdown mode. In shutdown, the output resistance is  
4k(typ) due to the combination of feedback resistors  
from OUT to ground with FB connected to OUT.  
Output Current Capability  
As shown in the Typical Application Circuit, the  
MAX9504A/MAX9504B can drive up to two 150loads  
to ground at the same time because the outputs can  
source guaranteed 45mA (min) current. Two 150loads  
to ground is the same as a single 75load to ground.  
SHDN  
Since the MAX9504A/MAX9504B can also sink guaran-  
teed 40mA (min) current, they can also drive two, AC-cou-  
pled 150loads. When V  
> 3V, the output can swing  
CC  
2.4V . When V > 4.5V, the output can swing 2.8V .  
P-P  
CC  
P-P  
_______________________________________________________________________________________  
7
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
320mV. As a result, the MAX9504B output stage always  
operates in the linear mode. Even if the input signal is  
at ground, the MAX9504B output is at 320mV.  
Applications Information  
Using the MAX9504A/MAX9504B  
with Video Current DACs  
At the output of a video current DAC, the blank level of  
the chroma signal is usually between 500mV to 650mV.  
The voltage swing above and below the blank level is  
approximately 350mV (see Figure 1). If the blank level  
is 550mV, then the lowest voltage for the chroma signal  
is 200mV. For the case of chroma signals, no input  
level shift is needed because 200mV gained up by two  
is 400mV, which is well within the linear output range of  
the MAX9504A or MAX9504B. Since the MAX9504A  
does not have an input level shift, the MAX9504A  
should be used with chroma signals. In summary, use  
the MAX9504B with composite video and luma signals  
from a DAC, and use the MAX9504A with chroma sig-  
nals from a DAC.  
Video current DACs source current into a resistor con-  
nected to ground. The output voltage range for com-  
posite video and luma (Y) is usually from ground up to  
1V (see Figure 1). Notice that the sync tip is quite close  
to ground. Standard single-supply amplifiers with rail-  
to-rail outputs have difficulty amplifying input signals at  
or near ground because their output stages enter a  
nonlinear mode of operation when the output is pulled  
close to ground.  
The MAX9504B level shifts the input signal up by  
160mV so that the output has a positive DC offset of  
MAX9504 fig01  
Using the MAX9504A/MAX9504B with a  
Video Reconstruction Filter  
In most video applications, the video signal generated  
from the DAC requires a reconstruction filter to smooth  
out the steps and reduce the spikes. The MAX9504 has  
a high-impedance, DC-coupled input that can be con-  
nected directly to the reconstruction filter.  
LUMA  
500mV/div  
GND  
For standard-definition video, the video passband is  
approximately 6MHz, and the DAC sampling clock is  
27MHz. Normally, a 9MHz lowpass filter can be used  
for the reconstruction filter. This section demonstrates  
the methods to build simple 2nd- and 3rd-order pas-  
sive Butterworth lowpass filters with 9MHz cutoff fre-  
quency. See Figures 2 and 3.  
CHROMA  
500mV/div  
GND  
10µs/div  
Figure 1. Oscilloscope Trace of Luma and Chroma Signals  
from Video Current DAC  
V
CC  
C7  
0.1µF  
2-POLE RECONSTRUCTION LPF  
L1  
R3  
75Ω  
V
CC  
V
OUT  
3.9µH  
VIDEO  
CURRENT  
DAC  
IN  
OUT  
FB  
C1  
150pF  
MAX9504  
GND  
R1  
150Ω  
R2  
150Ω  
SHDN  
V
CC  
Figure 2. 2nd-Order Butterworth LPF with MAX9504  
_______________________________________________________________________________________  
8
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
3-POLE RECONSTRUCTION LPF  
V
CC  
C3  
6.8pF  
C7  
0.1µF  
L1  
4.7µH  
R3  
75Ω  
V
CC  
V
OUT  
VIDEO  
CURRENT  
DAC  
IN  
OUT  
FB  
C1  
120pF  
C2  
120pF  
R1  
150Ω  
R2  
150Ω  
MAX9504  
GND  
SHDN  
V
CC  
Figure 3. 3rd-Order Butterworth LPF with MAX9504  
2nd-Order Butterworth Lowpass Filter Realization  
Table 2. Bench Measurement Values  
(2nd-Order LPF)  
Table 1 shows the normalized 2nd-order Butterworth  
LPF component values at 1 rad/s with a source/load  
impedance of 1.  
3dB  
