MAX9714ETJ-T [MAXIM]

Audio Amplifier, 8W, 2 Channel(s), 1 Func, BICMOS, PQCC32, 7 X 7 MM, 0.80 MM HEIGHT, MO-220, TQFN-32;
MAX9714ETJ-T
型号: MAX9714ETJ-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Audio Amplifier, 8W, 2 Channel(s), 1 Func, BICMOS, PQCC32, 7 X 7 MM, 0.80 MM HEIGHT, MO-220, TQFN-32

放大器 信息通信管理 商用集成电路
文件: 总18页 (文件大小:1480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3039; Rev 5; 8/05  
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
General Description  
Features  
Filterless Class D Amplifier  
The MAX9713/MAX9714 mono/stereo Class D audio  
power amplifiers provide Class AB amplifier performance  
with Class D efficiency, conserving board space and  
eliminating the need for a bulky heatsink. Using a Class  
D architecture, these devices deliver up to 6W while  
offering greater than 85% efficiency. Proprietary and  
patent-protected modulation and switching schemes  
render the traditional Class D output filter unnecessary.  
Unique Spread-Spectrum Mode Offers 5dB  
Emissions Improvement Over Conventional  
Methods  
Up to 85% Efficient  
6W Output Power into 8  
Low 0.07% THD+N  
High PSRR (76dB at 1kHz)  
The MAX9713/MAX9714 offer two modulation schemes:  
a fixed-frequency mode (FFM), and a spread-spectrum  
mode (SSM) that reduces EMI-radiated emissions due  
to the modulation frequency. The device utilizes a fully  
differential architecture, a full bridged output, and com-  
prehensive click-and-pop suppression.  
10V to 25V Single-Supply Operation  
Differential Inputs Minimize Common-Mode Noise  
Pin-Selectable Gain Reduces Component Count  
Industry-Leading Integrated Click-and-Pop  
Suppression  
The MAX9713/MAX9714 feature high 76dB PSRR, low  
0.07% THD+N, and SNR in excess of 95dB. Short-cir-  
cuit and thermal-overload protection prevent the  
devices from being damaged during a fault condition.  
The MAX9713 is available in a 32-pin TQFN (5mm x  
5mm x 0.8mm) package. The MAX9714 is available in a  
32-pin TQFN (7mm x 7mm x 0.8mm) package. Both  
devices are specified over the extended -40°C to  
+85°C temperature range.  
Low Quiescent Current (18mA)  
Low-Power Shutdown Mode (0.2µA)  
Short-Circuit and Thermal-Overload Protection  
Available in Thermally Efficient, Space-Saving  
Packages  
32-Pin TQFN (5mm x 5mm x 0.8mm)–MAX9713  
32-Pin TQFN (7mm x 7mm x 0.8mm)–MAX9714  
Applications  
High-End Notebook  
Audio  
Ordering Information  
LCD Monitors  
LCD TVs  
PART  
TEMP RANGE  
-40oC to +85oC  
-40oC to +85oC  
PIN-PACKAGE  
32 TQFN-EP*  
32 TQFN-EP*  
AMP  
Mono  
Stereo  
MAX9713ETJ  
MAX9714ETJ  
Hands-Free Car  
Phone Adaptors  
Desktop PCs  
LCD Projectors  
*EP = Exposed paddle.  
Block Diagrams  
0.47µF  
MAX9714  
INL+  
OUTL+  
OUTL-  
H-BRIDGE  
0.47µF  
MAX9713  
INL-  
0.47µF  
IN+  
OUT+  
OUT-  
H-BRIDGE  
0.47µF  
0.47µF  
0.47µF  
IN-  
INR+  
INR-  
OUTR+  
OUTR-  
H-BRIDGE  
Pin Configurations appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND.)  
Continuous Power Dissipation (T = +70°C)  
A
V
to PGND, AGND.............................................................30V  
Single-Layer Board:  
MAX9713 32-Pin TQFN (derate 21.3mW/°C  
DD  
OUTR_, OUTL_, C1N..................................-0.3V to (V  
+ 0.3V)  
DD  
C1P............................................(V  
CHOLD........................................................(V  
- 0.3V) to (CHOLD + 0.3V)  
above +70°C)..........................................................1702.1mW  
MAX9714 32-Pin TQFN (derate 27mW/°C  
DD  
- 0.3V) to +40V  
DD  
All Other Pins to GND.............................................-0.3V to +12V  
Duration of OUTR_/OUTL_  
above +70°C)..........................................................2162.2mW  
Multilayer Board:  
Short Circuit to GND, V ......................................Continuous  
MAX9713 32-Pin TQFN (derate 34.5mW/°C  
above +70°C)..........................................................2758.6mW  
MAX9714 32-Pin TQFN (derate 37mW/°C  
DD  
Continuous Input Current (V , PGND, AGND)...................1.6A  
DD  
Continuous Input Current (all other pins).......................... 20mA  
above +70°C)..........................................................2963.0mW  
Junction Temperature......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 15V, GND = PGND = 0V, SHDN V , A = 16dB, C = C = 0.47µF, C  
= 0.01µF, C1 = 100nF, C2 = 1µF, FS1 = FS2 =  
REG  
DD  
IH  
V
SS  
IN  
GND (f = 330kHz), R connected between OUTL+ and OUTL- and OUTR+ and OUTR-, T = T  
to T  
, unless otherwise noted.  
