MAX953ESA-T [MAXIM]

Operational Amplifier, 1 Func, 4000uV Offset-Max, CMOS, PDSO8, SO-8;
MAX953ESA-T
型号: MAX953ESA-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Operational Amplifier, 1 Func, 4000uV Offset-Max, CMOS, PDSO8, SO-8

放大器 光电二极管
文件: 总12页 (文件大小:347K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0431; Rev 2; 8/01  
Ultra-Low-Power, Single-Supply  
Op Amp + Comparator + Reference  
General Description  
Features  
The MAX951–MAX954 feature combinations of a  
micropower operational amplifier, comparator, and ref-  
erence in an 8-pin package. In the MAX951 and  
MAX952, the comparator’s inverting input is connected  
to an internal 1.2V 2ꢀ bandgap reference. The  
MAX953 and MAX954 are offered without an internal  
reference. The MAX951/MAX952 operate from a single  
2.7V to 7V supply with a typical supply current of 7µA,  
while the MAX953/MAX954 operate from 2.4V to 7V with  
a 5µA typical supply current. Both the op amp and  
comparator feature a common-mode input voltage  
range that extends from the negative supply rail to with-  
in 1.6V of the positive rail, as well as output stages that  
swing Rail-to-Rail®.  
Op Amp + Comparator + Reference in an 8-Pin  
µMAX Package (MAX951/MAX952)  
7µA Typical Supply Current  
(Op Amp + Comparator + Reference)  
Comparator and Op Amp Input Range Includes  
Ground  
Outputs Swing Rail-to-Rail  
2.4V to 7V Supply Voltage Range  
Unity-Gain Stable and 125kHz Decompensated  
A
V
10V/V Op Amp Options  
Internal 1.2V 2ꢀ ꢁandgap Reference  
Internal Comparator Hysteresis  
The op amps in the MAX951/MAX953 are internally  
compensated to be unity-gain stable, while the op  
amps in the MAX952/MAX954 feature 125kHz typical  
bandwidth, 66V/ms slew rate, and stability for gains of  
10V/V or greater. These op amps have a unique output  
stage that enables them to operate with an ultra-low  
supply current while maintaining linearity under loaded  
conditions. In addition, they have been designed to  
exhibit good DC characteristics over their entire operat-  
ing temperature range, minimizing input-referred errors.  
Op Amp Capable of Driving up to 1000pF Load  
Selector Guide  
INTERNAL  
2ꢀ  
PRECISION STAꢁILITY  
OP AMP  
GAIN  
SUPPLY  
CURRENT  
(µA)  
PART  
COMPARATOR  
REFERENCE  
(V/V)  
The comparator output stage of these devices continu-  
ously sources as much as 40mA. The comparators  
eliminate power-supply glitches that commonly occur  
when changing logic states, minimizing parasitic feed-  
back and making the devices easier to use. In addition,  
they contain 3mV internal hysteresis to ensure clean  
output switching, even with slow-moving input signals.  
MAX951  
MAX952  
MAX953  
MAX954  
Yes  
Yes  
No  
1
10  
1
Yes  
Yes  
Yes  
Yes  
7
7
5
5
No  
10  
Pin Configuration  
Applications  
Instruments, Terminals, and Bar-Code Readers  
Battery-Powered Systems  
TOP VIEW  
Automotive Keyless Entry  
Low-Frequency, Local-Area Alarms/Detectors  
Photodiode Preamps  
1
2
3
4
8
AMPOUT  
AMPIN-  
AMPIN+  
V
DD  
7
6
5
COMPOUT  
MAX951  
MAX952  
MAX953  
MAX954  
REF (COMPIN-)  
COMPIN+  
Smart Cards  
V
SS  
Infrared Receivers for Remote Controls  
Smoke Detectors and Safety Sensors  
DIP/SO/µMAX  
(
) ARE FOR MAX953/MAX954  
Typical Operating Circuit and Ordering Information appear  
at end of data sheet.  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Ultra-Low-Power, Single-Supply  
Op Amp + Comparator + Reference  
AꢁSOLUTE MAXIMUM RATINGS  
Supply Voltage (V  
Inputs  
to V )....................................................9V  
8-Pin SO (derate 5.88mW/°C above +70°C)................471mW  
8-Pin µMAX (derate 4.10mW/°C above +70°C)...........330mW  
8-Pin CERDIP (derate 8.00mW/°C above +70°C)........640mW  
Operating Temperature Ranges  
DD  
SS  
Current (AMPIN_, COMPIN_)..........................................20mA  
Voltage (AMPIN_, COMPIN_).......(V + 0.3V) to (V - 0.3V)  
DD  
SS  
Outputs  
MAX95_E_A.....................................................-40°C to +85°C  
MAX95_MJA ..................................................-55°C to +125°C  
