MAX9715 [MAXIM]

2.8W, Low-EMI, Stereo, Filterless Class D Audio Amplifier; 2.8W ,低EMI,立体声,无需滤波的D类音频放大器
MAX9715
型号: MAX9715
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2.8W, Low-EMI, Stereo, Filterless Class D Audio Amplifier
2.8W ,低EMI,立体声,无需滤波的D类音频放大器

音频放大器
文件: 总14页 (文件大小:549K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3589; Rev 1; 8/05  
2.8W, Low-EMI, Stereo, Filterless  
Class D Audio Amplifier  
General Description  
Features  
The MAX9715 high-efficiency, stereo, Class D audio  
power amplifier provides up to 2.8W per channel into a  
4speaker with a 5V supply. Maxim’s second-generation  
Class D technology features robust output protection,  
high efficiency, and high power-supply rejection (PSRR)  
while eliminating the need for output filters. Selectable  
gain settings, +10.5dB or +9.0dB, adjust the amplifier  
gain to suit the audio input level and speaker load.  
5V Single-Supply Operation  
Patented Spread-Spectrum Modulator Reduces EMI  
2.8W, Class D, Stereo Speaker Amplifier (4)  
Filterless Class D Requires No LC Output Filter  
High PSRR (71dB at 1kHz)  
86% Efficiency (R = 8, P  
= 1W)  
OUT  
L
The MAX9715 features high PSRR (71dB at 1kHz),  
allowing for operation from noisy supplies without addi-  
tional regulation. Comprehensive click-and-pop sup-  
pression eliminates audible clicks and pops at startup  
and shutdown. The MAX9715 operates from a single 5V  
supply and consumes only 12mA of supply current.  
Integrated shutdown control reduces supply current to  
less than 100nA.  
Low-Power Shutdown Mode  
Integrated Click-and-Pop Suppression  
Low Total Harmonic Distortion: 0.06% at 1kHz  
Short-Circuit and Thermal Protection  
Internal Gain, +9.0dB or +10.5dB  
The MAX9715 is fully specified over the extended  
-40°C to +85°C temperature range and is available in  
thermally enhanced 16-pin thin QFN-EP and 16-pin  
TSSOP packages.  
Available in Space-Saving Packages  
16-Pin Thin QFN-EP (5mm x 5mm x 0.8mm)  
16-Pin TSSOP  
Applications  
Ordering Information  
High-End Notebook Audio  
LCD Projectors  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
16 TQFN-EP*  
16 TSSOP  
MAX9715ETE+  
MAX9715EUE+  
Portable Audio  
+Denotes lead-free package.  
*EP = Exposed paddle.  
Multimedia Docking Stations  
Typical Operating Circuit/Functional Diagram appears at  
end of data sheet.  
Pin Configurations  
Block Diagram  
TOP VIEW  
4.5V TO 5.5V SUPPLY  
12  
11  
10  
9
BIAS 13  
8
7
6
5
SHDN  
GND  
GAIN  
N.C.  
