MAX9705DEUB+ [MAXIM]

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier; 2.3W ,超低EMI ,无需滤波的D类音频放大器
MAX9705DEUB+
型号: MAX9705DEUB+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier
2.3W ,超低EMI ,无需滤波的D类音频放大器

音频放大器
文件: 总20页 (文件大小:2358K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3405; Rev 0; 7/05  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
General Description  
Features  
Filterless Amplifier Passes FCC-Radiated  
The MAX9705 3rd-generation, ultra-low EMI, mono, Class  
D audio power amplifier provides Class AB performance  
with Class D efficiency. The MAX9705 delivers 2.3W into  
a 4load and offers efficiencies above 85%. Active  
emissions limiting (AEL) circuitry greatly reduces EMI by  
actively controlling the output FET gate transitions under  
all possible transient output-voltage conditions. AEL pre-  
vents high-frequency emissions resulting from conven-  
tional Class D free-wheeling behavior in the presence of  
an inductive load. Zero dead time (ZDT) technology  
maintains state-of-the-art efficiency and THD+N perfor-  
mance by allowing the output FETs to switch simultane-  
ously without cross-conduction. A patented spread-  
spectrum modulation scheme eliminates the need for out-  
put filtering found in traditional Class D devices. These  
design concepts reduce an application’s component  
count and extend battery life.  
Emissions Standards with 24in of Cable  
Unique Spread-Spectrum Mode and Active  
Emissions Limiting (AEL) Achieves Better than  
20dB Margin Under FCC Limits  
Zero Dead Time (ZDT) H-Bridge Maintains State-  
of-the-Art Efficiency and THD+N  
Simple Master-Slave Setup for Stereo Operation  
Up to 90% Efficiency  
2.3W into 4(1% THD+N)  
Low 0.02% THD+N (P  
= 1W, V  
= 5.0V)  
OUT  
DD  
High PSRR (75dB at 217Hz)  
Integrated Click-and-Pop Suppression  
Low Quiescent Current (5.4mA)  
Low-Power Shutdown Mode (0.3µA)  
Short-Circuit and Thermal-Overload Protection  
The MAX9705 offers two modulation schemes: a fixed-  
frequency (FFM) mode and a spread-spectrum (SSM)  
mode that further reduces EMI-radiated emissions due to  
the modulation frequency. The MAX9705 oscillator can  
be synchronized to an external clock through the SYNC  
input, allowing the switching frequency to be externally  
defined. The SYNC input also allows multiple MAX9705s  
to be cascaded and frequency locked, minimizing inter-  
ference due to clock intermodulation. The device utilizes  
a fully differential architecture, a full-bridged output, and  
comprehensive click-and-pop suppression. The gain of  
the MAX9705 is set internally (MAX9705A: 6dB,  
MAX9705B: 12dB, MAX9705C: 15.6dB, MAX9705D:  
20dB), further reducing external component count.  
Available in Thermally Efficient, Space-Saving  
Packages  
10-Pin TDFN (3mm x 3mm x 0.8mm)  
10-Pin µMAX  
12-Bump UCSP (1.5mm x 2mm x 0.6mm)  
Pin-for-Pin Compatible with the MAX9700 and  
MAX9712  
Ordering Information  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP RANGE  
MAX9705AETB+T  
MAX9705AEUB+  
MAX9705AEBC+T  
MAX9705BETB+T  
MAX9705BEUB+  
MAX9705BEBC+T  
-40oC to +85oC 10 TDFN-10  
-40oC to +85oC 10 µMAX  
-40oC to +85oC 12 UCSP-12  
-40oC to +85oC 10 TDFN-10  
-40oC to +85oC 10 µMAX  
-40oC to +85oC 12 UCSP-12  
ACY  
The MAX9705 is available in 10-pin TDFN (3mm x 3mm x  
ACH  
ACX  
®
0.8mm), 10-pin µMAX , and 12-bump UCSP™ (1.5mm x  
2mm x 0.6mm) packages. The MAX9705 is specified over  
the extended -40°C to +85°C temperature range.  
ACG  
Ordering Information continued at end of data sheet.  
+Denotes lead-free package.  
Applications  
EMI Spectrum Diagram  
Cellular Phones  
PDAs  
MP3 Players  
Portable Audio  
50.0  
45.0  
40.0  
FCC EMI LIMIT  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
Selector Guide appears at end of data sheet.  
MAXIM'S NEW ULTRA-LOW  
OUTPUT SPECTRUM  
30.0  
60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 220.0 240.0 260.0 280.0 300.0  
FREQUENCY (MHz)  
µMAX is a registered trademark and UCSP is a trademark of  
Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
ABSOLUTE MAXIMUM RATINGS  
V
to GND..............................................................................6V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
PV  
to PGND .........................................................................6V  
10-Pin TDFN (derate 24.4mW/°C above +70°C) .....1951.2mW  
DD  
o
GND to PGND .......................................................-0.3V to +0.3V  
PV to V ..........................................................-0.3V to +0.3V  
10-Pin µMAX (derate 5.6mW/ C above +70°C).........444.4mW  
12-Bump UCSP (derate 6.1mW/°C above +70°C)........484mW  
Junction Temperature......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Bump Temperature (soldering)  
DD  
DD  
All Other Pins to GND.................................-0.3V to (V  
+ 0.3V)  
DD  
Continuous Current Into/Out of PV /PGND/OUT_........ 600mA  
DD  
Continuous Input Current (all other pins) ......................... 20mA  
Duration of OUT_ Short Circuit to GND or PV ........Continuous  
DD  
Duration of Short Circuit Between OUT+ and OUT-.....Continuous  
Reflow ..........................................................................+235°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
to T  
= PV  
= SHDN = 3.3V, GND = PGND = 0V, SYNC = GND (FFM), R = , R connected between OUT+ and OUT-, T = T  
DD L L A MIN  
DD  
, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL  