S
L
A
MIN  
MAX  
Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
GENERAL  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
Quiescent Current  
Shutdown Current  
Turn-On Time  
V
Inferred from PSRR test  
10  
25  
17.5  
23  
V
DD  
MAX9713  
MAX9714  
10  
18  
I
R =   
L
mA  
µA  
ms  
DD  
I
0.2  
100  
50  
1.5  
SHDN  
C
C
= 470nF  
= 180nF  
SS  
SS  
t
ON  
Amplifier Output Resistance in  
Shutdown  
SHDN = GND  
A = 13dB  
150  
330  
kΩ  
kΩ  
35  
30  
58  
48  
80  
65  
V
A = 16dB  
V
Input Impedance  
Voltage Gain  
R
IN  
A = 19.1dB  
V
23  
39  
55  
A = 22.1dB  
V
20  
31  
42  
G1 = L, G2 = L  
G1 = L, G2 = H  
G1 = H, G2 = L  
G1 = H, G2 = H  
21.9  
18.9  
12.8  
15.9  
22.1  
19.1  
13  
22.3  
19.3  
13.2  
16.3  
A
dB  
V
16  
Gain Matching  
Between channels (MAX9714)  
0.5  
6
%
Output Offset Voltage  
Common-Mode Rejection Ratio  
V
30  
mV  
dB  
OS  
CMRR  
f
IN  
= 1kHz, input referred  
60  
V
= 10V to 25V  
54  
76  
DD  
Power-Supply Rejection Ratio  
(Note 3)  
PSRR  
dB  
f
f
= 1kHz  
76  
RIPPLE  
200mV  
ripple  
P-P  
= 20kHz  
60  
RIPPLE  
2
_______________________________________________________________________________________  
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 15V, GND = PGND = 0V, SHDN V , A = 16dB, C = C = 0.47µF, C  
= 0.01µF, C1 = 100nF, C2 = 1µF, FS1 = FS2 =  
REG  
DD  
IH  
V
SS  
IN  
GND (f = 330kHz), R connected between OUTL+ and OUTL- and OUTR+ and OUTR-, T = T  
to T  
, unless otherwise noted.  
S
L
A
MIN  
MAX  
Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
Output Power  
SYMBOL  
CONDITIONS  
R = 16Ω  
MIN  
TYP  
MAX  
UNITS  
5.5  
8
6
L
THD+N = 10%,  
f = 1kHz  
P
W
OUT  
R = 8Ω  
L
Total Harmonic Distortion Plus  
Noise  
f
P
= 1kHz, either FFM or SSM, R = 8,  
IN  
L
THD+N  
SNR  
0.07  
%
= 4W  
OUT  
FFM  
SSM  
FFM  
SSM  
94  
88  
BW = 22Hz to  
22kHz  
R = 8, P  
4W, f = 1kHz  
=
L
OUT  
Signal-to-Noise Ratio  
Oscillator Frequency  
dB  
97  
A-weighted  
91  
FS1 = L, FS2 = L  
FS1 = L, FS2 = H  
FS1 = H, FS2 = L  
300  
335  
460  
236  
335  
85  
370  
f
kHz  
%
OSC  
FS1 = H, FS2 = H (spread-spectrum mode)  
P
P
= 5W, f = 1kHz, R = 16Ω  
IN L  
OUT  
OUT  
Efficiency  
η
= 4W, f = 1kHz, R = 8Ω  
75  
L
DIGITAL INPUTS (SHDN, FS_, G_)  
Input Thresholds  
V
V
2.5  
IH  
IL  
V
0.8  
1
Input Leakage Current  
µA  
Note 1: All devices are 100% production tested at +25°C. All temperature limits are guaranteed by design.  
Note 2: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For R = 8, L = 68µH.  
L
For R = 16, L = 136µH.  
L
Note 3: PSRR is specified with the amplifier inputs connected to GND through C  
.