Maximum Junction Temperatures  
MAX95_E_A .................................................................+150°C  
MAX95_MJA.................................................................+175°C  
Storage Temperature Range.............................-65°C to +165°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Current (AMPOUT, COMPOUT)......................................50mA  
Current (REF) ..................................................................20mA  
Voltage (AMPOUT, COMPOUT,  
REF)...................................(V + 0.3V) to (V - 0.3V)  
DD  
SS  
Short-Circuit Duration (REF, AMPOUT)..................Continuous  
Short-Circuit Duration (COMPOUT, V  
Continuous Power Dissipation (T = +70°C)  
to V 7V)......1min  
DD  
SS  
A
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ...727mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 2.8V to 7V for MAX951/MAX952, V  
= 2.4V to 7V for MAX953/MAX954, V = 0, V  
= 0 for the MAX953/MAX954,  
CM COMP  
DD  
DD  
SS  
V
= 0, AMPOUT = (V  
+ V )/2, COMPOUT = low, T = T  
to T  
, typical values are at T = +25°C, unless  
MAX A  
CM OPAMP  
DD  
SS  
A
MIN  
otherwise noted.)  
PARAMETER  
SYMꢁOL  
CONDITIONS  
MIN  
2.8  
2.7  
2.4  
TYP  
MAX  
7.0  
7.0  
7.0  
10  
11  
13  
8
UNITS  
T
A
T
A
= T  
to T  
MIN MAX  
MAX951/MAX952  
Supply Voltage Range  
V
DD  
= -10°C to +85°C  
V
MAX953/MAX954  
= +25°C, MAX951/MAX952  
T
A
7
5
MAX951E/MAX952E  
MAX951M/MAX952M  
Supply Current  
(Note 1)  
I
S
µA  
T
A
= +25°C, MAX953/MAX954  
MAX953E/MAX954E  
MAX953M/MAX954M  
9
11  
COMPARATOR  
T
= +25°C  
1
3
14  
14  
6
A
MAX95_EPA/ESA  
MAX95_EUA (µMAX)  
MAX95_MJA  
Input Offset Voltage  
(Note 2)  
V
OS  
mV  
T
= +25°C  
4
17  
A
MAX95_EUA (µMAX)  
MAX95_EPA/ESA  
MAX95_MJA  
Trip Point  
(Note 3)  
mV  
nA  
5
7
T
= +25°C  
0.003  
0.003  
0.050  
5
A
Input Leakage Current  
(Note 4)  
MAX95_E  
MAX95_M  
40  
Common-Mode Input Range  
CMVR  
CMRR  
V
SS  
V
DD  
-1.6V  
1
V
Common-Mode Rejection Ratio  
V
SS  
to (V  
- 1.6V), MAX953/MAX954  
0.1  
mV/V  
DD  
2
_______________________________________________________________________________________  
Ultra-Low-Power, Single-Supply  
Op Amp + Comparator + Reference  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 2.8V to 7V for MAX951/MAX952, V  
= 2.4V to 7V for MAX953/MAX954, V = 0, V  
= 0 for the MAX953/MAX954,  
CM COMP  
DD  
DD  
SS  
V
= 0, AMPOUT = (V  
+ V )/2, COMPOUT = low, T = T  
to T  
, typical values are at T = +25°C, unless  
MAX A  
CM OPAMP  
DD  
SS  
A
MIN  
otherwise noted.)  
PARAMETER  
SYMꢁOL  
CONDITIONS  
MIN  
TYP  
0.05  
0.05  
22  
MAX  
UNITS  
MAX951/MAX952, V  
= 2.8V to 7V  
1
1
DD  
DD  
Power-Supply Rejection Ratio  
Response Time  
PSRR  
mV/V  
MAX953/MAX954, V  
= 2.4V to 7V  
V
= 10mV  
OD  
OD  
C = 100pF, T  
=
A
L
t
pd  
µs  
+25°C, V - V = 5V  
DD  
SS  
V
= 100mV  
4
Output High Voltage  
Output Low Voltage  
REFERENCE  
V
I
I
= 2mA  
V - 0.4V  
DD  
V
V
OH  
SOURCE  
V
= 1.8mA  
V + 0.4V  
SS  
OL  
SINK  
MAX95_EPA/ESA  
MAX95_EUA (µMAX)  
MAX95_MJA  
1.176  
1.130  
1.164  
1.200  
1.200  
1.200  
0.1  
1.224  
1.270  
1.236  
Reference Voltage  
(Note 5)  
V
REF  
V
I
I
I
=
=
=
20µA, T = +25°C  
OUT  
OUT  
OUT  
A
Load Regulation  
6µA, MAX95_E  
3µA, MAX95_M  
1.5  
1.5  
%
Voltage Noise  
e
n
0.1Hz to 10Hz  
16  
1
µV  
P-P  
OP AMP  
T
A
= +25°C  
3
MAX95_EPA/ESA  
MAX95_EUA (µMAX)  
MAX95_MJA  
4
5
Input Offset Voltage  
Input Bias Current  
V
mV  
OS  
5
T
A
= +25°C  
0.003  
0.003  
0.003  
1000  
0.050  
5
I
MAX95_E  
MAX95_M  
nA  
B
40  
T
= +25°C  
100  
50  
10  
40  
25  
5
A
Large-Signal Gain  
(No Load)  
AMPOUT = 0.5V to  
A
A
MAX95_E  
MAX95_M  
V/mV  
V/mV  
VOL  
4.5V, V  
- V = 5V  
DD  
SS  
T
A
= +25°C  
150  
Large-Signal Gain  
AMPOUT = 0.5V to  
4.5V, V - V = 5V  
MAX95_E  
MAX95_M  
VOL  
(100kLoad to V  
)
SS  
DD  
SS  
A
= 1V/V, MAX951/MAX953, V  
- V = 5V  
20  
125  
12.5  
66  
V
DD  
SS  
Gain Bandwidth  
Slew Rate  
GBW  
SR  
kHz  
A = 10V/V, MAX952/MAX954, V - V = 5V  
V
V
DD  