Supply Voltage Range  
Quiescent Current  
Shutdown Current  
Turn-On Time  
V
Inferred from PSRR test  
2.5  
5.5  
7
V
DD  
I
5.4  
0.3  
30  
mA  
µA  
ms  
k  
DD  
I
10  
SHDN  
t
ON  
Input Resistance  
R
T
A
= +25°C  
12  
20  
IN  
MAX9705A  
MAX9705B  
MAX9705C  
MAX9705D  
0.88  
0.73  
0.61  
0.48  
1.9  
1.0  
1.12  
0.93  
0.81  
0.64  
2.1  
0.83  
0.71  
0.56  
2.0  
Input Bias Voltage  
Voltage Gain  
V
Either input  
V
BIAS  
MAX9705A  
MAX9705B  
MAX9705C  
MAX9705D  
3.8  
5.7  
9.5  
4.0  
6.0  
10  
4.2  
6.3  
10.5  
69  
A
V/V  
V
Output Offset Voltage  
V
T
A
= +25°C  
10  
mV  
dB  
OS  
Common-Mode Rejection Ratio  
CMRR  
f
= 1kHz, input referred  
56  
IN  
V
= 2.5V to 5.5V, T = +25°C  
50  
75  
DD  
A
Power-Supply Rejection Ratio  
(Note 3)  
PSRR  
dB  
f
f
= 217Hz  
= 20kHz  
75  
RIPPLE  
RIPPLE  
200mV  
ripple  
P-P  
60  
R = 8Ω  
600  
950  
L
THD+N = 1%,  
Output Power  
P
mW  
OUT  
f
IN  
= 1kHz  
R = 4Ω  
L
R = 8,  
L
0.02  
P
= 450mW  
OUT  
Total Harmonic Distortion  
Plus Noise  
f
= 1kHz, either FFM or  
IN  
THD+N  
%
SSM  
R = 4,  
L
0.025  
P
= 375mW  
OUT  
Into shutdown  
-68  
Peak voltage,  
A-weighted (Notes 3, 4)  
Click/Pop Level  
K
dB  
CP  
Out of shutdown  
-60.5  
2
_______________________________________________________________________________________  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
to T  
= PV  
= SHDN = 3.3V, GND = PGND = 0V, SYNC = GND (FFM), R = , R connected between OUT+ and OUT-, T = T  
DD L L A MIN  
DD  
, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
176  
15  
MAX  
UNITS  
Output Slew Rate  
Rise/Fall Time  
SR  
V/µs  
ns  
t
, t  
10% to 90%  
RISE FALL  
FFM  
SSM  
FFM  
SSM  
91  
BW = 22Hz  
to 22kHz  
89  
Signal-to-Noise Ratio  
Oscillator Frequency  
SNR  
V
= 2V  
dB  
OUT  
RMS  
93  
A-weighted  
91  
SYNC = GND  
SYNC = float  
980  
1100  
1450  
1220  
1650  
1250  
f
kHz  
OSC  
1220  
120  
SYNC = V  
(SSM mode)  
DD  
SYNC Frequency Lock Range  
Efficiency  
800  
2
2000  
kHz  
%
η
P
= 800mW, f = 1kHz, R = 8Ω  
89  
OUT  
IN  
L
DIGITAL INPUTS (SHDN, SYNC)  
V
V
IH  
IL  
Input Thresholds  
V
0.8  
10  
10  
SHDN Input Leakage Current  
0.1  
µA  
µA  
SYNC Input Current  
(Note 5)  
-1.25  
ELECTRICAL CHARACTERISTICS  
(V  
= PV  
= SHDN = 5V, GND = PGND = 0V, SYNC = GND (FFM), R = , R connected between OUT+ and OUT-, T = T  
to  
DD  
DD  
L
L
A
MIN  
T
, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
7
MAX  
UNITS  
mA  
Quiescent Current  
Shutdown Current  
I
DD  
I
0.55  
75  
µA  
SHDN  
f = 217Hz  
Power-Supply Rejection Ratio  
PSRR  
200mV  
ripple  
dB  
mW  
%
P-P  
f = 20kHz  
R = 16Ω  
60  
750  
1400  
2300  
0.02  
0.05  
94  
L
THD+N = 1%,  
f = 1kHz  
Output Power  
P
R = 8Ω  
L
OUT  
R = 4Ω  
L
R = 8, P  
R = 4, P  
L
= 1.0W  
Total Harmonic Distortion  
Plus Noise  
f = 1kHz, either  
FFM or SSM  
L
OUT  
THD+N  
SNR  
= 1.75W  
OUT  
FFM  
SSM  
FFM  
SSM  
BW = 22Hz to  
22kHz  
91  
V
=
OUT  
Signal-to-Noise Ratio  
dB  
3V  
RMS  
97  
A-weighted  
93  
Note 1: All devices are 100% production tested at +25°C. All temperature limits are guaranteed by design.  
Note 2: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For R = 4, L = 33µH.  
L
For R = 8, L = 68µH. For R = 16, L = 136µH.  
L
L
Note 3: Inputs AC-coupled to GND.  
Note 4: Testing performed with 8resistive load in series with 68µH inductive load connected across BTL output. Mode transitions  
are controlled by SHDN pin. K level is calculated as 20 x log[(peak voltage under normal operation at rated power  
CP  
level)/(peak voltage during mode transition, no input signal)]. Units are expressed in dB.  
Note 5: SYNC has a 1Mresistor to V  
= 1.25V.  
REF  
_______________________________________________________________________________________  
3
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
Typical Operating Characteristics  
(V  
= 3.3V, SYNC = V  
(SSM), differential input, T = +25°C, unless otherwise noted.)  
DD  
DD A  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
100  
100  
10  
1
100  
10  
1
f
= 1kHz  
IN  
10  
1
0.1  
0.1  
0.1  
f = 1kHz  
IN  
0.01  
0.01  
0.01  
V
= 3.3V  
V
= 5.0V  
V
= 2.5V  
DD  
L
DD  
L
DD  
L
f
= 1kHz  
IN  
R = 8  
R = 8Ω  
R = 4Ω  
0.001  
0.001  
0.001  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.5  
1.0  
OUTPUT POWER (W)  
1.5  
2.0  
0
0.2  
0.4  
OUTPUT POWER (W)  
0.6  
0.8  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
100  
10  
1
100  
10  
1
100  
V
= 3.3V  
DD  
R = 8Ω  
L
f
= 1kHz  
IN  
10  
1
SSM  
FFM  
0.1  
0.1  
0.1  
0.01  
0.01  
0.01  
f
= 1kHz  
IN  
f
= 1kHz  
IN  
V
= 3.3V  
V
= 5.0V  
DD  
DD  
R = 4Ω  
L
R = 4Ω  
L
0.001  
0.001  
0.001  
0
0.5  
1.0  
1.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
100  
10  
100  
10  
100  
10  
V
= 2.5V  
V
= 3.3V  
V
= 5.0V  
DD  
R = 8Ω  
DD  
DD  
R = 4Ω  
R = 8Ω  
L
L
L
P
= 50mW  
OUT  
P
= 100mW  
P
= 250mW  
OUT  
OUT  
1
1
1
P
= 300mW  
OUT  
P
= 450mW  
P
= 1W  
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
OUT  
OUT  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
4
_______________________________________________________________________________________  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, SYNC = V  
(SSM), differential input, T = +25°C, unless otherwise noted.)  
DD  
DD A  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
100  
100  
10  
100  
10  
V
= 3.3V  
V
= 5.0V  
V
= 3.3V  
DD  
DD  