IN  
_______________________________________________________________________________________  
3
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
Typical Operating Characteristics  
(136µH with 16, 68µH with 8, part in SSM mode, unless otherwise noted.)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
10  
1
10  
1
10  
1
V
A
= +20V  
= 13dB  
V
A
= +15V  
DD  
V
A
= +15V  
= 13dB  
DD  
V
L
DD  
V
L
= 13dB  
V
R = 8Ω  
R = 16Ω  
R = 8Ω  
L
P
= 100mW  
OUT  
P
= 100mW  
OUT  
P
= 4W  
P
= 5W  
OUT  
P
= 4W  
OUT  
OUT  
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
P
= 55mW  
OUT  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
10  
1
10  
1
100  
10  
V
A
P
= +15V  
V
A
= +20V  
= 13dB  
DD  
V
DD  
V
L
V
A
= 15V  
= 13dB  
DD  
V
L
= 13dB  
= 4W  
R = 16Ω  
OUT  
R = 8Ω  
R = 8Ω  
L
1
f = 1kHz  
SSM  
P
= 7.5W  
OUT  
f = 10kHz  
0.1  
0.1  
0.01  
0.1  
0.01  
f = 100Hz  
0.01  
0.001  
FFM  
P
= 120mW  
OUT  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
1
2
3
4
5
6
7
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
100  
10  
100  
10  
100  
10  
V
A
= 15V  
= 13dB  
V
A
= 20V  
DD  
V
A
= 20V  
= 13dB  
DD  
V
DD  
V
= 13dB  
V
R = 16Ω  
L
R = 16Ω  
L
R = 8Ω  
L
1
1
1
f = 1kHz  
f = 1kHz  
f = 1kHz  
0.1  
0.1  
0.1  
f = 10kHz  
f = 10kHz  
f = 10kHz  
f = 10kHz  
f = 100Hz  
f = 100Hz  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f = 100Hz  
0
1
2
3
4
5
6
7
0
2
4
6
8
0
5
10  
15  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
4
_______________________________________________________________________________________  
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
Typical Operating Characteristics (continued)  
(136µH with 16, 68µH with 8, part in SSM mode, unless otherwise noted.)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
EFFICIENCY vs. OUTPUT POWER  
EFFICIENCY vs. OUTPUT POWER  
100  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
A
= 15V  
= 13dB  
DD  
V
R = 16Ω  
L
R = 16Ω  
L
f = 1kHz  
R = 8Ω  
L
R = 8Ω  
L
1
R = 8  
L
SSM  
0.1  
FFM  
6
0.01  
0.001  
V
A
= 15V  
= 13dB  
V
A
= 20V  
DD  
DD  
V
= 13dB  
V
0
2
4
8
0
2
4
6
8
10  
0
3
6
9
12  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER  
vs. SUPPLY VOLTAGE  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
OUTPUT POWER  
vs. LOAD RESISTANCE  
8
0
10  
9
V
A
= 15V  
= 13dB  
V
A
= 15V  
= 13dB  
DD  
V
DD  
V
L
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
7
6
5
4
3
2
1
0
R = 8Ω  
THD+N = 10%  
8
7
6
5
4
3
2
1
0
THD+N = 1%  
A
= 13dB  
V
THD+N = 10%  
R = 8Ω  
L
10  
13  
16  
19  
22  
25  
1
10  
100  
10  
100  
1k  
10k  
100k  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE ()  
FREQUENCY (Hz)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
CROSSTALK vs. FREQUENCY  
OUTPUT FREQUENCY SPECTRUM  
0
-20  
0
20  
0
V
A
V
= 15V  
= 13dB  
OUTPUT REFERRED  
A = 13dB  
V
FFM MODE  
DD  
V
P
= 5W  
OUT  
-10  
= 200mV  
f =1kHz  
RIPPLE  
P-P  
R = 16Ω  
L
R = 8Ω  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
L
-20  
-30  
-40  
-50  
-60  
-70  
UNWEIGHTED  
-40  
-60  
LEFT TO RIGHT  
-80  
-100  
-120  
RIGHT TO LEFT  
0.01  
0.1  
1
10  
100  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
5
10  
15  
20  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
5
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
Typical Operating Characteristics (continued)  
(136µH with 16, 68µH with 8, part in SSM mode, unless otherwise noted.)  
