MAX9750AETI-T [MAXIM]

Volume Control Circuit, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, TQFN-28;
MAX9750AETI-T
型号: MAX9750AETI-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Volume Control Circuit, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, TQFN-28

放大器 功率放大器
文件: 总31页 (文件大小:674K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3006; Rev 0; 1/04  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
General Description  
Features  
The MAX9750/MAX9751/MAX9755 combine a stereo,  
2.6W audio power amplifier and stereo DirectDrive  
110mW headphone amplifier in a single device. The  
headphone amplifier uses Maxim’s patented DirectDrive  
architecture that produces a ground-referenced output  
from a single supply, eliminating the need for large DC-  
blocking capacitors, saving cost, space, and component  
height. A high 90dB PSRR and low 0.01% THD+N  
ensures clean, low-distortion amplification of the audio  
signal.  
No DC-Blocking Capacitors Required—Provides  
Industry’s Most Compact Notebook Audio  
Solution  
PC2001 Compliant  
5V Single-Supply Operation  
Class AB 2.6W Stereo BTL Speaker Amplifiers  
110mW DirectDrive Headphone Amplifiers  
High 90dB PSRR  
The MAX9750 features an analog volume control, and a  
BEEP input. The MAX9751 features a 2:1 input multiplexer,  
allowing multiple audio sources to be selected. All devices  
feature a single-supply voltage, a shutdown mode, logic-  
selectable gain, and a headphone sense input. Industry-  
leading click-and-pop suppression eliminates audible  
transients during power and shutdown cycles.  
Low-Power Shutdown Mode  
Industry-Leading Click-and-Pop Suppression  
Low 0.01% THD+N at 1kHz  
Short-Circuit and Thermal Protection  
Selectable Gain Settings  
The MAX9750/MAX9751/MAX9755 are offered in space-  
saving, thermally efficient 28-pin thin QFN (5mm x 5mm  
x 0.8mm) and 28-pin TSSOP-EP packages. Both devices  
have thermal-overload and output short-circuit protec-  
tion, and are specified over the extended -40°C to +85°C  
temperature range.  
Analog Volume Control (MAX9750)  
Beep Input with Glitch Filter (MAX9750)  
2:1 Stereo Input MUX (MAX9751)  
±±kV ꢀSD-Protected Headphone Driver Outputs  
Applications  
Available in Space-Saving, Thermally ꢀfficient  
Packages  
Notebook PCs  
Tablet PCs  
Flat-Panel TVs  
PC Displays  
2±-Pin Thin QFN (5mm x 5mm x 0.±mm)  
2±-Pin TSSOP-ꢀP  
Portable DVD  
LCD Projectors  
Ordering Information  
Simplified Block Diagrams  
PIN-  
PACKAGꢀ  
MAXIMUM  
GAIN (dB)  
PART  
TꢀMP RANGꢀ  
MAX9750AETI*-40°C to +85°C 28 Thin QFN  
MAX9750AEUI*-40°C to +85°C 28 TSSOP-EP**  
MAX9750BETI*-40°C to +85°C 28 Thin QFN  
MAX9750BEUI*-40°C to +85°C 28 TSSOP-EP**  
MAX9750CETI-40°C to +85°C 28 Thin QFN  
MAX9750CEUI*-40°C to +85°C 28 TSSOP-EP**  
13.5  
13.5  
19.5  
19.5  
10.5  
10.5  
10.5  
10.5  
10.5  
10.5  
MAX9751ETI*†  
-40°C to +85°C 28 Thin QFN  
MAX9751EUI*†  
-40°C to +85°C 28 TSSOP-EP**  
VOL  
MAX9755AETI*-40°C to +85°C 28 Thin QFN  
MAX9755AEUI*-40°C to +85°C 28 TSSOP-EP**  
BEEP  
*Future product—contact factory for availability.  
**EP = Exposed Paddle.  
Lead-free package.  
MAX9750  
Simplifed Block Diagrams continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
ABSOLUTꢀ MAXIMUM RATINGS  
Supply Voltage (V , PV , HPV , CPV  
to GND)..........+6V  
Continuous Current (CPV , C1N, C1P, CPV , V , HPV  
,
DD  
DD  
DD  
DD  
DD  
SS SS  
DD  
GND to PGND..................................................................... 0.3V  
CPV , C1N, V to GND .........................-6.0V to (GND + 0.3V)  
HPOUT_ to GND.................................................................... 3V  
HPOUT_).......................................................................850mA  
Continuous Input Current (All Other Pins) ........................ 20mA  
Continuous Power Dissipation (T = +70°C)  
A
SS  
SS  
Any Other Pin .............................................-0.3V to (V + 0.3V)  
28-Pin Thin QFN (derate 20.8mW/°C above +70°C) ..1667mW  
28-Pin TSSOP-EP (derate 23.8mW/°C above +70°C).1904mW  
Junction Temperature......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
Duration of OUT_ Short Circuit to GND or PV ........Continuous  
DD  
Duration of OUT_+ Short Circuit to OUT_-.................Continuous  
Duration of HPOUT_ Short Circuit to GND,  
V
or HPV .........................................................Continuous  
SS  
DD  
Continuous Current (PV , OUT_, PGND) ...........................1.7A  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ꢀLꢀCTRICAL CHARACTꢀRISTICS  
(V  
= PV  
= CPV  
= HPV  
= 5V, GND = PGND = CPGND = 0V, SHDN = V , C  
= 1µF, C1 = C2 = 1µF, speaker load ter-  
BIAS  
DD  
DD  
DD  
DD  
DD  
minated between OUT_+ and OUT_-, headphone load terminated between HPOUT_ and GND, MAX9750: GAIN1 = GAIN2 = VOL =  
= IN1/2 = GND, T = T to T , unless otherwise noted. Typical values are  
R = 33k= GND, MAX9751/MAX9755: GAIN = V  
L
DD  
A
MIN  
MAX  
at T = +25°C.) (Note 1)  
A
PARAMꢀTꢀR  
GꢀNꢀRAL  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
V
, PV  
Inferred from PSRR test  
Inferred from PSRR test  
4.5  
3
5.5  
5.5  
V
V
DD  
DD  
CPV  
,
DD  
Headphone Supply Voltage  
Quiescent Supply Current  
HPV  
DD  
HPS = GND, speaker mode, R =  
14  
7
29  
13  
5
L
I
mA  
DD  
HPS = V , headphone mode, R = ∞  
DD  
L
Shutdown Supply Current  
Bias Voltage  
I
SHDN = GND  
0.2  
1.8  
10  
20  
25  
µA  
V
SHDN  
V
1.7  
10  
1.9  
BIAS  
Switching Time  
t
Gain or input switching  
Amplifier inputs (Note 2)  
µs  
kΩ  
ms  
SW  
Input Resistance  
Turn-On Time  
R
30  
6
IN  
t
SON  
SPꢀAKꢀR AMPLIFIꢀR (HPS = GND)  
Output Offset Voltage  
V
Measured between OUT_+ - OUT_-  
PV or V = 4.5V to 5.5V (T = +25°C)  
0.4  
mV  
dB  
OS  
75  
90  
80  
55  
DD  
DD  
A
Power-Supply Rejection Ratio  
(Note 3)  
PSRR  
f = 1kHz, V = 200mV  
RIPPLE P-P  
f = 10kHz, V  
= 200mV  
P-P  
RIPPLE  
2
_______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
ꢀLꢀCTRICAL CHARACTꢀRISTICS (continued)  
(V  
= PV  
= CPV  
= HPV  
= 5V, GND = PGND = CPGND = 0V, SHDN = V , C  
= 1µF, C1 = C2 = 1µF, speaker load ter-  
BIAS  
DD  
DD  
DD  
DD  
DD  
minated between OUT_+ and OUT_-, headphone load terminated between HPOUT_ and GND, MAX9750: GAIN1 = GAIN2 = VOL =  
R = 33k= GND, MAX9751/MAX9755: GAIN = V  
= IN1/2 = GND, T = T  
to T  
, unless otherwise noted. Typical values are  
L
DD  
A
MIN  
MAX  
at T = +25°C.) (Note 1)  
A
PARAMꢀTꢀR  
SYMBOL  
CONDITIONS  
MIN  
0.65  
1.2  
TYP  
1.4  
0.8  
2.3  
1.5  
MAX  
UNITS  
MAX9750A/  
MAX9750B/  
MAX9751/  
MAX9755  
R = 8Ω  
L
MAX9750C  
MAX9750A/  
MAX9750B/  
MAX9751/  
MAX9755  
THD+N = 1%,  
Output Power  
P
f = 1kHz, T  
=
R = 4Ω  
L
W
OUT  
A
+25°C  
MAX9750C  
MAX9750A/  
MAX9750B/  
MAX9751/  
MAX9755  
2.6  
R = 3Ω  
L
MAX9750C  
2.2  
0.01  
0.02  
90  
R = 8, P  
= 500mW, f = 1kHz  
= 1W, f = 1kHz  
L
OUT  
OUT  
OUT  
Total Harmonic Distortion Plus  
Noise  
THD+N  
SNR  
%
R = 4, P  
L
Signal-to-Noise Ratio  
Noise  
R = 8, P  
L
= 1W, BW = 22Hz to 22kHz  
dB  
V
BW = 22Hz to 22kHz, A-weighted  
No sustained oscillations  
80  
µV  
RMS  
n
Capacitive-Load Drive  
C
200  
75  
pF  
L
L to R, R to L, f = 10kHz  
Crosstalk  
Slew Rate  
dB  
Any unselected input to any active input,  
f = 10kHz (MAX9751)  
60  
SR  
1.4  
9
V/µs  
GAIN1 = 0, GAIN2 = 0  
GAIN1 = 1, GAIN2 = 0  
10.5  
12  
MAX9750A  
GAIN1 = 0, GAIN2 = 1  
GAIN1 = 1, GAIN2 = 1  
GAIN1 = 0, GAIN2 = 0  
GAIN1 = 1, GAIN2 = 0  
13.5  
15  
16.5  
18  
MAX9750B  
Gain (Maximum Volume Setting)  
