MAX97000_V01 [MAXIM]

Audio Subsystem with Mono Class D Speaker and Class H Headphone Amplifier;
MAX97000_V01
型号: MAX97000_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Audio Subsystem with Mono Class D Speaker and Class H Headphone Amplifier

文件: 总34页 (文件大小:3686K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5004; Rev 1; 6/10  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
General Description  
Features  
S1.6V_to_2.0V_Headphone_Supply_Voltage  
The MAX97000 audio subsystem combines a mono  
speaker amplifier with a stereo headphone amplifier and  
an analog DPST switch. The headphone and speaker  
amplifiers have independent volume control and on/off  
control. The four inputs are configurable as two differen-  
tial inputs or four single-ended inputs.  
S2.7V_to_5.5V_Speaker_Supply_Voltage  
SInternal_LDO_Allows_Single-Supply_Operation  
S725mW_Speaker_Output_(V  
_=_3.7V,_Z _=_8I_  
SPK  
PVDD  
+_68µH)  
S40mW/Channel_Headphone_Output_(R _=_16I)  
The entire subsystem is designed for maximum efficiency.  
The high-efficiency 725mW Class D speaker amplifier  
operates directly from the battery and consumes no more  
than 1FA in shutdown mode. The Class H headphone  
amplifier utilizes a dual-mode charge pump to maximize  
efficiency while outputting a ground-referenced signal  
that does not require output coupling capacitors.  
HP  
SLow-Emission_Class_D_Amplifier  
SEfficient_Class_H_Headphone_Amplifier  
SGround-Referenced_Headphone_Outputs  
STwo_Stereo_Single-Ended/Mono_Differential_Inputs  
SIntegrated_Distortion_Limiter_(Speaker_Outputs)  
SIntegrated_DPST_Analog_Switch  
The speaker amplifier incorporates a distortion limiter to  
automatically reduce the volume level when excessive  
clipping occurs. This allows high gain for low-level sig-  
nals without compromising the quality of large signals.  
SNo_Clicks_and_Pops  
STDMA_Noise_Free  
All control is performed using the 2-wire, I2C interface.  
The MAX97000 operates in the extended -40NC to +85NC  
temperature range, and is available in the 2mm x 2mm,  
25-bump WLP package (0.4mm pitch).  
S2mm_x_2mm,_25-Bump_0.4mm_Pitch_WLP_Package_  
Ordering Information  
PART  
TEMP_RANGE  
PIN-PACKAGE  
Applications  
Cell Phones  
MAX97000EWA+  
-40NC to +85NC  
25 WLP  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Portable Multimedia Players  
Simplified Block Diagram  
BATTERY  
2.7V TO 5.5V  
2
I C  
1.8V  
POWER SUPPLY  
CONTROL  
MAX97000  
STEREO/  
MONO  
INPUT  
CLASS D  
AMPLIFIER  
VOLUME  
LIMITER  
CLASS H  
AMPLIFIER  
VOLUME  
STEREO/  
MONO  
INPUT  
CHARGE  
PUMP  
SWITCH  
_ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ _Maxim Integrated Products_ _ 1  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Audio Subsystem with Mono Class D Speaker  
and Class H Headphone Amplifier  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Functional Diagram/Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Digital I/O Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
I2C Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Signal Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Class D Speaker Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Ultra-Low EMI Filterless Output Stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Distortion Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Analog Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Headphone Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DirectDrive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Charge Pump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Class H Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Low-Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
I2C Slave Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
I2C Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
2
Audio Subsystem with Mono Class D Speaker  
and Class H Headphone Amplifier  
TABLE OF CONTENTS (CONTINUED)  
Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Distortion Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Charge-Pump Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
I2C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
START and STOP Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Early STOP Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Write Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Read Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Filterless Class D Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
RF Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Optional Ferrite Bead Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Input Capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Charge-Pump Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Charge-Pump Flying Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Charge-Pump Holding Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Supply Bypassing, Layout, and Grounding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
WLP Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Functional Diagram/Typical Application Circuit  
OPTIONAL  
1.6V TO 2.0V  
2.5V TO 5.5V  
2.7V TO 5.5V  
10µF  
1µF  
1µF  
1µF  
10µF  
VDD  
B1  
LDOIN  
B2  
PVDD  
C1  
LDO  
C5 BIAS  
PGAINA  
-6dB TO +18dB  
BIAS  
0.47µF  
1µF  
INA1 E4  
INADIFF  
OPTIONAL  
HPVDD  
LPMODE  
HPLMIX  
HPLVOL:  
-64dB TO +6dB  
B5 HPL  
CLASS H  
0/3dB  
PGAINA  
-6dB TO +18dB  
HPLEN  
0.47µF  
0.47µF  
E5  
INA2  
HPVSS  
HPVDD  
+
OPTIONAL  
OPTIONAL  
HPRVOL:  
-64dB TO +6dB  
A5 HPR  
CLASS H  
0/3dB  
PGAINB  
-6dB TO +18dB  
HPREN  
HPVSS  
INB1 D4  
HPRMIX  
INBDIFF  
PVDD  
SPKVOL:  
-30dB TO +20dB  
E1 OUTP  
D1 OUTN  
CLASS D  
+12dB  
SPKEN  
PGAINB  
-6dB TO +18dB  
SPKMIX  
PGND  
0.47µF  
INB2 D5  
+
THD LIMITER  
THDCLP  
OPTIONAL  
ANALOG SWITCHES  
COM1 D2  
COM2 D3  
E2 NC1  
E3 NC2  
VDD  
SWEN  
SDA B3  
SCL B4  
VDD  
2
I C  
INTERFACE/  
SHUTDOWN  
MAX97000  
SHDN C4  
CHARGE PUMP  
A1  
A2  
A3  
A4  
C3  
GND  
C2  
PGND  
HPVDD HPVSS  
1µF  
C1P  
C1N  
1µF  
1µF  
4
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
ABSOLUTE_MAXIMUM_RATINGS  
(Voltages with respect to GND.)  
Continuous Current In/Out of COM1,  
VDD, HPVDD........................................................-0.3V to +2.2V  
PVDD, LDOIN.......................................................-0.3V to +6.0V  
PGND ...................................................................-0.1V to +0.1V  
HPVSS .................................................................-2.2V to + 0.3V  
C1N .....................................(HPVSS - 0.3V) to (HPVDD + 0.3V)  
C1P..........................................................- 0.3V to (VDD + 0.3V)  
HPL, HPR ............................. (HPVSS - 0.3V) to (HPVDD +0.3V)  
INA1, INA2, INB1, INB2, BIAS .............................-0.3V to +6.0V  
SDA, SCL, SHDN .................................................-0.3V to +6.0V  
COM1, COM2, NC1, NC2,  
COM2, NC1, NC2...................................................... Q150mA  
Continuous Input Current (all other pins)........................ Q20mA  
Duration of OUT_ Short Circuit to GND  
or PVDD.................................................................Continuous  
Duration of Short Circuit Between OUTP  
and OUTN .............................................................Continuous  
Duration of HP_ Short Circuit to GND or VDD ..........Continuous  
Continuous Power Dissipation (T = +70NC) Multilayer Board  
A
25 WLP (derate 19.2mW/NC above +70NC) ................850mW  
Junction Temperature .....................................................+150NC  
Operating Temperature Range.......................... -40NC to +85NC  
Storage Temperature Range............................ -65NC to +150NC  
Soldering Temperature (reflows).....................................+260NC  
OUTP, OUTN......................................-0.3V to (PVDD + 0.3V)  
Continuous Current In/Out of PVDD, PGND, OUT_...... Q800mA  
Continuous Current In/Out of HPR, HPL,  
VDD, LDOIN .............................................................. Q140mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL_CHARACTERISTICS  
(V  
LDOIN  
= V  
= V  
= 3.7V, V  
= V  
= 0V. Input signal applied at INA configured single-ended, preamp gain = 0dB,  
PVDD  
SHDN  
GND  
PGND  
HPLVOL = HPRVOL = SPKVOL = 0dB, speaker loads (Z ) connected between OUTP and OUTN. Headphone loads (R ) con-  
SPK HP  
nected from HPL or HPR to GND. SDA and SCL pullup voltage = 1.8V. Z  
= J, R = J. C  
= C  
= C  
= C  
HPVSS BIAS  
SPK  
HP  
C1P-C1N  
HPVDD  
= 1FF. T = T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by PSRR test  
MIN  
TYP  
MAX  
UNITS  
Speaker Amplifier Supply-  
Voltage Range  
V
PVDD  
2.7  