WIDEBAND OUTPUT SPECTRUM  
(FFM MODE)  
OUTPUT FREQUENCY SPECTRUM  
OUTPUT FREQUENCY SPECTRUM  
0
20  
0
20  
0
SSM MODE  
= 5W  
SSM MODE  
RBW = 10kHz  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
P
P
= 5W  
OUT  
OUT  
f = 1kHz  
f = 1kHz  
R = 8Ω  
R = 8Ω  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
L
L
-20  
-40  
-60  
-80  
-100  
-120  
A-WEIGHTED  
RBW = 10kHz  
UNWEIGHTED  
-90  
-100  
1M  
10M  
100M  
0
5k  
10k  
15k  
20k  
0
5k  
10k  
15k  
20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
WIDEBAND OUTPUT SPECTRUM  
(SSM MODE)  
TURN-ON/TURN-OFF RESPONSE  
MAX9713 toc23  
0
C
= 180pF  
SS  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
SHDN  
5V/div  
1V/div  
MAX9714  
OUTPUT  
f = 1kHz  
R = 8Ω  
L
-90  
-100  
1M  
10M  
100M  
20ms/div  
FREQUENCY (Hz)  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
0.35  
0.30  
0.25  
0.20  
0.15  
25  
20  
15  
10  
5
0.10  
0.05  
0
0
10  
12  
14  
16  
18  
20  
10  
12  
14  
16  
18  
20  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6
_______________________________________________________________________________________  
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
Pin Description  
PIN  
NAME  
PGND  
FUNCTION  
MAX9713  
MAX9714  
1, 2, 23, 24  
1, 2, 23, 24  
Power Ground  
3, 4, 21, 22  
3, 4, 21, 22  
V
Power-Supply Input  
DD  
5
6
7
5
6
7
C1N  
C1P  
Charge-Pump Flying Capacitor Negative Terminal  
Charge-Pump Flying Capacitor Positive Terminal  
CHOLD  
Charge-Pump Hold Capacitor. Connect a 1µF capacitor from CHOLD to V  
.
DD  
8, 17, 20, 25,  
26, 31, 32  
8
N.C.  
No Connection. Not internally connected.  
9
14  
13  
12  
REG  
AGND  
IN-  
6V Internal Regulator Output. Bypass with a 0.01µF capacitor to PGND.  
10  
11  
12  
13  
Analog Ground  
Negative Input  
Positive Input  
IN+  
SS  
Soft-Start. Connect a 0.47µF capacitor from SS to GND to enable soft-start feature.  
Active-Low Shutdown. Connect SHDN to GND to disable the device. Connect to  
14  
11  
SHDN  
V
for normal operation.  
DD  
15  
16  
17  
18  
G1  
G2  
Gain-Select Input 1  
Gain-Select Input 2  
18  
19  
FS1  
Frequency-Select Input 1  
19  
20  
FS2  
Frequency-Select Input 2  
27, 28  
29, 30  
OUT-  
OUT+  
INL-  
Negative Audio Output  
Positive Audio Output  
9
Left-Channel Negative Input  
Left-Channel Positive Input  
Right-Channel Negative Input  
Right-Channel Positive Input  
Right-Channel Negative Audio Output  
Right-Channel Positive Audio Output  
Left-Channel Negative Audio Output  
Left-Channel Positive Audio Output  
Exposed Paddle. Connect to GND.  
10  
INL+  
INR-  
15  
16  
INR+  
OUTR-  
OUTR+  
OUTL-  
OUTL+  
EP  
25, 26  
27, 28  
29, 30  
31, 32  
_______________________________________________________________________________________  
7
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
Detailed Description  
Table 1. Operating Modes  
The MAX9713/MAX9714 filterless, Class D audio power  
amplifiers feature several improvements to switch-  
mode amplifier technology. The MAX9713 is a mono  
amplifier, the MAX9714 is a stereo amplifier. These  
devices offer Class AB performance with Class D effi-  
ciency, while occupying minimal board space. A  
unique filterless modulation scheme and spread-spec-  
trum switching mode create a compact, flexible, low-  
noise, efficient audio power amplifier. The differential  
input architecture reduces common-mode noise pick-  
up, and can be used without input-coupling capacitors.  
The devices can also be configured as a single-ended  
input amplifier.  
SWITCHING MODE  
(kHz)  
FS1  
FS2  
L
L
L
H
L
335  
460  
H
H
236  
H
335 7%  
Spread-Spectrum Modulation (SSM) Mode  
The MAX9713/MAX9714 feature a unique, patented  
spread-spectrum mode that flattens the wideband  
spectral components, improving EMI emissions that  
may be radiated by the speaker and cables. This mode  
is enabled by setting FS1 = FS2 = H. In SSM mode, the  
switching frequency varies randomly by 1.7%kHz  
around the center frequency (335kHz). The modulation  
scheme remains the same, but the period of the trian-  
gle waveform changes from cycle to cycle. Instead of a  
large amount of spectral energy present at multiples of  
the switching frequency, the energy is now spread over  
a bandwidth that increases with frequency. Above a  
few megahertz, the wideband spectrum looks like white  
noise for EMI purposes (Figure 2).  