A
dB  
VMAX(SPKR)  
GAIN1 = 0, GAIN2 = 1  
GAIN1 = 1, GAIN2 = 1  
GAIN1 = 0, GAIN2 = 0  
19.5  
6
GAIN1 = 1, GAIN2 = 0  
MAX9750C  
7.5  
GAIN1 = 0, GAIN2 = 1  
9
GAIN1 = 1, GAIN2 = 1  
10.5  
9
GAIN = 1  
GAIN = 0  
Gain (MAX9751/MAX9755)  
A
dB  
V
10.5  
_______________________________________________________________________________________  
3
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
ꢀLꢀCTRICAL CHARACTꢀRISTICS (continued)  
(V  
= PV  
= CPV  
= HPV  
= 5V, GND = PGND = CPGND = 0V, SHDN = V , C  
= 1µF, C1 = C2 = 1µF, speaker load ter-  
BIAS  
DD  
DD  
DD  
DD  
DD  
minated between OUT_+ and OUT_-, headphone load terminated between HPOUT_ and GND, MAX9750: GAIN1 = GAIN2 = VOL =  
= IN1/2 = GND, T = T to T , unless otherwise noted. Typical values are  
R = 33k= GND, MAX9751/MAX9755: GAIN = V  
L
DD  
A
MIN  
MAX  
at T = +25°C.) (Note 1)  
A
PARAMꢀTꢀR  
SYMBOL  
CONDITIONS  
MIN  
70  
TYP  
MAX  
UNITS  
mV  
HꢀADPHONꢀ AMPLIFIꢀR (HPS = V  
Output Offset Voltage  
)
DD  
V
T
= +25°C  
2
75  
73  
63  
50  
7
OS  
A
HPV  
= 3V to 5.5V, T = +25°C  
A
DD  
Power-Supply Rejection Ratio  
(Note 3)  
PSRR  
dB  
f = 1kHz, V  
= 200mV  
P-P  
RIPPLE  
f = 10kHz, V  
= 200mV  
P-P  
RIPPLE  
THD+N = 1%,  
f = 1kHz,  
R = 32Ω  
L
40  
Output Power  
P
mW  
OUT  
R = 16Ω  
L
110  
T
A
= +25°C  
R = 32, P  
= 20mW, f = 1kHz  
= 75mW, f = 1kHz  
= 50mW,  
0.007  
0.03  
L
OUT  
Total Harmonic Distortion Plus  
Noise  
THD+N  
SNR  
%
R = 16, P  
L
OUT  
R = 32, P  
L
OUT  
Signal-to-Noise Ratio  
95  
dB  
BW = 22Hz to 22kHz  
Noise  
V
BW = 22Hz to 22kHz  
12  
200  
88  
µV  
RMS  
n
Capacitive-Load Drive  
C
No sustained oscillations  
L to R, R to L, f = 10kHz  
pF  
L
Crosstalk  
dB  
Any unselected input to any active input,  
f = 10kHz (MAX9751)  
88  
Slew Rate  
ESD  
SR  
0.4  
8
V/µs  
kV  
ESD  
IEC air discharge  
GAIN2 = GAIN = 1, GAIN1 = X  
GAIN2 = GAIN = 0, GAIN1 = X  
0
Gain  
A
dB  
V
3
CHARGꢀ PUMP  
Charge-Pump Frequency  
VOLUMꢀ CONTROL (MAX9750_)  
VOL Input Impedance  
VOL Input Hysteresis  
f
500  
550  
600  
kHz  
OSC  
R
100  
10  
MΩ  
VOL  
mV  
0.858 x  
Full Mute Input Voltage  
(Note 4)  
V
HPV  
DD  
Channel Matching  
A = -25dB to +13.5dB  
V
0.2  
dB  
BꢀꢀP INPUT (MAX9750_)  
Beep Signal Minimum Amplitude  
Beep Signal Minimum Frequency  
V
0.8  
V
P-P  
BEEP  
f
200  
Hz  
BEEP  
4
_______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
ꢀLꢀCTRICAL CHARACTꢀRISTICS (continued)  
(V  
= PV  
= CPV  
= HPV  
= 5V, GND = PGND = CPGND = 0V, SHDN = V , C  
= 1µF, C1 = C2 = 1µF, speaker load ter-  
BIAS  
DD  
DD  
DD  
DD  
DD  
minated between OUT_+ and OUT_-, headphone load terminated between HPOUT_ and GND, MAX9750: GAIN1 = GAIN2 = VOL =  
= IN1/2 = GND, T = T to T , unless otherwise noted. Typical values are  
R = 33k= GND, MAX9751/MAX9755: GAIN = V  
L
DD  
A
MIN  
MAX  
at T = +25°C.) (Note 1)  
A
PARAMꢀTꢀR  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOGIC INPUT (SHDN, GAIN1, GAIN2, GAIN, VOL, IN1/2, HPS)  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
V
2
V
V
IH  
V
0.8  
1
IL  
I
µA  
IN  
Note 1: All devices are 100% production tested at room temperature. All temperature limits are guaranteed by design.  
Note 2: Guaranteed by design. Not production tested.  
Note 3: PSRR is specified with the amplifier input connected to GND through C  
Note 4: See Table 3 for details of the mute levels.  
.
IN  
Note 5: The value of R dictates the minimum beep signal amplitude (see the Beep Input section).  
B
_______________________________________________________________________________________  
5
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Typical Operating Characteristics  
(Measurement BW = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
10  
1
10  
1
10  
1
V
= 5V  
V
= 5V  
V
= 5V  
CC  
CC  
CC  
R = 3  
R = 4Ω  
R = 8Ω  
L
L
L
A
V
= 10.5dB  
A
= 10.5dB  
A = 10.5dB  
V
V
OUTPUT POWER = 1.5W  
OUTPUT POWER = 1.25W  
OUTPUT POWER = 100mW  
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
OUTPUT POWER = 500mW  
OUTPUT POWER = 500mW  
OUTPUT POWER = 600mW  
0.001  
0.001  
0.001  
0.0001  
0.0001  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
100  
10  
1
100  
10  
1
100  
10  
1
V
= 5V  
V
= 5V  
CC  
L
V
CC  
L
V
V
= 5V  
CC  
L
V
R = 8Ω  
A
MAX9750C  
R = 4Ω  
A
MAX9750C  
R = 3Ω  
A
MAX9750C  
= 10.5dB  
= 10.5dB  
= 10.5dB  
f
= 10kHz  
f
= 10kHz  
IN  
IN  
f
= 10kHz  
0.1  
0.1  
0.1  
IN  
0.01  
0.01  
0.01  
f
= 1kHz  
2.0  
f
= 1kHz  
IN  
IN  
f
= 20Hz  
f
= 1kHz  
0.8  
f
= 20Hz  
IN  
IN  
IN  
f
= 20Hz  
IN  
0.001  
0.001  
0.001  
0
0.5  
1.0  
1.5  
2.5  
3.0  
0
2.0  
0
1.2  
0.5  
1.0  
OUTPUT POWER (W)  
1.5  
0.2  
0.4  
0.6  
1.0  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
POWER DISSIPATION vs. OUTPUT POWER  
(SPEAKER MODE)  
OUTPUT POWER  
vs. LOAD RESISTANCE (SPEAKER MODE)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (SPEAKER MODE)  
5
4
3
2
1
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
A
= 200mV  
P-P  
= 10.5dB  
V
= 5V  
RIPPLE  
V
V
= 5V  
DD  
CC  
f = 1kHz  
= P  
f = 1kHz  
= 10.5dB  
OUTPUT REFERRED  
P
+ P  
OUTR  
A
OUT  
OUTL  
V
MAX9750C  
MAX9750C  
R = 4Ω  
L
THD+N = 10%  
THD+N = 1%  
R = 8Ω  
L
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT POWER (W)  
1
10  
LOAD RESISTANCE ()  
100  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
6
_______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(Measurement BW = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
A
TURN-ON RESPONSE  
(SPEAKER MODE)  
CROSSTALK vs. FREQUENCY  
(SPEAKER MODE)  
MAX9750/51 toc11  
0
V
V
= 5V  
CC  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
5V/div  
= 200mV  
RIPPLE  
P-P  
R = 4Ω  
L
SHDN  
OUT_+  
AND  
2V/div  
OUT_-  
LEFT TO RIGHT  
RIGHT TO LEFT  
OUT_+  
100mV/div  
-90  
-100  
-110  
-120  
- OUT_-  
R
= 8Ω  
L
10  
100  
1k  
10k  
100k  
20ms/div  
FREQUENCY (Hz)  
TURN-OFF RESPONSE  
(SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
MAX9750/51 toc12  
10  
1
10  
1
V = 5V  
DD  
V
= 5V  
DD  
L
V
R = 32Ω  
R = 16Ω  
A
L
5V/div  
2V/div  
A = 3dB  
V
= 3dB  
SHDN  
OUTPUT POWER = 45mW  
OUTPUT POWER = 90mW  
OUT_+  
AND  
OUT_-  
0.1  
0.01  
0.1  
0.01  
0.001  
OUTPUT POWER = 10mW  
OUTPUT POWER = 30mW  
OUT_+  
- OUT_-  
20mV/div  
0.001  
R
= 8Ω  
L
0.0001  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
20ms/div  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
10  
10  
1
V
= 3.3V  
V
= 3.3V  
DD  
DD  
R = 32Ω  
V
R = 16Ω  
V
L
L
A
= 3dB  
A
= 3dB  
1
0.1  
OUTPUT POWER = 30mW  
OUTPUT POWER = 45mW  
0.1  
0.01  
0.01  
OUTPUT POWER = 10mW  
OUTPUT POWER = 10mW  
0.001  
0.001  
0.0001  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
7
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(Measurement BW = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
1000  
100  
10  
1000  
100  
10  
1000  
100  
10  
V
= 5V  
V
= 5V  
DD  
V
= 3.3V  
DD  
DD  
R = 16Ω  
R = 32Ω  
R = 16Ω  
L
L
L
A
= 3dB  
A = 3dB  
V
A
= 3dB  
V
V
f
IN  
= 1kHz  
f
IN  
= 1kHz  
1
1
1
f
IN  
= 10kHz  
f
IN  
= 10kHz  
f
IN  
= 10kHz  
0.1  
0.1  
0.1  
f
IN  
= 20Hz  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f
= 1kHz  
100  
IN  
f
IN  
= 20Hz  
20  
0
25  
50  
75  
125  
150  
0
40  
60  
80  
100  
10  
40  
OUTPUT POWER (mW)  
0
20  
30  
50  
60  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER vs. LOAD RESISTANCE  
(HEADPHONE MODE)  
POWER DISSIPATION vs. OUTPUT POWER  
(HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
180  
160  
140  
120  
100  