DD  
SS  
A
= 1V/V, MAX951/MAX953, V  
- V = 5V  
SS  
V/ms  
A = 10V/V, MAX952/MAX954, V - V = 5V  
V
DD  
SS  
Common-Mode Input Range  
CMVR  
CMRR  
V
SS  
V
DD  
- 1.6  
1
V
Common-Mode Rejection Ratio  
V
V
V
= V to (V - 1.6V)  
DD  
0.03  
0.07  
0.07  
80  
mV/V  
CM OPAMP  
SS  
= 2.8V to 7V, MAX951/MAX952  
= 2.4V to 7V, MAX953/MAX954  
1.0  
1.0  
DD  
DD  
Power-Supply Rejection Ratio  
PSRR  
mV/V  
f = 1kHz  
o
nVHz  
Input Noise Voltage  
e
n
f = 0.1Hz to 10Hz  
o
1.2  
µV  
P-P  
_______________________________________________________________________________________  
3
Ultra-Low-Power, Single-Supply  
Op Amp + Comparator + Reference  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 2.8V to 7V for MAX951/MAX952, V  
= 2.4V to 7V for MAX953/MAX954, V = 0, V  
= 0 for the MAX953/MAX954,  
CM COMP  
DD  
DD  
SS  
V
= 0, AMPOUT = (V  
+ V )/2, COMPOUT = low, T = T  
to T  
, typical values are at T = +25°C, unless  
MAX A  
CM OPAMP  
DD  
SS  
A
MIN  
otherwise noted.)  
PARAMETER  
SYMꢁOL  
CONDITIONS  
MIN  
TYP  
V
MAX  
UNITS  
Output High Voltage  
Output Low Voltage  
V
OH  
R = 100kto V  
V
- 500mV  
V
V
L
SS  
SS  
DD  
V
OL  
R = 100kto V  
+ 50mV  
SS  
L
T
T
= +25°C  
70  
A
A
= +25°C, V  
- V = 5V  
300  
60  
820  
DD  
DD  
SS  
Output Source Current  
Output Sink Current  
I
µA  
SRC  
SNK  
MAX95_E  
MAX95_M  
40  
T
A
T
A
= +25°C  
70  
= +25°C, V  
- V = 5V  
200  
50  
570  
µA  
SS  
I
MAX95_E  
MAX95_M  
30  
Note 1: Supply current is tested with COMPIN+ = (REF - 100mV) for MAX951/MAX952, and COMPIN+ = 0 for MAX953/MAX954.  
Note 2: Input Offset Voltage is defined as the center of the input-referred hysteresis. V = REF for MAX951/MAX952, and  
CM COMP  
V
= 0 for MAX953/MAX954.  
CM COMP  
Note 3: Trip Point is defined as the differential input voltage required to make the comparator output change. The difference  
between upper and lower trip points is equal to the width of the input-referred hysteresis. V = REF for  
CM COMP  
MAX951/MAX952, and V  
= 0 for MAX953/MAX954.  
CM COMP  
Note 4: For MAX951/MAX952, input leakage current is measured for COMPIN- at the reference voltage. For MAX953/MAX954, input  
leakage current is measured for both COMPIN+ and COMPIN- at V  
.
SS  
Note 5: Reference voltage is measured with respect to V . Contact factory for availability of a 3% accurate reference voltage in the  
SS  
µMAX package.  
4
________________________________________________________________________________________  
Ultra-Low-Power, Single-Supply  
Op Amp + Comparator + Reference  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
REFERENCE VOLTAGE vs. TEMPERATURE  
1.220  
1.215  
1.210  
1.205  
1.200  
10  
9
9
8
8
7
7
MAX951/MAX952  
6
MAX951/MAX952  
6
5
4
3
2
1
0
5
MAX953/MAX954  
4
3
2
1
0
MAX953/MAX954  
1.195  
1.190  
V
= 0  
DD  
CM OPAMP  
V
= 2.8V (MAX951/952), V = 2.4V  
DD  
DD  
CM OPAMP  
AMPOUT = (V + V )/2  
SS  
(MAX953/954), V = 0, V  
= 0  
SS  
DD  
COMP- = 1.2V or REF  
COMP+ = 1.1V  
V
= 5V  
0
1.185  
1.180  
DD  
AMPOUT = 1/2 V , COMP- = 1.2V or REF  
COMP+ = 1.1V  
-60 -40 -20  
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
DC OPEN-LOOP GAIN vs.  
SUPPLY VOLTAGE  
REFERENCE OUTPUT VOLTAGE  
vs. LOAD CURRENT  
7
1x10  
1.30  
80  
70  
60  
V
DD  
= 2.0 to 3.0V, V = -2.5V  
SS  
V
= 5V  
SUPPLY  
NONINVERTING  
AMPIN+ = 0  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
6
1x10  
A
CL  
= 1V/V (MAX951/2)  
= 10V/V (MAX953/4),  
COMP- = 1.2V or REF  
CL  
SINKING CURRENT  
5
A
1x10  
50  
40  
COMP+ = 1.1V from V  
SS  
4
1x10  
A
3
1x10  
C
30  
20  
2
1x10  
B
SOURCING CURRENT  
A: MAX951/952 REF  
10 B: MAX951/953 OP AMP  
1
1x10  
1mHz INPUT SIGNAL  
= 100kΩ  
C: MAX952/954 OP AMP  
0
R
L
0
1x10  
1
10  
100  
1k  
10k 100k  
1M  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
SUPPLY VOLTAGE (V)  
1
10  
100  
FREQUENCY (Hz)  
LOAD CURRENT (µA)  
MAX952/MAX954  
OPEN-LOOP GAIN AND PHASE  
MAX951/MAX953  
OPEN-LOOP GAIN AND PHASE  
vs. FREQUENCY  
DC OPEN-LOOP GAIN  
vs. TEMPERATURE  
vs. FREQUENCY  
MAX951-954-toc08  