OUTR+  
INR  
V
DD  
14  
15  
OUTR-  
MAX9715  
GAIN  
INL  
CLASS D  
AMPLIFIER  
INR  
OUTL+  
OUTL-  
INL 16  
1
2
3
4
MAX9715  
TQFN  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2.8W, Low-EMI, Stereo, Filterless Class D  
Audio Amplifier  
ABSOLUTE MAXIMUM RATINGS  
V
, PV , to GND ...............................................................+6V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
DD  
GND to PGND .......................................................-0.3V to +0.3V  
Any Other Pin to PGND ............................. -0.3V to (V + 0.3V)  
16-Pin TQFN-EP (derate 20.8mW/°C above +70°C)..1666mW  
16-Pin TSSOP (derate 9.4mW/°C above +70°C) ......754.7mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
Duration of OUT__ Short Circuit to PGND or PV ....Continuous  
DD  
Duration of OUT_+ Short Circuit between OUT_- ......Continuous  
Continuous Current Into/Out of (PV , OUT__, PGND)........1.7A  
DD  
Continuous Input Current (All Other Pins) ....................... 20mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = PV = 5.0V, GND = PGND = 0V, V  
= V , C  
= 1µF, speaker impedance = 8in series with 68µH connected between  
DD  
DD  
SHDN  
DD BIAS  
OUT_+ and OUT_-, GAIN = +10.5dB, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
A
MIN  
MAX A  
PARAMETER  
GENERAL  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
Quiescent Current  
V
Inferred from PSRR test  
No load  
4.5  
5.5  
16  
V
DD  
I
12.8  
0.1  
10  
mA  
µA  
k  
ms  
V
DD  
Shutdown Supply Current  
Input Resistance  
I
V
= 0V  
SHDN  
2
SHDN  
R
6.5  
13.5  
IN  
ON  
Turn-On Time  
t
25  
BIAS Voltage  
V
1.8  
BIAS  
CLASS D SPEAKER AMPLIFIERS  
T
T
= +25°C  
12.6  
45  
70  
A
A
Output Offset Voltage  
V
mV  
dB  
OS  
= T  
to T  
MAX  
MIN  
GAIN = 0  
GAIN = 1  
10.5  
9.0  
Maximum Speaker Amplifier Gain  
(Note 3)  
A
V
PV  
5.5V  
or V  
= 4.5V to  
DD  
DD  
52.4  
75  
Power-Supply Rejection Ratio  
Output Power  
PSRR  
V
= 0V  
dB  
IN_  
f = 1kHz, 100mV  
71  
60  
P-P  
f = 20kHz, 100mV  
P-P  
R = 8Ω  
L
1.4  
2.3  
1.7  
2.8  
0.06  
0.07  
89  
THD+N = 1%  
R = 4Ω  
L
P
W
%
OUT  
R = 8Ω  
L
THD+N = 10%  
f = 1kHz  
R = 4Ω  
L
R = 8, P  
= 1.2W  
= 2W  
L
OUT  
Total Harmonic Distortion Plus  
Noise  
THD+N  
SNR  
R = 4, P  
L
OUT  
P
P
= 1W, BW = 22Hz to 22kHz  
= 1W, A-weighted  
OUT  
OUT  
Signal-to-Noise Ratio  
Maximum Capacitive Load  
Switching Frequency  
dB  
pF  
93  
C
200  
L_MAX  
Average frequency in spread-spectrum  
operation  
f
1.00  
1.22  
1.40  
MHz  
SW  
2
_______________________________________________________________________________________  
2.8W, Low-EMI, Stereo, Filterless Class D  
Audio Amplifier  
ELECTRICAL CHARACTERISTICS (continued)  
(V = PV = 5.0V, GND = PGND = 0V, V  
= V , C  
= 1µF, speaker impedance = 8in series with 68µH connected between  
DD  
DD  
SHDN  
MIN  
DD BIAS  
OUT_+ and OUT_-, GAIN = +10.5dB, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
MAX A  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Spread-Spectrum Modulation  
120  
kHz  
Channel-to-channel, f = 10kHz, P  
left to right or right to left  
= 1W,  
OUT  
Crosstalk  
72  
-64  
-46  
86  
dB  
dBV  
%
Peak voltage,  
A-weighted,  
Into shutdown  
Click-and-Pop Level  
Efficiency  
K
CP  
32 samples per  
second (Note 4)  
Out of shutdown  
R = 8in series with 68µH, P  
= 1W  
L
OUT  
η
per channel, f = 1kHz  
DIGITAL INPUTS (GAIN and SHDN)  
Input High Voltage  
V
2.0  
V
V
IH  
Input Low Voltage  
V
0.8  
1
IL  
SHDN  
Input Leakage Current  
I
µA  
LEAK  
GAIN  
1.5  
Note 1: All devices are 100% production tested at T = +25°C. All temperature limits are guaranteed by design.  
A
Note 2: Speaker amplifier gain is defined as A = (V  
- V  
) / V .  
OUT_- IN  
V
OUT_+  
Note 3: Click-and-pop level testing performed with an 8resistive load in series with 68µH inductive load connected across the  
Class D BTL outputs. Mode transitions are controlled by the SHDN pin. Inputs AC-coupled to GND.  
Note 4: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For R = 4, L = 33µH.  