80  
250  
225  
200  
175  
150  
125  
100  
75  
1000  
100  
10  
V
= 3.3V  
DD  
L
V
R = 32Ω  
A
THD+N = 10%  
R = 16  
L
= 3dB  
f
= 1kHz  
IN  
1
f
IN  
= 10kHz  
R = 32  
L
60  
0.1  
40  
V
= 5V  
50  
DD  
THD+N = 1%  
0.01  
0.001  
f = 1kHz  
= P  
20  
25  
P
+ P  
OUTR  
OUT  
OUTL  
0
0
10  
100  
1000  
0
25 50 75 100 125 150 175 200 225 250  
OUTPUT POWER (mW)  
40 50  
OUTPUT POWER (mW)  
90  
0
10 20 30  
60 70 80  
LOAD RESISTANCE ()  
OUTPUT POWER vs. SUPPLY VOLTAGE  
(HEADPHONE MODE)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (HEADPHONE MODE)  
125  
100  
75  
50  
25  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
A
= 200mV  
P-P  
= 10.5dB  
RIPPLE  
V
R = 16Ω  
L
OUTPUT REFERRED  
R = 32Ω  
L
f = 1kHz  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
SUPPLY VOLTAGE (V)  
±
_______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(Measurement BW = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
A
CROSSTALK vs. FREQUENCY  
(HEADPHONE MODE)  
OUTPUT POWER vs. CHARGE-PUMP  
CAPACITANCE AND LOAD RESISTANCE  
HEADPHONE OUTPUT SPECTRUM  
0
-20  
0
-20  
200  
180  
160  
140  
120  
100  
80  
V = 5V  
DD  
V
V
= 5V  
V
= 5V  
CC  
DD  
f = 1kHz  
= -60dB  
= 200mV  
f = 1kHz  
THD+N = 1%  
RIPPLE  
P-P  
V
R = 32Ω  
OUT  
L
R = 32Ω  
L
-40  
-40  
-60  
C1 = C2 = 2.2µF  
-60  
-80  
-80  
60  
-100  
-120  
-140  
RIGHT TO LEFT  
C1 = C2 = 1µF  
40  
-100  
-120  
20  
LEFT TO RIGHT  
0
0
5
10  
15  
20  
10  
100  
1k  
10k  
100k  
10  
20  
30  
40  
50  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LOAD RESISTANCE ()  
TURN-OFF RESPONSE  
(HEADPHONE MODE)  
TURN-ON RESPONSE  
(HEADPHONE MODE)  
MAX9750/51 toc29  
MAX9750/51 toc28  
5V/div  
5V/div  
SHDN  
SHDN  
20mV/div  
20mV/div  
HPOUT_  
HPOUT_  
R
= 32Ω  
R
= 32Ω  
L
L
10ms/div  
10ms/div  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
18  
0.35  
16  
14  
12  
10  
HPS = GND  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
HPS = V  
DD  
8
6
4
2
0
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
9
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Pin Description  
PIN  
NAMꢀ  
FUNCTION  
MAX9750  
MAX9751  
MAX9755  
THIN  
QFN  
THIN  
QFN  
THIN  
QFN  
TSSOP  
TSSOP  
TSSOP  
1
5
6
2
6
INL  
Left-Channel Audio Input  
2
BEEP  
Audible Alert Beep Input  
3, 19  
4
7, 23  
8
3, 19  
4
7, 23  
8
3, 19  
4
7, 23  
8
PGND  
OUTL+  
OUTL-  
Power Ground  
Left-Channel Positive Speaker Output  
Left-Channel Negative Speaker Output  
Speaker Amplifier Power Supply  
Charge-Pump Power Supply  
5
9
5
9
5
9
6, 16  
7
10, 20  
11  
12  
13  
14  
15  
16  
17  
18  
19  
21  
22  
24  
6, 16  
7
10, 20  
11  
6, 16  
7
10, 20  
11  
PV  
DD  
CPV  
DD  
8
8
12  
8
12  
C1P  
Charge-Pump Flying-Capacitor Positive Terminal  
9
9
13  
9
13  
CPGND Charge-Pump Ground  
C1N Charge-Pump Flying-Capacitor Negative Terminal  
CPV Charge-Pump Output. Connect to V  
10  
11  
12  
13  
14  
15  
17  
18  
20  
10  
11  
12  
13  
14  
15  
17  
18  
20  
14  
10  
11  
12  
13  
14  
15  
17  
18  
20  
14  
15  
15  
.
SS  
SS  
16  
16  
V
Headphone Amplifier Negative Power Supply  
SS  
17  
17  
HPOUTR Right-Channel Headphone Output  
HPOUTL Left-Channel Headphone Output  
18  
18  
19  
19  
HPV  
Headphone Positive Power Supply  
Right-Channel Negative Speaker Output  
Right-Channel Positive Speaker Output  
Headphone Sense Input  
DD  
21  
21  
OUTR-  
OUTR+  
HPS  
22  
22  
24  
24  
Common-Mode Bias Voltage. Bypass with a 1µF  
capacitor to GND.  
21  
22  
25  
26  
21  
22  
25  
26  
21  
22  
25  
26  
BIAS  
Shutdown. Drive SHDN low to disable the device.  
SHDN  
Connect SHDN to V  
for normal operation.  
DD  
23  
24  
25  
26  
27  
28  
27  
28  
1
25  
26  
1
1
GAIN2  
GAIN1  
Gain Control Input 2  
Gain Control Input 1  
Power Supply  
25  
1
V
DD  
2
2
23, 26  
28  
2, 27  
4
GND  
INR  
Ground  
3
5
Right-Channel Audio Input  
Analog Volume Control Input  
Left-Channel Audio Input 1  
Left-Channel Audio Input 2  
Input Select  
4
VOL  
INL1  
INL2  
IN1/2  
GAIN  
INR1  
INR2  
N.C.  
2
6
23  
24  
27  
28  
27  
28  
3
24  
28  
Gain Select  
Right-Channel Audio Input 1  
Right-Channel Audio Input 2  
No Connection. Not internally connected.  
4
1, 27  
3, 5  
10 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
MAX9750 ONLY  
V
DD  
IN_  
V
OUT  
V
/2  
DD  
GND  
OUT_+  
BIAS  
BIAS  
CONVENTIONAL DRIVER-BIASING SCHEME  
+V  
DD  
VOLUME  
CONTROL  
OUT_  
VOL  
BIAS  
GND  
GND  
HPOUT_  
-V  
DD  
DirectDrive BIASING SCHEME  
Figure 2. Traditional Headphone Amplifier Output Waveform  
vs. DirectDrive Headphone Amplifier Output Waveform  
Figure 1. MAX9750/MAX9751 Signal Path  
The amplifiers have almost twice the supply range  
compared to other single-supply amplifiers, nearly qua-  
drupling the available output power. The benefit of the  
GND bias is that the amplifier outputs no longer have a  
Detailed Description  
The MAX9750/MAX9751/MAX9755 combine a 2.6W BTL  
speaker amplifier and a 110mW DirectDrive headphone  
amplifier with integrated headphone sensing and com-  
prehensive click-and-pop suppression. The MAX9750  
features an analog volume control, BEEP input, and  
four-level gain control. The MAX9751 features a 2:1  
input stereo multiplexer and two-level gain control. All  
devices feature high 90dB PSRR, low 0.01% THD+N,  
industry-leading click-pop performance, and a low-  
power shutdown mode.  
DC component (typically V  
/ 2). This eliminates the  
DD  
large DC-blocking capacitors required with convention-  
al headphone amplifiers, conserving board space and  
system cost, and improving frequency response.  
The MAX9750 features an analog volume control that  
varies the gain of the amplifiers based on the DC volt-  
age applied at VOL. Both devices feature an undervolt-  
age lockout that prevents operation from an insufficient  
power supply and click-and-pop suppression that elim-  
inates audible transients on startup and shutdown. The  
amplifiers include thermal-overload and short-circuit  
protection, and can withstand 8kV ESD strikes on the  
headphone amplifier outputs (IEC air discharge). An  
additional feature of the speaker amplifiers is that there  
is no phase inversion from input to output.  
Each signal path consists of an input amplifier that sets  
the gain of the signal path and feeds both the speaker  
and headphone amplifier (Figure 1). The speaker  
amplifier uses a BTL architecture, doubling the voltage  
drive to the speakers and eliminating the need for DC-  
blocking capacitors. The output consists of two signals,  
identical in magnitude, but 180° out of phase.  
The headphone amplifiers use Maxim’s patented  
DirectDrive architecture that eliminates the bulky output  
DC-blocking capacitors required by traditional head-  
phone amplifiers. A charge pump inverts the positive  
DirectDrive  
Conventional single-supply headphone amplifiers have  
their outputs biased about a nominal DC voltage (typi-  
cally half the supply) for maximum dynamic range.  
Large coupling capacitors are needed to block this DC  
bias from the headphones. Without these capacitors, a  
supply (CPV ), creating a negative supply (CPV ).  
DD  
SS  
The headphone amplifiers operate from these bipolar  
supplies with their outputs biased about GND (Figure 2).  
______________________________________________________________________________________ 11  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
significant amount of DC current flows to the headphone,  
LOW-FREQUENCY ROLLOFF  