R1 = R2  
C1  
L1  
ATTENUATION AT  
27MHz (dB)  
With the following equations, the L and C can be calcu-  
lated for the cutoff frequency (f ) at 9MHz. Table 2  
C
FREQUENCY  
(MHz)  
()  
(pF)  
(µH)  
shows the appropriate L and C values for different  
source/load impedances, the bench measurement val-  
ues for the -3dB frequency and the attenuation at  
27MHz. There is approximately 20dB attenuation at  
27MHz, which decreases the spikes at the sampling  
frequency.  
75  
330  
150  
120  
82  
1.8  
3.9  
4.7  
8.2  
8.7  
9.0  
9.3  
8.7  
20  
20  
22  
20  
150  
200  
300  
Cn1  
C1 =  
FREQUENCY RESPONSE  
2πfcR1  
0
-10  
-20  
-30  
-40  
-50  
-60  
Ln1R1  
2πfc  
L1 =  
Figure 4 shows the frequency response for R1 = R2 =  
150. At 6MHz, the attenuation is about 1.4dB. The  
attenuation at 27MHz is about 20dB. Figure 5 shows  
the multiburst response for R1 = R2 = 150.  
Table 1. 2nd-Order Butterworth Lowpass  
Filter Normalized Values  
0.1  
1
10  
100  
Rn1 = Rn2 ()  
Cn1 (F)  
Ln1 (H)  
FREQUENCY (MHz)  
1
1.414  
1.414  
Figure 4. Frequency Response for 2nd-Order Lowpass Filter  
_______________________________________________________________________________________  
9
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
FREQUENCY RESPONSE  
0
-10  
V
IN  
500mV/div  
-20  
-30  
-40  
-50  
-60  
V
OUT  
1V/div  
0.1  
1
10  
100  
10µs/div  
FREQUENCY (MHz)  
Figure 5. Multiburst Response  
Figure 6. Frequency Response for 3rd-Order Lowpass Filter  
3rd-Order Butterworth Lowpass Filter Realization  
If a flatter passband and more stopband attenuation  
are desired, a 3rd-order lowpass filter can be used.  
The design procedures are similar to the 2nd-order  
Butterworth lowpass filter.  
Y/C-to-Composite Mixer and Driver Circuit  
The Y/C-to-composite mixer and driver use two low-  
pass filters, the MAX9504A and the MAX9504B. In  
Figure 7, the top video DAC generates a luma signal,  
which is filtered through the passive RLC network and  
then amplified by the MAX9504B. The bottom video  
DAC generates a chroma signal, which is filtered and  
then amplified by the MAX9504A.  
Table 3 shows the normalized 3rd-order Butterworth  
lowpass filter with the cutoff frequency at 1 rad/s and  
the stopband frequency at 3 rad/s. Table 4 shows the  
appropriate L and C values for different source/load  
impedances, the bench measurement values for the -3dB  
frequency and the attenuation at 27MHz. The attenua-  
tion is over 40dB at 27MHz. At 6MHz, the attenuation is  
approximately 0.6dB for R1 = R2 = 150(Figure 6).  
LUMA OUT is directly connected to the output of the  
MAX9504B through a 75back-termination resistor;  
likewise, CHROMA OUT to the output of the MAX9504A.  
CVBS OUT (the composite video with blanking and  
sync output) is created by AC-coupling the chroma sig-  
nal to the luma signal through the 470pF capacitor,  
which looks like an AC short at the color subcarrier fre-  
quency of 3.58MHz for NTSC or 4.43MHz for PAL.  
Table 3. 3rd-Order Butterworth Lowpass  
Filter Normalized Values  
This circuit relies upon the feature that the MAX9504A/  
MAX9504B can drive two loads at the same time.  
Rn1 = Rn2  
Cn1 (F)  
Cn2 (F)  
Cn3 (F)  
Ln1 (H)  
()  
1
0.923  
0.923  
0.06  
1.846  
Table 4. Bench Measurement Values—3rd Order LPF  
R1 = R2 ()  
C1 (pF)  
220  
C2 (pF)  
220  
C3 (pF)  
15.0  
6.8  
L (µH)  
2.2  
3dB FREQUENCY (MHz) ATTENUATION AT 27MHz (dB)  
75  
9.3  
8.9  
9.0  
43  
50  
45  
150  
300  
120  
120  
4.7  
56  
56  
3.3  
10.0  
10 ______________________________________________________________________________________  
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
3-POLE RECONSTRUCTION LPF  
V
CC  
6.8pF  
0.1µF  
LUMA  
V
CC  
75Ω  
4.7µH  
VIDEO  
CURRENT  
DAC  
LUMA OUT  
IN  
OUT  
MAX9504B  
120pF  
120pF  
150Ω  
150Ω  
FB  
SHDN  
GND  
75Ω  
75Ω  
CHROMA OUT  
CVBS OUT  
3-POLE RECONSTRUCTION LPF  
6.8pF  
0.1µF  
CHROMA  
V
CC  
470pF  
75Ω  
4.7µH  
VIDEO  
CURRENT  
DAC  
IN  
OUT  
FB  
MAX9504A  
120pF  
120pF  
150Ω  
150Ω  
SHDN  
GND  
V
CC  
Figure 7. Y/C-to-Composite Mixer and Driver Circuit  