Comparators monitor the device inputs and compare  
the complementary input voltages to the triangle wave-  
form. The comparators trip when the input magnitude of  
the triangle exceeds their corresponding input voltage.  
Operating Modes  
Fixed-Frequency Modulation (FFM) Mode  
The MAX9713/MAX9714 feature three FFM modes with  
different switching frequencies (Table 1). In FFM mode,  
the frequency spectrum of the Class D output consists  
of the fundamental switching frequency and its associ-  
ated harmonics (see the Wideband FFT graph in the  
Typical Operating Characteristics). The MAX9713/  
MAX9714 allow the switching frequency to be changed  
by 35%, should the frequency of one or more of the  
harmonics fall in a sensitive band. This can be done at  
any time and not affect audio reproduction.  
Efficiency  
Efficiency of a Class D amplifier is attributed to the  
region of operation of the output stage transistors. In a  
Class D amplifier, the output transistors act as current-  
steering switches and consume negligible additional  
power. Any power loss associated with the Class D out-  
put stage is mostly due to the I*R loss of the MOSFET  
on-resistance, and quiescent current overhead.  
The theoretical best efficiency of a linear amplifier is  
78%, however that efficiency is only exhibited at peak  
output powers. Under normal operating levels (typical  
music reproduction levels), efficiency falls below 30%,  
whereas the MAX9714 still exhibits >80% efficiencies  
under the same conditions (Figure 3).  
V
= 0V  
IN  
Shutdown  
The MAX9713/MAX9714 have a shutdown mode that  
reduces power consumption and extends battery life.  
Driving SHDN low places the device in low-power  
(0.2µA) shutdown mode. Connect SHDN to a logic high  
for normal operation.  
OUT-  
OUT+  
Click-and-Pop Suppression  
The MAX9713/MAX9714 feature comprehensive click-  
and-pop suppression that eliminates audible transients  
on startup and shutdown. While in shutdown, the H-  
bridge is pulled to GND through 300k. During startup,  
Figure 1. MAX9714 Outputs with No Input Signal Applied  
8
_______________________________________________________________________________________  
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
Figure 2. SSM Radiated Emissions  
EFFICIENCY vs. OUTPUT POWER  
SS  
100  
GPIO  
MUTE SIGNAL  
0.18µF  
MAX9714  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
MAX9713/  
MAX9714  
Figure 4. MAX9713/MAX9714 Mute Circuit  
CLASS AB  
using a MOSFET pulldown (Figure 4). Driving SS to  
GND during the power-up/down or shutdown/turn-on  
cycle optimizes click-and-pop suppression.  
V
= 15V  
DD  
f = 1kHz  
R = 16Ω  
L
0
2
4
6
Applications Information  
OUTPUT POWER (W)  
Filterless Operation  
Traditional Class D amplifiers require an output filter to  
recover the audio signal from the amplifier’s PWM out-  
put. The filters add cost, increase the solution size of  
the amplifier, and can decrease efficiency. The tradi-  
tional PWM scheme uses large differential output  
Figure 3. MAX9714 Efficiency vs. Class AB Efficiency  
or power-up, the input amplifiers are muted and an  
internal loop sets the modulator bias voltages to the  
correct levels, preventing clicks and pops when the H-  
bridge is subsequently enabled. Following startup, a  
soft-start function gradually un-mutes the input ampli-  
fiers. The value of the soft-start capacitor has an impact  
swings (2 V  
DD  
peak-to-peak) and causes large ripple  
currents. Any parasitic resistance in the filter compo-  
nents results in a loss of power, lowering the efficiency.  
The MAX9713/MAX9714 do not require an output filter.  
The devices rely on the inherent inductance of the  
speaker coil and the natural filtering of both the speak-  
er and the human ear to recover the audio component  
of the square-wave output. Eliminating the output filter  
results in a smaller, less costly, more efficient solution.  
on the click/pop levels. For optimum performance, C  
should be at least 0.18µF.  
SS  
Mute Function  
The MAX9713/MAX9714 feature a clickless/popless  
mute mode. When the device is muted, the outputs  
stop switching, muting the speaker. Mute only affects  
the output state, and does not shut down the device. To  
mute the MAX9713/MAX9714, drive SS to GND by  
Because the frequency of the MAX9713/MAX9714 out-  
put is well beyond the bandwidth of most speakers,  
voice coil movement due to the square-wave frequency  
_______________________________________________________________________________________  
9
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
Table 2. Gain Settings  
0.47µF  
SINGLE-ENDED  
AUDIO INPUT  
IN+  
IN-  
P
OUT  
DIFF INPUT  
(V  
GAIN (dB)  
R ()  
L
at 10%  
THD+N (W)  
)
MAX9713/  
MAX9714  
RMS  
0.47µF  
13.0  
16.1  
19.1  
22.1  
13.0  
16.1  
19.1  
22.1  
1.27  
0.89  
0.63  
0.45  
0.78  
0.54  
0.39  
0.27  
16  
16  
16  
16  
8
8
8
8
8
6
6
6
6
Figure 5. Single-Ended Input  
Input Amplifier  
Differential Input  
8
The MAX9713/MAX9714 feature a differential input struc-  
ture, making them compatible with many CODECs, and  
offering improved noise immunity over a single-ended  
input amplifier. In devices such as PCs, noisy digital sig-  
nals can be picked up by the amplifier’s input traces.  