5.5  
V
Headphone Amplifier Supply  
Voltage Range  
VDD  
Guaranteed by PSRR test  
Guaranteed by PSRR test  
1.6  
2.5  
2
V
V
LDO Input Supply-Voltage Range  
V
5.5  
2
LDOIN  
I
I
I
I
I
I
1.45  
0.4  
Low-power mode, T = +25NC,  
LDOIN  
PVDD  
LDOIN  
PVDD  
LDOIN  
PVDD  
A
LPMODE = 0x01  
0.7  
2
1.45  
0.79  
0.42  
1.38  
1.45  
1.8  
HP mode, T = +25NC, stereo SE  
A
input on INA, INB disabled  
1.2  
0.75  
2.2  
2
Quiescent Supply Current  
mA  
SPK mode, T = +25NC mono  
A
differential input on INB, INA disabled  
I
SPK + HP mode, T = +25NC stereo LDOIN  
A
SE input on INA, INB disabled  
I
I
I
2.7  
175  
110  
PVDD  
PVDD  
LDOIN  
90  
T
= +25NC, internal gain, software  
A
60  
Shutdown Current  
Turn-On Time  
I
FA  
SHDN  
T
= +25NC, internal gain, I  
+ I  
,
A
PVDD  
LDOIN  
1
hardware  
Time from power-on to full operation  
including soft-start  
t
8
ms  
ON  
Gain = -6dB, -3dB  
Gain = 0dB to +9dB  
Gain = +18dB  
41.2  
20.6  
7.2  
T
= +25NC,  
A
Input Resistance  
R
16  
5.5  
19  
27  
9.5  
21  
kI  
kI  
IN  
internal gain  
Feedback Resistance  
R
T
= +25NC, external gain  
A
20  
F
5
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
ELECTRICAL_CHARACTERISTICS_(continued)  
(V  
LDOIN  
= V  
= V  
= 3.7V, V  
= V  
= 0V. Input signal applied at INA configured single-ended, preamp gain = 0dB,  
PVDD  
SHDN  
GND  
PGND  
HPLVOL = HPRVOL= SPKVOL = 0dB, speaker loads (Z  
) connected between OUTP and OUTN. Headphone loads (R ) con-  
SPK HP  
nected from HPL or HPR to GND. SDA and SCL pullup voltage = 1.8V. Z  
= J, R = J. C  
= C  
= C  
= C  
HPVSS BIAS  
SPK  
HP  
C1P-C1N  
HPVDD  
= 1FF. T = T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Preamp = 0dB  
2.3  
Maximum Input Signal Swing  
Preamp = +18dB  
0.29  
V
P-P  
Preamp = external gain  
2.3 x R /R  
IN,EX F  
Gain = 0dB  
55  
f = 1kHz (differential  
input mode)  
Common-Mode Rejection Ratio  
CMRR  
dB  
Gain = +18dB  
32  
Input DC Voltage  
Bias Voltage  
IN__ inputs  
1.125  
1.13  
1.2  
1.2  
1.275  
1.27  
V
V
V
BIAS  
SPEAKER_AMPLIFIER  
T
T
= +25NC, SPKM = 1  
Q0.5  
Q1.5  
Q4  
A
A
Output Offset Voltage  
Click-and-Pop Level  
V
mV  
OS  
= +25NC, SPKVOL = 0dB, SPKMIX = 0x01,  
IN_DIFF = 0V  
Peak voltage, T  
=
A
Into shutdown  
-70  
-70  
+25NC, A-weighted,  
32 samples per  
second, volume at  
mute (Note 2)  
K
dBV  
CP  
Out of shutdown  
V
= 2.7V to 5.5V  
50  
75  
65  
PVDD  
f = 217Hz,  
V
= 200mV  
RIPPLR  
P-P  
P-P  
P-P  
Power-Supply Rejection Ratio  
PSRR  
T
= +25NC (Note 2)  
dB  
A
f = 1kHz,  
65  
59  
V
= 200mV  
RIPPLR  
f = 20kHz,  
V
V
V
= 200mV  
RIPPLR  
THD+N P 1%,  
= 4.2V  
= 3.7V  
930  
725  
PVDD  
PVDD  
Output Power  
f = 1kHz,  
mW  
Z
SPK  
= 8I + 68FH  
V
PVDD  
= 3.3V  
562  
(Note 3)  
Total Harmonic Distortion +  
Noise  
f = 1kHz, P  
= 360mW, T = +25NC,  
OUT A  
THD+N  
SNR  
0.05  
0.6  
%
Z
SPK  
= 8Iꢀ+ 68FH  
IN_DIFF = 0  
(single-ended)  
A-weighted, SPKMIX  
= 0x03, referenced to  
725mW  
93  
Signal-to-Noise Ratio  
dB  
IN_DIFF = 1 (differential)  
93  
250  
Q20  
12  
Oscillator Frequency  
Spread-Spectrum Bandwidth  
Gain  
f
kHz  
kHz  
dB  
A
OSC  
11.5  
12.5  
Current Limit  
1.5  
87  
Efficiency  
E
P
OUT  
= 725mW, f = 1kHz, Z  
= 8Iꢀ+ 68FH  
%
SPK  
A-weighted, (SPKMIX = 0x01), IN_DIFF = 1,  
SPKVOL = 0dB  
Output Noise  
50  
FV  
RMS  
6
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
ELECTRICAL_CHARACTERISTICS_(continued)  
(V  
LDOIN  
= V  
= V  
= 3.7V, V  
= V  
= 0V. Input signal applied at INA configured single-ended, preamp gain = 0dB,  
PGND  
PVDD  
SHDN  
GND  
HPLVOL = HPRVOL= SPKVOL = 0dB, speaker loads (Z  
) connected between OUTP and OUTN. Headphone loads (R ) con-  
SPK HP  
nected from HPL or HPR to GND. SDA and SCL pullup voltage = 1.8V. Z  
= J, R = J. C  
= C  
= C  
= C  
HPVSS BIAS  
SPK  
HP  
C1P-C1N  
HPVDD  
= 1FF. T = T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
A
MIN  
PARAMETER  
CHARGE_PUMP  
SYMBOL  
CONDITIONS  
= 0V  
MIN  
TYP  
MAX  
UNITS  
V
V
V
V
V
V
V
= V  
= V  
= V  
80  
83  
85  
HPL  
HPL  
HPL  
HPR  
HPR  
HPR  
Charge-Pump Frequency  
= 0.2V  
= 0.5V  
665  
500  
1.8  
kHz  
, V  
HPL HPR  
> V  
TH  
TH  
TH  
TH  
Positive Output Voltage  
Negative Output Voltage  
V
V
V
HPVDD  
, V  
HPL HPR  
< V  
> V  
< V  
0.9  
, V  
HPL HPR  
-1.8  
-0.9  
V
HPVSS  
, V  
HPL HPR  
Output voltage at which the charge pump  
switches between fast and slow clock  
V
0.1  
0.16  
0.46  
32  
0.21  
0.52  
TH1  
TH2  
Headphone Output Voltage  
Threshold  
V
Output voltage at which the charge pump  
V
0.40  
switches modes, V  
rising or falling  
OUT  
Time it takes for the charge pump to  
transition from invert to split mode  
ms  
Mode Transition Timeouts  
Time it takes for the charge pump to  
transition from split to invert mode  
20  
Fs  
HEADPHONE_AMPLIFIERS  
T
T
= +25NC volume at mute  
Q0.15  
Q0.5  
Q0.6  
A
A
Output Offset Voltage  
V
OS  
mV  
= +25NC, HP_VOL = 0dB, HP_MIX = 0x1,  
IN_DIFF = 0  
Peak voltage, T =  
A
Into shutdown  
-74  
-74  
+25NC, A-weighted, 32  
samples per second,  
volume at mute  
Click-and-Pop Level  
K
CP  
dBV  
Out of shutdown  
(Note 2)  
V
= 2.5V to 5.5V  
70  
85  
84  
LDOIN  
f = 217Hz,  
= 200mV  
V
RIPPLE  
P-P  
P-P  
P-P  
Power-Supply Rejection Ratio  
PSRR  
T
= +25NC (Note 2)  
dB  
A
f = 1kHz,  
= 200mV  
80  
62  
V
RIPPLE  
f = 20kHz,  
= 200mV  
V
RIPPLE  
R
R
R
= 16I  
40  
23  
HP  
HP  
HP  
= 32I  
= 32I,  
THD+N = 1%,  
f = 1kHz  
Output Power  
P
OUT  
mW  
%
LPMODE = 1,  
LP gain = 3dB  
34  
T
= +25NC, HPL to HPR, volume at  
maximum, HPLMIX = 0x01, HPRMIX = 0x02,  
IN_DIFF = 0  
A
Channel-to-Channel Gain  
Tracking  
Q0.3  
Q2.5  
7
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
ELECTRICAL_CHARACTERISTICS_(continued)  
(V  
LDOIN  
= V  
= V  
= 3.7V, V  
= V  
= 0V. Input signal applied at INA configured single-ended, preamp gain = 0dB,  
PVDD  
SHDN  
GND  
PGND  
HPLVOL = HPRVOL= SPKVOL = 0dB, speaker loads (Z  
) connected between OUTP and OUTN. Headphone loads (R ) con-  
SPK HP  
nected from HPL or HPR to GND. SDA and SCL pullup voltage = 1.8V. Z  
= J, R = J. C  
= C  
= C  
= C  
HPVSS BIAS  
SPK  
HP  
C1P-C1N  
HPVDD  
= 1FF. T = T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
RHP = 32I  
RHP = 16I  
MIN  
TYP  
MAX  
UNITS  
0.02  
0.03  
Total Harmonic Distortion +  
Noise  
P
= 10mW,  
OUT  
THD+N  
%
f = 1kHz  
0.1  
A-weighted, R = 16I, HPLMIX = 0x01,  
HPRMIX = 0x02, IN_DIFF = 0  
HP  
Signal-to-Noise Ratio  
SNR  
SR  
100  
dB  
Slew Rate  
0.35  
200  
65  
V/Fs  
pF  
Capacitive Drive  
Crosstalk  
C
L
HPL to HPR, HPR to HPL, f = 20Hz to 20kHz  
dB  
ANALOG_SWITCH  
I
= 20mA, V  
COM_  
T
T
= +25NC  
1.6  
4
NC_  
A
A
On-Resistance  
R
ON  
= 0V and PVDD,  
SWEN = 1  
I
= T  
to T  
5.2  
MIN  
MAX  
10I in series with  
each switch  
V
V
= 2V  
= PV /2,  
DD  
,
DIFCOM_  
CMCOM_  
P-P  
0.05  
0.3  
Total Harmonic Distortion +  
Noise  
%
f = 1kHz, SWEN = 1,  
= 8I + 68FH  
No series resistors  
Z
SPK  
SWEN = 0, COM1 and COM2 to GND = 50I,  
f = 10kHz, referred to signal applied to NC1  
and NC2  
Off-Isolation  
105  
dB  
PREAMPLIFIER  
PGAIN_ = 000  
PGAIN_ = 001  
PGAIN_ = 010  
PGAIN_ = 011  
PGAIN_ = 100  
PGAIN_ = 101  
PGAIN_ = 110  
-6.5  
-3.5  
-0.5  
2.5  
-6  
-3  
0
-5.5  
-2.5  
0.5  
Gain  
3
3.5  
dB  
5.5  
6
6.5  
8.5  
9
9.5  
17.5  
18  
18.5  
VOLUME_CONTROL  
HP_VOL = 0x1F  
HP_VOL = 0x00  
SPKVOL = 0x3F  
SPKVOL = 0x00  
5.5  
-68  
19  
6
6.5  
-60  
21  
-64  
20  
Volume Level  
dB  
-31  
-30  
109  
101  
-29  
Speaker  
f = 1kHz  
Mute Attenuation  
dB  
ms  
Headphone  
Zero-Crossing Detection  
Timeout  
100  
LIMITER  
Attack Time  
1
ms  
s
THDT1 = 0  
THDT1 = 1  
1.4  
2.8  
Release Time Constant  
8
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
DIGITAL_I/O_CHARACTERISTICS  
(V  
LDOIN  
= V  
= V  
= 3.7V, V  
= V  
= 0V. T = T  
to T , unless otherwise noted. Typical values are at  
MAX  
PVDD  
SHDN  
GND  
PGND  
A
MIN  
T
= +25NC.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL_INPUTS_(SDA,_SCL,_SHDN)  
Input Voltage High  
V
1.3  
V
V
IH  
Input Voltage Low  
V
0.5  
IL  
Input Hysteresis  
V
200  
10  
mV  
pF  
HYS  
Input Capacitance  
C
IN  
T
= +25NC  
Q1.0  
Q1.0  
A
Input Leakage Current  
I
FA  
IN  
V
= 0, T = +25NC  
A
LDOIN  
DIGITAL_OUTPUTS_(SDA_Open_Drain)  
Output Low Voltage  
V
OL  
I
= 3mA  
0.4  
V
SINK  
2
I C_TIMING_CHARACTERISTICS  
(V  
LDOIN  
= V  
= V  
= 3.7V, V  
= V  
= 0V. T = T  
to T , unless otherwise noted. Typical values are at  
MAX  
PVDD  
SHDN  
GND  
PGND  
A
MIN  
T
= +25NC.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Serial-Clock Frequency  
f
0
400  
kHz  
SCL  