L
For R = 8, L = 68µH.  
L
Typical Operating Characteristics  
(V  
DD  
= 5.0V, C  
= 3 x 0.1µF, C  
= 1µF, C  
= C  
= 1µF, A = +10.5dB, T = +25°C, unless otherwise noted.) (See the  
VDD  
BIAS  
INL  
INR V A  
Typical Operating Circuit/Functional Diagram)  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
100  
10  
1
1
V = 5V  
DD  
V
= 5V  
DD  
R = 8  
L
R = 4Ω  
L
P
= 0.35W  
OUT  
P
= 0.5W  
OUT  
f
IN  
= 1kHz AND 20Hz  
0.1  
0.01  
0.1  
0.01  
1
P
= 2W  
P
= 1.25W  
OUT  
OUT  
0.1  
f
IN  
= 10kHz  
0.01  
V
= 5V  
DD  
R = 4Ω  
L
0.001  
0.001  
0.001  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT POWER (W)  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
3
2.8W, Low-EMI, Stereo, Filterless Class D  
Audio Amplifier  
Typical Operating Characteristics (continued)  
(V  
DD  
= 5.0V, C  
= 3 x 0.1µF, C  
= 1µF, C  
= C  
= 1µF, A = +10.5dB, T = +25°C, unless otherwise noted.) (See the  
VDD  
BIAS  
INL  
INR V A  
Typical Operating Circuit/Functional Diagram)  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
EFFICIENCY  
vs. OUTPUT POWER  
100  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R = 8Ω  
f
= 1kHz  
L
IN  
R = 4Ω  
L
f
IN  
= 20Hz  
1
0.1  
f
IN  
= 10kHz  
V
DD  
= 5V  
f
= 1kHz  
IN  
0.01  
P
OUT  
= P  
+ P  
OUTL OUTR  
V
DD  
= 5V  
OUTPUTS IN-PHASE  
R = 8Ω  
L
0.001  
0
4
6
0
0.5  
1.0  
1.5  
2.0  
2.5  
1
5
2
3
OUTPUT POWER (W)  
OUTPUT POWER (W)  
EFFICIENCY  
OUTPUT POWER  
vs. SUPPLY VOLTAGE  
vs. LOAD RESISTANCE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
100  
V
= 5V  
R = 8Ω  
L
DD  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f
= 1kHz  
IN  
L
LOAD  
= 33µH  
R = 4Ω  
L
THD+N = 10%  
f
P
= 1kHz  
IN  
OUT  
= P  
+ P  
OUTL OUTR  
OUTPUTS IN-PHASE  
THD+N = 1%  
THD+N = 1%  
4.5  
4.8  
5.0  
5.3  
5.5  
1
10  
100  
1k  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE ()  
OUTPUT POWER  
vs. SUPPLY VOLTAGE  
OUTPUT POWER  
vs. SUPPLY VOLTAGE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
THD+N = 10%  
THD+N = 10%  
THD+N = 1%  
THD+N = 1%  
f
= 1kHz  
f
= 1kHz  
IN  
IN  
R = 4Ω  
L
R = 8Ω  
L
4.5  
4.8  
5.0  
5.3  
5.5  
4.5  
4.8  
5.0  
5.3  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
4
_______________________________________________________________________________________  
2.8W, Low-EMI, Stereo, Filterless Class D  
Audio Amplifier  
Typical Operating Characteristics (continued)  
(V  
DD  
= 5.0V, C  
= 3 x 0.1µF, C  
= 1µF, C  
= C  
= 1µF, A = +10.5dB, T = +25°C, unless otherwise noted.) (See the  
VDD  
BIAS  
INL  
INR  
V
A
Typical Operating Circuit/Functional Diagram)  
POWER-SUPPLY REJECTION RATIO  
CROSSTALK  
vs. FREQUENCY  
OUTPUT SPECTRUM  
vs. FREQUENCY  
vs. FREQUENCY  
0
0
-20  
-40  
-60  
-80  
-40  
-50  
P
= 1W  
R = 8Ω  
OUT  
L
R = 8Ω  
L
-10  
R = 8Ω  
V
f
= 5V  
= 1kHz  
L
DD  
IN  
A = +10.5dB  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-60  
f
= 10kHz  
IN  
-70  
-80  
-90  
RIGHT TO LEFT  
LEFT TO RIGHT  
-100  
-110  
-120  
-130  
-140  
-100  
-120  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