______________________________________________________________________________________ 11  
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
microstrip and stripline techniques to obtain full band-  
AC Output Coupling and Sag Correction  
width. To ensure that the PC board does not degrade  
the device’s performance, design it for a frequency  
greater than 1GHz. Pay careful attention to inputs and  
outputs to avoid large parasitic capacitance. Whether  
or not you use a constant-impedance board, observe  
the following design guidelines:  
The MAX9504 can use the sag configuration if the out-  
put requires AC-coupling and V  
4.5V. Sag correc-  
CC  
tion refers to the low-frequency compensation for the  
highpass filter formed by the 150load and the output  
capacitor. In video applications, the cutoff frequency  
must be less than 5Hz in order to pass the vertical sync  
interval and avoid field time distortion (field tilt). In the  
simplest configuration, a very large coupling capacitor  
(> 220µF typically) is used to achieve the 5Hz cutoff  
frequency. In the sag configuration, two smaller capaci-  
tors are used to replace the very large coupling capaci-  
Do not use wire-wrap boards; they are too inductive.  
Do not use IC sockets; they increase parasitic capaci-  
tance and inductance.  
Use surface-mount instead of through-hole compo-  
nents for better, high-frequency performance.  
tor (see Figure 8). For V  
capacitors.  
4.5V, C5 and C6 are 22µF  
CC  
Use a PC board with at least two layers; it should be  
as free from voids as possible.  
Layout and Power-Supply Bypassing  
The MAX9504A/MAX9504B operate from a single 2.7V  
to 5.5V supply. Bypass the supply with a 0.1µF capaci-  
Keep signal lines as short and as straight as possible.  
Do not make 90° turns; round all corners.  
tor as close to V  
possible. Maxim recommends using  
CC  
3-POLE RECONSTRUCTION LPF  
V
CC  
C3  
6.8pF  
C7  
0.1µF  
C5  
22µF  
L1  
4.7µH  
R3  
75Ω  
V
CC  
V
OUT  
VIDEO  
CURRENT  
DAC  
IN  
OUT  
FB  
C1  
120pF  
R1  
150Ω  
C2  
120pF  
R2  
150Ω  
C6  
22µF  
MAX9504  
GND  
SHDN  
V
CC  
Figure 8. SAG Correction Configuration  
12 ______________________________________________________________________________________  
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
Typical Operating Circuit  
V
CC  
2.7V TO 5.5V  
0.1µF  
V
CC  
3-POLE RECONSTRUCTION LPF  
C3  
6.8pF  
SHDN  
MAX9504A  
MAX9504B  
Z = 75  
0
75Ω  
75Ω  
L1  
4.7µH  
160mV OFFSET  
VIDEO  
CURRENT  
DAC  
IN  
OUT  
FB  
75Ω  
75Ω  
C2  
120pF  
C1  
120pF  
R1  
150Ω  
R2  
150Ω  
MAX9504B  
ONLY  
Z = 75Ω  
0
2.3kΩ  
580Ω  
1.2kΩ  
780Ω  
GND  
Pin Configurations (continued)  
Chip Information  
PROCESS: BiCMOS  
TOP VIEW  
+
OUT  
GND  
IN  
1
2
3
6
5
4
FB  
MAX9504A  
MAX9504B  
SHDN  
V
CC  
SOT23-6  
______________________________________________________________________________________ 13  
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
14 ______________________________________________________________________________________  
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
A
b
D
e
N
XXXX  
XXXX  
XXXX  
SOLDER  
MASK  
COVERAGE  
E
PIN 1  
0.10x45  
L
L1  
1
SAMPLE  
MARKING  
PIN 1  
INDEX AREA  
A
A
7
(N/2 -1) x e)  
C
L
C
L
b
L
L
A
e
e
A2  
EVEN TERMINAL  
ODD TERMINAL  
A1  
PACKAGE OUTLINE,  
6, 8, 10L uDFN, 2x2x0.80 mm  
1
-DRAWING NOT TO SCALE-  
21-0164  
A
2
______________________________________________________________________________________ 15  
3V/5V, 6dB Video Amplifiers with  
High Output-Current Capability  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
0.15  
0.020  
1.95  
1.95  
0.30  
NOM.  
0.75  
0.20  
0.025  
2.00  
2.00  
0.40  
MAX.  
0.80  
0.25  
0.035  
2.05  
2.05  
0.50  
A
A1  
A2  
D
-
E
L
L1  
0.10 REF.  
PACKAGE VARIATIONS  
PKG. CODE  
L622-1  
N
6
e
b
(N/2 -1) x e  
0.65 BSC  
0.50 BSC  
0.40 BSC  
0.30±0.05 1.30 REF.  
0.25±0.05 1.50 REF.  
0.20±0.03 1.60 REF.  
L822-1  
8
L1022-1  
10  
PACKAGE OUTLINE,  
6, 8, 10L uDFN, 2x2x0.80 mm  
2
21-0164  
A
-DRAWING NOT TO SCALE-  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9505

