MAX9725AEBC+TG45 [MAXIM]

1V, Low-Power, DirectDrive, Stereo Headphone Amplifier with Shutdown;
MAX9725AEBC+TG45
型号: MAX9725AEBC+TG45
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1V, Low-Power, DirectDrive, Stereo Headphone Amplifier with Shutdown

文件: 总17页 (文件大小:332K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3465; Rev 4; 3/09  
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
MAX9725  
General Description  
Features  
Low Quiescent Current  
2.1mA (MAX9725A–MAX9725D)  
2.3mA (MAX9725E)  
The MAX9725A–MAX9725D fixed-gain, stereo head-  
phone amplifiers are ideal for portable equipment where  
board space is at a premium. The MAX9725E offers the  
flexibility to adjust the gain with external input and feed-  
back resistors. The MAX9725A–MAX9725E use a unique  
DirectDrive architecture to produce a ground-referenced  
output from a single supply, eliminating the need for large  
DC-blocking capacitors, saving cost, board space, and  
component height. Fixed gains of -2V/V (MAX9725A),  
-1.5V/V (MAX9725B), -1V/V (MAX9725C), and -4V/V  
(MAX9725D) further reduce external component count.  
The adjustable gain of the MAX9725E DirectDrive head-  
phone amplifier allows for any gain down to -1V/V using  
external resistors.  
Single-Cell, 0.9V to 1.8V Single-Supply Operation  
Fixed Gain Eliminates External Feedback Network  
MAX9725A: -2V/V  
MAX9725B: -1.5V/V  
MAX9725C: -1V/V  
MAX9725D: -4V/V  
Adjustable Gain with External Input and Feedback  
Resistors  
MAX9725E: Minimum Stable Gain of -1V/V  
Ground-Referenced Outputs Eliminate DC Bias  
No Degradation of Low-Frequency Response Due  
to Output Capacitors  
20mW per Channel into 32Ω  
Low 0.006% THD+N  
High PSRR (80dB at 1kHz)  
Integrated Click-and-Pop Suppression  
Low-Power Shutdown Control  
Short-Circuit Protection  
The MAX9725 delivers up to 20mW per channel into a  
32Ω load and achieves 0.006% THD+N. An 80dB at 1kHz  
power-supply rejection ratio (PSRR) allows the MAX9725  
to operate from noisy digital supplies without an additional  
linear regulator. The MAX9725 includes 8kV ESD protec-  
tion on the headphone output. Comprehensive click-and-  
pop circuitry suppresses audible clicks and pops at  
startup and shutdown. A low-power shutdown mode  
reduces supply current to 0.6µA (typ).  
The MAX9725 operates from a single 0.9V to 1.8V supply,  
allowing the device to be powered directly from a single  
AA or AAA battery. The MAX9725 consumes only  
2.1mA of supply current, provides short-circuit protection,  
and is specified over the extended -40°C to +85°C tem-  
perature range. The MAX9725 is available in a tiny  
(1.54mm x 2.02mm x 0.6mm) 12-bump chip-scale  
package (UCSP™) and a 12-pin thin QFN package  
(4mm x 4mm x 0.8mm).  
8kV ESD-Protected Amplifier Outputs  
Available in Space-Saving Packages  
12-Bump UCSP (1.54mm x 2.02mm x 0.6mm)  
12-Pin Thin QFN (4mm x 4mm x 0.8mm)  
Block Diagrams  
SINGLE  
C3  
V
DD  
1.5V CELL  
AA OR AAA  
BATTERY  
MAX9725A–MAX9725D  
Applications  
DirectDrive OUTPUTS  
ELIMINATE DC-BLOCKING  
CAPACITORS.  
MP3 Players  
Cellular Phones  
PDAs  
Smart Phones  
INL  
Portable Audio Equipment  
OUTL  
Ordering Information  
C1P  
C1N  
PV  
SS  
INVERTING  
CHARGE PUMP  
TOP  
MARK  
GAIN  
(V/V)  
PART  
PIN-PACKAGE  
C2  
V
SS  
MAX9725AEBC+TG45  
MAX9725AETC+  
12 UCSP  
+ACK  
+AAEW  
+ACL  
-2  
-2  
12 TQFN-EP*  
12 UCSP  
OUTR  
INR  
MAX9725BEBC+TG45  
-1.5  
Ordering Information continued at end of data sheet.  
Note: All devices are specified over the -40°C to +85°C operating  
temperature range.  
SGND  
PGND  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*EP = Exposed pad.  
UCSP is a trademark of Maxim Integrated Products, Inc.  
Block Diagrams continued at end of data sheet.  
Pin Configurations appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
ABSOLUTE MAXIMUM RATINGS  
SGND to PGND .....................................................-0.3V to +0.3V  
SHDN to SGND or PGND.........................................-0.3V to +4V  
Output Short-Circuit Current ......................................Continuous  
V
V
to SGND or PGND ............................................-0.3V to +2V  
DD  
SS  
to PV ...........................................................-0.3V to +0.3V  
Continuous Power Dissipation (T = +70°C)  
SS  
A
C1P to PGND..............................................-0.3V to (V  
+ 0.3V)  
12-Bump UCSP (derate 6.5mW/°C above +70°C)....518.8mW  
12-Pin Thin QFN (derate 16.9mW/°C above +70°C)..1349.1mW  
Junction Temperature......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Bump Temperature (soldering) Reflow............................+230°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
C1N to PGND............................................(PV - 0.3V) to +0.3V  
SS  
V
SS  
, PV to GND ....................................................+0.3V to -2V  
SS  
OUTR, OUTL, INR, INL to SGND  
(MAX9725A–MAX9725D)..............(V - 0.3V) to (V  
+ 0.3V)  
+ 0.3V)  
SS  
DD  
DD  
OUTR, OUTL to SGND  
MAX9725  
(MAX9725E)..................................(V - 0.3V) to (V  
SS  
INR, INL to SGND (MAX9725E)...................................-4V to +4V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS (MAX9725A–MAX9725D)  
(V  
DD  
= 1.5V, V  
= V  
= 0V, V  
= 1.5V, V = V  
, C1 = C2 = 1µF, C = 1µF, R = , T = T  
to T  
unless other-  
PGND  
SGND  