0
5
10  
15  
20  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
OUTPUT SPECTRUM  
vs. FREQUENCY (A-WEIGHTED)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
WIDEBAND SPECTRUM  
0
-20  
-40  
-50  
20  
18  
16  
14  
12  
10  
8
R = 8Ω  
DD  
L
NO LOAD  
INPUTS AC GROUNDED  
V
= 5V  
f
= 1kHz  
IN  
-60  
-70  
-40  
-80  
-60  
-90  
-100  
-110  
-120  
-130  
-140  
-80  
6
V
= 5V  
4
DD  
-100  
-120  
INPUTS AC GROUNDED  
R = 8Ω  
L
2
0
1
10  
100  
1000  
0
5
10  
15  
20  
4.5  
4.8  
5.0  
5.3  
5.5  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
2.8W, Low-EMI, Stereo, Filterless Class D  
Audio Amplifier  
Typical Operating Characteristics (continued)  
(V  
DD  
= 5.0V, C  
= 3 x 0.1µF, C  
= 1µF, C  
= C  
= 1µF, A = +10.5dB, T = +25°C, unless otherwise noted.) (See the  
VDD  
BIAS  
INL  
INR  
V
A
Typical Operating Circuit/Functional Diagram)  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
POWER-ON/OFF WAVEFORM  
MAX9715 toc17  
0.40  
SHDN  
5V/div  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
I
OUT  
200mA/div  
4.5  
4.8  
5.0  
5.3  
5.5  
10ms/div  
SUPPLY VOLTAGE (V)  
Pin Description  
PIN  
NAME  
FUNCTION  
TQFN  
1, 12  
2
TSSOP  
4, 13  
PGND  
OUTL+  
OUTL-  
Power Ground  
5
6
Left-Channel Positive Speaker Output  
Left-Channel Negative Speaker Output  
3
Positive Speaker Power-Supply Input. Power-supply input for speaker amplifier output stages.  
Connect to V and bypass with 0.1µF to PGND.  
DD  
4, 9  
7, 10  
PV  
DD  
5
6
8
N.C.  
GAIN  
GND  
No connection. Not internally connected.  
Gain Select. Sets the internal amplifier gain. See the Gain Selection section.  
Ground  
7
1, 14  
9
8
SHDN  
OUTR-  
Shutdown Control. Drive SHDN low to shut down the MAX9715.  
Right-Channel Negative Speaker Output  
10  
11  
13  
14  
15  
16  
EP  
11  
12  
15  
16  
2
OUTR+ Right-Channel Positive Speaker Output  
BIAS Bias Voltage Output. V = 1.8V, bypass BIAS to GND with a 1µF ceramic capacitor.  
BIAS  
V
Positive Power-Supply Input. Bypass to GND with a 0.1µF ceramic capacitor.  
Right-Channel Input  
DD  
INR  
INL  
EP  
3
Left-Channel Input  
Exposed Paddle. Connect EP to an electrically isolated copper pad or GND.  
6
_______________________________________________________________________________________  
2.8W, Low-EMI, Stereo, Filterless Class D  
Audio Amplifier  
50  
45  
40  
35  
30  
25  
20  
15  
280  
120  
240  
30  
60  
100  
140 160 180  
FREQUENCY (MHz)  
220  
260  
300  
80  
200  
Figure 1. MAX9715 Radiated Emissions with 75mm of Speaker Cable  
Detailed Description  
The MAX9715 2.8W, Class D speaker amplifier with  
gain control offers Class AB performance with Class D  
efficiency while occupying minimal board space. A  
unique modulation scheme and spread-spectrum  
switching allow filterless operation to create a compact,  
flexible, low-noise, efficient audio power amplifier. The  
MAX9715 features high 71dB at 1kHz PSRR, low 0.06%  
THD+N, industry-leading click-and-pop performance  
and a low-power shutdown mode.  