DD  
R = 4Ω  
R = 4Ω  
R = 8Ω  
L
L
L
P
= 450mW  
OUT  
10  
1
P
= 250mW  
OUT  
P
= 100mW  
OUT  
1
1
FFM  
SSM  
P
= 800mW  
OUT  
P
= 1.75W  
OUT  
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
EFFICIENCY  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. COMMON-MODE VOLTAGE  
EFFICIENCY  
vs. OUTPUT POWER  
100  
100  
100  
V
= 3.3V to 5V  
DD  
R = 8Ω  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
L
R = 8Ω  
L
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f
IN  
= 1kHz  
P
= 500mW  
OUT  
10  
1
GAIN = 6dB  
R = 8Ω  
L
R = 4Ω  
R = 4Ω  
L
L
0.1  
0.01  
V
= 3.3V  
= 1kHz  
DD  
V
= 5.0V  
= 1kHz  
DD  
f
IN  
f
IN  
0.001  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
OUTPUT POWER (W)  
COMMON-MODE VOLTAGE (V)  
OUTPUT POWER (W)  
EFFICIENCY  
vs. SUPPLY VOLTAGE  
EFFICIENCY  
vs. SYNC FREQUENCY  
EFFICIENCY  
vs. SYNC FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R = 8Ω  
L
R = 8Ω  
R = 8Ω  
L
L
R = 4Ω  
L
R = 4Ω  
L
R = 4Ω  
L
V
f
= 3.3V  
= 1kHz  
DD  
IN  
V
= 5.0V  
DD  
f
= 1kHz  
IN  
f = 1kHz  
IN  
THD+N = 1%  
THD+N = 1%  
THD+N = 1%  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0 5.5  
800 1000 1200 1400 1600 1800 2000  
SYNC FREQUENCY (kHz)  
800 1000 1200 1400 1600 1800 2000  
SYNC FREQUENCY (kHz)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, SYNC = V  
(SSM), differential input, T = +25°C, unless otherwise noted.)  
DD  
DD A  
OUTPUT POWER  
vs. SUPPLY VOLTAGE  
OUTPUT POWER  
vs. SUPPLY VOLTAGE  
OUTPUT POWER  
vs. LOAD RESISTANCE  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
f
Z
= 1kHz  
IN  
= 33µH IN  
LOAD  
SERIES WITH R  
THD+N = 1%  
L
5.0V  
THD+N = 10%  
THD+N = 10%  
3.3V  
THD+N = 1%  
THD+N = 1%  
f
= 1kHz  
IN  
f
= 1kHz  
IN  
R = 8Ω  
L
R = 4Ω  
L
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
10  
100  
1000  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE ()  
FIXED-FREQUENCY-MODE OUTPUT  
SPECTRUM vs. FREQUENCY  
POWER-SUPPLY REJECTION  
RATIO vs. FREQUENCY  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
20  
0
R = 8Ω  
L
V
V
= 3.3V  
DD  
IN  
L
V
= 5.0V  
DD  
= 200mV  
P-P  
f
IN  
= 1kHz  
R = 8Ω  
BW = 22Hz to 22kHz  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
5
10  
FREQUENCY (kHz)  
15  
20  
SPREAD-SPECTRUM-MODE OUTPUT  
SPECTRUM vs. FREQUENCY  
SPREAD-SPECTRUM-MODE OUTPUT  
SPECTRUM vs. FREQUENCY  
20  
0
20  
0
R = 8Ω  
DD  
L
R = 8Ω  
DD  
L
V
= 5.0V  
V
= 5.0V  
f
IN  
= 1kHz  
f = 1kHz  
IN  
BW = 22Hz to 22kHz  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
A-WEIGHTED  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0
5
10  
FREQUENCY (kHz)  
15  
20  
0
5
10  
15  
20  
FREQUENCY (kHz)  
6
_______________________________________________________________________________________  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, SYNC = V  
(SSM), differential input, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
WIDEBAND OUTPUT SPECTRUM  
FIXED-FREQUENCY MODE  
WIDEBAND OUTPUT SPECTRUM  
SPREAD-SPECTRUM MODE  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-140  
R = 8Ω  
DD  
INPUTS AC GROUNDED  
L
V
R = 8Ω  
L
= 5.0V  
-120  
-140  
V
= 5.0V  
DD  
INPUTS AC GROUNDED  
0
10  
100  
1000  
0
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
10  
7.00  
6.75  
6.50  
6.25  
6.00  
5.75  
5.50  
5.25  
5.00  
V
= 3.3V  
DD  
NO LOAD  
INPUTS AC GROUNDED  
9
8
7
6
5
4
SYNC = V (SSM)  
DD  
SYNC = FLOAT (FFM)  
SYNC = FLOAT (FFM)  
SYNC = V (SSM)  
DD  
SYNC = GND (FFM)  
NO LOAD  
SYNC = GND (FFM))  
INPUTS AC GROUNDED  
2.5  
3.5  
4.5  
5.5  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
TURN-ON/TURN-OFF RESPONSE  
MAX9705 toc31  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0
3V  
SHDN  
T
= -40°C  
A
T
= +85°C  
A
0V  
T
= +25°C  
A
MAX9705  
OUTPUT  
250mV/div  
NO LOAD  
INPUTS AC GROUNDED  
SHDN = GND  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
10ms/div  
f = 1kHz  
R = 8Ω  
SUPPLY VOLTAGE (V)  
L
_______________________________________________________________________________________  
7
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
Functional Diagram  
2.5V TO 5.5V  
1µF  
1
10  
6
(A1)  
(B4)  
(A3)  
V
DD  
PV  
DD  
SYNC  
5
(B2)  
SHDN  
UVLO/POWER  
MANAGEMENT  
CLICK-AND-POP  
SUPPRESSION  
OSCILLATOR  
PV  
DD  
LOW-EMI  
DRIVER  
2
(B1)  
1µF  
1µF  
8
(A4)  
IN+  
IN-  
OUT+  
OUT-  
PGND  
CLASS D  
MODULATOR  
3
(C1)  
PV  
DD  
9
(C4)  
LOW-EMI  
DRIVER  
MAX9705  
PGND  
GND  
PGND  
7
4
(B3)  
(C2)  
( ) UCSP BUMP.  
FIGURE SHOWS MAX9705 CONFIGURED FOR SPREAD-SPECTRUM OPERATION.  
8
_______________________________________________________________________________________  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
Pin Description  
PIN  
BUMP  
UCSP  
A1  
NAME  
FUNCTION  
TDFN/µMAX  
1
2
3
4
5
V
Analog Power Supply  
Noninverting Audio Input  
Inverting Audio Input  
Analog Ground  
DD  
B1  
IN+  
IN-  
C1  
C2  
GND  
SHDN  
B2  
Active-Low Shutdown Input. Connect to V  
for normal operation.  
DD  
Frequency Select and External Clock Input.  
SYNC = GND: Fixed-frequency mode with f = 1100kHz.  
S
6
A3  
SYNC  
SYNC = Float: Fixed-frequency mode with f = 1450kHz.  
S
SYNC = V : Spread-spectrum mode with f = 1220kHz 120kHz.  
DD  
S
SYNC = Clocked: Fixed-frequency mode with f = external clock frequency.  
S
7
8
B3  
A4  
C4  
B4  
PGND  
OUT+  
OUT-  
Power Ground  
Amplifier-Output Positive Phase  
Amplifier-Output Negative Phase  
H-Bridge Power Supply  
9