MAX951-954-toc09  
6
5
4
3
2
0
100  
80  
1x10  
1x10  
1x10  
1x10  
1x10  
100  
80  
0
-60  
-60  
PHASE  
60  
PHASE  
-120  
-180  
-240  
60  
40  
20  
0
-120  
-180  
-240  
-300  
-360  
GAIN  
40  
GAIN  
20  
0
V
= 5V  
-300  
-360  
DD  
1
0
1x10  
1x10  
1MHz INPUT SIGNAL  
= 100kΩ  
R
= 100kΩ  
R
= 100kΩ  
L
L
R
L
-20  
-20  
1
10  
100  
1k  
10k 100k 1M  
-60 -40 -20  
0
20 40 60 80 100 120 140  
1
10  
100  
1k  
10k  
100k 1M  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
__________________________________________________________________________________________________ 5  
Ultra-Low-Power, Single-Supply  
Op Amp + Comparator + Reference  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
OP AMP OUTPUT VOLTAGE  
vs. LOAD CURRENT  
OP AMP SHORT-CIRCUIT CURRENT  
vs. SUPPLY VOLTAGE  
0.10  
0.08  
2000  
1500  
1000  
500  
NONINVERTING  
A, D: V  
B, E: V  
C, F: V  
=
=
=
1.5V  
2.5V  
3.5V  
SUPPLY  
SUPPLY  
SUPPLY  
AMPIN+ = (V - V )/2  
DD SS  
C
A
B
0.06  
0.04  
SINKING CURRENT  
0.02  
SHORT TO V  
SS  
0.10  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
SOURCING CURRENT  
0
E
F
D
SHORT TO V  
DD  
-500  
NONINVERTING  
AMPIN+ = GND  
-1000  
2.5  
3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
SUPPLY VOLTAGE (V)  
3.0  
1
10  
100  
1000 2000  
LOAD CURRENT (µA)  
OP AMP PERCENT OVERSHOOT  
vs. CAPACITIVE LOAD  
COMPARATOR OUTPUT VOLTAGE  
vs. LOAD CURRENT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
PARTSV  
SUPPLY  
A: MAX951/952, 3V  
SOURCING CURRENT  
B: MAX951/953, 5V  
D: MAX952/954, 3V  
E: MAX952/954, 5V  
MAX951/953, A = 1V/V  
C
E
MAX952/954, A  
= 10V/V  
AMPOUT = 1V  
D
B
P-P  
V
= (V - V /2)  
CM  
DD SS  
A
V
= 5V  
SUPPLY  
SINKING CURRENT  
1
2
3
4
5
6
10  
10  
10  
10  
10  
10  
0.01  
0.1  
1
10  
100 200  
CAPACITIVE LOAD (pF)  
LOAD CURRENT (mA)  
COMPARATOR SHORT-CIRCUIT  
CURRENT vs. SUPPLY VOLTAGE  
250  
200  
150  
100  
SOURCING CURRENT  
SINKING CURRENT  
50  
0
-50  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
SUPPLY VOLTAGE (V)  
6
________________________________________________________________________________________  
Ultra-Low-Power, Single-Supply  
Op Amp + Comparator + Reference  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
COMPARATOR RESPONSE TIME  
COMPARATOR RESPONSE TIME  
FOR VARIOUS INPUT OVERDRIVES (FALLING)  
FOR VARIOUS INPUT OVERDRIVES (RISING)  
MAX951-954 TOC16  
INPUT  
100mV/div  
0
OUTPUT  
1V/div  
100mV  
100mV  
OUTPUT  
1V/div  
10mV  
20mV  
10mV  
50mV  
20mV  
50mV  
0
0
INPUT  
100mV/div  
0
2µs/div  
MAX953: LOAD = 100kΩ || 100pF, V  
2µs/div  
MAX953: LOAD = 100kΩ || 100pF, V  
= 5V  
SUPPLY  
= 5V  
SUPPLY  
MAX951/MAX953 OP AMP  
SMALL-SIGNAL TRANSIENT RESPONSE  
MAX951/MAX953 OP AMP  
LARGE-SIGNAL TRANSIENT RESPONSE  
INPUT  
2V/div  
INPUT  
200mV/div  
OUTPUT  
1V/div  
OUTPUT  
50mV/div  
2.5V  
2.5V  
200µs/div  
100µs/div  
NONINVERTING, A = 1V/V,  
VCL  
NONINVERTING: A = 1V/V,  
VCL  
LOAD = 100kΩ || 100pF to V , V  
= 5V  
SS SUPPLY  
LOAD = 100kΩ || 100pF to V , V  
= 5V  
SS SUPPLY  
MAX952/MAX954 OP AMP  
LARGE-SIGNAL TRANSIENT RESPONSE  
MAX952/MAX954 OP AMP  
SMALL-SIGNAL TRANSIENT RESPONSE  
INPUT  
20mV/div  
INPUT  
200mV/div  
OUTPUT  
1V/div  
OUTPUT  
50mV/div  
2.5V  
2.5V  
100µs/div  
100µs/div  
NONINVERTING, A = 10V/V,  
NONINVERTING, A = 10V/V,  
VCL  
VCL  
LOAD = 100kΩ || 100pF to V , V  
= 5V  
LOAD = 100kΩ || 100pF to V , V  
= 5V  
SS SUPPLY  
SS SUPPLY  
__________________________________________________________________________________________________ 7  
Ultra-Low-Power, Single-Supply  
Op Amp + Comparator + Reference  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX951  
MAX952  
MAX953  
MAX954  
1
2
1
2
AMPOUT  
AMPIN-  
Op Amp Output  
Inverting Op Amp Input  
Noninverting Op Amp Input  
Negative Supply or Ground  
Noninverting Comparator Input  
3
3
AMPIN+  
4
4
V
SS  
5
5
COMPIN+  
REF  
6
6
1.200V Reference Output. Also connected to inverting comparator input.  
7
COMPIN-  
COMPOUT  
Inverting Comparator Input  
Comparator Output  