resulting in unnecessary power dissipation and possible  
(R = 16)  
L
damage to both headphone and headphone amplifier.  
0
Maxim’s patented DirectDrive architecture uses a charge  
pump to create an internal negative supply voltage. This  
allows the MAX9750/MAX9751/MAX9755 headphone  
amplifier output to be biased about GND, almost dou-  
bling the dynamic range while operating from a single  
supply. With no DC component, there is no need for the  
large DC-blocking capacitors. Instead of two large  
capacitors (220µF typ), the MAX9750/MAX9751/  
MAX9755 charge pump requires only two small ceramic  
capacitors (1µF typ), conserving board space, reducing  
cost, and improving the frequency response of the head-  
phone amplifier. See the Output Power vs. Charge-Pump  
Capacitance and Load Resistance graph in the Typical  
Operating Characteristics for details of the possible  
capacitor values.  
-3  
DirectDrive  
330µF  
220µF  
100µF  
-6  
-9  
-12  
-15  
-18  
33µF  
-21  
-24  
-27  
-30  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 3. Low-Frequency Attenuation of Common DC-Blocking  
Capacitor Values  
Previous attempts to eliminate the output coupling  
capacitors involved biasing the headphone return  
(sleeve) to the DC bias voltage of the headphone  
amplifiers. This method raised some issues:  
the filter can attenuate low-frequency signals within  
the audio band. Larger values of C  
reduce the  
OUT  
attenuation but are physically larger, more expen-  
sive capacitors. Figure 3 shows the relationship  
1) The sleeve is typically grounded to the chassis. Using  
this biasing approach, the sleeve must be isolated  
from system ground, complicating product design.  
between the size of C  
and the resulting low-fre-  
OUT  
quency attenuation. Note that the -3dB point for a  
16headphone with a 100µF blocking capacitor is  
100Hz, well within the audio band.  
2) During an ESD strike, the amplifier’s ESD structures  
are the only path to system ground. The amplifier  
must be able to withstand the full ESD strike.  
2) The voltage coefficient of the capacitor, the change  
in capacitance due to a change in the voltage  
across the capacitor, distorts the audio signal. At  
frequencies around the -3dB point, the reactance of  
the capacitor dominates, and the voltage coefficient  
appears as frequency-dependent distortion. Figure  
4 shows the THD+N introduced by two different  
capacitor dielectrics. Note that around the -3dB  
point, THD+N increases dramatically.  
3) When using the headphone jack as a lineout to other  
equipment, the bias voltage on the sleeve may con-  
flict with the ground potential from other equipment,  
resulting in large ground-loop current and possible  
damage to the amplifiers.  
Low-Frequency Response  
In addition to the cost and size disadvantages, the DC-  
blocking capacitors limit the low-frequency response of  
the amplifier and distort the audio signal:  
The combination of low-frequency attenuation and fre-  
quency-dependent distortion compromises audio  
reproduction. DirectDrive improves low-frequency  
reproduction in portable audio equipment that empha-  
sizes low-frequency effects such as multimedia lap-  
tops, and MP3, CD, and DVD players.  
1) The impedance of the headphone load to the DC-  
blocking capacitor forms a highpass filter with the  
-3dB point determined by:  
1
f
=
3dB  
2πR C  
L
OUT  
Charge Pump  
The MAX9750/MAX9751/MAX9755 feature a low-noise  
charge pump. The 550kHz switching frequency is well  
beyond the audio range, and does not interfere with the  
audio signals. The switch drivers feature a controlled  
switching speed that minimizes noise generated by turn-  
on and turn-off transients. Limiting the switching speed of  
the charge pump minimizes the di/dt noise caused by the  
where R is the impedance of the headphone and  
L
C
OUT  
is the value of the DC-blocking capacitor.  
The highpass filter is required by conventional sin-  
gle-ended, single-supply headphone amplifiers to  
block the midrail DC component of the audio signal  
from the headphones. Depending on the -3dB point,  
12 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
ADDITIONAL THD+N DUE  
V
DD  
TO DC-BLOCKING CAPACITORS  
MAX9750/  
MAX9751/  
MAX9755  
10  
1
10µA  
SHUTDOWN  
CONTROL  
20  
14  
0.1  
HPS  
HPOUTL  
TANTALUM  
0.01  
0.001  
0.0001  
13  
HPOUTR  
1kΩ  
1kΩ  
ALUM/ELEC  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 4. Distortion Contributed by DC-Blocking Capacitors  
Figure 5. HPS Configuration  
parasitic bond wire and trace inductance. Although not  
typically required, additional high-frequency ripple atten-  
uation can be achieved by increasing the size of C2 (see  
the Typical Application Circuit).  
Gain Selection  
MAX9750  
The MAX9750 features an internally set, selectable gain.  
The GAIN1 and GAIN2 inputs set the maximum gain of  
the MAX9750 speaker and headphone amplifiers (Table  
1). The gain of the device can vary based upon the volt-  
age at VOL (see the Analog Volume Control section).  
However, the maximum gain cannot be exceeded.  
Headphone Sense Input (HPS)  
The headphone sense input (HPS) monitors the head-  
phone jack and automatically configures the device  
based upon the voltage applied at HPS. A voltage of  
less than 0.8V sets the device to speaker mode. A volt-  
age of greater than 2V disables the bridge amplifiers  
and enables the headphone amplifiers.  
MAX9751/MAX9755  
The gain of the MAX9751/MAX9755 is set by the GAIN  
input. Driving GAIN high sets the gain of the speaker  
amplifiers to 9dB and the gain of the headphone ampli-  
fiers to 0dB. Driving GAIN low sets the gain of the  
speaker amplifiers to 10.5dB, and the gain of the head-  
phone amplifiers to 3dB (Table 2).  
For automatic headphone detection, connect HPS to the  
control pin of a 3-wire headphone jack as shown in  
Figure 5. With no headphone present, the output imped-  
ance of the headphone amplifier pulls HPS low. When a  
headphone plug is inserted into the jack, the control pin  
is disconnected from the tip contact and HPS is pulled  
Analog Volume Control (VOL)  
The MAX9750 features an analog volume control that  
varies the gain of the device in 31 discrete steps based  
upon the DC voltage applied to VOL. The input range of  
to V  
through a 10µA current source.  
DD  
BIAS  
The MAX9750/MAX9751/MAX9755 feature an internally  
generated, power-supply independent, common-mode  
bias voltage of 1.8V referenced to GND. BIAS provides  
both click-and-pop suppression and sets the DC bias  
level for the amplifiers. Choose the value of the bypass  
capacitor as described in the BIAS Capacitor section.  
No external load should be applied to BIAS. Any load  
lowers the BIAS voltage, affecting the overall perfor-  
mance of the device.  
V
is from 0 (full volume) to 0.858 x HPV  
(full mute),  
VOL  
DD  
with example step sizes shown in Table 3. Connect the  
reference of the device driving VOL (Figure 6) to HPV  
Since the volume control ADC is ratiometric to HPV  
.
,
DD  
DD  
any changes in HPV  
are negated. The gain step sizes  
DD  
are not constant; the step sizes are 0.5dB/step at the  
upper extreme, 2dB/step in the midrange, and 4dB/step  
at the lower extreme. Figure 7 shows the transfer function  
of the volume control for a 3.3V supply.  
______________________________________________________________________________________ 13  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Table 1. MAX9750 Maximum Gain Settings  
SPꢀAKꢀR MODꢀ GAIN (dB)  