SHDN  
SS  
PVSS  
IN  
L
A
MIN  
MAX,  
wise noted. Typical values are at T = +25°C.) (See the Functional Diagrams.) (Note 1)  
A
PARAMETER  
Supply Voltage Range  
Quiescent Supply Current  
SYMBOL  
CONDITIONS  
Guaranteed by PSRR test  
Both channels active  
MIN  
TYP  
MAX  
1.8  
UNITS  
V
V
0.9  
DD  
DD  
I
2.1  
0.6  
3.3  
10  
30  
mA  
T
A
T
A
= +25°C  
= -40°C to +85°C  
Shutdown Current  
I
V
= 0V  
SHDN  
µA  
µs  
V
SHDN  
Shutdown to Full Operation  
SHDN Thresholds  
t
180  
ON  
V
V
V
V
= 0.9V to 1.8V  
0.7 x V  
493  
IH  
DD  
DD  
DD  
DD  
V
= 0.9V to 1.8V  
0.3 x V  
DD  
IL  
SHDN Input Leakage Current  
CHARGE PUMP  
I
= 0.9V to 1.8V (Note 2)  
1
µA  
LEAK  
Oscillator Frequency  
AMPLIFIERS  
f
580  
667  
kHz  
OSC  
MAX9725A  
MAX9725B  
MAX9725C  
MAX9725D  
-2.04  
-1.53  
-1.02  
-4.08  
-2.00  
-1.5  
-1.00  
-4.00  
0.5  
0.3  
0.45  
0.6  
25  
-1.96  
-1.47  
-0.98  
-3.92  
Voltage Gain  
A
V
V/V  
Gain Match  
ΔA  
%
V
MAX9725A/MAX9725D  
MAX9725B  
1.05  
1.58  
2.1  
Input AC-coupled,  
Total Output Offset Voltage  
Input Resistance  
V
R = 32Ω to GND,  
mV  
kΩ  
dB  
OS  
L
T
= +25°C  
A
MAX9725C  
R
15  
60  
35  
IN  
V
= 0.9V to 1.8V, T = +25°C  
80  
DD  
A
Power-Supply Rejection Ratio  
PSRR  
f
= 1kHz  
70  
IN  
IN  
100mV  
ripple  
P-P  
f
= 20kHz  
62  
R = 32Ω  
R = 16Ω  
L
10  
20  
L
V
= 1.5V  
DD  
25  
Output Power (Note 3)  
P
mW  
OUT  
V
V
= 1.0V, R = 32Ω  
7
DD  
DD  
L
= 0.9V, R = 32Ω  
6
L
2
_______________________________________________________________________________________  
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
MAX9725  
ELECTRICAL CHARACTERISTICS (MAX9725A–MAX9725D) (continued)  
(V  
DD  
= 1.5V, V  
= V  
= 0V, V  
= 1.5V, V = V  
, C1 = C2 = 1µF, C = 1µF, R = , T = T  
to T  
unless other-  
PGND  
SGND  
SHDN  
SS  
PVSS  
IN  
L
A
MIN  
MAX,  
wise noted. Typical values are at T = +25°C.) (See the Functional Diagrams.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R = 32Ω, P  
= 12mW, f = 1kHz  
= 15mW, f = 1kHz  
0.006  
0.015  
89  
Total Harmonic Distortion Plus  
Noise  
L
OUT  
THD+N  
%
R = 16Ω, P  
L
OUT  
BW = 22Hz to 22kHz  
A-weighted filter  
Signal-to-Noise Ratio  
SNR  
SR  
R = 32Ω, P  
= 12mW  
dB  
L
OUT  
92  
Slew Rate  
0.2  
V/µs  
pF  
Maximum Capacitive Load  
Crosstalk  
C
No sustained oscillations  
= 1.0kHz, R = 32Ω, P = 5mW  
OUT  
150  
100  
L
XTALK  
f
dB  
IN  
L
R = 32Ω, peak voltage,  
A-weighted, 32 samples per  
second (Note 4)  
L
Into shutdown  
Out of shutdown  
72.8  
Click-and-Pop Level  
ESD Protection  
K
dBV  
kV  
CP  
72.8  
8
V
Human Body Model (OUTR, OUTL)  
ESD  
ELECTRICAL CHARACTERISTICS (MAX9725E)  
(V  
DD  
= 1.5V, V  
= V  
= 0V, V  
= 1.5V, V = V  
, C1 = C2 = 1µF, C = 1µF, R = 32Ω, R = 60kΩ, R = 10kΩ, T  
=
F
IN  
PGND  
SGND  
SHDN  
SS  
PVSS  
IN  
L
A
T
MIN  
to T unless otherwise noted. Typical values are at T = +25°C.) (See the Functional Diagrams.) (Note 1)  
MAX, A  
PARAMETER  
SYMBOL  
CONDITIONS  
Guaranteed by PSRR test  
Both channels active  
MIN  
TYP  
MAX  
1.8  
3.7  
1
UNITS  
V
Supply Voltage Range  
V
0.9  
DD  
DD  
Quiescent Supply Current  
I
2.3  
0.6  
mA  
T
A
T
A
= +25°C  
= -40°C to +85°C  
Shutdown Current  
I
V
= 0V  
SHDN  
µA  
µs  
V
SHDN  
10  
Shutdown to Full Operation  
SHDN Thresholds  
t
180  
ON  
V
V
V
V
= 0.9V to 1.8V  
0.7 x V  
DD  
IH  
DD  
DD  
DD  
V
= 0.9V to 1.8V  
0.3 x V  
IL  
DD  
SHDN Input Leakage Current  
CHARGE PUMP  
I
= 0.9V to 1.8V (Note 2)  
1
µA  
LEAK  
Oscillator Frequency  
AMPLIFIERS  
f
483  
592  
687  
kHz  
OSC  
Voltage Gain  
A
(Note 5)  
-6.11  
-6.07  
-1.0  
-6.00  
V/V  
V/V  
V
Minimum Stable Gain  
ΔA  
V
Input AC-coupled, R = 32Ω to GND,  
L
Total Output Offset Voltage  
V
0.63  
9.78  
2.1  
mV  
OS  
T
A
= +25°C (Note 6)  
Input Resistance  
INR, INL Input Leakage  
Current  
R
6.3  
14  
kΩ  
IN  
I
100  
nA  
LK  
Maximum Input Parasitic  
Capacitance  
C
5
pF  
dB  
PAR  
V
= 0.9V to 1.8V, T = +25°C  
52.9  
67.8  
70  
DD  
A
Power-Supply Rejection Ratio  
PSRR  
f
IN  
IN  
= 1kHz  
100mV  
(Note 5)  
ripple  
P-P  
f
= 20kHz  
62  
_______________________________________________________________________________________  
3
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
ELECTRICAL CHARACTERISTICS (MAX9725E) (continued)  
(V  
= 1.5V, V  
= V  
= 0V, V  
= 1.5V, V = V  
, C1 = C2 = 1µF, C = 1µF, R = 32Ω, R = 60kΩ, R = 10kΩ, T =  
F IN  
PVSS IN L A  
DD  
PGND  
SGND  
SHDN  
SS  
T
MIN  
to T unless otherwise noted. Typical values are at T = +25°C.) (See the Functional Diagrams.) (Note 1)  
MAX, A  
PARAMETER  
SYMBOL  
CONDITIONS  
R = 32Ω  
MIN  
TYP  
24  
MAX UNITS  
10  
L
V
= 1.5V  
DD  
R = 16Ω  
L
25  
Output Power (Note 3)  
P
mW  
OUT  
V
V
= 1.0V, R = 32Ω  
= 0.9V, R = 32Ω  
7
DD  
DD  
L
6
L
MAX9725  
R = 32Ω, P  
R = 16Ω, P  
L
= 12mW, f = 1kHz  
= 15mW, f = 1kHz  
0.006  
0.015  
89  
Total Harmonic Distortion Plus  
Noise (Note 5)  
L
OUT  
OUT  
THD+N  
%
BW = 22Hz to 22kHz  
A-weighted filter  
Signal-to-Noise Ratio  
SNR  
SR  
R = 32Ω, P  
= 12mW  
dB  
L
OUT  
92  
Slew Rate  
0.3  
150  
V/µs  
pF  
Maximum Capacitive Load  
Crosstalk  
C
No sustained oscillations  
= 1.0kHz, R = 32Ω, P = 5mW  
OUT  
L
XTALK  
f
100  
dB  
IN  
L
R = 32Ω, peak voltage,  
A-weighted, 32 samples per  
second (Note 4)  
L
Into shutdown  
Out of shutdown  
72.8  
Click-and-Pop Level  
K
dBV  
CP  
72.8  
ESD Protection  
V
Human Body Model (OUTR, OUTL)  
R = 32Ω  
8
-120  
-75  
kV  
ESD  
L
Attenuation in Shutdown  
A
V
= 0V  
SHDN  
dB  
TT(SD)  
R = 10kΩ  
L
Note 1: All specifications are 100% tested at T = +25°C; temperature limits are guaranteed by design.  
A
Note 2: Input leakage current measurements limited by automated test equipment.  
Note 3: f = 1kHz, T = +25°C, THD+N < 1%, both channels driven in-phase.  
IN  
A
Note 4: Testing performed with 32Ω resistive load connected to outputs. Mode transitions controlled by SHDN. K level calculated  
CP  
as 20 log [peak voltage under normal operation at rated power level / peak voltage during mode transition]. Inputs are AC-  
grounded.  
Note 5: Using existing resistors with 1% precision.  
Note 6: R = 10Ω, R =10kΩ.  
IN  
F
Typical Operating Characteristics  
(V  
= 1.5V, V  
= V  
= 0V, V  
= 1.5V, V = V  
C1 = C2 = 1µF, C = 1µF, THD+N measurement bandwidth =  
DD  
PGND  
SGND  
SHDN  
SS  
PVSS, IN  
22Hz to 22kHz, T = +25°C, unless otherwise noted.) (See the Functional Diagrams.)  
A
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
1
0.1  
1
0.1  
1
0.1  
V
= 1.5V  
V
= 1V  
V
= 1.5V  
DD  
DD  
DD  
R = 32Ω  
R = 16Ω  
R = 16Ω  
L
L
L
A
= -2V/V  
A
= -2V/V  
A
= -2V/V  
V
V
V
P
= 0.7mW  
OUT  
P
= 15mW  
= 2mW  
OUT  
P
= 2mW  
OUT  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
P
OUT  
P
= 4mW  
OUT  
P
= 12mW  
OUT  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
4
_______________________________________________________________________________________  
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
MAX9725  
Typical Operating Characteristics (continued)  
(V  
= 1.5V, V  
= V  
= 0V, V  
= 1.5V, V = V  
C1 = C2 = 1µF, C = 1µF, THD+N measurement bandwidth = 22Hz  
DD  
PGND  
SGND  
SHDN  
SS  
PVSS, IN  
to 22kHz, T = +25°C, unless otherwise noted.) (See the Functional Diagrams.)  
A
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
100  
10  
1
100  
10  
1
1
0.1  
V
= 1.5V  
V
= 1.5V  
DD  
DD  
L
V
V
= 1V  
DD  
f
f
= 20Hz  
= 1kHz  
IN  
IN  
R = 16Ω  
V
R = 32Ω  
A
L
f
f
= 20Hz  
= 1kHz  
R = 32Ω  
IN  
IN  
L
A
= -2V/V  
= -2V/V  
A
= -2V/V  
V
P
= 0.7mW  
OUT  
f
= 10kHz  
IN  
f
= 10kHz  
IN  
0.1  
0.1  
0.01  
0.001  
0.01  
0.01  
P
= 4mW  
OUT  
0.001  
0.001  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
100  
10  
1
100  
10  
1
V
= 1.5V  
DD  
V
= 1V  
V
= 1V  
DD  
L
DD  
f
f
= 20Hz  
= 1kHz  
IN  
IN  
R = 32Ω  
L
R = 16Ω  
V
R = 32Ω  
A = -2V/V  
V
L
f
f
= 20Hz  
= 1kHz  
IN  
IN  
A
= -2V/V  
f
= 10kHz  
IN  
f
= 10kHz  
IN  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0
5
10  
15  
0
5
10  
15  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
CROSSTALK vs. FREQUENCY  
OUTPUT POWER vs. SUPPLY VOLTAGE  
0
-20  
80  
70  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
P
= 1.5V  
= 5mW  
R = 32Ω  
f
= 1kHz  
DD  
OUT  
L
IN  
V
= 1V  
DD  
R = 16Ω  
L
R = 32Ω  
L
BOTH INPUTS  
DRIVEN IN-PHASE  
60  
50  
40  
30  
20  
10  
0
-40  
THD+N = 10%  
LEFT TO RIGHT  
-60  
-80  
-100  
-120  
RIGHT TO LEFT  
10k  
THD+N = 1%  
1.3  
10  
100  
1k  
FREQUENCY (Hz)  
100k  
0.9  
1.1  
1.5  
10  
100  
1k  
10k  
100k  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
5
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
Typical Operating Characteristics (continued)  
(V  
= 1.5V, V  
= V  
= 0V, V  
= 1.5V, V = V  
C1 = C2 = 1µF, C = 1µF, THD+N measurement bandwidth = 22Hz  
DD  
PGND  
SGND  
SHDN  
SS  
PVSS, IN  
to 22kHz, T = +25°C, unless otherwise noted.) (See the Functional Diagrams.)  
A
OUTPUT POWER  
vs. SUPPLY VOLTAGE  
OUTPUT POWER  
vs. LOAD RESISTANCE  
OUTPUT POWER  
vs. LOAD RESISTANCE  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
f
= 1.5V  
= 1kHz  
V
f
= 1V  
DD  
f
= 1kHz  
DD  
IN  
IN  
L
= 1kHz  
R = 32Ω  
BOTH INPUTS  
DRIVEN IN-PHASE  
IN  
BOTH INPUTS  
DRIVEN IN-PHASE  
BOTH INPUTS  
DRIVEN IN-PHASE  
MAX9725  
THD+N = 10%  
THD+N = 1%  
THD+N = 10%  
THD+N = 10%  
THD+N = 1%  
THD+N = 1%  
1.3  
0
0.9  
1.1  
1.5  
10  
100  
1k  
10  
100  
1k  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE (Ω)  
LOAD RESISTANCE (Ω)  
POWER DISSIPATION  
vs. OUTPUT POWER  
POWER DISSIPATION  
vs. OUTPUT POWER  
GAIN FLATNESS  
vs. FREQUENCY  
80  
35  
2
1
0
R = 16Ω  
L
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
R = 16Ω  
L
V
f
P
= 1.5V  
V
f
P
= 1V  
DD  
IN  
DD  
IN  
R = 32Ω  
L
= 1kHz  
= P  
= 1kHz  
= P  
R = 32Ω  
L
+ P  
OUTR  
+ P  
OUTR  
OUT  
OUTL  
OUT  
OUTL  
OUTPUTS IN-PHASE  
OUTPUTS IN-PHASE  
0
-10  
0
10  
20  
30 40  
50  
0
5
10  
15 20  
10  
100  
1k  
10k  
100k  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
FREQUENCY (Hz)  
OUTPUT POWER vs. CHARGE-PUMP  
CAPACITANCE AND LOAD RESISTANCE  
OUTPUT SPECTRUM  
vs. FREQUENCY  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
5.0  
40  
35  
0
-20  
NO LOAD  
f
= 1kHz  
IN  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
C1 = C2 = 2.2μF  
C1 = C2 = 1μF  
R = 32Ω  
L
V
V
= -60dBV  
= 1.5V  
OUT  
DD  
-40  
30  
25  
20  
15  
10  
5
-60  
-80  
-100  
-120  
-140  
-160  
C1 = C2 = 0.68μF  
V
= 1.5V  
DD  
C1 = C2 = 0.47μF  
f
IN  
= 1kHz  
THD+N = 1%  
0
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
10  
20  
30  
40 50  
0
5
10  
15  
20  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE (Ω)  
FREQUENCY (kHz)  
6
_______________________________________________________________________________________  
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
MAX9725  
Typical Operating Characteristics (continued)  
(V  
= 1.5V, V  
= V  
= 0V, V  
= 1.5V, V = V  
C1 = C2 = 1µF, C = 1µF, THD+N measurement bandwidth = 22Hz  
DD  
PGND  
SGND  
SHDN  
SS  
PVSS, IN  
to 22kHz, T = +25°C, unless otherwise noted.) (See the Functional Diagrams.)  
A
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
POWER-UP/-DOWN WAVEFORM  
EXITING SHUTDOWN  
MAX9725toc24  
MAX9725 toc23  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
DD  
OUT_  
1V/div  
1V/div  
SHDN  
500mV/div  
OUT_  
10mV/div  
0.9  
1.1  
1.3  
1.5  
200ms/div  
200μs/div  
SUPPLY VOLTAGE (V)  
Pin Description  
PIN  
BUMP  
NAME  
FUNCTION  
THIN  
QFN  
UCSP  
A1  
1
C1N  
Flying Capacitor Negative Terminal. Connect a 1µF capacitor from C1P to C1N.  
Inverting Charge-Pump Output. Bypass with 1µF from PV to PGND. PV must be connected to  
SS  
SS  
2
A2  
PV  
SS  
V
.
SS  
Left-Amplifier Inverting Input. Connect input resistor R from input capacitor C1N to INL (MAX9725E  
IN  
only).  
3
A3  
INL  
Right-Amplifier Inverting Input. Connect input resistor R from input capacitor C1N to INR  
IN  
(MAX9725E only).  
4
5
6
A4  
B4  
B3  
INR  
V
Amplifier Negative Power Supply. Must be connected to PV  
.
SS  
SS  
Signal Ground. SGND must be connected to PGND. SGND is the ground reference for the input and  
output signal.  
SGND  
7
8
C4  
C3  
C2  
C1  
B1  
OUTR Right-Channel Output. Connect feedback resistor R between OUTR and INR (MAX9725E only).  
FB  
OUTL Left-Channel Output. Connect feedback resistor R between OUTL and INL (MAX9725E only).  
FB  
9
V
Positive Power-Supply Input. Bypass with a 1µF capacitor to PGND.  
DD  
10  
11  
C1P  
Flying Capacitor Positive Terminal. Connect a 1µF capacitor from C1P to C1N.  
PGND Power Ground. Ground reference for the internal charge pump. PGND must be connected to SGND.  
Active-Low Shutdown. Connect to V  
charge pump.  
for normal operation. Pull low to disable the amplifier and  
DD  
12  
EP  
B2  
SHDN  
EP  
Exposed Paddle. Internally connected to V . Leave paddle unconnected or solder to V  
.
SS  
SS  
_______________________________________________________________________________________  
7
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
Previous attempts to eliminate the output-coupling  
Detailed Description  
capacitors involved biasing the headphone return  
The MAX9725 stereo headphone driver features Maxim’s  
(sleeve) to the DC-bias voltage of the headphone  
amplifiers. This method raises some issues:  
DirectDrive architecture, eliminating the large output-cou-  
pling capacitors required by conventional single-supply  
The sleeve is typically grounded to the chassis.  
Using this biasing approach, the sleeve must be  
isolated from system ground, complicating product  
design.  
headphone drivers. The MAX9725 consists of two 20mW  
class AB headphone drivers, shutdown control, inverting  
charge pump, internal gain-setting resistors, and compre-  
hensive click-and-pop suppression circuitry (see the  
Functional Diagrams). A negative power supply (PV ) is  
7
SS  
During an ESD strike, the driver’s ESD structures  
are the only path to system ground. The driver must  
be able to withstand the full ESD strike.  
created by inverting the positive supply (V ). Powering  
DD  
the drivers from V  
and PV increases the dynamic  
DD  
SS  
range of the drivers to almost twice that of other 1V sin-  
gle-supply drivers. This increase in dynamic range allows  
for higher output power.  
When using the headphone jack as a line out to  
other equipment, the bias voltage on the sleeve may  
conflict with the ground potential from other equip-  
ment, resulting in possible damage to the drivers.  
The outputs of the MAX9725 are biased about GND  
(Figure 1). The benefit of this GND bias is that the driver  
outputs do not have a DC component, thus large DC-  
blocking capacitors are unnecessary. Eliminating the  
DC-blocking capacitors on the output saves board  
space, system cost, and improves frequency response.  
V
V
DD  
DirectDrive  
Conventional single-supply headphone drivers have their  
outputs biased about a nominal DC voltage (typically half  
the supply) for maximum dynamic range. Large coupling  
capacitors are needed to block the DC bias from the  
headphones. Without these capacitors, a significant  
amount of DC current flows to the headphone, resulting  
in unnecessary power dissipation and possible damage  
to both headphone and headphone driver.  
V
OUT  
/ 2  
DD  
GND  
CONVENTIONAL DRIVER-BIASING SCHEME  
Maxim’s DirectDrive architecture uses a charge pump  
to create an internal negative supply voltage. This  
allows the MAX9725 outputs to be biased about GND,  
increasing the dynamic range while operating from a  
single supply. A conventional amplifier powered from  
1.5V ideally provides 18mW to a 16Ω load. The  
MAX9725 provides 25mW to a 16Ω load. The  
DirectDrive architecture eliminates the need for two  
large (220µF, typ) DC-blocking capacitors on the out-  
put. The MAX9725 charge pump requires two small  
ceramic capacitors, conserving board space, reducing  
cost, and improving the frequency response of the  
headphone driver. See the Output Power vs. Charge-  
Pump Capacitance and Load Resistance graph in the  
Typical Operating Characteristics for details of the possi-  
ble capacitor sizes.  
V
DD  
V
OUT  
GND  
-V  
DD  
DirectDrive BIASING SCHEME  
Figure 1. Traditional Driver Output Waveform vs. MAX9725  
Output Waveform (Ideal Case)  
8
_______________________________________________________________________________________  
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
MAX9725  
ADDITIONAL THD+N DUE  
TO DC-BLOCKING CAPACITORS  
LF ROLLOFF (16Ω LOAD)  
0
10  
-3  
-5  
330μF  
220μF  
1
-10  
-3dB CORNER FOR  
100μF  
100μF IS 100Hz  
-15  
0.1  
0.01  
33μF  
TANTALUM  
-20  
-25  
-30  
0.001  
0.0001  
ALUM/ELEC  
100  
-35  
10  
100  
FREQUENCY (Hz)  
1k  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 3. Distortion Contributed By DC-Blocking Capacitors  
Figure 2. Low-Frequency Attenuation for Common DC-Blocking  
Capacitor Values  
Low-Frequency Response  
Large DC-blocking capacitors limit the amplifier’s low-  
frequency response and can distort the audio signal:  
voltage coefficient appears as frequency-dependent  
distortion. Figure 3 shows the THD+N introduced by  
two different capacitor dielectric types. Note that  
below 100Hz, THD+N increases rapidly.  
1) The impedance of the headphone load and the DC-  
blocking capacitor forms a highpass filter with the  
-3dB point set by:  
The combination of low-frequency attenuation and fre-  
quency-dependent distortion compromises audio  
reproduction in portable audio equipment that empha-  
sizes low-frequency effects such as multimedia lap-  
tops, as well as MP3, CD, and DVD players. These  
low-frequency, capacitor-related deficiencies are elimi-  
nated by using DirectDrive technology.  
1
f
=
-3dB  
2πR C  
L
OUT  
where R is the impedance of the headphone and  
L
C
OUT  
is the value of the DC-blocking capacitor. The  
Charge Pump  
The MAX9725 features a low-noise charge pump. The  
580kHz switching frequency is well beyond the audio  
range, and does not interfere with the audio signals.  
The switch drivers feature a controlled switching speed  
that minimizes noise generated by turn-on and turn-off  
transients. The di/dt noise caused by the parasitic bond  
wire and trace inductance is minimized by limiting the  
turn-on/off speed of the charge pump. Additional high-  
frequency noise attenuation can be achieved by  
increasing the size of C2 (see the Functional Diagrams).  
Extra noise attenuation is not typically required.  
highpass filter is required by conventional single-  
ended, single power-supply headphone drivers to  
block the midrail DC-bias component of the audio  
signal from the headphones. The drawback to the  
filter is that it can attenuate low-frequency signals.  
Larger values of C  
reduce this effect but result  
OUT  
in physically larger, more expensive capacitors.  
Figure 2 shows the relationship between the size of  
C
and the resulting low-frequency attenuation.  
OUT  
Note that the -3dB point for a 16Ω headphone with  
a 100µF blocking capacitor is 100Hz, well within the  
normal audio band, resulting in low-frequency  
attenuation of the reproduced signal.  
Shutdown  
The MAX9725’s low-power shutdown mode reduces  
supply current to 0.6µA. Driving SHDN low disables the  
amplifiers and charge pump. The driver’s output imped-  
ance is typically 50kΩ (MAX9725A), 37.5kΩ  
(MAX9725B), 25kΩ (MAX9725C), 100kΩ (MAX9725D),  
2) The voltage coefficient of the DC-blocking capacitor  
contributes distortion to the reproduced audio signal  
as the capacitance value varies when the function of  
the voltage across the capacitor changes. At low  
frequencies, the reactance of the capacitor domi-  
nates at frequencies below the -3dB point and the  
or R (MAX9725E) when in shutdown mode.  
F
_______________________________________________________________________________________  
9
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
Applications Information  
OUTPUT POWER vs. SUPPLY VOLTAGE  
WITH INPUTS IN- AND OUT-OF-PHASE  
Power Dissipation  
Linear power amplifiers can dissipate a significant  
50  
f
= 1kHz  
IN  
45  
40  
35  
30  
25  
20  
15  
10  
5
amount of power under normal operating conditions.  
The maximum power dissipation for each package is  
given in the Absolute Maximum Ratings section under  
Continuous Power Dissipation or can be calculated by  
the following equation:  
R = 16Ω  
L
THD+N = 1%  
°
INPUTS 180 OUT-OF-PHASE  
MAX9725  
T
- T  
A
J(MAX)  
P
=
DISSPKG(MAX)  
θ
JA  
INPUTS IN-PHASE  
where T  
is +150°C, T is the ambient tempera-  
A
J(MAX)  
0
ture, and θ is the reciprocal of the derating factor in  
JA  
0.9  
1.1  
1.3  
1.5  
°C/W as specified in the Absolute Maximum Ratings  
SUPPLY VOLTAGE (V)  
section. For example, θ for the thin QFN package is  
JA  
+59.3°C/W.  
Figure 4. Output Power vs. Supply Voltage with Inputs In-/Out-  
of-Phase  
The MAX9725 has two power dissipation sources, the  
charge pump and the two amplifiers. If the power dissi-  
pation exceeds the rated package dissipation, reduce  
Click-and-Pop Suppression  
In conventional single-supply audio drivers, the output-  
coupling capacitor is a major contributor of audible  
clicks and pops. Upon startup, the driver charges the  
coupling capacitor to its bias voltage, typically half the  
supply. Likewise, on shutdown, the capacitor is dis-  
charged to GND. This results in a DC shift across the  
capacitor that appears as an audible transient at the  
speaker. The MAX9725’s DirectDrive technology elimi-  
nates the need for output-coupling capacitors.  
V
, increase load impedance, decrease the ambient  
DD  
temperature, or add heatsinking to the device. Large  
output, supply, and ground traces decrease θ , allow-  
ing more heat to be transferred from the package to  
surrounding air.  
JA  
Output Power  
The MAX9725’s output power increases when the left  
and right audio signals differ in magnitude and/or  
phase. Figure 4 shows the two extreme cases for in-  
and out-of-phase input signals. The output power of a  
typical stereo application lies between the two extremes  
shown in Figure 4. The MAX9725 is specified to output  
20mW per channel when both inputs are in-phase.  
The MAX9725 also features extensive click-and-pop  
suppression that eliminates any audible transient  
sources internal to the device. The Power-Up/-Down  
Waveform in the Typical Operating Characteristics  
shows minimal DC shift and no spurious transients at  
the output upon startup or shutdown.  
Powering Other Circuits from  
the Negative Supply  
The MAX9725 internally generates a negative supply  
In most applications, the output of the preamplifier dri-  
ving the MAX9725 has a DC bias of typically half the  
supply. At startup, the input-coupling capacitor is  
charged to the preamplifier’s DC bias voltage through  
the internal input resistor (25kΩ for MAX9725A-  
MAX9725D, minimum 10kΩ for MAX9725E) causing an  
audible click and pop. Delaying the rise of SHDN 4 or 5  
time constants, based on R x C , relative to the start-  
up of the preamplifier eliminates any click and pop  
caused by the input filter (see the Functional Diagrams).  
voltage (PV ) to provide the ground-referenced output  
SS  
signal. Other devices can be powered from PV pro-  
SS  
vided the current drawn from the charge pump does  
not exceed 1mA. Headphone driver output power and  
THD+N will be adversely affected if more than 1mA is  
drawn from PV . Using PV as an LCD bias is a typi-  
SS  
SS  
cal application for the negative supply.  
IN  
IN  
PV is unregulated and proportional to V . Connect  
SS  
DD  
a 1µF capacitor from C1P to C1N for best charge-pump  
operation.  
10 ______________________________________________________________________________________  
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
MAX9725  
Hold Capacitor (C2)  
Component Selection  
Input Filtering  
The AC-coupling capacitor (C ) and an internal gain-  
IN  
setting resistor form a highpass filter that removes any  
DC bias from an input signal (see the Functional  
Diagrams). C allows the MAX9725A–MAX9725D to  
IN  
bias the signal to an optimum DC level. The -3dB point  
of the highpass filter, assuming zero source imped-  
ance, is given by:  
The hold capacitor’s value and ESR directly affect the  
ripple at PV . Increasing the value of C2 reduces rip-  
SS  
ple. Choosing a capacitor with lower ESR reduces rip-  
ple and output impedance. Lower capacitance values  
can be used in systems with low maximum output  
power levels. See the Output Power vs. Charge-Pump  
Capacitance and Load Resistance graph in the Typical  
Operating Characteristics.  
Power-Supply Bypass Capacitor (C3)  
The power-supply bypass capacitor (C3) lowers the  
output impedance of the power supply and reduces the  
impact of the MAX9725’s charge-pump switching tran-  
1
f
=
-3dB  
2π × R × C  
IN  
IN  
Choose C so f  
is well below the lowest frequency of  
IN  
IN  
-3dB  
sients. Bypass V  
to PGND with the same value as  
DD  
interest. R for the MAX9725A–MAX9725D is 25kΩ and a  
C1. Place C3 as close to V  
as possible.  
DD  
minimum of 10kΩ for the MAX9725E. Setting f  
too  
-3dB  
Layout and Grounding  
Proper layout and grounding are essential for optimum  
performance. Connect PGND and SGND together at a  
high affects the amplifier’s low-frequency response. Use  
capacitors with low-voltage coefficient dielectrics. Film or  
C0G dielectric capacitors are good choices for AC-cou-  
pling capacitors. Capacitors with high-voltage coeffi-  
cients, such as ceramics, can result in increased  
distortion at low frequencies.  
single point on the PC board. Connect PV  
to SV  
SS  
SS  
to PGND  
and bypass with C2 to PGND. Bypass V  
DD  
with C3. Place capacitors C2 and C3 as close to the  
MAX9725 as possible. Route PGND, and all traces that  
carry switching transients, away from SGND and the  
audio signal path.  
Charge-Pump Capacitor Selection  
Use capacitors with less than 100mΩ of ESR. Low-ESR  
ceramic capacitors minimize the output impedance of the  
charge pump. Capacitors with an X7R dielectric provide  
the best performance over the extended temperature  
range. Table 1 lists suggested capacitor manufacturers.  
The MAX9725 does not require additional heatsinking.  
The thin QFN package features an exposed paddle that  
improves thermal efficiency of the package. Ensure the  
exposed paddle is electrically isolated from GND and  
V . Connect the exposed paddle to V if necessary.  
DD SS  
Flying Capacitor (C1)  
The value of C1 affects the charge pump’s load regula-  
tion and output impedance. Choosing C1 too small  
degrades the MAX9725’s ability to provide sufficient  
current drive and leads to a loss of output voltage.  
Increasing the value of C1 improves load regulation  
and reduces the charge-pump output impedance. See  
the Output Power vs. Charge-Pump Capacitance and  
Load Resistance graph in the Typical Operating  
Characteristics.  
UCSP Applications Information  
For the latest application details on UCSP construction,  
dimensions, tape carrier information, printed circuit  
board techniques, bump-pad layout , and recommend-  
ed reflow temperature profile, as well as the latest infor-  
mation on reliability testing results, go to Maxim’s  
website at www.maxim-ic.com/ucsp for the  
Application Note 1891: Wafer-Level Packaging (WLP)  
and Its Applications.  
Table 1. Suggested Capacitor Manufacturers  
SUPPLIER  
PHONE  
FAX  
WEBSITE  
www.murata.com  
Murata  
770-436-1300  
800-348-2496  
847-803-6100  
Taiyo Yuden  
TDK  
847-925-0899  
847-390-4405  
www.t-yuden.com  
www.component.tdk.com  
______________________________________________________________________________________ 11  
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
System Diagrams  
0.9V TO 1.8V  
1μF  
MAX9725  
V
DD  
SHDN  
1μF  
1μF  
INR  
INL  
MP3  
DECODER  
STEREO  
DAC  
MAX9725A–  
MAX9725D  
C1P  
C1N  
1μF  
OUTR  
OUTL  
V
SS  
PV  
SS  
1μF  
SGND PGND  
R
F
V
DD  
MAX9725E  
1μF  
SHDN  
OUTL  
1μF  
R
IN  
INL  
P
C1N  
DIN  
VSS  
CHARGE  
PUMP  
1μF  
1μF  
V
SS  
1μF  
R
IN  
INR  
OUTR  
SGND PGND  
R
F
12 ______________________________________________________________________________________  
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
MAX9725  
Functional Diagrams  
0.9V TO 1.8V  
LEFT-  
CHANNEL  
AUDIO IN  
C
IN  
C3  
1μF  
0.47μF  
12  
3
9
(B2)  
(A3)  
(C2)  
V
DD  
INL  
SHDN  
R *  
F
V
DD  
R
IN  
25kΩ  
8
(C3)  
OUTL  
HEADPHONE  
JACK  
SGND  
UVLO/  
SHUTDOWN  
CONTROL  
10  
(C1)  
C1P  
V
SS  
CHARGE  
PUMP  
CLICK-AND-POP  
SUPPRESSION  
C1  
1μF  
1
(A1) C1N  
V
DD  
SGND  
7
(C4)  
OUTR  
MAX9725A–  
MAX9725D  
R
IN  
V
SS  
25kΩ  
R *  
F
PV  
V
5
PGND  
SS  
SGND  
INR  
SS  
6
4
2
11  
(B4)  
(B3)  
(A4)  
(A2)  
(B1)  
C
IN  
C2  
1μF  
0.47μF  
LEFT-  
CHANNEL  
AUDIO IN  
*MAX9725A = 50kΩ.  
MAX9725B = 37.5kΩ.  
MAX9725C = 25kΩ.  
MAX9725D = 100kΩ.  
( ) DENOTE BUMPS FOR UCSP.  
______________________________________________________________________________________ 13  
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
Functional Diagrams (continued)  
LEFT-CHANNEL  
AUDIO IN  
C
1μF  
IN  
0.9V TO 1.8V  
R
IN  
C3  
1μF  
MAX9725  
12  
3
9
(B2)  
(A3)  
(C2)  
V
DD  
INL  
SHDN  
R
F
V
DD  
8
(C3)  
OUTL  
HEADPHONE  
JACK  
SGND  
UVLO/  
SHUTDOWN  
CONTROL  
10  
(C1)  
C1P  
V
SS  
CHARGE  
PUMP  
CLICK-AND-POP  
SUPPRESSION  
C1  
1μF  
1
(A1) C1N  
V
SS  
SGND  
7
(C4)  
OUTR  
MAX9725E  
V
DD  
R
R
F
PV  
V
5
(B4)  
PGND  
SS  
SGND  
INR  
SS  
6
(B3)  
4
(A4)  
2
11  
(B1)  
(A2)  
C2  
1μF  
IN  
C
IN  
1μF  
( ) DENOTE BUMPS FOR UCSP.  
RIGHT-  
CHANNEL  
AUDIO IN  
14 ______________________________________________________________________________________  
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
MAX9725  
Pin Configurations  
MAX9725  
TOP VIEW  
(BUMP-SIDE DOWN)  
TOP VIEW  
1
2
3
4
9
8
7
A
B
C1N  
PV  
INL  
INR  
SS  
SGND  
10  
11  
6
5
C1P  
PGND  
SHDN  
SGND  
OUTL  
V
SS  
PGND  
C1P  
SHDN  
V
SS  
MAX9725  
C
OUTR  
V
DD  
INR  
12  
4
*EP  
+
UCSP  
1
2
3
THIN QFN  
*EP = EXPOSED PAD.  
Block Diagrams (continued)  
Ordering Information (continued)  
TOP  
MARK  
GAIN  
(V/V)  
PART  
PIN-PACKAGE  
SINGLE  
C3  
MAX9725BETC+  
MAX9725CEBC+TG45  
MAX9725CETC+  
12 TQFN-EP*  
12 UCSP  
+AAEX  
+ACM  
+AAEY  
+ACN  
-1.5  
-1  
V
DD  
1.5V CELL  
AA OR AAA  
BATTERY  
R
FB  
12 TQFN-EP*  
-1  
MAX9725E  
MAX9725DEBC+TG45 12 UCSP  
-4  
DirectDrive OUTPUTS  
ELIMINATE DC-BLOCKING  
CAPACITORS.  
INL  
MAX9725DETC+  
12 TQFN-EP*  
+AAEZ  
+AEF  
-4  
MAX9725EEBC+TG45  
MAX9725EETC+**  
12 UCSP  
ADJ  
ADJ  
OUTL  
12 TQFN-EP*  
+AAGH  
Note: All devices are specified over the -40°C to +85°C operating  
temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
C1P  
C1N  
PV  
SS  
INVERTING  
CHARGE PUMP  
C2  
V
SS  
*EP = Exposed pad.  
**Future product—contact factory for availability.  
OUTR  
INR  
SGND  
PGND  
R
FB  
______________________________________________________________________________________ 15  
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
Package Information  
Chip Information  
For the latest package outline information and land patterns, go  
to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in  
the package code indicates RoHS status only. Package draw-  
ings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
12 UCSP  
B12-1  
21-0104  
21-0139  
MAX9725  
12 TQFN-EP  
T1244-4  
16 ______________________________________________________________________________________  
1V, Low-Power, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
MAX9725  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
11/04  
5/05  
Initial release  
Removed future product asterisks for UCSP package, added EC table note  
1–3, 13, 14  
Added MAX9725E packages, MAX9725E EC table, block diagram, functional  
diagram, and system diagram. Updated package outlines.  
2
11/07  
1–3, 6, 8–19  
3
4
8/08  
3/09  
Corrected error in Functional Diagrams  
14  
Updated Ordering Information, style changes  
1, 15  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9725AEBC-T

Audio Amplifier, 0.025W, 2 Channel(s), 1 Func, BICMOS, PBGA12, 1.54 X 2.02 MM, 0.60 MM HEIGHT, UCSP-12
MAXIM

MAX9725AEBC-T

0.025W, 2 CHANNEL, AUDIO AMPLIFIER, PBGA12, 1.54 X 2.02 MM, 0.60 MM HEIGHT, UCSP-12
ROCHESTER

MAX9725AETC

1V, Low-Power, DirectDrive, Stereo Headphone Amplifier with Shutdown
MAXIM

MAX9725AETC

0.025W, 2 CHANNEL, AUDIO AMPLIFIER, QCC12, 4 X 4 MM, 0.80 MM HEIGHT, MO-220-WGGB, TQFN-12
ROCHESTER

MAX9725AETC+

1V, Low-Power, DirectDrive, Stereo Headphone Amplifier with Shutdown
MAXIM

MAX9725AETC+T

Audio Amplifier, 0.025W, 2 Channel(s), 1 Func, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, TQFN-12
MAXIM

MAX9725AETC-T

Audio Amplifier, 0.025W, 2 Channel(s), 1 Func, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, MO-220-WGGB, TQFN-12
MAXIM

MAX9725BEBC

1V, Low-Power, DirectDrive, Stereo Headphone Amplifier with Shutdown
MAXIM

MAX9725BEBC+

Audio Amplifier, 0.025W, 2 Channel(s), 1 Func, BICMOS, PBGA12, 1.54 X 2.02 MM, 0.60 MM HEIGHT, ROHS COMPLIANT, UCSP-12
MAXIM

MAX9725BEBC+T

1V, Low-Power, DirectDrive, Stereo Headphone Amplifier with Shutdown
MAXIM

MAX9725BEBC+TG45

1V, Low-Power, DirectDrive, Stereo Headphone Amplifier with Shutdown
MAXIM

MAX9725BETC

1V, Low-Power, DirectDrive, Stereo Headphone Amplifier with Shutdown
MAXIM