Bus Free Time Between STOP  
and START Conditions  
t
1.3  
0.6  
Fs  
Fs  
BUF  
Hold Time (Repeated) START  
Condition  
t
t
HD,STA  
SCL Pulse-Width Low  
SCL Pulse-Width High  
t
1.3  
0.6  
Fs  
Fs  
LOW  
t
HIGH  
Setup Time for a Repeated  
START Condition  
0.6  
Fs  
SU,STA  
HD,DAT  
Data Hold Time  
Data Setup Time  
t
0
900  
ns  
ns  
t
100  
SU,DAT  
SDA and SCL Receiving  
Rise Time  
20 +  
t
(Note 4)  
(Note 4)  
(Note 4)  
300  
300  
300  
ns  
ns  
ns  
R
0.1C  
B
20 +  
0.1C  
SDA and SCL Receiving Fall Time  
SDA Transmitting Fall Time  
t
F
F
B
20 +  
t
0.1C  
B
Setup Time for STOP Condition  
Bus Capacitance  
t
0.6  
Fs  
pF  
ns  
SU,STO  
C
B
400  
50  
Pulse Width of Suppressed Spike  
t
0
SP  
Note_1: 100% production tested at T = +25NC. Specifications overtemperature limits are guaranteed by design.  
A
Note_2: Amplifier inputs are AC-coupled to GND.  
Note_3: Class D amplifier testing performed with a resistive load in series with an inductor to simulate an actual speaker load.  
Note_4: C is in pF.  
B
9
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
SDA  
t
BUF  
t
SU,STA  
t
SU,DAT  
t
HD,STA  
t
SP  
t
LOW  
t
SU,STO  
t
HD,DAT  
t
SCL  
HIGH  
t
HD,STA  
t
t
F
R
START CONDITION  
REPEATED START CONDITION  
STOP  
CONDITION  
START  
CONDITION  
2
Figure 1. I C Interface Timing Diagram  
Typical Operating Characteristics  
= 0V. Single-ended inputs, preamp gain = 0dB, HPLVOL = HPRVOL = SPKVOL = 0dB. Speaker  
(V  
LDOIN  
= V  
= 3.7V, V  
= V  
PVDD  
GND PGND  
loads (Z  
) connected between OUTP and OUTN. Headphone loads (R ) connected from HPL or HPR to GND. Z = ∞, R = .  
SPK  
HP SPK HP  
C
= C  
= C  
= C  
= 1μF. T = +25°C, unless otherwise noted.)  
A
C1P-C1N  
HPVDD  
HPVSS BIAS  
GENERAL  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
3.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
INPUTS AC-COUPLED TO GND  
SOFTWARE  
SPEAKER ONLY  
INPUTS AC-COUPLED TO GND  
INA CONNECTED TO OUTPUT  
2.5  
2.0  
1.5  
1.0  
0.5  
0
HARDWARE  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
10  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Typical Operating Characteristics (continued)  
= V = 0V. Single-ended inputs, preamp gain = 0dB, HPLVOL = HPRVOL = SPKVOL = 0dB. Speaker  
PGND  
(V  
LDOIN  
= V  
= 3.7V, V  
PVDD  
GND  
loads (Z ) connected between OUTP and OUTN. Headphone loads (R ) connected from HPL or HPR to GND. Z  
SPK HP SPK  
= ∞, R = .  
HP  
C
= C  
= C  
HPVSS  
= C  
BIAS  
= 1μF. T = +25°C, unless otherwise noted.)  
A
C1P-C1N  
HPVDD  
SPEAKER_AMPLIFIER  
THD+N vs. FREQUENCY  
THD+N vs. FREQUENCY  
THD+N vs. FREQUENCY  
10  
10  
1
10  
1
V
Z
= 3.7V  
= 4I + 33µF  
V
Z
= 3.7V  
= 8I + 68µF  
V
Z
= 3.7V  
PVDD  
PVDD  
PVDD  
SPRK  
= 8I + 68µF  
SPRK  
SPRK  
1
0.1  
P
= 1000mW  
OUT  
P
= 500mW  
OUT  
0.1  
0.1  
SSM  
P
= 200mW  
P
= 200mW  
OUT  
OUT  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
FFM  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
2.5  
3.0  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
THD+N vs. OUTPUT POWER  
THD+N vs. OUTPUT POWER  
THD+N vs. OUTPUT POWER  
100  
10  
100  
10  
100  
10  
V
Z
= 5.0V  
= 8I + 68µF  
V
Z
= 5.0V  
= 4I + 33µF  
V
Z
= 4.2V  
= 8I + 68µF  
PVDD  
SPRK  
PVDD  
SPRK  
PVDD  
SPRK  
f
= 6kHz  
f
= 6kHz  
IN  
f
= 6kHz  
IN  
IN  
1
1
1
f
IN  
= 1kHz  
f = 1kHz  
IN  
f
= 1kHz  
IN  
0.1  
0.1  
0.1  
f
= 100Hz  
1.5  
f
= 100Hz  
IN  
IN  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f
= 100Hz  
IN  
0
0.5  
1.0  
2.0  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(mW)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
(mW)  
P
(mW)  
P
P
OUT  
OUT  
OUT  
THD+N vs. OUTPUT POWER  
THD+N vs. OUTPUT POWER  
THD+N vs. OUTPUT POWER  
100  
10  
100  
10  
100  
10  
V
Z
= 4.2V  
= 4I + 33µF  
V
Z
= 3.7V  
= 8I + 68µF  
V
Z
= 3.7V  
= 4I + 33µF  
PVDD  
SPRK  
PVDD  
SPRK  
PVDD  
SPRK  
f
= 6kHz  
f
= 6kHz  
IN  
f
IN  
= 6kHz  
IN  
1
1
1
f = 1kHz  
IN  
f
= 1kHz  
f
= 1kHz  
IN  
IN  
0.1  
0.1  
0.1  
f
= 100Hz  
IN  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f
IN  
= 100Hz  
1.5  
f
= 100Hz  
1.5  
IN  
0
0.5  
1.0  
2.0  
2.5  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
(mW)  
0
0.5  
1.0  
2.0  
2.5  
P
(mW)  
P
P
(mW)  
OUT  
OUT  
OUT  
11  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Typical Operating Characteristics (continued)  
= V = 0V. Single-ended inputs, preamp gain = 0dB, HPLVOL = HPRVOL = SPKVOL = 0dB. Speaker  
PGND  
(V  
LDOIN  
= V  
= 3.7V, V  
PVDD  
GND  
loads (Z ) connected between OUTP and OUTN. Headphone loads (R ) connected from HPL or HPR to GND. Z  
SPK HP SPK  
= ∞, R = .  
HP  
C
= C  
= C  
HPVSS  
= C  
BIAS  
= 1μF. T = +25°C, unless otherwise noted.)  
A
C1P-C1N  
HPVDD  
EFFICIENCY vs. OUTPUT POWER  
EFFICIENCY vs. OUTPUT POWER  
OUTPUT POWER vs. SUPPLY VOLTAGE  
100  
100  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Z
SPRK  
= 8I + 68µF  
Z
SPRK  
= 8I + 68µF  
f
= 1kHz  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Z
SPRK  
= 4I + 33µF  
Z
= 4I + 33µF  
SPRK  
Z
= 4I + 33µF  
SPRK  
THD+N = 10%  
THD+N = 1%  
V
= 5.0V  
V
IN  
= 3.7V  
PVDD  
f = 1kHz  
PVDD  
f
= 1kHz  
IN  
0
0.5  
1.0  
1.5  
(W)  
2.0  
2.5  
3.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
(W)  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
P
P
OUT  
SUPPLY VOLTAGE (V)  
OUT  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
OUTPUT POWER vs. SUPPLY VOLTAGE  
OUTPUT POWER vs. LOAD RESISTANCE  
0
-20  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
= 3.7V  
f
Z
= 1kHz  
V
f
= 3.7V  
= 1kHz  
= LOAD + 68µF  
PVDD  
IN  
PVDD  
= 200mV  
= 8I + 68µF  
RIPPLE  
P-P  
SPRK  
IN  
INPUTS AC-COUPLED GND  
Z
SPRK  
THD+N = 10%  
THD+N = 10%  
-40  
-60  
THD+N = 1%  
THD+N = 1%  
-80  
-100  
0.01  
0.1  
1
10  
100  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
10  
100  
1000  
FREQUENCY (kHz)  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE (I)  
POWER-SUPPLY REJECTION RATIO  
vs. SUPPLY VOLTAGE  
IN-BAND OUTPUT SPECTRUM  
IN-BAND OUTPUT SPECTRUM  
0
-20  
0
-20  
0
-20  
V
= 200mV  
P-P  
RIPPLE  
FFM  
= 1kHz  
SSM  
= 1kHz  
f
= 1kHz  
IN  
f
f
IN  
IN  
INPUTS AC-COUPLED GND  
-40  
-40  
-40  
-60  
-60  
-60  
-80  
-80  
-80  
-100  
-120  
-100  
-120  
-100  
0
5
10  
15  
20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
5
10  
15  
20  
FREQUENCY (kHz)  
SUPPLY VOLTAGE (V)  
FREQUENCY (kHz)  
12  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Typical Operating Characteristics (continued)  
= V = 0V. Single-ended inputs, preamp gain = 0dB, HPLVOL = HPRVOL = SPKVOL = 0dB. Speaker  
PGND  
(V  
LDOIN  
= V  
= 3.7V, V  
PVDD  
GND  
loads (Z ) connected between OUTP and OUTN. Headphone loads (R ) connected from HPL or HPR to GND. Z  
SPK HP SPK  
= ∞, R = .  
HP  
C
= C  
= C  
HPVSS  
= C = 1μF. T = +25°C, unless otherwise noted.)  
BIAS A  
C1P-C1N  
HPVDD  
WIDEBAND OUTPUT SPECTRUM  
WIDEBAND OUTPUT SPECTRUM  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
RBW = 100Hz  
SSM  
RBW = 100Hz  
FFM  
-20  
-40  
-60  
-80  
-100  
-120  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
SPEAKER VOLUME GAIN  
vs. SPKVOL CODE  
HARDWARE SHUTDOWN RESPONSE  
MAX97000 toc24  
30  
20  
SHDN  
2V/div  
10  
0
-10  
-20  
-30  
-40  
SPKR  
OUTPUT  
500mV/div  
0
10  
20  
30  
40  
50  
60  
70  
1ms/div  
SPKVOL CODE (NUMERIC)  
SOFTWARE SHUTDOWN RESPONSE  
SOFTWARE TURN-ON RESPONSE  
MAX97000 toc25  
MAX97000 toc26  
SDA  
SDA  
2V/div  
2V/div  
SPKR  
SPKR  
OUTPUT  
1V/div  
OUTPUT  
1V/div  
400µs/div  
4ms/div  
13  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Typical Operating Characteristics (continued)  
= V = 0V. Single-ended inputs, preamp gain = 0dB, HPLVOL = HPRVOL = SPKVOL = 0dB. Speaker  
PGND  
(V  
LDOIN  
= V  
= 3.7V, V  
PVDD  
GND  
loads (Z ) connected between OUTP and OUTN. Headphone loads (R ) connected from HPL or HPR to GND. Z  
SPK HP SPK  
= ∞, R = .  
HP  
C
= C  
= C  
= C  
BIAS  
= 1μF. T = +25°C, unless otherwise noted.)  
A
C1P-C1N  
HPVDD HPVSS  
HEADPHONE_AMPLIFIER  
THD+N vs. FREQUENCY  
THD+N vs. OUTPUT POWER  
THD+N vs. FREQUENCY  
10  
10  
1
10  
1
R
= 32I  
LOAD  
R
= 16I  
R
= 32I  
LOAD  
LOAD  
1
0.1  
f
IN  
= 1kHz  
f
= 6kHz  
IN  
P
= 30mW  
OUT  
0.1  
0.1  
P
= 25mW  
OUT  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
P
= 10mW  
10  
OUT  
f
IN  
= 100Hz  
20  
P
= 5mW  
OUT  
0.01  
0.1  
1
100  
0
10  
30  
40  
50  
60  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
OUTPUT POWER (mW)  
FREQUENCY (kHz)  
POWER DISSIPATION  
vs. OUTPUT POWER  
THD+N vs. OUTPUT POWER  
OUTPUT POWER vs. LOAD RESISTANCE  
180  
160  
140  
120  
100  
80  
10  
1
80  
70  
60  