V
= 0V  
IN  
OUT-  
OUT+  
The MAX9715 features an undervoltage lockout that pre-  
vents operation from an insufficient power supply and  
click-and-pop suppression that eliminates audible tran-  
sients at startup and shutdown. The speaker amplifier  
includes thermal-overload and short-circuit protection.  
V
- V = 0V  
OUT+ OUT-  
The MAX9715 features unique, spread-spectrum opera-  
tion that reduces the amplitude of spectral components at  
high frequencies, reducing EMI emissions that might oth-  
erwise be radiated by the speaker and cables. The  
switching frequency varies randomly by 120kHz around  
the center frequency (1.22MHz). The modulation scheme  
is consistent with Maxim’s Class D amplifiers but the peri-  
od of the triangle waveform changes from cycle to cycle.  
Audio reproduction is not affected by the spread-spec-  
trum switching scheme. Instead of a large amount of  
spectral energy present at multiples of the switching fre-  
quency that energy is now spread over a range of fre-  
quencies. The spreading is increased with frequency so  
that above a few megahertz, the wideband spectrum  
looks like white noise for EMI purposes (Figure 1).  
Figure 2. MAX9715 Output without Input Signal Applied  
Filterless Modulation/Common-Mode Idle  
The spread-spectrum modulation scheme eliminates the  
LC filter required by traditional Class D amplifiers, improv-  
ing efficiency, reducing component count, conserving  
board space and system cost. Conventional Class D  
amplifiers output a 50% duty cycle square wave when no  
signal is present. With no filter, the output square wave  
appears across the load, resulting in finite load current,  
which increases power consumption. When no signal is  
present at the input, the MAX9715 outputs switch as  
shown in Figure 2. The two outputs cancel each other  
because the MAX9715 drives the speaker differently,  
minimizing power consumption as there is no net idle-  
mode voltage across the speaker.  
_______________________________________________________________________________________  
7
2.8W, Low-EMI, Stereo, Filterless Class D  
Audio Amplifier  
Efficiency  
EFFICIENCY  
Efficiency of a Class D amplifier is attributed to the region  
vs. OUTPUT POWER  
of operation of the output-stage transistors. In a Class D  
100  
amplifier, the output transistors act as current-steering  
90  
MAX9715  
switches and consume negligible additional power. Any  
80  
power loss associated with the Class D output stage is  
mostly due to the I2R loss of the MOSFET on-resistance,  
70  
switching losses, and quiescent current overhead.  
60  
50  
40  
30  
20  
10  
0
The theoretical best efficiency of a linear amplifier is  
78%, however, that efficiency is only exhibited at peak  
output powers. Under normal operating levels (typical  
music or voice reproduction levels), efficiency falls  
below 30%. Under the same conditions, the MAX9715  
still exhibits >80% efficiencies (Figure 3).  
CLASS AB  
V
= 5V  
DD  
L
R = 8Ω  
f
= 1kHz  
IN  
0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
OUTPUT POWER (W)  
Gain Selection  
Drive GAIN high to set the gain of the speaker ampli-  
fiers to +9dB, drive GAIN low to set the gain of the  
speaker amplifiers to +10.5dB (see Table 1). The gain  
of the MAX9715 is calculated by the following equation:  
Figure 3. MAX9715 Class D Efficiency vs. Typical Class AB  
Efficiency  
V
V  
OUT−  
OUT+  
20 × log  
Table 1. MAX9715 Maximum Gain Settings  
V
IN  
GAIN  
SPEAKER MODE GAIN (dB)  
Table 2 shows the speaker amplifier input voltage need-  
ed to attain maximum output power from a given gain set-  
ting and load.  
0
1
+10.5  
+9.0  
Shutdown  
The MAX9715 features a 0.1µA low-power shutdown  
mode that reduces quiescent current consumption and  
extends battery life. Driving SHDN low disables the out-  
put amplifiers, bias circuitry, and drives BIAS to GND.  
Connect SHDN to logic 1 for normal operation.  