Positive Supply  
7
8
8
V
DD  
Functional Diagrams  
AMPOUT  
OP AMP  
V
8
7
DD  
8
1
V
DD  
AMPOUT  
OP AMP  
COMPOUT  
MAX953  
MAX954  
1
2
3
AMPIN-  
AMPIN+  
COMPOUT  
COMPIN-  
7
6
x1  
2
3
AMPIN-  
AMPIN+  
REF  
6
5
1.20V  
4
V
SS  
COMP  
COMP  
4
COMPIN+  
5
V
SS  
COMPIN+  
MAX951  
MAX952  
Figure 1. MAX951–MAX954 Functional Diagrams  
high-impedance differential inputs and a common-  
mode input voltage range that extends from the nega-  
tive supply rail to within 1.6V of the positive rail. They  
have a CMOS output stage that swings rail to rail and is  
driven by a proprietary high gain stage, which enables  
them to operate with an ultra-low supply current while  
maintaining linearity under loaded conditions. Careful  
design results in good DC characteristics over their  
entire operating temperature range, minimizing input  
referred errors.  
Detailed Description  
The MAX951MAX954 are combinations of a micropow-  
er op amp, comparator, and reference in an 8-pin pack-  
age, as shown in Figure 1. In the MAX951/MAX952, the  
comparators negative input is connected to a 1.20V  
2% bandgap reference. All four devices are optimized  
to operate from a single supply. Supply current is less  
than 10µA (7µA typical) for the MAX951/MAX952 and  
less than 8µA (5µA typical) for the MAX953/MAX954.  
Op Amp  
The op amps in the MAX951/MAX953 are internally  
compensated to be unity-gain stable, while the op  
amps in the MAX952/MAX954 feature 125kHz typical  
gain bandwidth, 66V/ms slew rate, and stability for  
gains of 10V/V or greater. All these op amps feature  
Comparator  
The comparator in the MAX951MAX954 has a high-  
impedance differential input stage with a common-  
mode input voltage range that extends from the  
negative supply rail to within 1.6V of the positive rail.  
Their CMOS output stage swings rail-to-rail and can  
8
_______________________________________________________________________________________  
Ultra-Low-Power, Single-Supply  
Op Amp + Comparator + Reference  
R2  
R2  
RA  
R1  
V
V
S
IN  
COMPOUT  
COMPOUT  
RB  
REF  
REF  
Figure 2. External Hysteresis  
continuously source as much as 40mA. The compara-  
tors eliminate power-supply glitches that commonly  
occur when changing logic states, minimizing parasitic  
feedback and making them easier to use. In addition,  
they include internal hysteresis ( 3mV) to ensure clean  
output switching, even with slow-moving input signals.  
The inputs can be taken above and below the supply  
rails up to 300mV without damage. Input voltages  
beyond this range can forward bias the ESD-protection  
diodes and should be avoided.  
Comparator Hysteresis  
Hysteresis increases the comparators noise immunity  
by increasing the upper threshold and decreasing the  
lower threshold. The comparator in these devices con-  
tain a 3mV wide internal hysteresis band to ensure  
clean output switching, even with slow-moving signals.  
When necessary, hysteresis can be increased by using  
external resistors to add positive feedback, as shown in  
Figure 2. This circuit increases hysteresis at the  
expense of more supply current and a slower  
response. The design procedure is as follows:  
The MAX951MAX954 comparator outputs swing rail-  
to-rail (from V  
to V ). TTL compatibility is assured  
SS  
DD  
1) Set R2. The leakage current in COMPIN+ is less  
than 5nA (up to +85°C), so current through R2 can  
be as little as 500nA and still maintain good accura-  
cy. If R2 = 2.4M, the current through R2 at the  
by using a 5V 10% supply.  
The MAX951MAX954 comparators continuously output  
source currents as high as 40mA and sink currents of  
over 5mA, while keeping quiescent currents in the  
microampere range. The output can source 100mA (at  
upper trip point is V  
/R2 or 500nA.  
REF  
2) Choose the width of the hysteresis band. In this  
V
= 5V) for short pulses, as long as the packages  
DD  
example choose V  
= 50mV.  
EHYST  
maximum power dissipation is not exceeded. The out-  
put stage does not generate crowbar switching currents  