50  
40  
30  
20  
10  
0
f = 1kHz  
IN  
f
P
= 1kHz  
= P + P  
HPL HPR  
R
= 16I  
IN  
OUT  
LOAD  
THD+N = 10%  
R
= 16I  
f
IN  
= 1kHz  
LOAD  
f
IN  
= 6kHz  
0.1  
THD+N = 1%  
R
= 32I  
LOAD  
60  
0.01  
0.001  
40  
f
IN  
= 100Hz  
20  
0
0
10 20 30 40 50 60 70 80 90  
OUTPUT POWER (mW)  
0
10 20 30 40 50 60 70 80  
OUTPUT POWER (mW)  
1
10  
100  
1000  
LOAD RESISTANCE (I)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
OUTPUT SPECTRUM  
OUTPUT POWER vs. LOAD RESISTANCE  
70  
60  
50  
40  
30  
20  
10  
0
0
-20  
0
-20  
f
= 1kHz  
IN  
V
= 200mV  
P-P  
R
f
= 32I  
= 1kHz  
RIPPLE  
LOAD  
THD+N = 1%  
INPUTS AC-COUPLED GND  
IN  
C
= 2.2µF  
CHARGE_PUMP  
-40  
C
= 1µF  
CHARGE_PUMP  
-60  
-40  
-80  
-60  
-100  
-120  
-140  
-160  
C
= 0.47µF  
-80  
CHARGE_PUMP  
-100  
0
4
8
12  
FREQUENCY (kHz)  
16  
20  
24  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
LOAD RESISTANCE (I)  
FREQUENCY (kHz)  
14  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Typical Operating Characteristics (continued)  
= V = 0V. Single-ended inputs, preamp gain = 0dB, HPLVOL = HPRVOL = SPKVOL = 0dB. Speaker  
PGND  
(V  
LDOIN  
= V  
= 3.7V, V  
PVDD  
GND  
loads (Z ) connected between OUTP and OUTN. Headphone loads (R ) connected from HPL or HPR to GND. Z  
SPK HP SPK  
= ∞, R = .  
HP  
C
= C  
= C  
HPVSS  
= C  
BIAS  
= 1μF. T = +25°C, unless otherwise noted.)  
A
C1P-C1N  
HPVDD  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
OUTPUT SPECTRUM  
CROSSTALK vs. FREQUENCY  
0
-20  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
R
= 32I  
R
= 16I  
LOAD  
R
= 16I  
LOAD  
LOAD  
= 1kHz  
f
IN  
-20  
-40  
-40  
PREGAIN = +9dB  
-60  
-80  
-60  
-100  
-120  
-140  
-160  
-80  
HPL TO HPR  
HPR TO HPL  
PREGAIN = +18dB  
-100  
-120  
PREGAIN = 0dB  
10 100  
0
4
8
12  
16  
20  
24  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
HEADPHONE VOLUME GAIN  
vs. HP_VOL CODE  
HARDWARE SHUTDOWN RESPONSE  
MAX97000 toc40  
10  
0
RIGHT AND LEFT  
SHDN  
2V/div  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
HPL/HPR  
500mV/div  
0
5
10  
15  
20  
25  
30  
35  
1ms/div  
HP_VOL CODE (NUMERIC)  
SOFTWARE TURN-ON RESPONSE  
SOFTWARE SHUTDOWN RESPONSE  
MAX97000 toc42  
MAX97000 toc41  
SDA  
SDA  
2V/div  
2V/div  
HPL/HPR  
HPL/HPR  
500mV/div  
500mV/div  
4ms/div  
1ms/div  
15  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Typical Operating Characteristics (continued  
= V = 0V. Single-ended inputs, preamp gain = 0dB, HPLVOL = HPRVOL = SPKVOL = 0dB. Speaker  
PGND  
(V  
LDOIN  
= V  
= 3.7V, V  
PVDD  
GND  
loads (Z ) connected between OUTP and OUTN. Headphone loads (R ) connected from HPL or HPR to GND. Z  
SPK HP SPK  
= ∞, R = .  
HP  
C
= C  
= C  
HPVSS  
= C  
BIAS  
= 1μF. T = +25°C, unless otherwise noted.)  
A
C1P-C1N  
HPVDD  
ANALOG_SWITCH  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
CLASS H OPERATION  
MAX97000 toc43  
10  
1
HPVDD  
1V/div  
R
= 32I  
LOAD  
EXTERNAL CLASS AB CONNECTED  
DIRECTLY TO COM1 AND COMR  
HPVDD  
0V  
HPL/HPR  
200mV/div  
0.1  
f = 6kHz  
f = 100kHz  
HPVSS  
0V  
0.01  
0.001  
f = 100kHz  
HPVSS  
1V/div  
0
5
10  
15  
20  
25  
30  
10ms/div  
OUTPUT POWER (mW)  
BYPASS SWITCH OFF-ISOLATION  
ON-RESISTANCE vs. V  
COM  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
-20  
I
= 20mA  
NC  
V
= 2.7V  
PVDD  
-40  
V
= 3.7V  
PVDD  
-60  
V
= 5.0V  
PVDD  
-80  
-100  
-120  
-140  
V
= 3.0V  
PVDD  
0
1
2
3
4
5
6
0.01  
0.1  
1
10  
100  
V
(V)  
FREQUENCY (kHz)  
COM  
16  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Pin Configuration  
TOP VIEW  
(BUMP SIDE DOWN)  
1
2
3
4
5
+
MAX97000  
A
B
C
D
E
C1P  
VDD  
C1N  
LDOIN  
PGND  
COM1  
NC1  
HPVDD  
HPVSS  
SCL  
HPR  
HPL  
SDA  
GND  
PVDD  
OUTN  
OUTP  
SHDN  
INB1  
BIAS  
INB2  
INA2  
COM2  
NC2  
INA1  
2.0mm x 2.0mm  
Pin Description  
BUMP  
NAME  
FUNCTION  
Charge-Pump Flying Capacitor Positive Terminal. Connect a 1FF capacitor between C1P and  
C1N.  
A1  
C1P  
Charge-Pump Flying Capacitor Negative Terminal. Connect a 1FF capacitor between C1P and  
C1N.  
A2  
C1N  
A3  
A4  
A5  
HPVDD  
HPVSS  
HPR  
Headphone Amplifier Positive Power Supply. Bypass with a 1FF capacitor to PGND.  
Headphone Amplifier Negative Power Supply. Bypass with a 1FF capacitor to PGND.  
Headphone Amplifier Right Output  
LDO Output and Headphone Amplifier Supply. Bypass with a 1FF and a 10FF capacitor to  
GND. Power VDD or LDOIN. When powering VDD, leave LDOIN unconnected.  
B1  
B2  
VDD  
LDO Input. Generates VDD if no 1.8V power supply is available. Leave unconnected to disable.  
Do not power VDD when powering LDOIN.  
LDOIN  
B3  
B4  
B5  
C1  
C2  
C3  
C4  
C5  
SDA  
SCL  
Serial Data Input/Output. Connect a pullup resistor from SDA to the I2C bus supply.  
Serial-Clock Input. Connect a pullup resistor from SCL to the I2C bus supply.  
Headphone Amplifier Left Output  
HPL  
PVDD  
PGND  
GND  
Class D Power Supply. Bypass with a 1FF and a 10FF capacitor to PGND.  
Class D Power Ground and Charge Pump Ground  
Analog Ground.  
Active-Low Shutdown  
SHDN  
BIAS  
Common-Mode Bias. Bypass to GND with a 1FF capacitor.  
17  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Pin Description (continued)  
BUMP  
D1  
D2  
D3  
D4  
D5  
E1  
NAME  
OUTN  
COM1  
COM2  
INB1  
FUNCTION  
Negative Speaker Output  
Analog Switch 1 Input  
Analog Switch 2 Input  
Input B1. Left or negative input.  
Input B2. Right or positive input.  
Positive Speaker Output  
INB2  
OUTP  
NC1  
E2  
Analog Switch 1 Output  
E3  
NC2  
Analog Switch 2 Output  
E4  
INA1  
Input A1. Left or negative input.  
Input A2. Right or positive input.  
E5  
INA2  
Internal Linear Regulator  
The MAX97000 includes an internal regulator (LDOIN) to  
generate VDD in cases where no 1.8V supply is available.  
Using the regulator allows single-supply operation directly  
from a Li+ battery. To enable the internal regulator apply  
a power supply to LDOIN and do not connect power to  
VDD. When not using the internal regulator, leave LDOIN  
unconnected and power VDD from a 1.8V supply.  
Detailed Description  
The MAX97000 audio subsystem combines a mono  
speaker amplifier with a stereo headphone amplifier  
and an analog DPST switch. The high-efficiency 725mW  
Class D speaker amplifier operates directly from the bat-  
tery and consumes no more than 1FA when in shutdown  
mode. The headphone amplifier utilizes a dual-mode  
charge pump and a Class H output stage to maximize  
efficiency while outputting a ground-referenced signal  
that does not require output coupling capacitors. The  
headphone and speaker amplifiers have independent  
volume control and on/off control. The four inputs are  
configurable as two differential inputs or four single-  
ended inputs. All control is performed using the 2-wire,  
I2C interface.  
Signal Path  
The MAX97000 signal path consists of flexible inputs,  
signal mixing, volume control, and output amplifiers  
(Figure 2). The inputs can be configured for single-  
ended or differential signals (Figure 3). The internal  
preamplifiers feature programmable gain settings using  
internal resistors and an external gain setting using a  
trimmed internal feedback resistor. The external option  
allows any desired gain to be selected. Following pream-  
plification, the input signals are mixed, volume adjusted,  
and routed to the headphone and speaker amplifiers  
based on the desired configuration.  
The speaker amplifier incorporates a distortion limiter to  
automatically reduce the volume level when excessive  
clipping occurs. This allows high gain for low-level sig-  
nals without compromising the quality of large signals.  
INA2  
INPUT A  
-6dB TO +18dB  
INA1  
-64dB TO +6dB  
-64dB TO +6dB  
-30dB TO +20dB  
0/3dB  
0/3dB  
+12dB  
MIXER  
AND  
MUX  
INB2  
INPUT B  
-6dB TO +18dB  
INB1  
Figure 2. Signal Path  
18  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
STEREO SINGLE-ENDED  
IN_2 (R)  
R
TO MIXER  
IN_1 (L)  
L
DIFFERENTIAL  
IN_2 (+)  
IN_1 (-)  
TO MIXER  
Figure 3. Differential and Stereo Single-Ended Input Configurations  
Mixers  
The MAX97000 features independent mixers for the left  
headphone, right headphone, and speaker paths. Each  
output can select any combination of any inputs. This  
allows for mixing two audio signals together and rout-  
ing independent signals to the headphone and speaker  
amplifiers. If one of the inputs is not selected by either  
mixer, it is automatically powered down to save power.  
Class D Speaker Amplifier  
The MAX97000 Class D speaker amplifier utilizes active  
emissions limiting and spread-spectrum modulation to  
minimize the EMI radiated by the amplifier.  