The signals appear at the amplifiers’ inputs as common-  
mode noise. A differential input amplifier amplifies the  
difference of the two inputs, any signal common to both  
inputs is canceled.  
8
8
is very small. Although this movement is small, a speak-  
er not designed to handle the additional power can be  
damaged. For optimum results, use a speaker with a  
series inductance > 30µH. Typical 8speakers exhibit  
series inductances in the range of 30µH to 100µH.  
Optimum efficiency is achieved with speaker induc-  
tances > 60µH.  
Single-Ended Input  
The MAX9713/MAX9714 can be configured as single-  
ended input amplifiers by capacitively coupling either  
input to GND and driving the other input (Figure 5).  
Gain Selection  
Table 2 shows the suggested gain settings to attain a  
maximum output power from a given peak input voltage  
and given load.  
Component Selection  
Input Filter  
Internal Regulator Output (V  
)
An input capacitor, C , in conjunction with the input  
IN  
REG  
The MAX9713/MAX9714 feature an internal, 6V regula-  
tor output (V ). The MAX9713/MAX9714 REG output  
impedance of the MAX9713/MAX9714, forms a high-  
pass filter that removes the DC bias from an incoming  
signal. The AC-coupling capacitor allows the amplifier  
to bias the signal to an optimum DC level. Assuming  
zero-source impedance, the -3dB point of the highpass  
filter is given by:  
REG  
pin simplifies system design and reduces system cost  
by providing a logic voltage high for the MAX9713/  
MAX9714 logic pins (G_, FS_). V  
is not available as  
REG  
a logic voltage high in shutdown mode. Do not apply  
V
as an input voltage high to the MAX9713/  
REG  
1
MAX9714 SHDN pin. Do not apply V  
as a 6V poten-  
f
=
REG  
-
3dB  
2πR C  
IN IN  
tial to surrounding system components. Bypass REG  
with a 6.3V, 0.01µF capacitor to GND.  
Choose C so f  
is well below the lowest frequency  
-3dB  
IN  
-3dB  
of interest. Setting f  
too high affects the low-fre-  
Output Offset  
Unlike a Class AB amplifier, the output offset voltage of  
Class D amplifiers does not noticeably increase quies-  
cent current draw when a load is applied. This is due to  
the power conversion of the Class D amplifier. For  
example, an 8mV DC offset across an 8load results  
in 1mA extra current consumption in a Class AB device.  
In the Class D case, an 8mV offset into 8equates  
to an additional power drain of 8µW. Due to the high  
efficiency of the Class D amplifier, this represents an  
quency response of the amplifier. Use capacitors  
whose dielectrics have low-voltage coefficients, such  
as tantalum or aluminum electrolytic. Capacitors with  
high-voltage coefficients, such as ceramics, may result  
in increased distortion at low frequencies.  
Charge-Pump Capacitor Selection  
Use capacitors with an ESR less than 100mfor opti-  
mum performance. Low-ESR ceramic capacitors mini-  
mize the output resistance of the charge pump. For  
best performance over the extended temperature  
range, select capacitors with an X7R dielectric.  
additional quiescent current draw of: 8µW/(V /100 η),  
which is on the order of a few microamps.  
DD  
10 ______________________________________________________________________________________  
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
Flying Capacitor (C1)  
The value of the flying capacitor (C1) affects the load  
regulation and output resistance of the charge pump. A  
C1 value that is too small degrades the device’s ability to  
provide sufficient current drive. Increasing the value of  
C1 improves load regulation and reduces the charge-  
pump output resistance to an extent. Above 1µF, the on-  
resistance of the switches and the ESR of C1 and C2  
dominate.  
amplifier to the speaker. Refer to the MAX9714  
Evaluation Kit schematic for details of this filter.  