GAIN1  
GAIN2  
HꢀADPHONꢀ MODꢀ GAIN (dB)  
MAX9750A  
MAX9750B  
MAX9750C  
0
0
1
1
0
1
0
1
9
15  
18  
6
9
0
0
3
3
12  
10.5  
13.5  
16.5  
19.5  
7.5  
10.5  
Table 2. MAX9751 Gain Settings  
SPꢀAKꢀR MODꢀ  
GAIN (dB)  
HꢀADPHONꢀ  
MODꢀ GAIN (dB)  
GAIN  
MAX9750  
HPV  
VOL  
DD  
0
1
10.5  
9
3
0
V
REF  
DAC  
BEEP Input  
The MAX9750 features an audible alert beep input  
(BEEP) that accepts a mono system alert signal and  
mixes it into the stereo audio path. When the amplitude  
Figure 6. Volume Control Circuit  
of V  
exceeds 800mV  
(Figure 8) and the  
P-P  
BEEP(OUT)  
Input Multiplexer  
frequency of the beep signal is greater than 300Hz, the  
beep signal is mixed into the active audio path (speaker  
The MAX9751 features a 2:1 input multiplexer on each  
amplifier, allowing input selection between two stereo  
sources. The logic input IN1/2 controls both multiplex-  
ers. A logic high selects input IN_1 and a logic low  
selects input IN_2.  
or headphone). If the signal at V  
is either  
BEEP(OUT)  
<800mV  
or <300Hz, the BEEP signal is not mixed into  
the audio path. The amplitude of the BEEP signal at the  
P-P  
device output is roughly the amplitude of V  
times the gain of the selected signal path.  
BEEP(OUT)  
Shutdown  
The MAX9750/MAX9751/MAX9755 features a 0.2µA,  
low-power shutdown mode that reduces quiescent cur-  
rent consumption and extends battery life. Driving  
SHDN low disables the drive amplifiers, bias circuitry,  
and charge pump, and drives BIAS and all outputs to  
The input resistor (R ) sets the gain of the BEEP input  
B
amplifier, and thus the amplitude of V  
. Choose  
BEEP(OUT)  
R based on:  
B
V
× R  
0.8  
IN  
INT  
R
B
GND. Connect SHDN to V  
for normal operation.  
DD  
Click-and-Pop Suppression  
where R  
is the value of the BEEP amplifier feedback  
INT  
resistor (47k) and V is the BEEP input amplitude.  
IN  
Speaker Amplifier  
The MAX9750/MAX9751/MAX9755 speaker amplifiers  
feature Maxim’s comprehensive, industry-leading click-  
and-pop suppression. During startup, the click-pop  
suppression circuitry eliminates any audible transient  
sources internal to the device. When entering shut-  
down, both amplifier outputs ramp to GND quickly and  
simultaneously.  
Note that the BEEP amplifier can be set up as either an  
attenuator, if the original alert signal amplitude is too  
large, or set to gain up the alert signal if it is below  
800mV . AC couple the alert signal to BEEP. Choose  
P-P  
the value of the coupling capacitor as described in the  
Input Filtering section. Multiple beep inputs can be  
summed (Figure 8).  
14 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Table 3a. MAX9750A Volume Levels  
V
VOL  
(V)  
SPꢀAKꢀR MODꢀ GAIN (dB)  
HꢀADPHONꢀ MODꢀ GAIN (dB)  
GAIN1 = 0,  
GAIN2 = 0  
GAIN1 = 1,  
GAIN2 = 0  
GAIN1 = 0,  
GAIN2 = 1  
GAIN1 = 1  
GAIN2 = 1  
GAIN1 = X,  
GAIN2 = 0  
GAIN1 = X,  
GAIN2 = 1  
V
MIN  
*
V
MAX  
*
HPV  
*
DD  
0
0.49  
0.074  
0.160  
0.183  
0.207  
0.230  
0.253  
0.277  
0.300  
0.324  
0.347  
0.371  
0.394  
0.418  
0.441  
0.464  
0.488  
0.511  
0.535  
0.558  
0.582  
0.605  
0.628  
0.652  
0.675  
0.699  
0.722  
0.746  
0.769  
0.793  
0.816  
0.839  
0.858  
9
8
10.5  
10  
12  
11.5  
11  
13.5  
13  
0
-1  
3
2.5  
2
0.49  
0.5673  
0.6447  
0.722  
0.5673  
0.6447  
0.722  
7
9
12.5  
12  
-2  
6
8
10.5  
10  
-3  
1.5  
1
0.7994  
0.8767  
0.9541  
1.0314  
1.1088  
1.1861  
1.2635  
1.3408  
1.4182  
1.4955  
1.5728  
1.6502  
1.7275  
1.8049  
1.8822  
1.9596  
2.0369  
2.1143  
2.1916  
2.269  
4
7
11.5  
11  
-5  
0.7994  
0.8767  
0.9541  
1.0314  
1.1088  
1.1861  
1.2635  
1.3408  
1.4182  
1.4955  
1.5728  
1.6502  
1.7275  
1.8094  
1.8822  
1.9596  
2.0369  
2.1143  
2.1916  
2.269  
2
6
9
-7  
0
0
4
8
10.5  
10  
-9  
-
-2  
2
7
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-3  
-2  
-4  
0
6
9
-3  
-6  
-2  
4
8
-5  
-8  
-4  
2
7
-7  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-32  
-34  
-38  
-42  
-46  
-50  
-54  
-58  
-62  
MUTE  
-6  
0
6
-9  
-8  
-2  
4
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-47  
-51  
MUTE  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-32  
-34  
-38  
-42  
-46  
-50  
-54  
MUTE  
-4  
2
-6  
0
-8  
-2  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-32  
-34  
-38  
-42  
MUTE  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-32  
MUTE  
2.3463  
2.4237  
2.501  
-47  
-51  
-55  
-59  
-63  
-67  
-71  
MUTE  
2.3463  
2.4237  
2.501  
2.5783  
2.6557  
2.733  
2.5783  
2.6557  
2.733  
2.8104  
3.3  
2.8104  
*Based on HPV = 3.3V  
DD  
X = Don’t care.  
______________________________________________________________________________________ 15  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Table 3B. MAX9750B Volume Levels  
HꢀADPHONꢀ MODꢀ GAIN  
(dB)  
V
VOL  
(V)  
SPꢀAKꢀR MODꢀ GAIN (dB)  
GAIN1 = 0,  
GAIN2 = 0  
GAIN1 = 1,  
GAIN2 = 0  
GAIN1 = 0,  
GAIN2 = 1  
GAIN1 = 1  
GAIN2 = 1  
GAIN1 = X,  
GAIN2 = 0  
GAIN1 = X,  
GAIN2 = 1  
V
MIN  
*
V
MAX  
*
HPV  
*
DD  
0
0.49  
0.074  
0.160  
0.183  
0.207  
0.230  
0.253  
0.277  
0.300  
0.324  
0.347  
0.371  
0.394  
0.418  
0.441  
0.464  
0.488  
0.511  
0.535  
0.558  
0.582  
0.605  
0.628  
0.652  
0.675  
0.699  
0.722  
0.746  
0.769  
0.793  
0.816  
0.839  
0.858  
15  
14  
16.5  
16  
18  
17.5  
17  
19.5  
19  
0
-1  
3
2.5  
2
0.49  
0.5673  
0.6447  
0.722  
0.5673  
0.6447  
0.722  
13  
15  
18.5  
18  
-2  
12  
14  
16.5  
16  
-3  
1.5  
1
0.7994  
0.8767  
0.9541  
1.0314  
1.1088  
1.1861  
1.2635  
1.3408  
1.4182  
1.4955  
1.5728  
1.6502  
1.7275  
1.8049  
1.8822  
1.9596  
2.0369  
2.1143  
2.1916  
2.269  
10  
13  
17.5  
17  
-5  
0.7994  
0.8767  
0.9541  
1.0314  
1.1088  
1.1861  
1.2635  
1.3408  
1.4182  
1.4955  
1.5728  
1.6502  
1.7275  
1.8049  
1.8822  
1.9596  
2.0369  
2.1143  
2.1916  
2.269  
8
12  
15  
-7  
0
6
10  
14  
16.5  
16  
-9  
-1  
4
8
13  
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-47  
-51  
-55  
-59  
-63  
-67  
-71  
MUTE  
-2  
2
6
12  
15  
-3  
0
4
10  
14  
-5  
-2  
2
8
13  
-7  
-4  
0
6
12  
-9  
-6  
-2  
4
10  
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-47  
-51  
MUTE  
-8  
-4  
2
8
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-32  
-36  
-40  
-44  
-48  
-52  
-56  
MUTE  
-6  
0
6
-8  
-2  
4
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-32  
-36  
-40  
-44  
-48  
MUTE  
-4  
2
-6  
0
-8  
-2  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-32  
-36  
MUTE  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
MUTE  
2.3463  
2.4237  
2.501  
2.3463  
2.4237  
2.501  
2.5783  
2.6557  
2.733  
2.5783  
2.6557  
2.733  
2.8104  
3.3  
2.8104  
*Based on HPV = 3.3V  
DD  
X = Don’t care.  
16 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Table 3C. MAX9750C Volume Levels  
V
VOL  
(V)  
SPꢀAKꢀR MODꢀ GAIN (dB)  
HꢀADPHONꢀ MODꢀ GAIN (dB)  
GAIN1 = 0,  
GAIN2 = 0  
GAIN1 = 1,  
GAIN2 = 0  
GAIN1 = 0,  
GAIN2 = 1  
GAIN1 = 1  
GAIN2 = 1  
GAIN1 = X,  
GAIN2 = 0  
GAIN1 = X,  
GAIN2 = 1  
V
MIN  
*
V
MAX  
*
HPV  
*
DD  
0
0.49  
0.074  
0.160  
0.183  
0.207  
0.230  
0.253  
0.277  
0.300  
0.324  
0.347  
0.371  
0.394  
0.418  
0.441  
0.464  
0.488  
0.511  
0.535  
0.558  
0.582  
0.605  
0.628  
0.652  
0.675  
0.699  
0.722  
0.746  
0.769  
0.793  
0.816  
0.839  
0.858  
6
5
7.5  
7
9
8.5  
8
10.5  
10  
9.5  
9
0
-1  
3
2.5  
2
0.49  
0.5673  
0.6447  
0.722  
0.5673  
0.6447  
0.722  
4
6
-2  
3
5
7.5  
7
-3  
1.5  
1