during transitions; this minimizes feedback through the  
supplies and helps ensure stability without bypassing.  
V
2V  
[
]
EHYST  
IHYST  
R1= R2  
V
+ 2V  
IHYST  
(
)
DD  
where the internal hysteresis is V  
= 3mV.  
IHYST  
Reference  
The internal reference in the MAX951/MAX952 has an  
3) Determine R1. If the supply voltage is 5V, then R1 =  
output of 1.20V with respect to V . Its accuracy is 2%  
SS  
24k.  
in the -40°C to +85°C temperature range. It is comprised  
of a trimmed bandgap reference fed by a proportional-  
to-absolute-temperature (PTAT) current source and  
buffered by a micropower unity-gain amplifier. The REF  
output is typically capable of sourcing and sinking 20µA.  
Do not bypass the reference output. The reference is  
stable for capacitive loads less than 100pF.  
4) Check the hysteresis trip points. The upper trip point is  
R1 + R2  
(
)
V
=
V
+ V  
(
)
IN(H)  
REF IHYST  
R2  
or 1.22V in our example. The lower trip point is 50mV  
less, or 1.17V in our example.  
Applications Information  
If a resistor divider is used for R1, the calculations  
should be modified using a Thevenin equivalent  
model.  
The micropower MAX951MAX954 are designed to  
extend battery life in portable instruments and add  
functionality in power-limited industrial controls.  
Following are some practical considerations for circuit  
design and layout.  
5) Determine R :  
A
_______________________________________________________________________________________  
9
Ultra-Low-Power, Single-Supply  
Op Amp + Comparator + Reference  
V
= 5V  
CC  
ANTENNA  
AMPIN+  
0.1µF  
20kΩ  
MAX952  
0.1µF  
AMPOUT  
10MΩ  
C1  
A
390pF  
AMP  
L1  
C1  
B
330pF  
330mH  
R2  
1MΩ  
C1  
C
COMP  
1.2V  
100kΩ  
20pF to  
60pF  
R1  
5.1MΩ  
1
REF  
L1 x C1 =  
2
(2πf )  
C
2pF to 10pF  
LAYOUT-SENSITIVE AREA,  
METAL RFI SHIELDING ADVISED  
Figure 3. Compensation for Feedback-Node Capacitance  
Figure 4. Low-Frequency Radio Receiver Application  
Op Amp Stability and Board Layout  
Considerations  
V
SHYST  
R
R2  
, for V  
>> V  
A
SHYST IHYST  
V
DD  
Unlike other industry-standard micropower CMOS  
op amps, the op amps in the MAX951MAX954 main-  
tain stability in their minimum gain configuration while  
driving heavy capacitive loads, as demonstrated in the  
MAX951/MAX953 Op Amp Percent Overshoot vs.  
Capacitive Load graph in the Typical Operating  
Characteristics.  
In the example, R is again 24k.  
6) Select the upper trip point V  
at 4.75V.  
A
. Our example is set  
S(H)  
7) Calculate R .  
B
V
+ V  
IHYST  
R2 R  
(
) ( )(  
)
A
REF  
A
Although this family is primarily designed for low-  
frequency applications, good layout is extremely impor-  
tant. Low-power, high-impedance circuits may increase  
the effects of board leakage and stray capacitance. For  
example, the combination of a 10Mresistance (from  
leakage between traces on a contaminated, poorly  
designed PC board) and a 1pF stray capacitance  
provides a pole at approximately 16kHz, which is near  
the amplifiers bandwidth. Board routing and layout  
should minimize leakage and stray capacitance. In  
some cases, stray capacitance may be unavoidable  
and it may be necessary to add a 2pF to 10pF capaci-  
tor across the feedback resistor to compensate; select  
the smallest capacitor value that ensures stability.  
R
=
B
R2 V  
V  
+ V  
R
+ R2  
(
)
(
)(  
)
S H  
( )  
REF  
IHSYT  
where R is 8.19k, or approximately 8.2k.  
B
Input Noise Considerations  
Because low power requirements often demand high-  
impedance circuits, effects from radiated noise are more  
significant. Thus, traces between the op amp or com-  
parator inputs and any resistor networks attached should  
be kept as short as possible.  
Crosstalk  
Reference  
Internal crosstalk to the reference from the comparator  
is package dependent. Typical values (V  
45mV for the plastic DIP package and 32mV for the SO  
package. Applications using the reference for the op  
amp or external circuitry can eliminate this crosstalk by  