10  
PV  
DD  
Comparators monitor the MAX9705 inputs and com-  
Detailed Description  
pare the complementary input voltages to the sawtooth  
waveform. The comparators trip when the input magni-  
tude of the sawtooth exceeds their corresponding input  
voltage. Both comparators reset at a fixed time after the  
rising edge of the second comparator trip point, gener-  
The MAX9705 ultra-low-EMI, filterless, Class D audio  
power amplifier features several improvements to switch-  
mode amplifier technology. The MAX9705 features output  
driver active emissions limiting circuitry to reduce EMI.  
Zero dead time technology maintains state-of-the-art effi-  
ciency and THD+N performance by allowing the output  
FETs to switch simultaneously without cross-conduction.  
A unique filterless modulation scheme, synchronizable  
switching frequency, and spread-spectrum mode create  
a compact, flexible, low-noise, efficient audio power  
amplifier while occupying minimal board space. The dif-  
ferential input architecture reduces common-mode noise  
pickup with or without the use of input-coupling capaci-  
tors. The MAX9705 can also be configured as a single-  
ended input amplifier without performance degradation.  
ating a minimum-width pulse t  
at the output of  
ON(MIN)  
the second comparator (Figure 1). As the input voltage  
increases or decreases, the duration of the pulse at one  
output increases (the first comparator to trip), while the  
other output pulse duration remains at t  
. This  
OUT+  
ON(MIN)  
causes the net voltage across the speaker (V  
-
V
) to change.  
OUT-  
Operating Modes  
Fixed-Frequency Modulation (FFM) Mode  
The MAX9705 features two FFM modes. The FFM  
modes are selected by setting SYNC = GND for a  
1.1MHz switching frequency, and SYNC = FLOAT for a  
1.45MHz switching frequency. In FFM mode, the fre-  
quency spectrum of the Class D output consists of the  
fundamental switching frequency and its associated  
harmonics (see the Wideband FFT graph in the Typical  
Operating Characteristics). The MAX9705 allows the  
switching frequency to be changed by +32%, should  
the frequency of one or more of the harmonics fall in a  
sensitive band. This can be done at any time and does  
not affect audio reproduction.  
Thermal-overload and short-circuit protection prevent the  
MAX9705 from being damaged during a fault condition.  
The amplifier is disabled if the die temperature reaches  
+150°C. The die must cool by 10°C before normal opera-  
tion can continue. The output of the MAX9705 shuts down  
if the output current reaches approximately 2A. Each out-  
put FET has its own short-circuit protection. This protec-  
tion scheme allows the amplifier to survive shorts to either  
supply rail. After a thermal overload or short circuit, the  
device remains disabled for a minimum of 50µs before  
attempting to return to normal operation. The amplifier will  
shut down immediately and wait another 50µs before turn-  
ing on if the fault condition is still present. This operation  
will cause the output to pulse during a persistent fault.  
Spread-Spectrum Modulation (SSM) Mode  
The MAX9705 features a unique, patented spread-spec-  
trum mode that flattens the wideband spectral components,  
_______________________________________________________________________________________  
9
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
t
SW  
V
IN-  
V
IN+  
OUT-  
OUT+  
t
ON(MIN)  
V
OUT+  
- V  
OUT-  
Figure 1. MAX9705 Outputs with an Input Signal Applied  
the switching frequency, the energy is now spread over a  
bandwidth that increases with frequency. Above a few  
megahertz, the wideband spectrum looks like white noise  
for EMI purposes (see the EMI Spectrum Diagram).  
Table 1. Operating Modes  
SYNC INPUT  
GND  
MODE  
FFM with f = 1100kHz  
S
FLOAT  
FFM with f = 1450kHz  
S
External Clock Mode  
The SYNC input allows the MAX9705 to be synchronized  
to a system clock moving the spectral components of the  
switching harmonics to insensitive frequency bands.  
Applying an external TTL clock of 800kHz to 2MHz to  
SYNC synchronizes the switching frequency of the  
MAX9705. The period of the SYNC clock can be ran-  
domized, enabling the MAX9705 to be synchronized to  
another MAX9705 operating in SSM mode.  
V
SSM with f = 1220kHz 120kHz  
S
DD  
Clocked  
FFM with f = external clock frequency  
S
improving EMI emissions by 5dB. Proprietary techniques  
ensure that the cycle-to-cycle variation of the switching  
period does not degrade audio reproduction or efficiency  
(see the Typical Operating Characteristics). Select SSM  
mode by setting SYNC = V . In SSM mode, the switch-  
DD  
ing frequency varies randomly by 120kHz around the  
center frequency (1.22MHz). The modulation scheme  
remains the same, but the period of the sawtooth wave-  
form changes from cycle to cycle (Figure 2). Instead of a  
large amount of spectral energy present at multiples of  
Filterless Modulation/Common-Mode Idle  
The MAX9705 uses Maxim’s unique, patented modula-  
tion scheme that eliminates the LC filter required by  
traditional Class D amplifiers, improving efficiency,  
reducing component count, and conserving board  
10 ______________________________________________________________________________________  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
t
t
t
t
SW  
SW  
SW  
SW  
V
IN-  
V
IN+  
OUT-  
OUT+  
t
ON(MIN)  
V
- V  
OUT-  
OUT+  
Figure 2. MAX9705 Output with an Input Signal Applied (SSM Mode)  
space and system cost. Conventional Class D amplifiers  
output a 50% duty cycle square wave when no signal is  
present. With no filter, the square wave appears across  
the load as a DC voltage, resulting in a finite load cur-  
rent, increasing power consumption. When no signal is  
present at the input of the MAX9705, the outputs switch  
as shown in Figure 3. Because the MAX9705 drives the  
speaker differentially, the two outputs cancel each other,  
resulting in no net idle-mode voltage across the speak-  
er, minimizing power consumption.  
power. Any power loss associated with the Class D out-  
put stage is mostly due to the I2R loss of the MOSFET  
on-resistance and quiescent-current overhead.  
The theoretical best efficiency of a linear amplifier is  
78%; however, that efficiency is only exhibited at peak  
output powers. Under normal operating levels (typical  
music reproduction levels), efficiency falls below 30%,  
whereas the MAX9705 still exhibits >70% efficiencies  
under the same conditions (Figure 4).  
Shutdown  
The MAX9705 has a shutdown mode that reduces power  
consumption and extends battery life. Driving SHDN low  
places the MAX9705 in a low-power (0.3µA) shutdown  
Efficiency  
Efficiency of a Class D amplifier is attributed to the  
region of operation of the output stage transistors. In a  
Class D amplifier, the output transistors act as current-  
steering switches and consume negligible additional  
mode. Connect SHDN to V  
for normal operation.  
DD  
______________________________________________________________________________________ 11  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
EFFICIENCY vs. OUTPUT POWER  
V
= 0V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IN  
MAX9705  
OUT-  
CLASS AB  
OUT+  
V
= 3.3V  
DD  
f
= 1kHz  
IN  
R = 8Ω  
L
0
0.2  
0.4  
0.6  
0.8  
1.0  
OUTPUT POWER (W)  
V
- V = 0V  
OUT+ OUT-  
Figure 3. MAX9705 Outputs with No Input Signal  
Figure 4. MAX9705 Efficiency vs. Class AB Efficiency  
designed to handle the additional power can be dam-  
aged. For optimum results, use a speaker with a series  
inductance >10µH. Typical 8speakers exhibit series  
inductances in the 20µH to 100µH range.  
Click-and-Pop Suppression  
The MAX9705 features comprehensive click-and-pop  
suppression that eliminates audible transients on start-  
up and shutdown. While in shutdown, the H-bridge is in  
a high-impedance state. During startup or power-up,  
the input amplifiers are muted and an internal loop sets  
the modulator bias voltages to the correct levels, pre-  
venting clicks and pops when the H-bridge is subse-  
quently enabled. For 30ms following startup, a soft-start  
function gradually unmutes the input amplifiers.  
Power-Conversion Efficiency  
Unlike a class AB amplifier, the output offset voltage of  
a Class D amplifier does not noticeably increase quies-  
cent-current draw when a load is applied. This is due to  
the power conversion of the Class D amplifier. For exam-  
ple, an 8mV DC offset across an 8load results in 1mA  
extra current consumption in a Class AB device. In the  
Class D case, an 8mV offset into 8equates to an addi-  
tional power drain of 8µW. Due to the high efficiency of  
the Class D amplifier, this represents an additional quies-  
Applications Information  
Filterless Operation  
Traditional Class D amplifiers require an output filter to  
recover the audio signal from the amplifier’s output. The  
filters add cost, increase the solution size of the amplifi-  
er, and can decrease efficiency and THD+N perfor-  
mance. The traditional PWM scheme uses large  
cent-current draw of 8µW/(V /100η), which is on the  
DD  
order of a few microamps.  
Input Amplifier  
differential output swings (2 x V  
peak-to-peak) and  
Differential Input  
The MAX9705 features a differential input structure,  
making it compatible with many CODECs, and offering  
improved noise immunity over a single-ended input  
amplifier. In devices such as cellular phones, high-fre-  
quency signals from the RF transmitter can be picked  
up by the amplifier’s input traces. The signals appear at  
the amplifier’s inputs as common-mode noise. A differ-  
ential input amplifier amplifies the difference of the two  
inputs; any signal common to both inputs is canceled.  
DD  
causes large ripple currents. Any parasitic resistance in  
the filter components results in a loss of power, lower-  
ing the efficiency.  
The MAX9705 does not require an output filter. The  
device relies on the inherent inductance of the speaker  
coil and the natural filtering of both the speaker and the  
human ear to recover the audio component of the  
square-wave output. Eliminating the output filter results  
in a smaller, less costly, more efficient solution.  
Single-Ended Input  
The MAX9705 can be configured as a single-ended  
input amplifier by capacitively coupling either input to  
GND and driving the other input (Figure 5).  
Because the frequency of the MAX9705 output is well  
beyond the bandwidth of most speakers, voice coil  
movement due to the square-wave frequency is very  
small. Although this movement is small, a speaker not  
12 ______________________________________________________________________________________  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
Note that the single-ended voltage range of the  
1µF  
MAX9705A is 3V . This limits the achievable output  
P-P  