DirectDrive Video Amplifier with Reconstruction Filter and Analog Switch
MAXIM

MAX9505EEE

DirectDrive Video Amplifier with Reconstruction Filter and Analog Switch
MAXIM

MAX9505EEE+

暂无描述
MAXIM

MAX9505EEE-T

Video Amplifier, 1 Channel(s), 1 Func, BICMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX9505ETE

DirectDrive Video Amplifier with Reconstruction Filter and Analog Switch
MAXIM

MAX9505ETE+

Video Amplifier, 1 Channel(s), 1 Func, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-220, TQFN-16
MAXIM

MAX9505ETE+T

Video Amplifier, 1 Channel(s), 1 Func, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-220, TQFN-16
MAXIM

MAX9505ETE-T

Video Amplifier, 1 Channel(s), 1 Func, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-220, TQFN-16
MAXIM

MAX9507

1.8V DirectDrive Video Filter Amplifier with Load Detection and Dual SPST Analog Switches
MAXIM

MAX9507ATE+

1.8V DirectDrive Video Filter Amplifier with Load Detection and Dual SPST Analog Switches
MAXIM

MAX9507ATE+T

Video Amplifier, 1 Channel(s), 1 Func, BICMOS, TQFN-16
MAXIM

MAX9508

Video Filter Amplifier with SmartSleep and Bidirectional Video Support
MAXIM