19  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Ultra-Low EMI Filterless Output Stage  
Traditional Class D amplifiers require the use of external  
LC filters or shielding to meet EN55022B electromag-  
netic-interference (EMI) regulation standards. Maxim’s  
active emissions limiting edge-rate control circuitry and  
spread-spectrum modulation reduces EMI emissions,  
while maintaining up to 87% efficiency. Maxim’s spread-  
spectrum modulation mode flattens wideband spectral  
components, while proprietary techniques ensure that  
the cycle-to-cycle variation of the switching period  
does not degrade audio reproduction or efficiency.  
The MAX97000’s spread-spectrum modulator randomly  
varies the switching frequency by Q20kHz around the  
center frequency (250kHz). Above 10MHz, the wide-  
band spectrum looks like noise for EMI purposes (see  
Figure 4).  
40  
30  
20  
10  
0
-10  
30  
60  
80  
100 120 140 160 180 200 220 240 260 280 300  
FREQUENCY (MHz)  
40  
30  
20  
10  
0
-10  
300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000  
FREQUENCY (MHz)  
Figure 4. EMI with 15cm of Speaker Cable  
20  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Distortion Limiter  
The MAX97000 speaker amplifiers integrate a limiter  
to provide speaker protection and audio compression.  
When enabled, the limiter monitors the audio signal at  
the output of the Class D speaker amplifier and decreas-  
es the gain if the distortion exceeds the predefined  
threshold. The limiter automatically tracks the battery  
voltage to reduce the gain as the battery voltage drops.  
Headphone Amplifier  
DirectDrive  
Traditional single-supply headphone amplifiers have  
outputs biased at a nominal DC voltage (typically half  
the supply). Large coupling capacitors are needed to  
block this DC bias from the headphone. Without these  
capacitors, a significant amount of DC current flows to  
the headphone, resulting in unnecessary power dis-  
sipation and possible damage to both headphone and  
headphone amplifier.  
Maxim’s DirectDrive® architecture uses a charge  
pump to create an internal negative supply voltage.  
This allows the headphone outputs of the MAX97000  
to be biased at GND while operating from a single  
supply (Figure 6). Without a DC component, there is  
no need for the large DC-blocking capacitors. Instead  
of two large (220FF, typ) capacitors, the MAX97000  
charge pump requires three small ceramic capacitors,  
Figure 5 shows the typical output vs. input curves with  
and without the distortion limiter. The dotted line shows  
the maximum gain for a given distortion limit without  
the distortion limiter. The solid line shows how, with the  
distortion limiter enabled, the gain can be increased  
without exceeding the set distortion limit. When the  
limiter is enabled, selecting a high gain level results in  
peak signals being attenuated while low signals are left  
unchanged. This increases the perceived loudness with-  
out the harshness of a clipped waveform.  
Analog Switch  
The MAX97000 integrates a DPST analog audio switch.  
This switch can be used to disconnect an independent  
audio signal, or drive the 8I speaker by connecting  
NC1 and NC2 to OUTN and OUTP, respectively. Unlike  
discrete solutions, the switch design reduces coupling  
of Class D switching noise to the COM_ inputs. This  
eliminates the need for a costly T-switch. Drive COM1  
and COM2 with a low-impedance source to minimize  
noise on the pins. In applications that do not require  
the analog switch, leave COM1, COM2, NC1, and NC2  
unconnected.  
V
DD  
V
/ 2  
DD  
GND  
CONVENTIONAL AMPLIFIER BIASING SCHEME  
+V  
DD  
V
OUT  
MAXIMUM THD+N  
LEVEL  
SGND  
-V  
DD  
V
IN  
DirectDrive AMPLIFIER BIASING SCHEME  
Figure 6. Traditional Amplifier Output vs. MAX97000  
DirectDrive Output  
Figure 5. Limiter Gain Curve  
DirectDrive is a registered trademark of Maxim Integrated Products, Inc.  
21  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
conserving board space, reducing cost, and improving  
the frequency response of the headphone amplifier.  
See the Output Power vs. Load Resistance graph in  
the Typical Operating Characteristics for details of the  
possible capacitor sizes. There is a low DC voltage on  
the amplifier outputs due to amplifier offset. However,  
the offset of the MAX97000 is typically Q0.15mV, which,  
when combined with a 32I load, results in less than 5FA  
of DC current flow to the headphones.  
To prevent audible gliches when transitioning from the  
Q(VDD/2) output mode to the QVDD output mode, the  
charge pump transitions very quickly. This quick change  
draws significant current from VDD for the duration of  
the transition. The bypass capacitor on VDD supplies the  
required current and prevents droop on VDD.  
The charge pump’s dynamic switching mode can be  
turned off through the I2C interface. The charge pump  
can then be forced to output either Q(VDD/2) or QVDD  
regardless of input signal level.  
In addition to the cost and size disadvantages of  
the DC-blocking capacitors required by conventional  
headphone amplifiers, these capacitors limit the ampli-  
fier’s low-frequency response and can distort the audio  
signal. Previous attempts at eliminating the output-cou-  
pling capacitors involved biasing the headphone return  
(sleeve) to the DC bias voltage of the headphone ampli-  
fiers. This method raises some issues:  
Class H Operation  
A Class H amplifier uses a Class AB output stage with  
power supplies that are modulated by the output signal.  
In the case of the MAX97000, two nominal power-supply  
differentials of 1.8V (+0.9V to -0.9V) and 3.6V (+1.8V  
to -1.8V) are available from the charge pump. Figure 7  
shows the operation of the output-voltage-dependent  
power supply.  
The sleeve is typically grounded to the chassis.  
Using the midrail biasing approach, the sleeve must  
be isolated from system ground, complicating prod-  
uct design.  
Low-Power Mode  
To minimize power consumption when using the head-  
phone amplifier, enable the low-power mode. In this  
mode, the headphone mixers and volume control are  
bypassed and shut down.  
During an ESD strike, the amplifier’s ESD structures  
are the only path to system ground. Thus, the ampli-  
fier must be able to withstand the full energy from an  
ESD strike.  
I2C Slave Address  
The MAX97000 uses a slave address of 0x9A or  
1001101RW. The address is defined as the 7 most  
significant bits (MSBs) followed by the read/write bit.  
Set the read/write bit to 1 to configure the MAX97000 to  
read mode. Set the read/write bit to 0 to configure the  
MAX97000 to write mode. The address is the first byte  
of information sent to the MAX97000 after the START (S)  
condition.  
When using the headphone jack as a line out to  
other equipment, the bias voltage on the sleeve may  
conflict with the ground potential from other equip-  
ment, resulting in possible damage to the amplifiers.  
Charge Pump  
The MAX97000’s dual-mode charge pump generates  
both the positive and negative power supply for the  
headphone amplifier. To maximize efficiency, both the  
charge pump’s switching frequency and output voltage  
change based on signal level.  
When the input signal level is less than 10% of VDD,  
the switching frequency is reduced to a low rate. This  
minimizes switching losses in the charge pump. When  
the input signal exceeds 10% of VDD, the switching fre-  
quency increases to support the load current.  
1.8V  
32ms  
HPVDD  
0.9V  
V
TH_H  
For input signals below 25% of VDD, the charge pump  
generates Q(VDD/2) to minimize the voltage drop across  
the amplifier’s power stage and thus improve efficiency.  
Input signals that exceed 25% of VDD cause the charge  
pump to output QVDD. The higher output voltage allows  
for full output power from the headphone amplifier.  
OUTPUT  
VOLTAGE  
V
TH_L  
-0.9V  
HPVSS  
32ms  
-1.8V  
Figure 7. Class H Operation  
22  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
I2C Registers  
Nine internal registers program the MAX97000. Table  
1 lists all the registers, their addresses, and power-on-  
reset states. Register 0xFF indicates the device revision.  
Write zeros to all unused bits in the register table when  
updating the register, unless otherwise noted. Tables 2  
through 7 describe each bit.  
Table_1._Register_Map  
REGISTER  
B7  
INADIFF INBDIFF  
HPLMIX  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ADDRESS DEFAULT R/W  
STATUS  
Input Gain  
PGAINA  
PGAINB  
0x00  
0x01  
0x02  
0x03  
0x00  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
Headphone  
Mixers  
HPRMIX  
SPKMIX  
Speaker Mixer  
0
0
0
0
Headphone  
Left  
HPLM  
HPRM  
HPLVOL  
HPRVOL  
ZCD  
SLEW  
Headphone  
Right  
LPGAIN  
0
0x04  
0x00  
R/W  
Speaker  
Reserved  
Limiter  
FFM  
0
SPKM  
0
SPKVOL  
0x05  
0x06  
0x07  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
THDCLP  
THDT1  
Power  
Management  
LPMODE  
SPKEN  
0
0
0
HPLEN  
0
HPREN  
CPSEL  
SWEN  
FIXED  
0x08  
0x09  
0x01  
0x00  
R/W  
R/W  
SHDN  
Charge Pump  
REVISION_ID  
Rev ID  
0
0
0
REV  
0xFF  
0x00  
R
Table_2._Input_Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Input_A_Differential_Mode. Configures the input A channel as either a mono differential  
signal (INA = INA2 - INA1) or as a stereo signal (INA1 = left, INA2 = right).  
0 = Stereo single-ended  
7
INADIFF  
1 = Differential  
Input_B_Differential_Mode. Configures the input B channel as either a mono differential  
signal (INB = INB2 - INB1) or as a stereo signal (INB1 = left, INB2 = right).  
0 = Stereo single-ended  
6
5
4
INBDIFF  
1 = Differential  
Input_A_Preamp_Gain. Set the input gain to maximize output signal level for a given input  
signal range to improve the SNR of the system. PGAINA = 111 switches to a trimmed 20kI  
feedback resistor for external gain setting.  
0x00  
___VALUE _LEVEL_(dB)  
000 -6  
001 -3  
PGAINA  
010  
011  
100  
101  
0
3
6
9
3
110 18  
111 External  
23  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Table_2._Input_Register_(continued)  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Input_B_Preamp_Gain. Set the input gain to maximize output signal level for a given input  
signal range to improve the SNR of the system. PGAINB = 111 switches to a trimmed 20kI  
feedback resistor for external gain setting.  
2
__VALUE LEVEL_(dB)  
000 -6  
1
0
001 -3  
PGAINB  
010  
011  
100  
101  
0
3
6
9
110 18  
111 External  
Mixers  
Table_3._Mixer_Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
7
Left_Headphone_Mixer. Selects which of the four inputs is routed to the left headphone output.  
____VALUE_ _INPUT  
6
5
4
3
2
1
0
3
2
1
0
0000 No input  
HPLMIX  
xxx1 INA1 (Disabled when INADIFF = 1)  
xx1x INA2 (Select when INADIFF = 1)  
x1xx INB1 (Disabled when INBDIFF = 1)  
1xxx INB2 (Select when INBDIFF = 1)  
0x01  
Right_Headphone_Mixer. Selects which of the four inputs is routed to the right headphone output.  
___VALUE _INPUT  
0000 No input  
HPRMIX  
xxx1 INA1 (Disabled when INADIFF = 1)  
xx1x INA2 (Select when INADIFF = 1)  
x1xx INB1 (Disabled when INBDIFF = 1)  
1xxx INB2 (Select when INBDIFF = 1)  
Speaker_Mixer. Selects which of the four inputs is routed to the speaker output.  
___VALUE _INPUT  
0000 No input  
0x02  
SPKMIX  
xxx1 INA1 (Disabled when INADIFF = 1)  
xx1x INA2 (Select when INADIFF = 1)  
x1xx INB1 (Disabled when INBDIFF = 1)  
1xxx INB2 (Select when INBDIFF = 1)  
24  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Volume Control  
Table_4._Volume_Control_Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Zero-Crossing_Detection. Determines whether zero-crossing detection is used on all  
volume control changes to reduce clicks and pops. Disabling zero-crossing detection  
7
allows volume changes to occur immediately.  
ZCD  
0 = Enabled  
1 = Disabled  
Volume_Slewing._Determines whether volume slewing is used on all volume control  
changes to reduce clicks and pops. When enabled, volume changes cause the  
MAX97000 to ramp through intermediate volume settings whenever a change to the  
volume is made. If ZCD = 1, slewing occurs at a rate of 0.2ms per step. If ZCD = 0, slew  
time depends on the input signal. Write a 1 to this bit to disable slewing and implement  
volume changes immediately. This bit also activates soft-start at power-on and soft-stop  
and power-off.  
6
SLEW  
0 = Enabled  
1 = Disabled  
Left_Headphone_Mute  
0 = Unmuted  
1 = Muted  
5
4
HPLM  
0x03  
Left_Headphone_Volume  
____VALUE LEVEL_(dB)  
0x00 -64  
0x01 -60  
0x02 -56  
0x03 -52  
0x04 -48  
0x05 -44  
0x06 -40  
0x07 -37  
0x08 -34  
0x09 -31  
0x0A -28  
0x0B -25  
0x0C -22  
0x0D -19  
0x0E -16  
0x0F -14  
VALUE LEVEL_(dB)  
0x10 -12  
0x11 -10  
0x12 -8  
3
2
1
0
0x13 -6  
0x14 -4  
0x15 -2  
0x16 -1  
HPLVOL  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0
1
2
3
4
0x1C 4.5  
0x1D  
0x1E 5.5  
0x1F  
5
6
25  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Table_4._Volume_Control_Registers_(continued)  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Low-Power_Mode_Gain. Controls the headphone amplifier gain when LPMODE 0.  
7
LPGAIN  
0 = 0dB  
1 = 3dB  
Right_Headphone_Mute  
0 = Unmuted  
1 = Muted  
5
4
HPRM  
Right_Headphone_Volume  
VALUE LEVEL_(dB)  
0x00 -64  
0x01 -60  
0x02 -56  
0x03 -52  
0x04 -48  
0x05 -44  
0x06 -40  
0x07 -37  
0x08 -34  
0x09 -31  
0x0A -28  
0x0B -25  
0x0C -22  
0x0D -19  
0x0E -16  
0x0F -14  
VALUE LEVEL_(dB)  
0x10 -12  
0x11 -10  
0x12 -8  
3
2
1
0
0x04  
0x13 -6  
0x14 -4  
0x15 -2  
HPRVOL  
-1  
0
1
2
3
4
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C 4.5  
0x1D  
0x1E 5.5  
0x1F  
5
6
Fixed-Frequency_Oscillation. Removes spread spectrum from the class D oscillator.  
0 = Spread-spectrum mode  
1 = Fixed-frequency mode  
7
6
FFM  
Speaker_Mute  
0 = Unmuted  
1 = Mute  
SPKM  
Speaker_Volume  
5
4
VALUE LEVEL_(dB)  
0x00–0x18 -30  
0x19 -26  
VALUE LEVEL_(dB)  
VALUE LEVEL_(dB)  
0x34 14.5  
0x35 15  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
3
4
5
6
7
8
9
0x05  
0x1A -22  
0x36 15.5  
0x37 16  
0x38 16.5  
0x39 17  
0x3A 17.5  
0x3B 18  
0x3C 18.5  
0x3D 19  
0x1B -18  
3
2
1
0
0x1C -14  
0x1D -12  
0x1E -10  
0x1F -8  
0x20 -6  
SPKVOL  
0x2D 10  
0x2E 11  
0x2F 12  
0x30 12.5  
0x31 13  
0x32 13.5  
0x33 14  
0x21 -4  
0x22 -2  
0x3E 19.5  
0x3F 20  
0x23  
0x24  
0x25  
0
1
2
26  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Distortion Limiter  
Table_5._Distortion_Limiter_Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
7
Distortion_Limit  
VALUE THD_LIMIT_(%)  
0000 Disabled  
0001–1001 P 4  
6
THDCLP  
1010 P 5  
1011 P 6  
1100 P 8  
1101 P 11  
1110 P 12  
1111 P 15  
0x07  
5
4
Distortion_Release_Time_Constant  
0
THDT1  
0 = 1.4s  
1 = 2.8s  
Power Management  
Table_6._Power_Management_Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Software_Shutdown  
0 = Device disabled  
1 = Device enabled  
7
SHDN  
Low-Power_Headphone_Mode. Enables low-power headphone mode. When activated  
this mode directly connects the selected channel to the headphone amplifiers,  
bypassing the mixers and the volume control. Additionally, low-power mode disables the  
speaker path.  
6
5
LPMODE  
VALUE INPUT  
00 Disabled  
01 INA (SE) Connected to the headphone output  
10 INB (SE) Connected to the headphone output  
11 INA (Diff) to HPL and INB (Diff) to HPR  
0x08  
Speaker_Amplifier_Enable  
0 = Disabled  
1 = Enabled  
4
2
1
0
SPKEN  
HPLEN  
HPREN  
SWEN  
Left_Headphone_Amplifier_Enable  
0 = Disabled  
1 = Enabled  
Right_Headphone_Amplifier_Enable  
0 = Disabled  
1 = Enabled  
Analog_Switch  
0 = Open  
1 = Closed  
27  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Charge-Pump Control  
Table_7._Charge-Pump_Control_Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Charge-Pump_Output_Select. Works with the FIXED to set Q1.8V or Q0.9V outputs on  
HPVDD and HPVSS. Ignored when FIXED = 0.  
0 = Q1.8V on HPVDD/HPVSS  
1
CPSEL  
1 = Q0.9V on HPVDD/HPVSS  
0x09  
Class_H_Mode. When enabled, this bit forces the charge pump to generate static power  
rails for HPVDD and HPVSS, instead of dynamically adjusting them based on output  
0
FIXED  
signal level.  
0 = Class H mode  
1 = Fixed-supply mode  
I2C Serial Interface  
S
Sr  
P
The MAX97000 features an I2C/SMBusK-compatible,  
2-wire serial interface consisting of a serial-data line  
(SDA) and a serial-clock line (SCL). SDA and SCL  
facilitate communication between the MAX97000 and the  
master at clock rates up to 400kHz. Figure 1 shows the  
2-wire interface timing diagram. The master generates  
SCL and initiates data transfer on the bus. The master  
device writes data to the MAX97000 by transmitting the  
proper slave address followed by the register address  
and then the data word. Each transmit sequence is  
framed by a START (S) or REPEATED START (Sr) condi-  
tion and a STOP (P) condition. Each word transmitted  
to the MAX97000 is 8 bits long and is followed by an  
acknowledge clock pulse. A master reading data from  
the MAX97000 transmits the proper slave address fol-  
lowed by a series of nine SCL pulses. The MAX97000  
transmits data on SDA in sync with the master-generated  
SCL pulses. The master acknowledges receipt of each  
byte of data. Each read sequence is framed by a START  
or REPEATED START condition, a not acknowledge, and  