usinga simple RC lowpass filter, as shown inFigure 5.  
Input Overdrive  
With 100mV overdrive, comparator propagation delay  
is typically 6µs. The Typical Operating Characteristics  
show propagation delay for various overdrive levels.  
= 5V) are  
DD  
Supply current can increase when the op amp in the  
MAX951MAX954 is overdriven to the negative supply rail.  
For example, when connecting the op amp as a compara-  
tor and applying a -100mV input overdrive, supply current  
rises by around 15µA and 32µA for supply voltages of  
2.8V and 7V, respectively.  
Op Amp  
Internal crosstalk to the op amp from the comparator is  
package dependent, but not input-referred. Typical  
values (V  
= 5V) are 4mV for the plastic DIP package  
DD  
and 280µV for the SO package.  
10 _______________________________________________________________________________________  
Ultra-Low-Power, Single-Supply  
Op Amp + Comparator + Reference  
V
= 5V  
CC  
MAX953  
C2  
15pF, 5%  
10kHz  
5V  
P-P  
V
CC  
NEC  
R2  
NEC  
SE307-C  
PH302B  
1.0M,1%  
0.1µF  
30kΩ  
4.7MΩ  
RADIOACTIVE  
IONIZATION  
10MΩ  
51Ω  
R1  
A
AMP  
C1  
AMP  
CHAMBER  
49.9kΩ, 1%  
150pF, 5%  
SMOKE SENSOR  
COMP  
R1  
B
49.9kΩ, 1%  
COMP  
100kΩ  
1.2V  
LAYOUT-SENSITIVE AREA  
0.1µF  
MAX952  
5.1MΩ  
REF  
LAYOUT-SENSITIVE AREA  
1
R1 x C1 = R2 x C2 =  
2π f  
C
Figure 5. Infrared Receiver Application  
Figure 6. Sensor Preamp and Alarm Trigger Application  
receiver. The op amp is configured as a Delyiannis-  
Friend bandpass filter to reduce disturbances from  
noise and eliminate low-frequency interference from  
sunlight, fluorescent lights, etc. This circuit is applica-  
ble for TV remote controls and low-frequency data links  
up to 20kbps. Carrier frequencies are limited to around  
10kHz. 10kHz is used in the example circuit.  
Power-Supply Bypassing  
Power-supply bypass capacitors are not required if the  
supply impedance is low. For single-supply applications,  
it is good general practice to bypass V  
with a. 0.1µF  
DD  
capacitor to ground. Do not bypass the reference output.  
Applications Circuits  
Component layout and routing for the amplifier should  
be tight to reduce stray capacitance, 60Hz interfer-  
ence, and RFI from the comparator. Crosstalk from  
comparator edges will distort the amplifier signal. In  
order to minimize the effect, a lowpass RC filter is  
added to the connection from the reference to the non-  
inverting input of the op amp.  
Low-Frequency Radio Receiver for  
Alarms and Detectors  
The circuit in Figure 4 is useful as a front end for low-  
frequency RF alarms. The unshielded inductor (M7334-  
ND from Digikey) is used with capacitors C1 , C1 , and  
A
B
C1 in a resonant circuit to provide frequency selectivity.  
C
The op amp from a MAX952 amplifies the signal  
received. The comparator improves noise immunity,  
provides a signal strength threshold, and translates the  
received signal into a pulse train. Carrier frequencies are  
limited to around 10kHz. 10kHz is used in the example in  
Figure 4.  
Sensor Preamp and Alarm Trigger for  
Smoke Detectors  
The high-impedance CMOS inputs of the MAX951–  
MAX954 op amps are ideal for buffering high-imped-  
ance sensors, such as smoke detector ionization cham-  
bers, piezoelectric transducers, gas detectors, and pH  
sensors. Input bias currents are typically less than 3pA  
at room temperature. A 5µA typical quiescent current  
for the MAX953 will minimize battery drain without  
resorting to complex sleep schemes, allowing continu-  
ous monitoring and immediate detection.  
The layout and routing of components for the amplifier  
should be tight to minimize 60Hz interference and  
crosstalk from the comparator. Metal shielding is  
recommended to prevent RFI from the comparator or  
digital circuitry from exciting the receiving antenna. The  
transmitting antenna can be long parallel wires spaced  
about 7.2cm apart, with equal but opposite currents.  
Radio waves from this antenna will be detectable when  
the receiver is brought within close proximity, but  