SINGLE-ENDED  
AUDIO INPUT  
power for this device. Use higher gain versions  
(MAX9705B, MAX9705C, MAX9705D) if higher output  
power is desired in a single-ended application.  
IN+  
IN-  
MAX9705  
DC-Coupled Input  
The input amplifier can accept DC-coupled inputs that  
are biased within the amplifier’s common-mode range  
(see the Typical Operating Characteristics). DC cou-  
pling eliminates the input-coupling capacitors, reduc-  
ing component count to potentially one external  
component (see the System Diagram). However, the  
low-frequency rejection of the capacitors is lost, allow-  
ing low-frequency signals to feed through to the load.  
1µF  
Figure 5. Single-Ended Input  
Output Filter  
The MAX9705 does not require an output filter. The  
device passes FCC emissions standards with 24in of  
unshielded twisted-pair speaker cables. However, an  
output filter can be used if a design is failing radiated  
emissions due to board layout or excessive cable  
length, or the circuit is near EMI-sensitive devices.  
Component Selection  
Input Filter  
An input capacitor, C , in conjunction with the input  
IN  
resistance of the MAX9705 forms a highpass filter that  
removes the DC bias from an incoming signal. The AC-  
coupling capacitor allows the amplifier to bias the sig-  
nal to an optimum DC level. Assuming zero source  
impedance, the -3dB point of the highpass filter is  
given by:  
Supply Bypassing/Layout  
Proper power-supply bypassing ensures low-distortion  
operation. For optimum performance, bypass V  
to  
DD  
GND and PV  
to PGND with separate 1µF capacitors  
DD  
as close to each pin as possible. A low-impedance,  
high-current power-supply connection to PV is  
DD  
1
f−  
=
assumed. Additional bulk capacitance should be added  
as required depending on the application and power-  
supply characteristics. GND and PGND should be star  
connected to system ground. Refer to the MAX9705  
evaluation kit for layout guidance.  
3dB  
2π R  
C
IN  
IN  
Choose C so f  
is well below the lowest frequency  
-3dB  
IN  
-3dB  
of interest. Setting f  
too high affects the low-  
frequency response of the amplifier. Use capacitors  
whose dielectrics have low-voltage coefficients, such  
as tantalum or aluminum electrolytic. Capacitors with  
high-voltage coefficients, such as ceramics, may result  
in increased distortion at low frequencies.  
Stereo Configuration  
Two MAX9705s can be configured as a stereo amplifier  
(Figure 6). Device U1 is the master amplifier; its unfil-  
tered output drives the SYNC input of the slave device  
(U2), synchronizing the switching frequencies of the two  
devices. Synchronizing two MAX9705s ensures that no  
beat frequencies occur within the audio spectrum. This  
configuration works when the master device is in either  
FFM or SSM mode. There is excellent THD+N perfor-  
mance and minimal crosstalk between devices due to  
the SYNC connection (Figures 7 and 8). U2 locks onto  
only the frequency present at SYNC, not the pulse  
width. The internal feedback loop of device U2 ensures  
that the audio component of U1’s output is rejected.  
Other considerations when designing the input filter  
include the constraints of the overall system and the  
actual frequency band of interest. Although high-fidelity  
audio calls for a flat gain response between 20Hz and  
20kHz, portable voice-reproduction devices such as  
cellular phones and two-way radios need only concen-  
trate on the frequency range of the spoken human  
voice (typically 300Hz to 3.5kHz). In addition, speakers  
used in portable devices typically have a poor response  
below 150Hz. Taking these two factors into considera-  
tion, the input filter may not need to be designed for a  
20Hz to 20kHz response, saving both board space and  
cost due to the use of smaller capacitors.  
______________________________________________________________________________________ 13  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
Designing with Volume Control  
The MAX9705 can easily be driven by single-ended  
sources (Figure 5), but extra care is needed if the  
source impedance “seen” by each differential input is  
unbalanced, such as the case in Figure 9a, where the  
MAX9705 is used with an audio taper potentiometer  
acting as a volume control. Functionally, this configura-  
tion works well, but can suffer from click-pop transients  
at power-up (or coming out of SHDN) depending on the  
volume-control setting. As shown, the click-pop perfor-  
mance is fine for either max or min volume, but worsens  
at other settings.  
V
DD  
1µF  
V
DD  
PV  
DD  
MAX9705  
IN+  
IN-  
OUT+  
RIGHT-CHANNEL  
DIFFERENTIAL  
AUDIO INPUT  
OUT-  
One solution is the configuration shown in Figure 9b. The  
potentiometer is connected between the differential  
inputs, and these “see” identical RC paths when the  
device powers up. The variable resistive element appears  
between the two inputs, meaning the setting affects both  
inputs the same way. The potentiometer is audio taper, as  
in Figure 9a. This significantly improves transient perfor-  
mance on power-up or release from SHDN. A similar  
approach can be applied when the MAX9705 is driven  
differentially and a volume control is required.  
SYNC  
1µF  
V
DD  
PV  
DD  
MAX9705  
IN+  
IN-  
OUT+  
LEFT-CHANNEL  
DIFFERENTIAL  
AUDIO INPUT  
UCSP Applications Information  
OUT-  
For the latest application details on UCSP construction,  