a STOP condition. SDA operates as both an input and an  
open-drain output. A pullup resistor, typically greater than  
500I, is required on SDA. SCL operates only as an input.  
A pullup resistor, typically greater than 500I, is required  
on SCL if there are multiple masters on the bus, or if  
the single master has an open-drain SCL output. Series  
resistors in line with SDA and SCL are optional. Series  
resistors protect the digital inputs of the MAX97000 from  
high-voltage spikes on the bus lines, and minimize cross-  
talk and undershoot of the bus signals.  
SCL  
SDA  
Figure 8. START, STOP, and REPEATED START Conditions  
START and STOP Conditions  
SDA and SCL idle high when the bus is not in use. A  
master initiates communication by issuing a START con-  
dition. A START condition is a high-to-low transition on  
SDA with SCL high. A STOP condition is a low-to-high  
transition on SDA while SCL is high (Figure 8). A START  
condition from the master signals the beginning of a  
transmission to the MAX97000. The master terminates  
transmission and frees the bus by issuing a STOP con-  
dition. The bus remains active if a REPEATED START  
condition is generated instead of a STOP condition.  
Early STOP Conditions  
The MAX97000 recognizes a STOP condition at any point  
during data transmission except if the STOP condition  
occurs in the same high pulse as a START condition. For  
proper operation, do not send a STOP condition during  
the same SCL high pulse as the START condition.  
Slave Address  
The slave address is defined as the seven most sig-  
nificant bits (MSBs) followed by the read/write bit. For the  
MAX97000 the seven most significant bits are 1001101.  
Setting the read/write bit to 1 (slave address = 0x9B) con-  
figures the MAX97000 for read mode. Setting the read/write  
bit to 0 (slave address = 0x9A) configures the MAX97000  
for write mode. The address is the first byte of information  
sent to the MAX97000 after the START condition.  
Bit Transfer  
One data bit is transferred during each SCL cycle. The  
data on SDA must remain stable during the high period of  
the SCL pulse. Changes in SDA while SCL is high are con-  
trol signals (see the START and STOP Conditions section).  
SMBus is a trademark of Intel Corp.  
28  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Acknowledge  
The acknowledge bit (ACK) is a clocked 9th bit that  
the MAX97000 uses to handshake receipt each byte  
of data when in write mode (Figure 9). The MAX97000  
pulls down SDA during the entire master-generated 9th  
clock pulse if the previous byte is successfully received.  
Monitoring ACK allows for detection of unsuccessful  
data transfers. An unsuccessful data transfer occurs  
if a receiving device is busy or if a system fault has  
occurred. In the event of an unsuccessful data transfer,  
the bus master will retry communication. The master pulls  
down SDA during the 9th clock cycle to acknowledge  
receipt of data when the MAX97000 is in read mode. An  
acknowledge is sent by the master after each read byte  
to allow data transfer to continue. A not-acknowledge is  
sent when the master reads the final byte of data from  
the MAX97000, followed by a STOP condition.  
Write Data Format  
A write to the MAX97000 includes transmission of a  
START condition, the slave address with the R//W bit  
set to 0, 1 byte of data to configure the internal register  
address pointer, 1 or more bytes of data, and a STOP  
condition. Figure 10 illustrates the proper frame format  
for writing 1 byte of data to the MAX97000. Figure 11  
illustrates the frame format for writing n-bytes of data to  
the MAX97000.  
CLOCK PULSE FOR  
ACKNOWLEDGMENT  
START  
CONDITION  
SCL  
1
28  
9
NOT ACKNOWLEDGE  
SDA  
ACKNOWLEDGE  
Figure 9. Acknowledge  
ACKNOWLEDGE FROM MAX97000  
B7 B6 B5 B4 B3 B2 B1 B0  
ACKNOWLEDGE FROM MAX97000  
ACKNOWLEDGE FROM MAX97000  
REGISTER ADDRESS  
A
P
S
SLAVE ADDRESS  
0
A
A
DATA BYTE  
1 BYTE  
R/W  
AUTOINCREMENT INTERNAL  
REGISTER ADDRESS POINTER  
Figure 10. Writing 1 Byte of Data to the MAX97000  
ACKNOWLEDGE FROM MAX97000  
B7 B6 B5 B4 B3 B2 B1 B0  
ACKNOWLEDGE FROM MAX97000  
B7 B6 B5 B4 B3 B2 B1 B0  
ACKNOWLEDGE FROM MAX97000  
SLAVE ADDRESS  
ACKNOWLEDGE FROM MAX97000  
REGISTER ADDRESS  
S
0
A
A
A
DATA BYTE 1  
1 BYTE  
DATA BYTE n  
1 BYTE  
A
P
R/W  
AUTOINCREMENT INTERNAL  
REGISTER ADDRESS POINTER  
Figure 11. Writing n-Bytes of Data to the MAX97000  
29  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
The slave address with the R/W bit set to 0 indicates that  
the master intends to write data to the MAX97000. The  
MAX97000 acknowledges receipt of the address byte  
during the master-generated 9th SCL pulse.  
The first byte transmitted from the MAX97000 are the  
contents of register 0x00. Transmitted data is valid on  
the rising edge of SCL. The address pointer autoincre-  
ments after each read data byte. This autoincrement  
feature allows all registers to be read sequentially within  
one continuous frame. A STOP condition can be issued  
after any number of read data bytes. If a STOP condition  
is issued followed by another read operation, the first  
data byte to be read is from register 0x00.  
The second byte transmitted from the master configures  
the MAX97000’s internal register address pointer. The  
pointer tells the MAX97000 where to write the next byte  
of data. An acknowledge pulse is sent by the MAX97000  
upon receipt of the address pointer data.  
The address pointer can be preset to a specific register  
before a read command is issued. The master presets  
the address pointer by first sending the MAX97000’s  
slave address with the R/W bit set to 0 followed by the  
register address. A REPEATED START condition is then  
sent followed by the slave address with the R/W bit set  
to 1. The MAX97000 then transmits the contents of the  
specified register. The address pointer autoincrements  
after transmitting the first byte.  
The third byte sent to the MAX97000 contains the data  
that is written to the chosen register. An acknowledge  
pulse from the MAX97000 signals receipt of the data  
byte. The address pointer autoincrements to the next  
register address after each received data byte. This  
autoincrement feature allows a master to write to sequen-  
tial registers within one continuous frame. The master  
signals the end of transmission by issuing a STOP condi-  
tion. Register addresses greater than 0x09 are reserved.  
Do not write to these addresses.  
The master acknowledges receipt of each read byte  
during the acknowledge clock pulse. The master must  
acknowledge all correctly received bytes except the last  
byte. The final byte must be followed by a not acknowl-  
edge from the master and then a STOP condition. Figure  
12 illustrates the frame format for reading 1 byte from  
the MAX97000. Figure 13 illustrates the frame format for  
reading multiple bytes from the MAX97000.  
Read Data Format  
Send the slave address with the R/W bit set to 1 to initiate  
a read operation. The MAX97000 acknowledges receipt  
of its slave address by pulling SDA low during the 9th  
SCL clock pulse. A START command followed by a read  
command resets the address pointer to register 0x00.  
NOT ACKNOWLEDGE FROM MASTER  
ACKNOWLEDGE FROM MAX97000  
ACKNOWLEDGE FROM MAX97000  
SLAVE ADDRESS  
ACKNOWLEDGE FROM MAX97000  
REGISTER ADDRESS  
A
P
S
0
A
Sr  
SLAVE ADDRESS  
1
A
DATA BYTE  
1 BYTE  
R/W  
REPEATED START  
R/W  
AUTOINCREMENT INTERNAL  
REGISTER ADDRESS POINTER  
Figure 12. Reading 1 Byte of Data from the MAX97000  
ACKNOWLEDGE FROM MAX97000  
SLAVE ADDRESS  
ACKNOWLEDGE FROM MAX97000  
REGISTER ADDRESS  
ACKNOWLEDGE FROM MAX97000  
Sr SLAVE ADDRESS  
A
P
S
0
A
1
A
DATA BYTE  
1 BYTE  
R/W  
REPEATED START  
R/W  
AUTOINCREMENT INTERNAL  
REGISTER ADDRESS POINTER  
Figure 13. Reading n-Bytes of Data from the MAX97000  
30  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Additional RF immunity can also be obtained from rely-  
ing on the self-resonant frequency of capacitors as  
Applications Information  
Filterless Class D Operation  
Traditional Class D amplifiers require an output filter  
to recover the audio signal from the amplifier’s output.  
The filters add cost, increase the solution size of the  
amplifier, and can decrease efficiency and THD+N  
performance. The traditional PWM scheme uses large  
it exhibits the frequency response similar to a notch  
filter. Depending on the manufacturer, 10pF to 20pF  
capacitors typically exhibit self-resonance at RF frequen-  
cies. These capacitors when placed at the input pins  
can effectively shunt the RF noise at the inputs of the  
MAX97000. For these capacitors to be effective, they  