Table 2. MAX9715 Input Voltage and Gain  
Settings for Maximum Output Power  
GAIN (dB)  
10.5  
INPUT (V  
)
R ()  
P
(W)  
OUT  
RMS  
L
0.90  
4
4
8
8
2.3  
9.0  
1.08  
2.3  
1.4  
1.4  
Click-and-Pop Suppression  
The MAX9715 speaker amplifiers feature Maxim’s com-  
prehensive, industry-leading click-and-pop suppression  
that eliminates any audible transients at startup. The out-  
puts are high-impedance while in shutdown. During  
startup or power-up, the modulator bias voltage is set to  
the correct level while the input amplifiers are muted. The  
input amplifiers are muted for 25ms allowing the input  
10.5  
1.00  
9.0  
1.19  
amplifier, and can decrease efficiency. The traditional  
PWM scheme uses large differential output swings (2 x  
V
), which causes large ripple currents. Any para-  
DD(P-P)  
sitic resistance in the filter components results in a loss  
of power, lowering the efficiency.  
capacitors to charge to the bias voltage (V  
). The  
BIAS  
amplifiers are then unmuted, ensuring click-free startup.  
The MAX9715 does not require an output filter. The  
device relies on the inherent inductance of the speaker  
coil and the natural filtering of both the speaker and the  
human ear to recover the audio component of the  
square-wave output. The elimination of the output filter  
results in a smaller, less costly, more efficient solution.  
Applications Information  
Filterless Operation  
Traditional Class D amplifiers require an output filter to  
recover the audio signal from the amplifier’s PWM output.  
The filters add cost, increase the solution size of the  
8
_______________________________________________________________________________________  
2.8W, Low-EMI, Stereo, Filterless Class D  
Audio Amplifier  
Voice coil movement due to the square-wave frequency  
is very small because the switching frequency of the  
MAX9715 is well beyond the bandwidth of most speak-  
ers. Although this movement is small, a speaker not  
designed to handle the additional power may be  
damaged. Use a speaker with a series inductance  
> 30µH for optimum efficiency. Typical 8speakers  
exhibit series inductances in the 30µH to 100µH range.  
The highest efficiency is achieved with speaker induc-  
tances > 60µH.  
R
is the amplifier’s internal input resistance value given  
IN  
in the Electrical Characteristics table. Choose C so  
IN  
f
is well below the lowest frequency of interest.  
-3dB  
Setting f  
too high affects the amplifier’s low-frequency  
-3dB  
response. Use capacitors with low-voltage coefficient  
dielectrics, such as tantalum or aluminum electrolytic.  
Capacitors with high-voltage coefficients, such as ceram-  
ics, may result in increased distortion at low frequencies.  
The inability of small diaphragm speakers to reproduce  
low frequencies can be exploited to improve click-and-  
pop performance. Set the cutoff frequency of the  
MAX9715’s input highpass filter to match the speaker’s  
frequency response. Doing so will allow for smaller C  
values and reduce click-and-pop.  
Component Selection  
Input Filter  
IN  
The input capacitor (C ), in conjunction with the amplifier  
IN  
input resistance (R ), forms a highpass filter that  
IN  
removes the DC bias from an incoming signal (see the  
Typical Application Circuit). The AC-coupling capacitor  
allows the amplifier to bias the signal to an optimum DC  
level. Assuming zero source impedance, the -3dB point  
of the highpass filter is given by:  
Output Filter  
The MAX9715 speaker amplifiers do not require output  
filters. However, output filtering can be used if a design  
is failing radiated emissions due to board layout, cable  
length, or the circuit is near EMI-sensitive devices. Use  
a ferrite bead filter or a common-mode choke when radi-  
ated frequencies above 10MHz are of concern. Use an  
LC filter when radiated frequencies below 10MHz are of  
concern, or when long cables (>75mm) connect the  
amplifier to the speaker. Figure 4 shows possible output  
filter connections.  
1
f
=
3dB  
2π × R × C  
IN  
IN  
OUTL+  
OUTL-  
OUTL+  
OUTL-  
OUTL+  
OUTL-  
MAX9715  
MAX9715  
MAX9715  
OUTR+  
OUTR-  
OUTR+  
OUTR-  
OUTR+  
OUTR-  
(a)  
(b)  
COMMON-MODE CHOKE FOR  
APPLICATIONS USING CABLE LENGTHS  
GREATER THAN 150mm.  