0.7994  
0.8767  
0.9541  
1.0314  
1.1088  
1.1861  
1.2635  
1.3408  
1.4182  
1.4955  
1.5728  
1.6502  
1.7275  
1.8049  
1.8822  
1.9596  
2.0369  
2.1143  
2.1916  
2.269  
1
4
8.5  
8
-5  
0.7994  
0.8767  
0.9541  
1.0314  
1.1088  
1.1861  
1.2635  
1.3408  
1.4182  
1.4955  
1.5728  
1.6502  
1.7275  
1.8049  
1.8822  
1.9596  
2.0369  
2.1143  
2.1916  
2.269  
-1  
3
6
-7  
0
-3  
1
5
7.5  
7
-9  
-1  
-5  
-1  
4
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-47  
-51  
-55  
-59  
-63  
-67  
-71  
MUTE  
-2  
-7  
-3  
3
6
-3  
-9  
-5  
1
5
-5  
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-41  
-45  
-48  
-53  
-57  
-61  
-65  
MUTE  
-7  
-1  
4
-7  
-9  
-3  
3
-9  
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-3  
-5  
1
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-47  
-51  
MUTE  
-7  
-1  
-9  
-3  
-11  
-13  
-15  
-17  
-9  
-5  
-7  
-9  
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
MUTE  
-21  
-23  
-2  
-27  
-29  
-31  
-33  
-35  
-37  
-41  
-45  
MUTE  
2.3463  
2.4237  
2.501  
-35  
-37  
-41  
-45  
-49  
-53  
-57  
MUTE  
2.3463  
2.4237  
2.501  
2.5783  
2.6557  
2.733  
2.5783  
2.6557  
2.733  
2.8104  
3.3  
2.8104  
*Based on HPV = 3.3V  
DD  
X = Don’t care.  
______________________________________________________________________________________ 17  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
MAX9750A  
VOLUME CONTROL TRANSFER FUNCTION  
MAX9750B  
VOLUME CONTROL TRANSFER FUNCTION  
20  
10  
20  
10  
GAIN1 = GAIN2 = 0  
GAIN1 = GAIN2 = 0  
0
0
SPEAKER MODE  
SPEAKER MODE  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
AUDIO  
TAPER  
AUDIO  
TAPER  
HEADPHONE MODE  
HEADPHONE MODE  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(V)  
V
V
VOL  
VOL  
Figure 7a. Volume Control Transfer Function  
Figure 7b. Volume Control Transfer Function  
Headphone Amplifier  
MAX9750C  
In conventional single-supply headphone amplifiers,  
the output-coupling capacitor is a major contributor of  
audible clicks and pops. Upon startup, the amplifier  
charges the coupling capacitor to its bias voltage, typi-  
cally half the supply. Likewise, during shutdown, the  
capacitor is discharged to GND. A DC shift across the  
capacitor results, which in turn appears as an audible  
transient at the speaker. Since the MAX9750/MAX9751/  
MAX9755 do not require output-coupling capacitors, no  
audible transient occurs.  
VOLUME CONTROL TRANSFER FUNCTION  
20  
GAIN1 = GAIN2 = 0  
10  
0
-10  
SPEAKER MODE  
-20  
AUDIO  
TAPER  
-30  
-40  
-50  
HEADPHONE MODE  
-60  
Additionally, the MAX9750/MAX9751/MAX9755 features  
extensive click-and-pop suppression that eliminates  
any audible transient sources internal to the device.  
The Power-Up/Down Waveform in the Typical  
Operating Characteristics shows that there are minimal  
spectral components in the audible range at the output  
upon startup and shutdown.  
-70  
-80  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(V)  
V
VOL  
Figure 7c. Volume Control Transfer Function  
R
S1  
0.47µF  
0.47µF  
0.47µF  
47kΩ  
R
INT  
SOURCE 1  
SOURCE 2  
SOURCE 3  
47kΩ  
R
S2  
47kΩ  
SPEAKER/HEADPHONE  
AMPLIFER INPUTS  
BEEP  
V
OUT(BEEP)  
WINDOW  
R
S3  
47kΩ  
DETECTOR  
(0.3V THRESHOLD)  
P-P  
MAX9750  
FREQUENCY  
DETECTOR  
BIAS  
(300Hz THRESHOLD)  
Figure 8. Beep Input  
1± ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
1000  
V
DD  
= 5V  
R = 16  
L
100  
10  
A = 3dB  
V
V
+1  
-1  
OUT(P-P)  
OUTPUTS IN PHASE  
1
2 x V  
OUT(P-P)  
0.1  
V
OUT(P-P)  
0.01  
0.001  
OUTPUTS 180° OUT OF PHASE  
0
25  
50  
75  
100  
125  
150  
OUTPUT POWER (mW)  
Figure 9. Bridge-Tied Load Configuration  
Figure 10. Total Harmonic Distortion Plus Noise vs. Output Power  
with Inputs In/Out of Phase (Headphone Mode)  
Power Dissipation and Heat Sinking  
Under normal operating conditions, the MAX9750/  
MAX9751/MAX9755 can dissipate a significant amount  
of power. The maximum power dissipation for each  
package is given in the Absolute Maximum Ratings  
under Continuous Power Dissipation, or can be calcu-  
lated by the following equation:  
Applications Information  
BTL Speaker Amplifiers  
The MAX9750/MAX9751/MAX9755 feature speaker  
amplifiers designed to drive a load differentially, a con-  
figuration referred to as bridge-tied load (BTL). The BTL  
configuration (Figure 9) offers advantages over the sin-  
gle-ended configuration, where one side of the load is  
connected to ground. Driving the load differentially  
doubles the output voltage compared to a single-  
ended amplifier under similar conditions. Thus, the  
device’s differential gain is twice the closed-loop gain  
of the input amplifier. The effective gain is given by:  
T
T  
A
J(MAX)  
P
=
DISSPKG(MAX)  
θ
JA  
where T  
is +150°C, T is the ambient tempera-  
A
J(MAX)  
ture, and θ is the reciprocal of the derating factor in  
JA  
°C/W as specified in the Absolute Maximum Ratings  
section. For example, θ of the thin QFN package is  
JA  
R
F
A
= 2×  
+42°C/W. For optimum power dissipation, the exposed  
paddle of the package should be connected to the  
ground plane (see the Layout and Grounding section).  
VD  
R
IN  
Substituting 2 X V  
into the following equation  
OUT(P-P)  
yields four times the output power due to double the  
output voltage:  
Output Power (Speaker Amplifier)  
The increase in power delivered by the BTL configura-  
tion directly results in an increase in internal power dis-  
sipation over the single-ended configuration. The  
V
OUT(PP)  
V
=
=
RMS  
maximum power dissipation for a given V  
given by the following equation:  
and load is  
DD  
2 2  
2
V
RMS  
P
2
OUT  
2V  
DD  
R
P
=
L
DISS(MAX)  
2
π R  
L
Since the differential outputs are biased at midsupply,  
there is no net DC voltage across the load. This elimi-  
nates the need for DC-blocking capacitors required for  
single-ended amplifiers. These capacitors can be large  
and expensive, can consume board space, and can  
degrade low-frequency performance.  
If the power dissipation for a given application exceeds  
the maximum allowed for a given package, either reduce  
DD  
temperature, or add heatsinking to the device. Large  
output, supply, and ground PC board traces improve the  
maximum power dissipation in the package.  
V
, increase load impedance, decrease the ambient  
______________________________________________________________________________________ 19  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Table 4. Suggested Capacitor Manufacturers  
SUPPLIꢀR  
Taiyo Yuden  
TDK  
PHONꢀ  
FAX  
WꢀBSITꢀ  
800-348-2496  
807-803-6100  
847-925-0899  
847-390-4405  
www.t-yuden.com  
www.component.tdk.com  
Thermal-overload protection limits total power dissipa-  
tion in these devices. When the junction temperature  
exceeds +160°C, the thermal-protection circuitry dis-  
ables the amplifier output stage. The amplifiers are  
enabled once the junction temperature cools by 15°C.  
This results in a pulsing output under continuous ther-  
mal-overload conditions as the device heats and cools.  
1
f
=
3DB  
2πR C  
IN IN  
R
is the amplifier’s internal input resistance value  
IN  
given in the Electrical Characteristics. Choose C such  
IN  
that f  
Setting f  
is well below the lowest frequency of interest.  
-3dB  
too high affects the amplifier’s low-fre-  
-3dB  
Output Power (Headphone Amplifier)  
The headphone amplifiers have been specified for the  
worst-case scenario—when both inputs are in phase.  