must have a low-impedance, low-inductance path to the  
ground plane. Do not use microvias to connect to the  
ground plane as these vias do not conduct well at RF  
frequencies.  
differential output swings (2 x V  
peak-to-peak) and  
DD  
causes large ripple currents. Any parasitic resistance in  
the filter components results in a loss of power, lowering  
the efficiency.  
The MAX97000 does not require an output filter. The  
device relies on the inherent inductance of the speaker  
coil and the natural filtering of both the speaker and  
the human ear to recover the audio component of the  
square-wave output. Eliminating the output filter results  
in a smaller, less costly, more efficient solution.  
Component Selection  
Optional Ferrite Bead Filter  
Additional EMI suppression can be achieved using a  
filter constructed from a ferrite bead and a capacitor to  
ground (Figure 14). Use a ferrite bead with low DC resis-  
tance, high-frequency (> 600MHz) impedance between  
100I and 600I, and rated for at least 1A. The capacitor  
value varies based on the ferrite bead chosen and the  
actual speaker lead length. Select a capacitor less than  
1nF based on EMI performance.  
Because the frequency of the MAX97000 output is well  
beyond the bandwidth of most speakers, voice coil  
movement due to the square-wave frequency is very  
small. Although this movement is small, a speaker not  
designed to handle the additional power can be dam-  
aged. For optimum results, use a speaker with a series  
inductance > 10FH. Typical 8I speakers exhibit series  
inductances in the 20FH to 100FH range.  
Input Capacitor  
An input capacitor, C , in conjunction with the input  
IN  
impedance of the MAX97000 line inputs forms a high-  
pass filter that removes the DC bias from an incoming  
analog signal. The AC-coupling capacitor allows the  
amplifier to automatically bias the signal to an optimum  
DC level. Assuming zero-source impedance, the -3dB  
point of the highpass filter is given by:  
RF Susceptibility  
GSM radios transmit using time-division multiple access  
(TDMA) with 217Hz intervals. The result is an RF signal  
with strong amplitude modulation at 217Hz and its har-  
monics that is easily demodulated by audio amplifiers.  
The MAX97000 is designed specifically to reject RF  
signals; however, PCB layout has a large impact on the  
susceptibility of the end product.  
1
f
=
3dB  
2πR C  
IN IN  
Choose C such that f  
is well below the lowest fre-  
IN  
-3dB  
In RF applications, improvements to both layout and  
component selection decrease the MAX97000’s suscep-  
tibility to RF noise and prevent RF signals from being  
demodulated into audible noise. Trace lengths should be  
kept below 1/4 of the wavelength of the RF frequency of  
interest. Minimizing the trace lengths prevents them from  
functioning as antennas and coupling RF signals into the  
MAX97000. The wavelength (l) in meters is given by: l  
= c/f where c = 3 x 108 m/s, and f = the RF frequency  
of interest.  
quency of interest. For best audio quality, use capacitors  
whose dielectrics have low-voltage coefficients, such as  
tantalum or aluminum electrolytic. Capacitors with high-  
voltage coefficients, such as ceramics, may result in  
increased distortion at low frequencies.  
OUTP  
MAX97000  
OUTN  
Route audio signals on middle layers of the PCB to allow  
ground planes above and below shield them from RF  
interference. Ideally the top and bottom layers of the  
PCB should primarily be ground planes to create effec-  
tive shielding.  
Figure 14. Optional Class D Ferrite Bead Filter  
31  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Charge-Pump Capacitor Selection  
Use capacitors with an ESR less than 100mI for optimum  
performance. Low-ESR ceramic capacitors minimize the  
output resistance of the charge pump. Most surface-  
mount ceramic capacitors satisfy the ESR requirement.  
For best performance over the extended temperature  
range, select capacitors with an X7R dielectric.  
Bypass PVDD to PGND with as little trace length as pos-  
sible. Connect OUTP and OUTN to the speaker using  
the shortest and widest traces possible. Reducing trace  
length minimizes radiated EMI. Route OUTP/OUTN as  
a differential pair on the PCB to minimize the loop area  
and thereby the inductance of the circuit. If filter compo-  
nents are used on the speaker outputs, be sure to locate  
them as close to the MAX97000 as possible to ensure  
maximum effectiveness. Minimize the trace length from  
any ground tied passive components to PGND to further  
minimize radiated EMI.  
Charge-Pump Flying Capacitor  
The value of the flying capacitor (connected between  
C1N and C1P) affects the output resistance of the  
charge pump. A value that is too small degrades the  
device’s ability to provide sufficient current drive, which  
leads to a loss of output voltage. Increasing the value  
of the flying capacitor reduces the charge-pump output  
resistance to an extent. Above 1FF, the on-resistance  
of the internal switches and the ESR of external charge-  
pump capacitors dominate.  
An evaluation kit (EV kit) is available to provide an  
example layout for the MAX97000. The EV kit allows  
quick setup of the MAX97000 and includes easy-to-use  
software allowing all internal registers to be controlled.  
WLP Applications Information  
For the latest application details on WLP construction,  
dimensions, tape carrier information, PCB techniques,  
bump-pad layout, and recommended reflow tempera-  
ture profile, as well as the latest information on reliability  
testing results, refer to the Application Note: UCSP - A  
Wafer-Level Chip-Scale Package on Maxim’s website at  
www.maxim-ic.com/ucsp. See Figure 15 for the recom-  
mended PCB footprint for the MAX97000.  
Charge-Pump Holding Capacitor  
The holding capacitor (bypassing HPVDD and HPVSS)  
value and ESR directly affect the ripple on the supply.  
Increasing the capacitor’s value reduces output ripple.  
Likewise, decreasing the ESR reduces both ripple and  
output resistance. Lower capacitance values can be used  
in systems with low maximum output power levels. See the  
Output Power vs. Load Resistance graph in the Typical  
Operating Characteristics section for more information.  
Supply Bypassing, Layout, and Grounding  
Proper layout and grounding are essential for optimum  
performance. Use a large continuous ground plane on  
a dedicated layer of the PCB to minimize loop areas.  
Connect GND and PGND directly to the ground plane  
using the shortest trace length possible. Proper ground-  
ing improves audio performance, minimizes crosstalk  
between channels, and prevents any digital noise from  
coupling into the analog audio signals.  
0.24mm  
Place the capacitor between C1P and C1N as close  
as possible to the MAX97000 to minimize trace length  
from C1P to C1N. Inductance and resistance added  
between C1P and C1N reduce the output power of  
the headphone amplifier. Bypass HPVDD and HPVSS  
with capacitors located close to the pins with a short  
trace length to PGND. Close decoupling of HPVDD and  
HPVSS minimizes supply ripple and maximizes output  
power from the headphone amplifier.  
0.21mm  
Figure 15. Recommended PCB Footprint  
32  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages._Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
PACKAGE_TYPE  
PACKAGE_CODE  
DOCUMENT_NO.  
21-0453  
25 WLP  
W252F2+1  
33  
Audio Subsystem with Mono Class D  
Speaker and Class H Headphone Amplifier  
Revision History  
REVISION  
NUMBER  
REVISION_  
DATE  
PAGES_  
CHANGED  
DESCRIPTION  
0
1
11/09  
6/10  
Initial release  
Updated to show the device allows VDD to be externally supplied  
1, 4, 5, 18  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
34_____________________ ________ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
©
2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX97001

Audio Subsystem with Mono Class D Speaker and Class H Headphone Amplifiers
MAXIM

MAX97001EVKIT

MAX97001 Evaluation Kit
MAXIM

MAX97001EVKIT+

MAX97001 Evaluation Kit
MAXIM

MAX97001EWP+

Audio Subsystem with Mono Class D Speaker and Class H Headphone Amplifiers
MAXIM

MAX97002

Audio Subsystem with Mono Class D Speaker and Class H Headphone Amplifiers
MAXIM

MAX97002EVKIT

MAX97002 Evaluation Kit
MAXIM

MAX97002EVKIT+

MAX97002 Evaluation Kit
MAXIM

MAX97002EWP+

Audio Subsystem with Mono Class D Speaker and Class H Headphone Amplifiers
MAXIM

MAX97002EWP+T

Audio Amplifier, 2 Func, PBGA20,
MAXIM

MAX97003

High-Efficiency, Low-Noise Audio Subsystem
MAXIM

MAX9700A

Selectable Switching Frequency
MAXIM

MAX9700AEBC+

暂无描述
MAXIM