(c)  
TYPICAL APPLICATION  
<75mm OF SPEAKER CABLE.  
LC FILTER WHEN USING LONG CABLE  
LENGTHS OR IN APPLICATIONS  
THAT ARE SENSITIVE TO EMI.  
Figure 4. Optional Speaker Amplifier Output Filter—Guidelines for FCC Compliance  
_______________________________________________________________________________________  
9
2.8W, Low-EMI, Stereo, Filterless Class D  
Audio Amplifier  
heat conduction path from the die to the PC board.  
Supply Bypassing, Layout,  
and Grounding  
Connect the exposed thermal pad to an electrically iso-  
lated pad of copper. A bigger pad area provides better  
thermal performance. Connect EP to GND if PC board  
layout rules do not allow for isolated pads of copper. If  
EP is connected to GND, ensure that high-current return  
paths do not flow through EP.  
Proper layout and grounding are essential for optimum  
performance. Use large traces for the power-supply  
inputs and amplifier outputs to minimize losses due to  
parasitic trace resistance. Large traces also aid in moving  
heat away from the package. Proper grounding improves  
audio performance, minimizes crosstalk between chan-  
nels, and prevents any switching noise from coupling into  
the audio signal. Route ground return paths that carry  
switching transients to power ground (PGND). Keep high-  
current return paths that connect to PGND short and  
route them away from analog ground (GND) and any  
traces or components in the audio input signal path. Use  
a star connection to connect GND and PGND together at  
one point on the PC board.  
Biamp Configuration  
The Typical Application Circuit shows the MAX9715  
configured as a mid-/high-frequency amplifier and the  
MAX9713 is configured as a mono bass amplifier.  
Capacitors C1 and C2 set the highpass cutoff frequen-  
cy according to the following equation:  
1
f =  
2π × R × C1  
IN  
Bypass each PV  
with a 0.1µF capacitor to PGND.  
DD  
Bypass V  
to GND with a 0.1µF capacitor. Place a bulk  
DD  
where R is the input resistance of the MAX9715 and  
IN  
capacitor between V  
and PGND. Place the bypass  
DD  
C1 = C2. The 10µF capacitors on the output of the  
MAX9715 ensure a two-pole roll-off with the 5load  
shown.  
capacitors as close to the MAX9715 as possible.  
Use large, low-resistance output traces. Current drawn  
from the output increases as load impedance decreases.  
High-output-trace resistance decreases the power deliv-  
ered to the load. For example, when compared to a 0Ω  
trace, a 100mtrace reduces the power delivered to a  
4load from 2.1W to 2.0W. Large output, supply, and  
GND traces decrease the thermal impedance of the cir-  
cuit and allow more heat to be radiated from the MAX9715  
to the air.  
The stereo signal is summed to a mono signal and then  
sent to a two-pole lowpass filter. The filtered signal is  
then amplified by the MAX9713. The passband gain of  
the lowpass filter, for coherent left and right signals is  
(-2 x R3) / R1, where R1 = R2. The cutoff frequency of  
the lowpass filter is set by the following equation:  
1
2π  
1
f =  
×
The MAX9715 thin QFN-EP package features an  
exposed thermal pad on its underside. This pad lowers  
the package’s thermal impedance by providing a direct-  
C3 × C4 × R3 × R4  
10 ______________________________________________________________________________________  
2.8W, Low-EMI, Stereo, Filterless Class D  
Audio Amplifier  
Typical Application Circuit  
5V  
22µF  
22µF  
C1  
15nF  
LEFT IN  
8Ω  
8Ω  
C2  
15nF  
MAX9715  
RIGHT IN  
R3  
7.5kΩ  
C4  
2.2nF  
C5  
1µF  
R1  
15kΩ  
R4  
15kΩ  
12V  
C6  
1µF  
1µF  
1µF  
R2  
15kΩ  
C3  
22nF  
2.5V  
MAX4480  
MAX9713  
______________________________________________________________________________________ 11  
2.8W, Low-EMI, Stereo, Filterless Class D  
Audio Amplifier  
Typical Operating Circuit/Functional Diagram  
4.5V TO 5.5V  
SHUTDOWN  
CONTROL  
0.1µF  
0.1µF  
0.1µF  
*
V
DD  
PV  
DD  
PV  
DD  
SHDN  
SHDN  
CONTROL  
MAX9715  
1µF  
1µF  
OUTL+  
OUTL-  
V
R
DD  
DD  
IN  
CLASS D  
MODULATOR  
AND H-BRIDGE  
INL  
LEFT  
AUDIO  
GAIN-SELECT  
LOGIC  
GAIN  
GAIN  
SELECT  
V
BIAS  
OSCILLATOR  
V
OUTR+  
OUTR-  
CLASS D  
MODULATOR  
AND H-BRIDGE  
R
IN  
INR  
RIGHT  
AUDIO  
V
BIAS  
BIAS  
BIAS  
GENERATOR  
GND  
PGND  
PGND  
1µF  
*BULK PC BOARD DECOUPLING, TYPICALLY GREATER THAN 10µF.  
Pin Configurations (continued)  
Chip Information  
TRANSISTOR COUNT: 11,721  
PROCESS: BiCMOS  
TOP VIEW  
GND  
1
2
3
4
5
6
7
8
16 V  
DD  
INR  
INL  
15 BIAS  
14 GND  
PGND  
OUTL+  
OUTL-  
MAX9715  
13 PGND  
12 OUTR+  
11 OUTR-  
PV  
DD  
10 PV  
DD  
GAIN  
9
SHDN  
TSSOP  
12 ______________________________________________________________________________________  
2.8W, Low-EMI, Stereo, Filterless Class D  
Audio Amplifier  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
XXXXX  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45°  
DETAIL A  
e/2  
PIN # 1  
I.D.  
e
(ND-1) X  
e
DETAIL B  
e
L
C
C
L
L1  
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
1
21-0140  
H
-DRAWING NOT TO SCALE-  
2
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
MIN. NOM. MAX. MIN. NOM. MAX. ±0.15  
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
40L 5x5  
DOWN  
BONDS  
ALLOWED  
L
PKG.  
CODES  
A
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
T1655-1  
T1655-2  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
**  
**  
**  
**  
A1  
A3  
b
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
0
0.02 0.05  
0.20 REF.  
YES  
NO  
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
T2055-2  
T2055-3  
T2055-4  
T2055-5  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
D
E
**  
**  
e
0.80 BSC.  
0.25  
0.65 BSC.  
0.25  
0.50 BSC.  
0.25  
0.50 BSC.  
0.25  
0.40 BSC.  
YES  
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
k
-
-
-
-
-
-
-
-
0.25 0.35 0.45  
T2855-1  
T2855-2  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
NO  
NO  
L
**  
**  
**  
**  
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
0.30 0.40 0.50  
40  
T2855-3  
T2855-4  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
YES  
YES  
NO  
N
ND  
NE  
16  
20  
28  
32  
4
4
5
5
7
7
8
8
10  
10  
T2855-5  
T2855-6  
T2855-7  
T2855-8  
**  
**  
**  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
-----  
JEDEC  
NO  
YES  
2.80  
3.35  
3.35  
3.20  
2.60 2.70  
3.15 3.25  
2.60 2.70 2.80  
3.15 3.25 3.35  
3.15 3.25 3.35  
3.00 3.10 3.20  
0.40  
YES  
NO  
NO  
NOTES:  
T2855N-1 3.15 3.25  
**  
**  
**  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
T3255-2  
T3255-3  
T3255-4  
3.00 3.10  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
YES  
NO  
**  
**  
**  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
NO  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
T4055-1 3.20 3.30 3.40 3.20 3.30 3.40  
YES  
**SEE COMMON DIMENSIONS TABLE  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN  
0.25 mm AND 0.30 mm FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1,  
T2855-3, AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ±0.05.  
PACKAGE OUTLINE,  
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
H
2
______________________________________________________________________________________ 13  
2.8W, Low-EMI, Stereo, Filterless Class D  
Audio Amplifier  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, TSSOP 4.40mm BODY  
1
21-0066  
G
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY