MAX9728 [MAXIM]

60mW, DirectDrive, Stereo Headphone Amplifiers with Shutdown;
MAX9728
型号: MAX9728
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

60mW, DirectDrive, Stereo Headphone Amplifiers with Shutdown

文件: 总19页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3963; Rev 1; 7/09  
60mW, DirectDrive, Stereo  
Headphone Amplifiers with Shutdown  
/MAX9728B  
General Description  
Features  
No Bulky DC-Blocking Capacitors Required  
The MAX9728A/MAX9728B stereo headphone ampli-  
fiers are designed for display and notebook applica-  
tions or portable equipment where board space is at a  
premium. These devices use a unique DirectDrive®  
architecture to produce a ground-referenced output  
from a single supply, eliminating the need for large DC-  
blocking capacitors, saving cost, board space, and  
component height. The MAX9728A offers an externally  
adjustable gain, while the MAX9728B has an internally  
preset gain of -1.5V/V. The MAX9728A/MAX9728B  
deliver up to 60mW per channel into a 32Ω load and  
have low 0.02% THD+N. An 80dB at 1kHz power-sup-  
ply rejection ratio (PSRR) allows these devices to oper-  
ate from noisy digital supplies without an additional  
linear regulator. Comprehensive click-and-pop circuitry  
suppresses audible clicks and pops on startup and  
shutdown.  
Low-Power Shutdown Mode, < 0.1µA  
Adjustable Gain (MAX9728A) or Fixed -1.5V/V  
Gain (MAX9728B)  
Low 0.02% THD+N  
High PSRR (80dB at 1kHz) Eliminates LDO  
Integrated Click-and-Pop Suppression  
4.5V to 5.5V Single-Supply Operation  
Low Quiescent Current (3.5mA)  
Available in Space-Saving Packages  
12-Pin Thin QFN (3mm x 3mm x 0.8mm)  
14-Pin TSSOP (5mm x 4.4mm x 1.1mm)  
The MAX9728A/MAX9728B operate from a single 4.5V  
to 5.5V supply, consume only 3.5mA of supply current,  
feature short-circuit and thermal-overload protection,  
and are specified over the extended -40°C to +85°C  
temperature range. The devices are available in tiny 12-  
pin Thin QFN (3mm x 3mm x 0.8mm) and 14-pin  
TSSOP packages (5mm x 4.4mm x 1.1mm).  
Ordering Information  
PART  
GAIN (V/V) PIN-PACKAGE TOP MARK  
MAX9728AETC+  
MAX9728AEUD+  
MAX9728BETC+  
MAX9728BEUD+  
Adj.  
Adj.  
-1.5  
-1.5  
12 TQFN-EP*  
14 TSSOP  
ABC  
12 TQFN-EP*  
14 TSSOP  
ABD  
Applications  
CRT TVs  
Note: All devices specified over the -40°C to +85°C operating  
Notebook PCs  
DVD Players  
range.  
+Denotes lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Multimedia Monitors  
LCD/PDP Displays  
DirectDrive is a registered trademark of Maxim Integrated  
Product, Inc.  
Pin Configurations appear at end of data sheet.  
Block Diagrams  
MAX9728B  
MAX9728A  
DirectDrive OUTPUTS  
ELIMINATE DC-BLOCKING  
CAPACITORS  
DirectDrive OUTPUTS  
ELIMINATE DC-BLOCKING  
LEFT  
AUDIO  
INPUT  
LEFT  
AUDIO  
CAPACITORS  
INPUT  
SHDN  
SHDN  
RIGHT  
RIGHT  
AUDIO  
INPUT  
FIXED GAIN ELIMINATES  
AUDIO  
EXTERNAL RESISTOR  
INPUT  
NETWORK  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
60mW, DirectDrive, Stereo Headphone  
Amplifiers with Shutdown  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to PGND............................................................-0.3V to +6V  
OUT_ Short Circuit to SGND ......................................Continuous  
Short Circuit between OUTL and OUTR ....................Continuous  
PV to SV .........................................................-0.3V to +0.3V  
SS  
SS  
PGND to SGND .....................................................-0.3V to +0.3V  
C1P to PGND..............................................-0.3V to (V + 0.3V)  
Continuous Input Current into PV ..................................260mA  
Continuous Input Current (any other pin)......................... 20mA  
SS  
DD  
C1N to PGND............................................(PV - 0.3V) to +0.3V  
Continuous Power Dissipation (T = +70°C)  
SS  
A
PV and SV to PGND..........................................-6V to +0.3V  
12-Pin TQFN (derate 14.7mW/°C above +70°C) .........1177mW  
14-Pin TSSOP (derate 9.1mW/°C above +70°C) ...........727mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
SS  
SS  
IN_ to SGND (MAX9728A)..........................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
IN_ to SGND (MAX9728B).............(SV - 0.3V) to (V  
SS  
OUT_ to SV (Note 1) ....-0.3V to Min (V  
- SV + 0.3V, +9V)  
SS  
DD  
SS  
OUT_ to V  
(Note 2) ......+0.3V to Max (SV - V  
- 0.3V, -9V)  
DD  
DD  
SS  
SHDN to _GND.........................................................-0.3V to +6V  
Note 1: OUTR and OUTL should be limited to no more than 9V above SV , or above V  
+ 0.3V, whichever limits first.  
SS  
DD  
DD  
SS  
Note 2: OUTR and OUTL should be limited to no more than 9V below V , or below SV - 0.3V, whichever limits first.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
DD  
= 5V, PGND = SGND, SHDN = 5V, C1 = C2 = 1µF, R = , resistive load reference to ground; for MAX9728A gain = -1.5V/V  
L
/MAX9728B  
(R = 20kΩ, R = 30kΩ); for MAX9728B gain = -1.5V/V (internally set), T = -40°C to +85°C, unless otherwise noted. Typical values  
IN  
F
A
are at T = +25°C, unless otherwise noted.) (Note 3)  
A
PARAMETER  
GENERAL  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
Quiescent Current  
V
4.5  
5.5  
5.5  
1
V
DD  
I
3.5  
< 0.1  
180  
19  
mA  
µA  
µs  
CC  
Shutdown Current  
I
SHDN = SGND = PGND  
MAX9728B, measured at IN_  
SHDN  
Shutdown to Full Operation  
Input Impedance  
t
SON  
R
15  
25  
10  
kΩ  
mV  
IN  
Output Offset Voltage  
V
1.5  
86  
OS  
V
= 4.5V to 5.5V  
DD  
Power-Supply Rejection Ratio  
PSRR  
dB  
f = 1kHz, 100mV  
80  
P-P  
f = 20kHz, 100mV  
65  
P-P  
R = 32Ω, THD+N = 1%  
30  
63  
L
Output Power  
Voltage Gain  
P
mW  
V/V  
%
OUT  
R = 16Ω, THD+N = 1%  
L
42  
A
MAX9728B (Note 4)  
-1.52  
-1.5  
-1.48  
V
Channel-to-Channel Gain  
Tracking  
MAX9728B  
0.15  
R = 1kΩ, V  
= 2V , f = 1kHz  
RMS IN  
0.003  
0.02  
0.04  
L
OUT  
OUT  
OUT  
Total Harmonic Distortion Plus  
Noise  
THD+N  
R = 32Ω, P  
L
= 50mW, f = 1kHz  
%
IN  
R = 16Ω, P  
L
= 35mW, f = 1kHz  
IN  
2
_______________________________________________________________________________________  
60mW, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
/MAX9728B  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 5V, PGND = SGND, SHDN = 5V, C1 = C2 = 1µF, R = , resistive load reference to ground; for MAX9728A gain = -1.5V/V  
L
DD  
IN  
(R = 20kΩ, R = 30kΩ); for MAX9728B gain = -1.5V/V (internally set), T = -40°C to +85°C, unless otherwise noted. Typical values  
are at T = +25°C, unless otherwise noted.) (Note 3)  
F
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
102  
105  
98  
MAX  
UNITS  
BW = 22Hz to 22kHz  
R = 1kΩ,  
L
V
= 2V  
OUT  
RMS  
A-weighted  
Signal-to-Noise Ratio  
SNR  
dB  
BW = 22Hz to 22kHz  
A-weighted  
R = 32Ω,  
L
P
= 50mW  
OUT  
101  
0.5  
Slew Rate  
SR  
V/µs  
pF  
Capacitive Drive  
C
No sustained oscillations  
100  
L
L to R, R to L, f = 10kHz, R = 16Ω, P  
15mW  
=
L
OUT  
Crosstalk  
-70  
dB  
Charge-Pump Oscillator  
Frequency  
f
190  
270  
-67  
-64  
400  
kHz  
OSC  
Into shutdown  
R = 32Ω, peak voltage,  
A-weighted, 32 samples per  
second (Note 5)  
L
Click-and-Pop Level  
K
dB  
CP  
Out of  
shutdown  
DIGITAL INPUTS (SHDN)  
Input Voltage High  
V
2
V
V
INH  
Input Voltage Low  
V
0.8  
1
INL  
Input Leakage Current  
µA  
Note 3: All specifications are 100% tested at T = +25°C; temperature limits are guaranteed by design.  
A
Note 4: Gain for the MAX9728A is adjustable.  
Note 5: Test performed with a 32Ω resistive load connected to SGND. Mode transitions are controlled by SHDN. K level is calcu-  
CP  
lated as 20log[(peak voltage during mode transition, no input signal)/(peak voltage under normal operation at rated power  
level)]. Units are expressed in dB.  
_______________________________________________________________________________________  
3
60mW, DirectDrive, Stereo Headphone  
Amplifiers with Shutdown  
Typical Operating Characteristics  
(V  
DD  
= 5V, PGND = SGND = 0V, SHDN = V , C1 = C2 = 1µF, R = , gain = -1.5V/V (R = 20kΩ, R = 30kΩ for the MAX9728A),  
DD L IN F  
THD+N measurement bandwidth = 22Hz to 22kHz, both outputs driven in phase, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
1
0.1  
100  
10  
1
100  
10  
1
V
DD  
= 5V  
V
= 5V  
V
DD  
= 5V  
DD  
R = 16Ω  
L
R = 16Ω  
L
R = 32Ω  
L
P
OUT  
= 20mW  
f
IN  
= 1kHz  
f
IN  
= 1kHz  
0.1  
0.1  
P
= 37mW  
OUT  
0.01  
0.001  
f
= 10kHz  
IN  
0.01  
0.01  
f
= 10kHz  
100  
IN  
f
IN  
= 20Hz  
f
= 20Hz  
IN  
0.001  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
120  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
/MAX9728B  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
OUTPUT POWER vs. SUPPLY VOLTAGE  
OUTPUT POWER vs. SUPPLY VOLTAGE  
70  
60  
50  
40  
30  
20  
10  
0
1
0.1  
120  
100  
80  
60  
40  
20  
0
V
= 5V  
DD  
THD+N = 10%  
R = 32Ω  
L
THD+N = 10%  
P
OUT  
= 30mW  
THD+N = 1%  
0.01  
0.001  
THD+N = 1%  
P
= 50mW  
OUT  
f
= 1kHz  
IN  
f
= 1kHz  
IN  
R = 16Ω  
L
R = 32Ω  
L
4.5  
5.0  
5.5  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
4
_______________________________________________________________________________________  
60mW, DirectDrive, Stereo Headphone  
Amplifiers with Shutdown  
/MAX9728B  
Typical Operating Characteristics (continued)  
(V  
DD  
= 5V, PGND = SGND = 0V, SHDN = V , C1 = C2 = 1µF, R = , gain = -1.5V/V (R = 20kΩ, R = 30kΩ for the MAX9728A),  
DD L IN F  
THD+N measurement bandwidth = 22Hz to 22kHz, both outputs driven in phase, T = +25°C, unless otherwise noted.)  
A
OUTPUT POWER  
vs. LOAD RESISTANCE  
POWER-SUPPLY REJECTION  
RATIO vs. FREQUENCY  
CROSSTALK vs. FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-20  
0
-20  
R = 32Ω  
L
P
= 15mW  
R = 16Ω  
OUT  
L
V
= 5V  
DD  
THD+N = 10%  
-40  
-40  
-60  
-60  
LEFT TO RIGHT  
-80  
-80  
THD+N = 1%  
RIGHT TO LEFT  
-100  
-120  
-100  
-120  
V
= 5V  
= 1kHz  
DD  
f
IN  
10  
100  
1000  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
LOAD RESISTANCE (Ω)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
OUTPUT POWER vs. LOAD RESISTANCE  
AND CHARGE-PUMP CAPACITOR SIZE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
80  
3.50  
10  
C1 = C2 = 2.2μF  
C1 = C2 = 1μF  
9
8
7
6
5
4
3
2
1
0
3.45  
3.40  
3.35  
3.30  
70  
60  
50  
40  
30  
20  
C1 = C2 = 0.47μF  
V
DD  
= 5V  
3.25  
3.20  
f
= 1kHz  
IN  
NO LOAD INPUTS GROUND  
NO LOAD INPUTS GROUND  
THD+N = 1%  
50  
250  
0
100  
150  
200  
300  
4.5  
5.0  
5.5  
4.5  
5.0  
5.5  
LOAD RESISTANCE (Ω)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
60mW, DirectDrive, Stereo Headphone  
Amplifiers with Shutdown  
Typical Operating Characteristics (continued)  
(V  
DD  
= 5V, PGND = SGND = 0V, SHDN = V , C1 = C2 = 1µF, R = , gain = -1.5V/V (R = 20kΩ, R = 30kΩ for the MAX9728A),  
DD L IN F  
THD+N measurement bandwidth = 22Hz to 22kHz, both outputs driven in phase, T = +25°C, unless otherwise noted.)  
A
EXITING SHUTDOWN  
ENTERING SHUTDOWN  
V
SHDN  
V
SHDN  
5V/div  
5V/div  
V
IN_  
V
IN_  
1V/div  
1V/div  
V
V
OUT_  
OUT_  
500mV/div  
500mV/div  
40μs/div  
20μs/div  
/MAX9728B  
Pin Description  
PIN  
NAME  
FUNCTION  
TQFN  
TSSOP  
1
2
3
4
C1P  
PGND  
C1N  
Flying Capacitor Positive Terminal. Connect a 1µF ceramic capacitor from C1P to C1N.  
Power Ground. Connect to SGND.  
3
5
Flying Capacitor Negative Terminal. Connect a 1µF ceramic capacitor from C1P to C1N.  
4
7
PV  
Charge-Pump Output. Connect to SV and bypass with a 1µF ceramic capacitor to PGND.  
SS  
SS  
5
8
SHDN  
INL  
Active-Low Shutdown Input  
Left-Channel Input  
6
9
7
10  
11  
12  
14  
1
SGND  
INR  
Signal Ground. Connect to PGND.  
Right-Channel Input  
8
9
SV  
Amplifier Negative Supply. Connect to PV  
Right-Channel Output  
.
SS  
SS  
10  
11  
12  
EP  
OUTR  
OUTL  
Left-Channel Output  
2
V
Positive Power-Supply Input. Bypass with a 1µF capacitor to PGND.  
No Connection. Not internally connected.  
DD  
6,13  
N.C.  
EP  
Exposed Paddle. Leave this connection floating or connect it to SV  
.
SS  
6
_______________________________________________________________________________________  
60mW, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
/MAX9728B  
Detailed Description  
V
DD  
/2  
OUT  
The MAX9728A/MAX9728B stereo headphone ampli-  
fiers feature Maxim’s DirectDrive architecture, eliminat-  
ing the large output-coupling capacitors required by  
conventional single-supply headphone amplifiers.  
These devices consist of two 60mW Class AB head-  
phone amplifiers, undervoltage lockout (UVLO)/shut-  
down control, charge pump, and comprehensive  
click-and-pop suppression circuitry (see the Functional  
Diagram/Typical Operating Circuits). The charge pump  
V
V
DD  
V
DD  
SGND  
inverts the positive supply (V ), creating a negative  
DD  
supply (PV ). The headphone amplifiers operate from  
SS  
CONVENTIONAL DRIVER-BIASING SCHEME  
these bipolar supplies with their outputs biased about  
SGND (Figure 1). The benefit of this SGND bias is that  
the amplifier outputs do not have a DC component. The  
large DC-blocking capacitors required with convention-  
al headphone amplifiers are unnecessary, conserving  
board space, reducing system cost, and improving fre-  
quency response. The MAX9728A/MAX9728B feature  
an undervoltage lockout that prevents operation from  
an insufficient power supply and click-and-pop sup-  
pression that eliminates audible transients on startup  
and shutdown. The MAX9728A/MAX9728B also feature  
thermal-overload and short-circuit protection.  
V
OUT  
V
DD  
SGND  
2V  
DD  
-V  
DD  
DirectDrive  
Conventional single-supply headphone amplifiers have  
their outputs biased about a nominal DC voltage (typical-  
ly half the supply) for maximum dynamic range. Large-  
coupling capacitors are needed to block this DC bias  
from the headphone. Without these capacitors, a signifi-  
cant amount of DC current flows to the headphone,  
resulting in unnecessary power dissipation and possible  
damage to both headphone and headphone amplifier.  
DirectDrive BIASING SCHEME  
Figure 1. Conventional Driver Output Waveform vs.  
MAX9728A/MAX9728B Output Waveform  
Charge Pump  
The MAX9728A/MAX9728B feature a low-noise charge  
pump. The 270kHz switching frequency is well beyond  
the audio range and does not interfere with audio sig-  
nals. The switch drivers feature a controlled switching  
speed that minimizes noise generated by turn-on and  
turn-off transients. The di/dt noise caused by the para-  
sitic bond wire and trace inductance is minimized by  
limiting the switching speed of the charge pump.  
Although not typically required, additional high-fre-  
quency noise attenuation can be achieved by increas-  
ing the value of C2 (see the Functional Diagram/Typical  
Operating Circuits).  
Maxim’s DirectDrive architecture uses a charge pump  
to create an internal negative supply voltage, allowing  
the MAX9728A/MAX9728B outputs to be biased about  
SGND. With no DC component, there is no need for the  
large DC-blocking capacitors. The MAX9728A/  
MAX9728B charge pumps require two small ceramic  
capacitors, conserving board space, reducing cost,  
and improving the frequency response of the head-  
phone amplifier. See the Output Power vs. Load  
Resistance and Charge-Pump Capacitor Size graph in  
the Typical Operating Characteristics for details of the  
possible capacitor sizes. There is a low DC voltage on  
the amplifier outputs due to amplifier offset. However,  
the offsets of the MAX9728A/MAX9728B are typically  
1.5mV, which, when combined with a 32Ω load, results  
in less than 47µA of DC current flow to the head-  
phones.  
Click-and-Pop Suppression  
In conventional single-supply audio amplifiers, the out-  
put-coupling capacitor contributes significantly to audi-  
ble clicks and pops. Upon startup, the amplifier charges  
the coupling capacitor to its bias voltage, typically half  
the supply. Likewise, on shutdown, the capacitor is dis-  
charged. This results in a DC shift across the capacitor,  
which appears as an audible transient at the speaker.  
_______________________________________________________________________________________  
7
60mW, DirectDrive, Stereo Headphone  
Amplifiers with Shutdown  
Since the MAX9728A/MAX9728B do not require output-  
coupling capacitors, this problem does not arise.  
Additionally, the MAX9728A/MAX9728B feature exten-  
sive click-and-pop suppression that eliminates any  
audible transient sources internal to the device.  
output, supply, and ground traces decrease θ , allow-  
JA  
ing more heat to be transferred from the package to the  
surrounding air.  
Thermal-overload protection limits total power dissipa-  
tion in the MAX9728A/MAX9728B. When the junction  
temperature exceeds +150°C, the thermal-protection  
circuitry disables the amplifier output stage. The ampli-  
fiers are enabled once the junction temperature cools  
by approximately 12°C. This results in a pulsing output  
under continuous thermal-overload conditions.  
Typically, the output of the device driving the  
MAX9728A/MAX9728B has a DC bias of half the supply  
voltage. At startup, the input-coupling capacitor is  
charged to the preamplifier’s DC-bias voltage through  
the input and feedback resistors of the MAX9728A/  
MAX9728B, resulting in a DC shift across the capacitor  
and an audible click/pop. Delay the rise of SHDN 4 to 5  
Output Dynamic Range  
Dynamic range is the difference between the noise floor  
of the system and the output level at 1% THD+N.  
Determine the system’s dynamic range before setting  
the maximum output gain. Output clipping occurs if the  
output signal is greater than the dynamic range of the  
system. The DirectDrive architecture of the MAX9728A/  
MAX9728B has increased the dynamic range compared  
to other single-supply amplifiers.  
time constants based on R and C , relative to the  
IN  
IN  
startup of the preamplifier, to eliminate clicks-and-pops  
caused by the input filter.  
Shutdown  
The MAX9728A/MAX9728B feature a < 0.1µA, low-  
power shutdown mode that reduces quiescent current  
consumption and extends battery life for portable appli-  
cations. Drive SHDN low to disable the amplifiers and  
the charge pump. In shutdown mode, the amplifier out-  
Maximum Output Swing  
Internal device structures limit the maximum voltage  
swing of the MAX9728A/MAX9728B. The output must  
not be driven such that the peak output voltage exceeds  
/MAX9728B  
put impedance is set to 14kΩ||R (R is 30kΩ for the  
F
F
MAX9728B). The amplifiers and charge pump are  
enabled once SHDN is driven high.  
the opposite supply voltage by 9V. For example, if V  
DD  
Applications Information  
= 5V, the charge pump sets PV = -5V. Therefore, the  
SS  
peak output swing must be less than 4V to prevent  
exceeding the absolute maximum ratings.  
Power Dissipation  
Under normal operating conditions, linear power ampli-  
fiers can dissipate a significant amount of power. The  
maximum power dissipation for each package is given  
in the Absolute Maximum Ratings section under  
Continuous Power Dissipation or can be calculated by  
the following equation:  
Component Selection  
Input-Coupling Capacitor  
The input capacitor (C ), in conjunction with the input  
IN  
resistor (R ), forms a highpass filter that removes the  
IN  
DC bias from an incoming signal (see the Functional  
Diagram/Typical Operating Circuits). The AC-coupling  
capacitor allows the device to bias the signal to an  
optimum DC level. Assuming zero-source impedance,  
the -3dB point of the highpass filter is given by:  
T
T  
A
J(MAX)  
P
=
DISSPKG(MAX)  
θ
JA  
where T  
is +150°C, T is the ambient tempera-  
A
J(MAX)  
ture, and θ is the reciprocal of the derating factor in  
JA  
1
f
=
3dB  
°C/W as specified in the Absolute Maximum Ratings  
2πR C  
IN IN  
section. For example, θ of the Thin QFN package is  
JA  
+68°C/W, and +110°C/W for the TSSOP package.  
Choose the C such that f  
is well below the lowest  
-3dB  
IN  
-3dB  
The MAX9728A/MAX9728B have two power dissipation  
sources: a charge pump and the two output amplifiers.  
If power dissipation for a given application exceeds the  
maximum allowed for a particular package, reduce  
frequency of interest. Setting f  
too high affects the  
device’s low-frequency response. Use capacitors  
whose dielectrics have low-voltage coefficients, such  
as tantalum or aluminum electrolytic. Capacitors with  
high-voltage coefficients, such as ceramics, can result  
in increased distortion at low frequencies.  
V
, increase load impedance, decrease the ambient  
DD  
temperature, or add heatsinking to the device. Large  
8
_______________________________________________________________________________________  
60mW, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
/MAX9728B  
Charge-Pump Capacitor Selection  
Use ceramic capacitors with a low ESR for optimum  
performance. For optimal performance over the extend-  
ed temperature range, select capacitors with an X7R  
dielectric. Table 1 lists suggested manufacturers.  
switching transients. Bypass V  
value as C1, and place it physically close to the V  
and PGND pins.  
with C3, the same  
DD  
DD  
Amplifier Gain  
The gain of the MAX9728B amplifier is internally set to  
-1.5V/V. All gain-setting resistors are integrated into the  
device, reducing external component count. The inter-  
nally set gain, in combination with DirectDrive, results in  
a headphone amplifier that requires only five small  
capacitors to complete the amplifier circuit: two for the  
charge pump, two for audio input coupling, and one for  
power-supply bypassing (see the Functional  
Diagram/Typical Operating Circuits).  
Flying Capacitor (C1)  
The value of the flying capacitor (see the Functional  
Diagram/Typical Operating Circuits) affects the charge  
pump’s load regulation and output resistance. A C1  
value that is too small degrades the device’s ability to  
provide sufficient current drive, which leads to a loss of  
output voltage. Increasing the value of C1 improves load  
regulation and reduces the charge-pump output resis-  
tance to an extent. See the Output Power vs. Load  
Resistance and Charge-Pump Capacitor Size graph in  
the Typical Operating Characteristics. Above 1µF, the  
on-resistance of the switches and the ESR of C1 and C2  
dominate.  
The gain of the MAX9728A amplifier is set externally as  
shown in Figure 2, the gain is:  
A = -R /R (V/V)  
V
F
IN  
Choose feedback resistor values in the tens of kΩ  
range. Lower values may cause excessive power dissi-  
Hold Capacitor (C2)  
The hold capacitor value (see the Functional  
Diagram/Typical Operating Circuits) and ESR directly  
pation and require impractically small values of R for  
IN  
large gain settings. The high-impedance state of the  
outputs can also be degraded during shutdown mode if  
an inadequate feedback resistor is used since the  
equivalent output impedance during shutdown is  
affect the ripple at PV . Increasing the value of C2  
SS  
reduces output ripple. Likewise, decreasing the ESR of  
C2 reduces both ripple and output resistance. Lower  
capacitance values can be used in systems with low  
maximum output power levels. See the Output Power  
vs. Load Resistance and Charge-Pump Capacitor Size  
graph in the Typical Operating Characteristics.  
14kΩ||R (R is equal to 30kΩ for the MAX9728B). The  
F
F
source resistance of the input device may also need to  
be taken into consideration. Since the effective value of  
R
is equal to the sum of the source resistance of the  
IN  
input device and the value of the input resistor connect-  
ed to the inverting terminal of the headphone amplifier  
(20kΩ for the MAX9728B), the overall closed-loop gain  
of the headphone amplifier can be reduced if the input  
resistor is not significantly larger than the source resis-  
tance of the input device.  
Power-Supply Bypass Capacitor (C3)  
The power-supply bypass capacitor (see the Functional  
Diagram/Typical Operating Circuits) lowers the output  
impedance of the power supply, and reduces the  
impact of the MAX9728A/MAX9728Bs’ charge-pump  
Table 1. Suggested Capacitor Manufacturers  
SUPPLIER  
PHONE  
FAX  
WEBSITE  
www.t-yuden.com  
Taiyo Yuden  
800-348-2496  
847-803-6100  
770-436-1300  
847-925-0899  
847-390-4405  
770-436-3030  
TDK  
www.component.tdk.com  
www.murata.com  
Murata  
_______________________________________________________________________________________  
9
60mW, DirectDrive, Stereo Headphone  
Amplifiers with Shutdown  
Lineout Amplifier and Filter Block  
The MAX9728A can be used as an audio line driver  
R
F
capable of providing 2V  
gle 5V supply (see Figure 3 for the RMS Output Voltage  
vs. Supply Voltage plot). 2V is a popular audio line  
into 10kΩ loads with a sin-  
RMS  
RMS  
level, first used in CD players, but now common in DVD  
and set-top box (STB) interfacing standards. A 2V  
MAX9728A  
R
IN  
LEFT  
AUDIO  
INPUT  
RMS  
INL  
sinusoidal signal equates to approximately 5.7V  
,
P-P  
OUTL  
which means that the audio system designer cannot  
simply run the lineout stage from a (typically common)  
5V supply—the resulting output swing would be inade-  
quate. A common solution to this problem is to use op  
amps driven from split supplies ( 5V typically), or to use  
a high-voltage supply rail (9V to 12V). This can mean  
adding extra cost and complexity to the system power  
supply to meet this output level requirement. Having the  
OUTR  
R
RIGHT  
AUDIO  
INPUT  
IN  
INR  
ability to derive 2V  
from a 5V supply can often sim-  
RMS  
plify power-supply design in some systems.  
When the MAX9728A is used as a line driver to provide  
outputs that feed stereo equipment (receivers, STBs,  
notebooks, and desktops) with a digital-to-analog con-  
verter (DAC) used as an audio input source, it is often  
desirable to eliminate any high-frequency quantization  
noise produced by the DAC output before it reaches  
the load. This high-frequency noise can cause the input  
stages of the line-in equipment to exceed slew-rate lim-  
itations or create excessive EMI emissions on the  
cables between devices.  
R
F
Figure 2. Gain Setting for the MAX9728A  
/MAX9728B  
RMS OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE  
4.1  
f
IN  
= 1kHz  
To suppress this noise, and to provide a 2V  
stan-  
RMS  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
dard audio output level from a single 5V supply, the  
MAX9728A can be configured as a line driver and  
active lowpass filter. Figure 4 shows the MAX9728A  
connected as 2-pole Rauch/multiple feedback filter with  
a passband gain of 6dB and a -3dB (below passband)  
cutoff frequency of approximately 27kHz (see Figure 5  
for the Gain vs. Frequency plot).  
R = 10kΩ  
L
1% THD+N  
R = 1kΩ  
L
1% THD+N  
Layout and Grounding  
Proper layout and grounding are essential for optimum  
performance. Connect PGND and SGND together at a  
single point on the PC board. Connect PV  
to SV  
SS  
4.5  
5.0  
SUPPLY VOLTAGE (V)  
5.5  
SS  
and bypass with a 1µF capacitor. Place the power-sup-  
ply bypass capacitor and the charge-pump hold  
capacitor as close to the MAX9728 as possible. Route  
PGND and all traces that carry switching transients  
away from SGND and the audio signal path. The thin  
QFN package features an exposed paddle that  
improves thermal efficiency. Ensure that the exposed  
paddle is electrically isolated from PGND, SGND,  
Figure 3. RMS Output Voltage vs. Supply Voltage  
and V . Connect the exposed paddle to SV only  
DD  
SS  
when the board layout dictates that the exposed  
paddle cannot be left floating.  
10 ______________________________________________________________________________________  
60mW, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
/MAX9728B  
15kΩ  
220pF  
LEFT  
AUDIO  
INPUT  
1μF  
MAX9728A  
7.5kΩ  
1.2nF  
7.5kΩ  
INL  
LINE-IN DEVICE  
OUTL  
STEREO  
DAC  
10kΩ  
1.2nF  
7.5kΩ  
RIGHT  
AUDIO  
INPUT  
OUTR  
1μF  
7.5kΩ  
INR  
10kΩ  
220pF  
15kΩ  
Figure 4. MAX9728A Line-Out Amplifier and Filter Block Configuration  
MAX9728A ACTIVE FILTER GAIN  
vs. FREQUENCY  
10  
R = 10kΩ  
L
5
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 5. Frequency Response of Active Filter of Figure 4  
______________________________________________________________________________________ 11  
60mW, DirectDrive, Stereo Headphone  
Amplifiers with Shutdown  
System Diagram  
V
DD  
0.1μF  
15kΩ  
1μF  
15kΩ  
INR  
OUTR+  
OUTR-  
V
DD  
PV  
DD  
BIAS  
1μF  
MAX9710  
GND  
PGND  
MUTE  
SHDN  
INL  
OUTL-  
OUTL+  
0.1μF  
15kΩ  
V
DD  
15kΩ  
μCONTROLLER  
/MAX9728B  
100kΩ  
100kΩ  
0.1μF  
STEREO  
DAC  
OUTL  
SHDN  
O.47μF  
O.47μF  
MAX9728B  
OUTR  
SGND  
INL  
INR  
PV  
PGND  
V
DD  
SS  
SV  
V
SS  
C1P  
DD  
C1N  
1μF  
1μF  
1μF  
12 ______________________________________________________________________________________  
60mW, DirectDrive, Stereo Headphone  
Amplifier with Shutdown  
/MAX9728B  
Functional Diagram/Typical Operating Circuits  
4.5V TO 5.5V  
C
IN  
0.47μF  
R
R
IN*  
F*  
LEFT  
AUDIO  
INPUT  
20kΩ  
30kΩ  
ON  
C3  
1μF  
OFF  
12  
5
6
(9)  
(2)  
(8)  
INL  
V
DD  
SHDN  
V
DD  
11  
(1)  
OUTL  
HEADPHONE  
JACK  
1
(3)  
SV  
SS  
C1P  
UVLO/  
SHUTDOWN  
CONTROL  
CLICK-AND-POP  
SUPPRESSION  
CHARGE  
PUMP  
SGND  
C1  
1μF  
V
DD  
3
10  
(14)  
(5) C1N  
OUTR  
MAX9728A  
SV  
SS  
PV  
SV  
9
(12)  
PGND  
SS  
SGND  
SS  
INR  
4
7
(10)  
2
(4)  
8
(11)  
(7)  
C
IN  
R *  
20kΩ  
R *  
30kΩ  
IN  
F
C2  
1μF  
0.47μF  
RIGHT  
AUDIO  
INPUT  
*R AND R VALUES ARE CHOSEN FOR A GAIN -1.5V/V.  
IN  
F
( ) TSSOP PACKAGE  
______________________________________________________________________________________ 13  
60mW, DirectDrive, Stereo Headphone  
Amplifiers with Shutdown  
Functional Diagram/Typical Operating Circuits (continued)  
4.5V TO 5.5V  
C
IN  
0.47μF  
LEFT  
AUDIO  
INPUT  
ON  
C3  
1μF  
OFF  
12  
5
6
(9)  
(2)  
(8)  
V
DD  
INL  
SHDN  
R
F*  
30kΩ  
V
DD  
R
IN*  
20kΩ  
11  
(1)  
OUTL  
HEADPHONE  
JACK  
1
(3)  
V
SS  
C1P  
UVLO/  
SHUTDOWN  
CONTROL  
CLICK-AND-POP  
SUPPRESSION  
/MAX9728B  
CHARGE  
PUMP  
SGND  
C1  
1μF  
V
DD  
3
10  
(14)  
(5) C1N  
OUTR  
R
IN  
20kΩ  
MAX9728B  
SV  
SS  
R
F
30kΩ  
SV  
9
(12) (4)  
PV  
INR  
8
(11)  
SS PGND  
SGND  
SS  
4
2
7
(10)  
(7)  
C2  
1μF  
C
IN  
0.47μF  
RIGHT  
AUDIO  
INPUT  
( ) TSSOP PACKAGE  
14 ______________________________________________________________________________________  
60mW, DirectDrive, Stereo Headphone  
Amplifiers with Shutdown  
/MAX9728B  
Pin Configurations  
TOP VIEW  
TOP VIEW  
9
8
7
+
OUTL  
1
2
3
4
5
6
7
14 OUTR  
13 N.C.  
V
DD  
10  
OUTR  
6
5
INL  
C1P  
PGND  
C1N  
12 SV  
SS  
MAX9728A  
MAX9728B  
11 INR  
OUTL 11  
MAX9728A  
MAX9728B  
SHDN  
10 SGND  
V
DD 12  
PV  
SS  
4
N.C.  
9
8
INL  
+
PV  
SS  
SHDN  
1
2
3
TSSOP  
TQFN  
Chip Information  
TRANSISTOR COUNT: 993  
PROCESS: BiCMOS  
______________________________________________________________________________________ 15  
60mW, DirectDrive, Stereo Headphone  
Amplifiers with Shutdown  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in  
the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to  
the package regardless of RoHS status.  
PACKAGE TYPE  
12 TQFN-EP  
14 TSSOP  
PACKAGE CODE  
T1233-1  
DOCUMENT NO.  
21-0136  
U14-1  
21-0066  
(NE - 1)  
X e  
MARKING  
E
E/2  
D2/2  
(ND - 1)  
e
X e  
D/2  
AAAA  
C
D2  
D
L
k
b
0.10 M  
C A B  
/MAX9728B  
C
L
E2/2  
L
E2  
C
L
C
L
0.10  
C
0.08  
A
C
A2  
A1  
L
L
e
e
PACKAGE OUTLINE  
8, 12, 16L THIN QFN, 3x3x0.8mm  
1
21-0136  
I
2
16 ______________________________________________________________________________________  
60mW, DirectDrive, Stereo Headphone  
Amplifiers with Shutdown  
/MAX9728B  
Package Information (continued)  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in  
the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to  
the package regardless of RoHS status.  
PKG  
8L 3x3  
12L 3x3  
16L 3x3  
EXPOSED PAD VARIATIONS  
REF. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
D2  
E2  
PKG.  
PIN ID  
JEDEC  
CODES  
A
b
0.70 0.75 0.80 0.70 0.75 0.80  
0.25 0.30 0.35 0.20 0.25 0.30  
0.70 0.75 0.80  
0.20 0.25 0.30  
MIN.  
0.25  
0.95  
0.95  
0.95  
0.95  
0.65  
0.65  
0.95  
0.95  
NOM. MAX.  
MIN.  
0.25  
0.95  
0.95  
0.95  
NOM. MAX.  
TQ833-1  
T1233-1  
T1233-3  
0.70  
1.10  
1.10  
1.10  
1.25  
1.25  
1.25  
0.70  
1.10  
1.10  
1.10  
1.10  
0.80  
0.80  
1.10  
1.10  
1.25  
1.25  
1.25  
1.25  
1.25  
0.95  
0.95  
0.35 x 45°  
0.35 x 45°  
0.35 x 45°  
0.35 x 45°  
0.35 x 45°  
0.225 x 45°  
0.225 x 45°  
0.35 x 45°  
0.35 x 45°  
WEEC  
D
2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10  
2.90 3.00 3.10 2.90 3.00 3.10 2.90 3.00 3.10  
WEED-1  
WEED-1  
WEED-1  
WEED-2  
WEED-2  
WEED-2  
WEED-2  
WEED-2  
E
e
0.65 BSC.  
0.50 BSC.  
0.50 BSC.  
T1233-4  
T1633-2  
1.25  
1.25  
0.95  
0.95  
1.25  
1.25  
L
0.35 0.55 0.75 0.45 0.55 0.65 0.30 0.40 0.50  
1.10  
0.80  
0.80  
1.10  
0.95  
0.65  
0.65  
0.95  
N
ND  
NE  
A1  
A2  
k
8
12  
16  
T1633F-3  
T1633FH-3  
T1633-4  
2
3
4
2
3
4
1.25  
1.25  
0
0.02 0.05  
0
0.02 0.05  
0
0.02 0.05  
T1633-5  
1.10  
0.95  
0.20 REF  
0.20 REF  
0.20 REF  
-
-
-
-
-
-
0.25  
0.25  
0.25  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO  
JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED  
WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR  
MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS  
9. DRAWING CONFORMS TO JEDEC MO220 REVISION C.  
.
10. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
11. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
12. WARPAGE NOT TO EXCEED 0.10mm.  
PACKAGE OUTLINE  
8, 12, 16L THIN QFN, 3x3x0.8mm  
2
21-0136  
I
2
______________________________________________________________________________________ 17  
60mW, DirectDrive, Stereo Headphone  
Amplifiers with Shutdown  
Package Information (continued)  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in  
the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to  
the package regardless of RoHS status.  
/MAX9728B  
18 ______________________________________________________________________________________  
60mW, DirectDrive, Stereo Headphone  
Amplifiers with Shutdown  
/MAX9728B  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
1/06  
Initial release  
Corrected top mark designations  
1
7/09  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9728A

60mW, DirectDrive, Stereo Headphone Amplifiers with Shutdown
MAXIM

MAX9728AETC

60mW, DirectDrive, Stereo Headphone Amplifiers with Shutdown
MAXIM

MAX9728AETC+

60mW, DirectDrive, Stereo Headphone Amplifiers with Shutdown
MAXIM

MAX9728AETC-T

60mW, DirectDrive, Stereo Headphone Amplifiers with Shutdown
MAXIM

MAX9728AEUD

60mW, DirectDrive, Stereo Headphone Amplifiers with Shutdown
MAXIM

MAX9728AEUD+

60mW, DirectDrive, Stereo Headphone Amplifiers with Shutdown
MAXIM

MAX9728AEUD+T

Audio Amplifier, 0.063W, 2 Channel(s), 1 Func, BICMOS, PDSO14, 5 X 4.40 MM, 1.10 MM HEIGHT, LEAD FREE, MO-153AB-1, TSSOP-14
MAXIM

MAX9728B

60mW, DirectDrive, Stereo Headphone Amplifiers with Shutdown
MAXIM

MAX9728BETC

60mW, DirectDrive, Stereo Headphone Amplifiers with Shutdown
MAXIM

MAX9728BETC+

60mW, DirectDrive, Stereo Headphone Amplifiers with Shutdown
MAXIM

MAX9728BEUD

60mW, DirectDrive, Stereo Headphone Amplifiers with Shutdown
MAXIM

MAX9728BEUD+

60mW, DirectDrive, Stereo Headphone Amplifiers with Shutdown
MAXIM