dimensions, tape carrier information, PC board tech-  
niques, bump-pad layout, and recommended reflow tem-  
perature profile, as well as the latest information on  
reliability testing results, refer to Application Note:  
UCSPA Wafer-Level Chip-Scale Package available on  
Maxim’s website at www.maxim-ic.com/ucsp.  
SYNC  
Figure 6. Master-Slave Stereo Configuration  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
CROSSTALK vs. FREQUENCY  
0
100  
V
= 3.3V  
V
V
f
= 3.3V  
DD  
DD  
IN  
IN  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
SLAVE DEVICE  
= 1kHz  
SYNC = GND (FFM)  
= 500mV  
P-P  
f
IN  
= 1kHz  
SYNC = GND (FFM)  
R = 8Ω  
10  
R = 8Ω  
L
L
1
0.1  
MASTER TO SLAVE  
0.01  
0.001  
SLAVE TO MASTER  
10  
100  
1k  
10k  
100k  
0
0.2  
0.4  
OUTPUT POWER (W)  
0.6  
0.8  
FREQUENCY (Hz)  
Figure 7. Master-Slave THD+N  
Figure 8. Master-Slave Crosstalk  
14 ______________________________________________________________________________________  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
1µF  
22kΩ  
CW  
1µF  
IN-  
IN-  
IN+  
50kΩ  
CW  
50kΩ  
MAX9705  
MAX9705  
1µF  
IN+  
22kΩ  
1µF  
Figure 9a. Single-Ended Drive of MAX9705 Plus Volume  
Figure 9b. Improved Single-Ended Drive of MAX9705 Plus  
Volume  
Pin Configurations  
Selector Guide  
PART  
PIN-PACKAGE  
10 TDFN-10  
10 µMAX  
GAIN (dB)  
TOP VIEW  
+
MAX9705AETB+T  
MAX9705AEUB+  
MAX9705AEBC+T  
MAX9705BETB+T  
MAX9705BEUB+  
MAX9705BEBC+T  
MAX9705CETB+T  
MAX9705CEUB+  
MAX9705CEBC+T  
MAX9705DETB+T  
MAX9705DEUB+  
MAX9705DEBC+T  
6
6
V
1
2
3
4
5
10 PV  
DD  
DD  
IN+  
IN-  
9
8
7
6
OUT-  
OUT+  
PGND  
SYNC  
MAX9705  
12 UCSP-12  
10 TDFN-10  
10 µMAX  
6
GND  
SHDN  
12  
12  
µMAX  
12 UCSP-12  
10 TDFN-10  
10 µMAX  
12  
15.6  
15.6  
15.6  
20  
10  
9
8
7
6
12 UCSP-12  
10 TDFN-10  
10 µMAX  
20  
MAX9705  
12 UCSP-12  
20  
+
Ordering Information (continued)  
1
2
3
4
5
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP RANGE  
TDFN  
MAX9705CETB+T  
MAX9705CEUB+  
MAX9705CEBC+T  
MAX9705DETB+T  
MAX9705DEUB+  
MAX9705DEBC+T  
-40oC to +85oC 10 TDFN-10  
-40oC to +85oC 10 µMAX  
-40oC to +85oC 12 UCSP-12  
-40oC to +85oC 10 TDFN-10  
-40oC to +85oC 10 µMAX  
-40oC to +85oC 12 UCSP-12  
ACZ  
TOP VIEW  
MAX9705  
2
(BUMP SIDE DOWN)  
1
3
4
ACI  
ADA  
V
SYNC  
PGND  
OUT+  
DD  
A
B
IN+  
SHDN  
GND  
PV  
DD  
ACJ  
+Denotes lead-free package.  
IN-  
OUT-  
C
UCSP  
______________________________________________________________________________________ 15  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
System Diagram  
V
DD  
1µF  
V
DD  
0.1µF  
2.2kΩ  
V
DD  
PV  
DD  
AUX_IN  
BIAS  
OUT+  
IN+  
MAX9705  
IN-  
OUT-  
OUT  
OUT  
SHDN  
SYNC  
CODEC/  
BASEBAND  
PROCESSOR  
2.2kΩ  
0.1µF  
MAX4063  
IN+  
IN-  
V
DD  
0.1µF  
1µF  
V
DD  
SHDN  
INL  
1µF  
1µF  
OUTL  
OUTR  
MAX9722  
INR  
µCONTROLLER  
PV  
SV  
SS  
SS  
C1P  
CIN  
1µF  
1µF  
Chip Information  
TRANSISTOR COUNT: 3595  
PROCESS: BiCMOS  
16 ______________________________________________________________________________________  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 4x3 UCSP  
1
21-0104  
F
1
______________________________________________________________________________________ 17  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
D2  
D
A2  
PIN 1 ID  
N
0.35x0.35  
b
[(N/2)-1] x e  
REF.  
PIN 1  
INDEX  
AREA  
E
E2  
DETAIL A  
e
A1  
k
C
C
L
L
A
L
L
e
e
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
-DRAWING NOT TO SCALE-  
21-0137  
G
2
18 ______________________________________________________________________________________  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
DOWNBONDS  
ALLOWED  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEEC  
b
[(N/2)-1] x e  
1.90 REF  
1.90 REF  
1.95 REF  
1.95 REF  
1.95 REF  
2.00 REF  
2.40 REF  
2.40 REF  
1.50 0.10 2.30 0.10 0.95 BSC  
1.50 0.10 2.30 0.10 0.95 BSC  
1.50 0.10 2.30 0.10 0.65 BSC  
1.50 0.10 2.30 0.10 0.65 BSC  
1.50 0.10 2.30 0.10 0.65 BSC  
0.40 0.05  
0.40 0.05  
0.30 0.05  
0.30 0.05  
0.30 0.05  
NO  
NO  
T633-2  
6
T833-1  
8
NO  
T833-2  
8
NO  
T833-3  
8
YES  
NO  
T1033-1  
T1433-1  
T1433-2  
10  
14  
14  
1.50 0.10 2.30 0.10 0.50 BSC MO229 / WEED-3 0.25 0.05  
1.70 0.10 2.30 0.10 0.40 BSC  
1.70 0.10 2.30 0.10 0.40 BSC  
- - - -  
- - - -  
0.20 0.05  
0.20 0.05  
YES  
NO  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
-DRAWING NOT TO SCALE-  
21-0137  
G
2
______________________________________________________________________________________ 19  
2.3W, Ultra-Low-EMI, Filterless,  
Class D Audio Amplifier  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
e
4X S  
10  
10  
INCHES  
MAX  
MILLIMETERS  
MAX  
1.10  
0.15  
0.95  
3.05  
3.00  
3.05  
3.00  
5.05  
0.70  
DIM MIN  
MIN  
-
A
-
0.043  
0.006  
0.037  
0.120  
0.118  
0.120  
0.118  
0.199  
A1  
A2  
D1  
D2  
E1  
E2  
H
0.002  
0.030  
0.116  
0.114  
0.116  
0.114  
0.187  
0.05  
0.75  
2.95  
2.89  
2.95  
2.89  
4.75  
0.40  
H
Ø0.50 0.1  
0.6 0.1  
L
0.0157 0.0275  
0.037 REF  
L1  
b
0.940 REF  
0.007  
0.0106  
0.177  
0.270  
0.200  
1
1
e
0.0197 BSC  
0.500 BSC  
0.6 0.1  
c
0.0035 0.0078  
0.0196 REF  
0.090  
BOTTOM VIEW  
0.498 REF  
S
α
TOP VIEW  
0°  
6°  
0°  
6°  
D2  
E2  
GAGE PLANE  
A2  
c
A
E1  
b
L
α
A1  
D1  
L1  
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 10L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0061  
I
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9705_09

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier
MAXIM

MAX9706

3-Channel, 2.3W, Filterless Class D Amplifiers with Active Crossover
MAXIM

MAX9706ETX+

3-Channel, 2.3W, Filterless Class D Amplifiers with Active Crossover
MAXIM

MAX9707

3-Channel, 2.3W, Filterless Class D Amplifiers with Active Crossover
MAXIM

MAX9707ETX+

3-Channel, 2.3W, Filterless Class D Amplifiers with Active Crossover
MAXIM

MAX9708

20W/40W, Filterless, Spread-Spectrum, Mono/Stereo, Class D Amplifier
MAXIM

MAX9708ECB

20W/40W, Filterless, Spread-Spectrum, Mono/Stereo, Class D Amplifier
MAXIM

MAX9708ECB-TD

Audio Amplifier, 2 Func, BICMOS, PQFP64
MAXIM

MAX9708ETN

20W/40W, Filterless, Spread-Spectrum, Mono/Stereo, Class D Amplifier
MAXIM

MAX9708ETN+

Audio Amplifier, 42W, 1 Channel(s), 1 Func, BICMOS, PDSO56, ROHS COMPLIANT, PLASTIC, TQFN-56
MAXIM

MAX9708ETN+T

Audio Amplifier, 1 Channel(s), 1 Func, BICMOS, PDSO56, LEAD FREE, PLASTIC, TQFN-56
MAXIM

MAX9708ETN+TD

Audio Amplifier, 42W, 1 Channel(s), 1 Func, BICMOS, PDSO56, LEAD FREE, PLASTIC, TQFN-56
MAXIM