cancel out at greater distances.  
Ionization-type smoke detectors use a radioactive source,  
such as Americium, to ionize smoke particles. A positive  
voltage on a plate attached to the source repels the posi-  
tive smoke ions and accelerates them toward an outer  
electrode connected to ground. Some ions collect on an  
intermediate plate. With careful design, the voltage on this  
plate will stabilize at a little less than one-half the supply  
voltage under normal conditions, but rise higher when  
smoke increases the ion current. This voltage is buffered  
Infrared Receiver Front End for  
Remote Controls and Data Links  
The circuit in Figure 5 uses the MAX952 as a pin photo-  
diode preamplifier and discriminator for an infrared  
______________________________________________________________________________________ 11  
Ultra-Low-Power, Single-Supply  
Op Amp + Comparator + Reference  
by the high-input-impedance op amp of a MAX951  
(Figure 6). The comparator and resistor voltage divider  
set an alarm threshold to indicate a fire.  
Chip Topography  
V
DD  
AMPOUT  
Design and fabrication of the connection from the inter-  
mediate plate of the ionization chamber to the nonin-  
verting input of the op amp is critical, since the  
AMPIN-  
COMPOUT  
impedance of this node must be well above 50M. This  
connection must be as short and direct as possible to  
prevent charge leakage and 60Hz interference. Where  
0.084"  
(2.134mm)  
possible, the grounded outer electrode or chassis of  
the ionization chamber should shield this connection to  
reduce 60Hz interference. Pay special attention to  
board cleaning, to prevent leakage due to ionic com-  
pounds such as chlorides, flux, and other contaminants  
from the manufacturing process. Where applicable, a  
coating of high-purity wax may be used to insulate this  
connection and prevent leakage due to surface mois-  
ture or an accumulation of dirt.  
AMPIN+  
REF(COMPIN-)  
COMPIN+  
V
SS  
0.058"  
(1.473mm)  
(
) ARE FOR MAX953/MAX954  
Ordering Information  
Chip Information  
PART  
TEMP RANGE  
0°C to +70°C  
PIN-PACKAGE  
Dice*  
TRANSISTOR COUNT: 163  
SUBSTRATE CONNECTED TO V  
MAX951C/D  
MAX951EPA  
MAX951ESA  
MAX951EUA  
MAX951MJA  
MAX952C/D  
MAX952EPA  
MAX952ESA  
MAX952EUA  
MAX952MJA  
MAX953C/D  
MAX953EPA  
MAX953ESA  
MAX953EUA  
MAX953MJA  
MAX954C/D  
MAX954EPA  
MAX954ESA  
MAX954EUA  
MAX954MJA  
DD  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
8 Plastic Dip  
8 SO  
__________Typical Operating Circuit  
8 µMAX  
8 CERDIP**  
Dice*  
8
V
CC  
0.1µF  
INPUT  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
8 Plastic Dip  
8 SO  
AMPIN+  
3
8 µMAX  
MAX951  
MAX952  
2
8 CERDIP**  
Dice*  
1
5
6
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
8 Plastic Dip  
8 SO  
1MΩ  
COMPOUT  
7
R2  
R1  
8 µMAX  
8 CERDIP**  
Dice*  
REF  
4
1.20V  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
8 Plastic Dip  
8 SO  
V
SS  
8 µMAX  
8 CERDIP**  
Package Information  
For the latest package outline information, go to  
*Dice are tested at T = +25°C, DC parameters only.  
A
**Contact factory for availability and processing to MIL-STD-883.  
www.maxim-ic.com/packages.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX953EUA

Ultra-Low-Power, Single-Supply Op Amp Comparator Reference
MAXIM

MAX953EUA+

Operational Amplifier, 1 Func, 5000uV Offset-Max, CMOS, PDSO8, UMAX-8
MAXIM

MAX953EUA+T

Operational Amplifier, 1 Func, 5000uV Offset-Max, CMOS, PDSO8, UMAX-8
MAXIM

MAX953EUA-T

暂无描述
MAXIM

MAX953MJA

Ultra-Low-Power, Single-Supply Op Amp Comparator Reference
MAXIM

MAX954

Ultra-Low-Power, Single-Supply Op Amp Comparator Reference
MAXIM

MAX9540

Graphics Video Sync Adder/Extractor
MAXIM

MAX9540EUI

Graphics Video Sync Adder/Extractor
MAXIM

MAX9540EUI+

Consumer Circuit, Bipolar, PDSO28, 4.40 MM, LEAD FREE, MO-153AE, TSSOP-28
MAXIM

MAX9540EUI+T

暂无描述
MAXIM

MAX9541

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals
MAXIM

MAX9541AEE+

Quadruple, 2:1, Mux Amplifiers for Standard-Definition and VGA Signals
MAXIM