Sharing Input Sources  
In certain systems, a single audio source can be shared  
by multiple devices (speaker and headphone ampli-  
fiers). When sharing inputs, it is common to mute the  
unused device, rather than completely shutting it down,  
preventing the unused device inputs from distorting the  
input signal. Mute the MAX9713/MAX9714 by driving SS  
low through an open-drain output or MOSFET (see the  
System Diagram). Driving SS low turns off the Class D  
output stage, but does not affect the input bias levels of  
the MAX9713/MAX9714. Be aware that during normal  
operation, the voltage at SS can be up to 7V, depending  
on the MAX9713/MAX9714 supply.  
Output Capacitor (C2)  
The output capacitor value and ESR directly affect the  
ripple at CHOLD. Increasing C2 reduces output ripple.  
Likewise, decreasing the ESR of C2 reduces both rip-  
ple and output resistance. Lower capacitance values  
can be used in systems with low maximum output  
power levels.  
Supply Bypassing/Layout  
Proper power-supply bypassing ensures low distortion  
Output Filter  
The MAX9713/MAX9714 do not require an output filter.  
The device passes FCC emissions standards with  
36cm of unshielded speaker cables. However, output  
filtering can be used if a design is failing radiated emis-  
sions due to board layout or cable length, or the circuit  
is near EMI-sensitive devices. Use a ferrite bead filter  
when radiated frequencies above 10MHz are of con-  
cern. Use an LC filter when radiated frequencies below  
10MHz are of concern, or when long leads connect the  
operation. For optimum performance, bypass V  
to  
DD  
PGND with a 0.1µF capacitor as close to each V  
pin  
DD  
as possible. A low-impedance, high-current power-sup-  
ply connection to V is assumed. Additional bulk  
DD  
capacitance should be added as required depending on  
the application and power-supply characteristics. AGND  
and PGND should be star connected to system ground.  
Refer to the MAX9714 Evaluation Kit for layout guidance.  
Pin Configurations  
TOP VIEW  
24 23 22 21 20 19 18 17  
24 23 22 21 20 19 18 17  
N.C. 25  
N.C. 26  
OUT- 27  
OUT- 28  
OUT+ 29  
OUT+ 30  
N.C. 31  
16 G2  
OUTR- 25  
OUTR- 26  
OUTR+ 27  
OUTR+ 28  
OUTL- 29  
OUTL- 30  
OUTL+ 31  
16 INR+  
15 INR-  
14 REG.  
13 AGND  
12 SS  
15 G1  
14 SHDN  
13 SS  
MAX9713  
MAX9714  
12 IN+  
11 IN-  
10 AGND  
11 SHDN  
10 INL+  
N.C.  
9
REG.  
OUTL+  
9
INL-  
32  
32  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
TQFN (5mm x 5mm)  
TQFN (7mm x 7mm)  
Chip Information  
MAX9713 TRANSISTOR COUNT: 3093  
MAX9714 TRANSISTOR COUNT: 4630  
PROCESS: BiCMOS  
______________________________________________________________________________________ 11  
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
Functional Diagrams  
10V TO +25V  
*
100µF  
25V†  
0.1µF  
25V†  
0.1µF  
25V†  
1
2
3
4
21 22  
23 24  
PGND  
PGND  
V
V
DD  
DD  
0.47µF  
0.47µF  
12 IN+  
OUT+ 30  
OUT+  
29  
OUT- 28  
MODULATOR  
OSCILLATOR  
H-BRIDGE  
11  
IN-  
27  
OUT-  
18  
19  
FS1  
FS2  
V
REG  
V
REG  
14  
SHDN  
MAX9713  
GAIN  
CONTROL  
15 G1  
16 G2  
13 SS  
V
V
REG  
REG  
6
5
C1P  
C1N  
C1  
SHUTDOWN  
CONTROL  
CHARGE PUMP  
CHOLD  
0.1µF  
25V†  
V
REG  
REG  
9
0.18µF  
10V  
0.01µF  
10V  
10 AGND  
7
C2  
1µF  
25V†  
LOGIC INPUTS SHOWN FOR A = 16dB (SSM).  
V
†CHOOSE A CAPACITOR VOLTAGE RATING V  
*SYSTEM-LEVEL REQUIREMENT.  
V
DD  
.