Under this condition, the drivers simultaneously draw  
current from the charge pump, leading to a slight loss in  
quency response. Use capacitors with low-voltage  
coefficient dielectrics, such as tantalum or aluminum  
electrolytic. Capacitors with high-voltage coefficients,  
such as ceramics, may result in increased distortion at  
low frequencies.  
headroom of V . In typical stereo audio applications,  
SS  
BIAS Capacitor  
the left and right signals have differences in both magni-  
tude and phase, subsequently leading to an increase in  
the maximum attainable output power. Figure 10 shows  
the two extreme cases for in and out of phase. In reality,  
the available power lies between these extremes.  
BIAS is the output of the internally generated DC bias  
voltage. The BIAS bypass capacitor, C  
, improves  
BIAS  
PSRR and THD+N by reducing power supply and other  
noise sources at the common-mode bias node, and  
also generates the clickless/popless, startup/shutdown  
DC bias waveforms for the speaker amplifiers. Bypass  
BIAS with a 1µF capacitor to GND.  
Power Supplies  
The MAX9750/MAX9751/MAX9755 have different sup-  
plies for each portion of the device, allowing for the opti-  
mum combination of headroom and power dissipation  
and noise immunity. The speaker amplifiers are pow-  
Charge-Pump Capacitor Selection  
Use capacitors with an ESR less than 100mfor opti-  
mum performance. Low-ESR ceramic capacitors mini-  
mize the output resistance of the charge pump. For  
best performance over the extended temperature  
range, select capacitors with an X7R dielectric. Table 4  
lists suggested manufacturers.  
ered from PV . PV  
ranges from 4.5V to 5.5V. The  
DD  
DD  
headphone amplifiers are powered from HPV  
and  
DD  
V
. HPV  
is the positive supply of the headphone  
SS  
DD  
amplifiers and ranges from 3V to 5.5V. V is the nega-  
SS  
tive supply of the headphone amplifiers. Connect V to  
SS  
DD  
CPV . The charge pump is powered by CPV  
.
SS  
Flying Capacitor (C1)  
The value of the flying capacitor (C1) affects the load  
regulation and output resistance of the charge pump. A  
C1 value that is too small degrades the device’s ability  
to provide sufficient current drive, which leads to a loss  
of output voltage. Increasing the value of C1 improves  
load regulation and reduces the charge-pump output  
resistance to an extent. See the Output Power vs.  
Charge-Pump Capacitance and Load Resistance  
graph in the Typical Operating Characteristics. Above  
2.2µF, the on-resistance of the switches and the ESR of  
C1 and C2 dominate.  
CPV  
ranges from 3V to 5.5V and should be the same  
DD  
potential as HPV . The charge pump inverts the volt-  
DD  
age at CPV , and the resulting voltage appears at  
DD  
CPV . The remainder of the device is powered by V  
.
SS  
DD  
Component Selection  
Input Filtering  
The input capacitor (C ), in conjunction with the ampli-  
IN  
fier input resistance (R ), forms a highpass filter that  
IN  
removes the DC bias from an incoming signal (see the  
Typical Application Circuit). The AC-coupling capacitor  
allows the amplifier to bias the signal to an optimum DC  
level. Assuming zero source impedance, the -3dB point  
of the highpass filter is given by:  
20 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
MAX9751/MAX9755 to provide the negative supply for  
the headphone amplifiers. It can also be used to power  
22µF  
other devices within a design. Current draw from  
OUTL+  
CPV should be limited to 5mA, exceeding this affects  
SS  
1µF  
1µF  
OUTL-  
the operation of the headphone amplifier. A typical  
application is a negative supply to adjust the contrast  
of LCD modules.  
INL  
INR  
MAX9750  
22µF  
When considering the use of CPV  
in this manner,  
SS  
OUTR+  
OUTR-  
note that the charge-pump voltage of CPV is roughly  
SS  
proportional to CPV  
and is not a regulated voltage.  
DD  
The charge-pump output impedance plot appears in  
the Typical Operating Characteristics.  
20kΩ  
20kΩ  
10kΩ  
Layout and Grounding  
Proper layout and grounding are essential for optimum  
performance. Use large traces for the power-supply  
inputs and amplifier outputs to minimize losses due to  
parasitic trace resistance, as well as route head away  
from the device. Good grounding improves audio per-  
formance, minimizes crosstalk between channels, and  
prevents any switching noise from coupling into the  
audio signal. Connect CPGND, PGND and GND  
together at a single point on the PC board. Route  
CPGND and all traces that carry switching transients  
away from GND, PGND, and the traces and compo-  
nents in the audio signal path.  
22nF  
10kΩ  
IN  
10nF  
MAX9711  
OUT-  
OUT+  
Figure 11. Stereo Plus Subwoofer Application Circuit  
Connect all components associated with the charge  
Output Capacitor (C2)  
pump (C2 and C3) to the CPGND plane. Connect V  
SS  
The output capacitor value and ESR directly affect the  
and CPV  
together at the device. Place the charge-  
SS  
ripple at CPV . Increasing the value of C2 reduces  
SS  
pump capacitors (C1, C2, and C3) as close to the  
device as possible. Bypass HPV and PV with a  
output ripple. Likewise, decreasing the ESR of C2  
reduces both ripple and output resistance. Lower  
capacitance values can be used in systems with low  
maximum output power levels. See the Output Power  
vs. Charge-Pump Capacitance and Load Resistance  
graph in the Typical Operating Characteristics.  
DD  
DD  
0.1µF capacitor to GND. Place the bypass capacitors  
as close to the device as possible.  
Use large, low-resistance output traces. As load imped-  
ance decreases, the current drawn from the device out-  
puts increase. At higher current, the resistance of the  
output traces decrease the power delivered to the load.  
For example, when compared to a 0trace, a 100mΩ  
trace reduces the power delivered to a 4load from  
2.1W to 2W. Large output, supply, and GND traces also  
improve the power dissipation of the device.  
CPV  
Bypass Capacitor  
DD  
The CPV  
bypass capacitor (C3) lowers the output  
DD  
impedance of the power supply and reduces the  
impact of the MAX9750/MAX9751/MAX9755’s charge-  
pump switching transients. Bypass CPV  
with C3, the  
DD  
same value as C1, and place it physically close to  
CPV and PGND (refer to the MAX9750 Evaluation Kit  
The MAX9750/MAX9751/MAX9755 thin QFN and  
TSSOP-EP packages feature exposed thermal pads on  
their undersides. This pad lowers the package’s ther-  
mal resistance by providing a direct heat conduction  
path from the die to the printed circuit board. Connect  
the exposed thermal pad to GND by using a large pad  
and multiple vias to the GND plane.  
DD  
for a suggested layout).  
Powering Other Circuits from a  
Negative Supply  
An additional benefit of the MAX9750/MAX9751/  
MAX9755 is the internally generated negative supply  
voltage (CPV ). CPV  
is used by the MAX9750/  
SS  
SS  
______________________________________________________________________________________ 21  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Simplified Block Diagrams (continued)  
MUX  
MAX9751  
MAX9755  
22 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Block Diagrams  
4.5V TO 5.5V  
0.1µF  
V
DD  
25  
(1)  
6, 16  
(10, 20)  
PV  
DD  
4.5V TO 5.5V  
0.1µF  
MAX9750  
4
(8)  
C
1µF  
IN  
1
(5)  
OUTL+  
OUTL-  
GAIN/  
VOLUME  
CONTROL  
INL  
BTL  
AMPLIFIER  
5
(9)  
LEFT-CHANNEL  
AUDIO INPUT  
18  
(22)  
C
1µF  
IN  
27  
(3)  
OUTR+  
GAIN/  
VOLUME  
CONTROL  
INR  
BTL  
AMPLIFIER  
RIGHT-CHANNEL  
AUDIO INPUT  
17  
(21) OUTR-  
21  
(25)  
BIAS  
VOL  
15  
(19)  
28  
(4)  
C
1µF  
BIAS  
HPV  
HPS  
DD  
3V TO 5.5V  
0.1µF  
GAIN/  
VOLUME  
CONTROL  
20  
(24)  
24  
(28)  
GAIN1  
GAIN2  
BEEP  
V
V
DD  
23  
(27)  
HEADPHONE  
DETECTION  
14  
(18)  
DD  
HPOUTL  
2
(6)  
0.47µF  
47kΩ  
BEEP  
DETECTION  
22  
(26)  
13  
(17)  
SHUTDOWN  
CONTROL  
SHDN  
V
DD  
HPOUTR  
7
CPV  
(11)  
DD  
3V TO 5.5V  
8
(12)  
10  
(14)  
1µF  
C1P  
C1  
1µF  
CHARGE  
PUMP  
C1N  
9
(13)  
CPGND  
26  
(2)  
3, 19  
(7, 23)  
11 12  
(15) (16)  
CPV  
V
SS  
GND  
PGND  
SS  
C2  
1µF  
( ) TSSOP PIN.  
______________________________________________________________________________________ 23  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Block Diagrams (continued)  
4.5V TO 5.5V  
0.1µF  
V
DD  
25  
(1)  
6, 16 (10, 20)  
PV  
DD  
4.5V TO 5.5V  
0.1µF  
MAX9751  
1
(5)  
C
1µF  
4
(8)  
IN  
INL1  
OUTL+  
OUTL-  
LEFT CHANNEL  
AUDIO INPUT  
BTL  
AMPLIFIER  
5
(9)  
C
1µF  
2
INPUT  
MUX  
IN  
INL2 (6)  
LEFT CHANNEL  
AUDIO INPUT  
27  
(3)  
C
1µF  
18  
(22)  
IN  
INR1  
RIGHT CHANNEL  
AUDIO INPUT  
OUTR+  
OUTR-  
BTL  
AMPLIFIER  
INPUT  
MUX  
28  
(4)  
17  
(21)  
C
1µF  
IN  
INR2  
RIGHT CHANNEL  
AUDIO INPUT  
21  
(25)  
BIAS  
15  
C
1µF  
BIAS  
(19)  
HPV  
HPS  
DD  
3V TO 5.5V  
0.1µF  
20  
(24)  
MUX AND  
GAIN  
CONTROL  
24  
(28)  
GAIN  
IN1/2  
SHDN  
V
V
DD  
23  
(27)  
14  
(18)  
HPOUTL  
HEADPHONE  
DETECTION  
DD  
22  
(26)  
V
DD  
SHUTDOWN  
CONTROL  
13  
(17)  
HPOUTR  
7
CPV  
(11)  
DD  
3V TO 5.5V  
1µF  
8
(12)  
C1P  
C1  
1µF  
10  
(14)  
CHARGE  
PUMP  
C1N  
9
(13)  
CPGND  
26  
(2)  
3, 19  
(7, 23)  
11 12  
(15) (16)  
CV  
SS  
V
SS  
GND  
PGND  
C2  
1µF  
( ) TSSOP PIN.  
LOGIC PINS CONFIGURED FOR:  
GAIN = 1, 9dB SPEAKER GAIN/0dB HEADPHONE GAIN.  
IN1/2 = 1, SELECTED INPUT LINE 1.  
SHDN = 1, PART ACTIVE.  
24 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Block Diagrams (continued)  
4.5V TO 5.5V  
0.1µF  
V
DD  
25  
(1)  
6, 16  
(10, 20)  
PV  
DD  
4.5V TO 5.5V  
0.1µF  
MAX9755  
4
(8)  
C
1µF  
2
OUTL+  
OUTL-  
IN  
INL (6)  
BTL  
AMPLIFIER  
5
(9)  
LEFT CHANNEL  
AUDIO INPUT  
18  
(22)  
28  
OUTR+  
C
IN  
(4)  
1µF  
INR  
BTL  
AMPLIFIER  
RIGHT CHANNEL  
AUDIO INPUT  
17  
(21) OUTR-  
21  
(25)  
BIAS  
15  
C
1µF  
BIAS  
(19)  
HPV  
HPS  
DD  
3V TO 5.5V  
0.1µF  
20  
(24)  
GAIN  
CONTROL  
24  
(28)  
GAIN  
V
V
DD  
14  
(18)  
HEADPHONE  
DETECTION  
HPOUTL  
22  
(26)  
SHDN  
DD  
SHUTDOWN  
CONTROL  
13  
(17)  
HPOUTR  
7
CPV  
(11)  
DD  
3V TO 5.5V  
1µF  
8
(12)  
C1P  
C1  
1µF  
10  
(14)  
CHARGE  
PUMP  
C1N  
9
(13)  
CPGND  
23, 26  
(2, 27)  
3, 19  
(7, 23)  
11 12  
(15) (16)  
CPV  
V
SS  
GND  
PGND  
SS  
C2  
1µF  
( ) TSSOP PIN.  
LOGIC PINS CONFIGURED FOR:  
GAIN = 1, 9dB SPEAKER GAIN/0dB HEADPHONE GAIN.  
SHDN = 1, PART ACTIVE.  
______________________________________________________________________________________ 25  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
System Diagrams  
4.5V TO 5.5V 3V TO 5.5V  
0.1µF  
0.1µF  
1µF  
V
PV  
HPV  
DD  
DD  
DD  
BIAS  
OUTL+  
OUTL-  
MAX9750  
1µF  
1µF  
1µF  
1µF  
OUTR+  
OUTR-  
AUX_IN  
INL  
OUT  
CODEC  
INR  
HPS  
33kΩ  
2kΩ  
MAX4060  
BEEP  
BIAS  
HPOUTL  
HPOUTR  
2kΩ  
SHDN  
GAIN1  
GAIN2  
HPV  
DD  
µC  
1µF  
1µF  
IN+  
IN-  
VOL  
CPV  
SS  
3V TO 5.5V  
CPV  
DD  
1µF  
V
1µF  
C1P  
SS  
1µF  
CPGND  
C1N  
GND  
PGND  
26 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
System Diagrams (continued)  
4.5V TO 5.5V 3V TO 5.5V  
0.1µF  
0.1µF  
V
PV  
HPV  
DD  
DD  
DD  
1µF  
OUTL+  
OUTL-  
INL1  
INL2  
CODEC  
MAX9751  
1µF  
OUTR+  
OUTR-  
AUX_IN  
1µF  
INR1  
INR2  
OUT  
2kΩ  
HPS  
MAX4060  
BIAS  
HPOUTL  
HPOUTR  
SHDN  
IN1/2  
GAIN  
CPV  
2kΩ  
µC  
1µF  
1µF  
IN+  
IN-  
CPV  
SS  
3V TO 5.5V  
DD  
1µF  
V
C1P  
1µF  
SS  
1µF  
CPGND  
BIAS  
C1N  
GND  
PGND  
1µF  
Chip Information  
MAX9750 TRANSISTOR COUNT: 9591  
MAX9751 TRANSISTOR COUNT: 8632  
MAX9755 TRANSISTOR COUNT: 7834  
PROCESS: BiCMOS  
______________________________________________________________________________________ 27  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Pin Configurations  
TOP VIEW  
V
1
2
28 GAIN1  
27 GND  
V
1
2
28 GAIN1  
27 GAIN2  
26 SHDN  
25 BIAS  
V
1
2
28 GAIN1  
27 IN1/2  
26 SHDN  
25 BIAS  
DD  
DD  
DD  
GND  
N.C.  
GND  
INR  
GND  
INR1  
3
26 SHDN  
25 BIAS  
24 HPS  
3
3
INR  
4
VOL  
4
INR2  
4
N.C.  
5
INL  
5
24 HPS  
INL1  
5
24 HPS  
MAX9755  
MAX9751  
MAX9750  
INL  
6
23 PGND  
22 OUTR+  
21 OUTR-  
BEEP  
PGND  
OUTL+  
OUTL-  
6
23 PGND  
22 OUTR+  
21 OUTR-  
INL2  
6
23 PGND  
22 OUTR+  
21 OUTR-  
PGND  
OUTL+  
OUTL-  
7
7
PGND  
OUTL+  
OUTL-  
7
8
8
8
9
20 PV  
DD  
9
20 PV  
DD  
9
20 PV  
DD  
PV  
DD  
10  
11  
19 HPV  
DD  
PV  
DD  
10  
11  
19 HPV  
DD  
PV  
DD  
10  
11  
19 HPV  
DD  
CPV  
DD  
18 HPOUTL  
17 HPOUTR  
CPV  
DD  
18 HPOUTL  
17 HPOUTR  
CPV  
DD  
18 HPOUTL  
17 HPOUTR  
C1P 12  
CPGND 13  
C1N 14  
C1P 12  
CPGND 13  
C1N 14  
C1P 12  
CPGND 13  
C1N 14  
16  
V
SS  
16  
V
16 V  
SS  
SS  
15 CPV  
15 CPV  
15 CPV  
SS  
SS  
SS  
TSSOP-ꢀP  
TSSOP-ꢀP  
TSSOP-ꢀP  
TOP VIEW  
INL1  
1
2
3
4
5
6
7
21 BIAS  
20 HPS  
19 PGND  
INL  
BEEP  
1
2
3
4
5
6
7
21 BIAS  
INL2  
PGND  
OUTL+  
OUTL-  
20 HPS  
PGND  
OUTL+  
OUTL-  
19 PGND  
18 OUTR+  
17 OUTR-  
MAX9751  
MAX9750  
18 OUTR+  
17 OUTR-  
PV  
DD  
16 PV  
DD  
PV  
DD  
16 PV  
DD  
CPV  
DD  
15 HPV  
DD  
CPV  
DD  
15 HPV  
DD  
THIN QFN  
THIN QFN  
N.C.  
INL  
1
2
3
4
5
6
7
21 BIAS  
20 HPS  
PGND  
19 PGND  
18 OUTR+  
17 OUTR-  
MAX9755  
OUTL+  
OUTL-  
PV  
16 PV  
DD  
DD  
DD  
CPV  
15 HPV  
DD  
THIN QFN  
2± ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
0.15  
C A  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
PIN # 1  
I.D.  
0.15  
C
B
PIN # 1 I.D.  
0.35x45  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
k
L
DETAIL A  
e
(ND-1) X  
e
C
C
L
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0140  
C
2
COMMON DIMENSIONS  
EXPOSED PAD VARIATIONS  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220.  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
21-0140  
C
2
______________________________________________________________________________________ 29  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, TSSOP, 4.40 MM BODY  
EXPOSED PAD  
1
C
21-0108  
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
30 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

MAX9750AEUI

2.6W Stereo Audio Power Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9750AEUI+

Volume Control Circuit, BICMOS, PDSO28, 4.40 MM, MO-153AE, TSSOP-28
MAXIM

MAX9750AEUI+T

Volume Control Circuit, BICMOS, PDSO28, 4.40 MM, MO-153AE, TSSOP-28
MAXIM

MAX9750BETI

2.6W Stereo Audio Power Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9750BETI+

Volume Control Circuit, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-1, TQFN-28
MAXIM

MAX9750BETI+T

Volume Control Circuit, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-28
MAXIM

MAX9750BETI-T

Volume Control Circuit, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, TQFN-28
MAXIM

MAX9750BEUI

2.6W Stereo Audio Power Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9750BEUI+

暂无描述
MAXIM

MAX9750CETI

2.6W Stereo Audio Power Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9750CETI+

Volume Control Circuit, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-1, TQFN-28
MAXIM

MAX9750CETI+C2U

Volume Control Circuit
MAXIM