DD  
12 ______________________________________________________________________________________  
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
Functional Diagrams (continued)  
10V TO +25V  
*
100µF  
25V†  
0.1µF  
25V†  
0.1µF  
25V†  
1
2
3
4
21 22  
23 24  
PGND  
PGND  
V
V
DD  
DD  
0.47µF  
0.47µF  
10 INL+  
OUTL+ 32  
OUTL+  
31  
OUTL- 30  
29  
MODULATOR  
H-BRIDGE  
9
INL-  
OUTL-  
19  
20  
FS1  
FS2  
V
V
REG  
REG  
OSCILLATOR  
MODULATOR  
0.47µF  
0.47µF  
16 INR+  
OUTR+ 28  
OUTR+  
27  
OUTR- 26  
H-BRIDGE  
15  
INR-  
25  
OUTR-  
11  
SHDN  
GAIN  
CONTROL  
17 G1  
18 G2  
12 SS  
V
MAX9714  
REG  
V
REG  
6
5
C1P  
C1N  
C1  
0.1µF  
25V†  
SHUTDOWN  
CONTROL  
CHARGE PUMP  
V
REG  
REG  
14  
0.18µF  
10V  
0.01µF  
10V  
13 AGND  
CHOLD  
7
C2  
1µF  
25V†  
LOGIC INPUTS SHOWN FOR A = 16dB (SSM).  
V
†CHOOSE A CAPACITOR VOLTAGE RATING V  
*SYSTEM-LEVEL REQUIREMENT.  
V
DD  
.
DD  
______________________________________________________________________________________ 13  
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
System Diagram  
V
DD  
100µF*  
SHDN  
OUTL-  
V
DD  
0.47µF  
0.47µF  
OUTL-  
OUTL+  
INL-  
INL+  
OUTL+  
CODEC  
MAX9714  
0.47µF  
0.47µF  
OUTR+  
OUTR-  
INR+  
OUTR+  
INR-  
SS  
OUTR-  
5V  
100kΩ  
0.18µF  
SHDN  
1µF  
V
DD  
INL-  
1µF  
1µF  
15kΩ  
15kΩ  
MAX9722B  
OUTL  
INL+  
INR+  
OUTR  
1µF  
PV  
SV  
SS  
INR-  
SS  
1µF  
C1P  
CIN  
30kΩ  
30kΩ  
1µF  
LOGIC INPUTS SHOWN FOR A = 16dB (SSM)  
V
*SYSTEM-LEVEL REQUIREMENT.  
14 ______________________________________________________________________________________  
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
E
DETAIL A  
(NE-1) X  
e
E/2  
k
e
D/2  
C
(ND-1) X  
e
D2  
D
L
D2/2  
b
L
E2/2  
C
L
k
DETAIL B  
E2  
e
C
C
L
L
L
L1  
L
L
e
e
A
A1  
A2  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
1
21-0144  
E
2
______________________________________________________________________________________ 15  
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
32, 44, 48, 56L THIN QFN, 7x7x0.8mm  
2
21-0144  
E
2
16 ______________________________________________________________________________________  
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
XXXXX  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45°  
DETAIL A  
e/2  
PIN # 1  
I.D.  
e
(ND-1) X  
e
DETAIL B  
e
L
C
C
L
L1  
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
1
21-0140  
H
-DRAWING NOT TO SCALE-  
2
______________________________________________________________________________________ 17  
6W, Filterless, Spread-Spectrum  
Mono/Stereo Class D Amplifiers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
40L 5x5  
DOWN  
BONDS  
ALLOWED  
L
PKG.  
CODES  
MIN. NOM. MAX. MIN. NOM. MAX. ±0.15  
A
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
T1655-1  
T1655-2  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
**  
**  
**  
**  
A1  
A3  
b
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
T2055-2  
T2055-3  
T2055-4  
T2055-5  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
D
E
**  
**  
e
0.80 BSC.  
0.25  
0.65 BSC.  
0.25  
0.50 BSC.  
0.25  
0.50 BSC.  
0.25  
0.40 BSC.  
YES  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
k
-
-
-
-
-
-
-
-
0.25 0.35 0.45  
T2855-1  
T2855-2  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
NO  
NO  
L
**  
**  
**  
**  
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
0.30 0.40 0.50  
40  
T2855-3  
T2855-4  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
YES  
YES  
NO  
N
ND  
NE  
16  
20  
28  
32  
4
4
5
5
7
7
8
8
10  
10  
T2855-5  
T2855-6  
T2855-7  
T2855-8  
**  
**  
**  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
-----  
JEDEC  
NO  
YES  
2.80  
3.35  
3.35  
3.20  
2.60 2.70  
3.15 3.25  
2.60 2.70 2.80  
3.15 3.25 3.35  
3.15 3.25 3.35  
3.00 3.10 3.20  
0.40  
YES  
NO  
NO  
NOTES:  
T2855N-1 3.15 3.25  
**  
**  
**  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
T3255-2  
T3255-3  
T3255-4  
3.00 3.10  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
YES  
NO  
**  
**  
**  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
NO  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
T4055-1 3.20 3.30 3.40 3.20 3.30 3.40  
YES  
**SEE COMMON DIMENSIONS TABLE  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN  
0.25 mm AND 0.30 mm FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1,  
T2855-3, AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ±0.05.  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
H
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY