MAX9750_V01 [MAXIM]

2.6W Stereo Audio Power Amplifiers and DirectDrive Headphone Amplifiers;
MAX9750_V01
型号: MAX9750_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2.6W Stereo Audio Power Amplifiers and DirectDrive Headphone Amplifiers

文件: 总30页 (文件大小:481K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3006; Rev 8; 6/08  
EVALUATION KIT  
AVAILABLE  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
01/MAX975  
General Description  
Features  
The MAX9750/MAX9751/MAX9755 combine a stereo,  
2.6W audio power amplifier and stereo DirectDrive®  
110mW headphone amplifier in a single device. The  
headphone amplifier uses Maxim’s DirectDrive architec-  
ture that produces a ground-referenced output from a  
single supply, eliminating the need for large DC-blocking  
capacitors, saving cost, space, and component height.  
A high 90dB PSRR and low 0.01% THD+N ensures  
clean, low-distortion amplification of the audio signal.  
No DC-Blocking Capacitors Required—Provides  
Industry’s Most Compact Notebook Audio  
Solution  
PC2001 Compliant  
5V Single-Supply Operation  
Class AB 2.6W Stereo BTL Speaker Amplifiers  
110mW DirectDrive Headphone Amplifiers  
High 90dB PSRR  
Low-Power Shutdown Mode  
Industry-Leading Click-and-Pop Suppression  
Low 0.01% THD+N at 1kHz  
Short-Circuit and Thermal Protection  
Selectable Gain Settings  
Analog Volume Control (MAX9750)  
BEEP Input with Glitch Filter (MAX9750)  
2:1 Stereo Input MUX (MAX9751)  
The MAX9750 features an analog volume control, and a  
BEEP input. The MAX9751 features a 2:1 input multiplexer,  
allowing multiple audio sources to be selected. All devices  
feature a single-supply voltage, a shutdown mode, logic-  
selectable gain, and a headphone sense input. Industry-  
leading click-and-pop suppression eliminates audible  
transients during power and shutdown cycles.  
The MAX9750/MAX9751/MAX9755 are offered in a  
space-saving, thermally efficient 28-pin thin QFN (5mm  
x 5mm x 0.8mm) package. These devices have thermal-  
overload and output short-circuit protection, and are  
specified over the extended -40°C to +85°C tempera-  
ture range.  
Applications  
8kV ESD-Protected Headphone Driver Outputs  
Notebook PCs  
Tablet PCs  
Flat-Panel TVs  
Available in Space-Saving, Thermally Efficient  
PC Displays  
28-Pin Thin QFN (5mm x 5mm x 0.8mm) Package  
Portable DVD Players LCD Projectors  
Ordering Information  
Simplified Block Diagrams  
PIN-  
PACKAGE  
MAXIMUM GAIN  
(dB)  
PART*  
MAX9750AETI+  
MAX9750BETI+  
MAX9750CETI+  
MAX9751ETI+  
MAX9755ETI+  
28 Thin QFN  
28 Thin QFN  
28 Thin QFN  
28 Thin QFN  
28 Thin QFN  
13.5  
19.5  
10.5  
10.5  
10.5  
+Denotes a lead-free/RoHS-compliant package.  
*All devices specified over the -40°C to +85°C temperature  
range.  
VOL  
DirectDrive is a registered trademark of Maxim Integrated  
Products, Inc.  
BEEP  
MAX9750  
Simplified Block Diagrams continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V , PV , HPV , CPV to GND)..........+6V  
DD  
Continuous Input Current (All Other Pins) ........................±±mA  
DD  
DD  
DD  
GND to PGND.....................................................................±±.ꢀV  
Continuous Power Dissipation (T = +7±°C, multilayer board)  
ꢁ8-Pin Thin QFN (derate ꢁꢀ.8mW/°C above +7±°C) .19±±mW  
A
CPV , C1N, V to GND .........................-6.±V to (GND + ±.ꢀV)  
SS  
SS  
HPOUT_ to GND....................................................................±V  
Junction-to-Case Thermal Resistance (θ  
)
JC  
Any Other Pin .............................................-±.ꢀV to (V + ±.ꢀV)  
ꢁ8-Pin Thin QFN...........................................................ꢁ4°C/W  
Junction Temperature......................................................+15±°C  
Operating Temperature Range ...........................-4±°C to +85°C  
Storage Temperature Range.............................-65°C to +15±°C  
Lead Temperature (soldering, 1±s) .................................+ꢀ±±°C  
DD  
Duration of OUT_ Short Circuit to GND or PV ........Continuous  
DD  
Duration of OUT_+ Short Circuit to OUT_-.................Continuous  
Duration of HPOUT_ Short Circuit to GND,  
V
SS  
or HPV .........................................................Continuous  
DD  
Continuous Current (PV , OUT_, PGND) ...........................1.7A  
DD  
Continuous Current (CPV , C1N, C1P, CPV , V , HPV ,  
DD  
SS SS  
DD  
HPOUT_).......................................................................85±mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
DD  
= PV  
= CPV  
= HPV  
= 5V, V  
= V  
= V  
= ±V, SHDN = V , C  
= 1µF, C1 = Cꢁ = 1µF, speaker load  
DD  
DD  
DD  
GND  
PGND  
CPGND  
DD  
BIAS  
terminated between OUT_+ and OUT_-, headphone load terminated between HPOUT_ and GND, V  
= V  
= V  
= V  
= ±V,  
GAIN1  
GAINꢁ  
VOL  
GAIN  
T = T  
to T , unless otherwise noted. Typical values are at T = +ꢁ5°C.) (Note 1)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL  
Supply Voltage Range  
V
, PV  
Inferred from PSRR test  
Inferred from PSRR test  
HPS = GND, speaker mode, R =  
4.5  
ꢀ.±  
5.5  
5.5  
V
V
DD  
DD  
CPV  
,
DD  
Headphone Supply Voltage  
Quiescent Supply Current  
HPV  
DD  
14  
7
ꢁ9  
1ꢀ  
5
L
9
I
mA  
DD  
HPS = V , headphone mode, R = ∞  
DD  
L
Shutdown Supply Current  
Bias Voltage  
I
SHDN = GND  
±.ꢁ  
µA  
V
SHDN  
V
1.7  
1.8  
1±  
ꢁ±  
6
1.9  
BIAS  
Switching Time  
t
Gain or input switching  
µs  
SW  
MAX975±  
MAX9751/MAX9755  
1±  
ꢀ±  
8.±  
Amplifier inputs  
(Note ꢁ)  
Input Resistance  
Turn-On Time  
R
IN  
kΩ  
4.5  
t
ꢁ5  
ms  
SON  
SPEAKER AMPLIFIER (HPS = GND)  
Measured  
between OUT_+ MAX9751/MAX9755  
and OUT_-,  
MAX975±A/MAX975±B/  
1
±.4  
9±  
15  
6
Output Offset Voltage  
V
mV  
dB  
OS  
MAX975±C  
T
= +ꢁ5°C  
A
MAX975±A/MAX975±B/  
MAX975±C/MAX9751  
PV  
or V  
=
DD  
DD  
75  
7ꢁ  
4.5V to 5.5V  
(T = +ꢁ5°C)  
A
Power-Supply Rejection Ratio  
(Note ꢀ)  
MAX9755  
9±  
8±  
55  
PSRR  
f = 1kHz, V  
= ꢁ±±mV  
P-P  
RIPPLE  
f = 1±kHz, V  
= ꢁ±±mV  
P-P  
RIPPLE  
2
_______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
01/MAX975  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= PV  
= CPV  
= HPV  
= 5V, V  
= V  
= V  
= ±V, SHDN = V , C  
= 1µF, C1 = Cꢁ = 1µF, speaker load  
DD  
DD  
DD  
GND  
PGND  
CPGND  
DD  
BIAS  
terminated between OUT_+ and OUT_-, headphone load terminated between HPOUT_ and GND, V  
= V  
= V  
= V  
= ±V,  
GAIN1  
MIN  
±.9  
GAINꢁ  
TYP  
1.4  
VOL  
GAIN  
T = T  
to T , unless otherwise noted. Typical values are at T = +ꢁ5°C.) (Note 1)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MAX  
UNITS  
MAX975±A/  
MAX975±B/  
MAX9751/  
MAX9755  
R = 8Ω  
L
MAX975±C  
±.65  
±.8  
MAX975±A/  
MAX975±B/  
MAX9751/  
MAX9755  
THD+N = 1%,  
f = 1kHz,  
ꢁ.ꢀ  
Output Power (Note 4)  
P
R = 4Ω  
L
W
OUT  
T
= +ꢁ5°C  
A
MAX975±C  
1.ꢁ  
1.5  
ꢁ.6  
MAX975±A/  
MAX975±B/  
MAX9751/  
MAX9755  
R = Ω  
L
MAX975±C  
ꢁ.ꢁ  
R = 8Ω, P  
= 5±±mW, f = 1kHz  
= 1W, f = 1kHz  
±.±1  
±.±ꢁ  
L
OUT  
OUT  
OUT  
Total Harmonic Distortion Plus  
Noise  
THD+N  
SNR  
%
R = 4Ω, P  
L
R = 8Ω, P  
= 5±±mW, BW = ꢁꢁHz to  
L
Signal-to-Noise Ratio  
96  
dB  
ꢁꢁkHz  
Noise  
V
BW = ꢁꢁHz to ꢁꢁkHz, A-weighted  
No sustained oscillations  
ꢁꢁ  
ꢁ±±  
75  
µV  
n
RMS  
Capacitive-Load Drive  
Crosstalk  
C
L
pF  
L to R, R to L, f = 1±kHz  
dB  
Any unselected input to any active input,  
f = 1±kHz (MAX9751), input referred  
Off-Isolation  
Slew Rate  
75  
SR  
1.4  
9
V/µs  
GAIN1 = ±, GAINꢁ = ±  
GAIN1 = 1, GAINꢁ = ±  
1±.5  
1ꢁ  
MAX975±A  
GAIN1 = ±, GAINꢁ = 1  
GAIN1 = 1, GAINꢁ = 1  
GAIN1 = ±, GAINꢁ = ±  
GAIN1 = 1, GAINꢁ = ±  
1ꢀ.5  
15  
16.5  
18  
MAX975±B  
Gain (Maximum Volume Setting)  
A
dB  
VMAX(SPKR)  
GAIN1 = ±, GAINꢁ = 1  
GAIN1 = 1, GAINꢁ = 1  
GAIN1 = ±, GAINꢁ = ±  
19.5  
6
GAIN1 = 1, GAINꢁ = ±  
MAX975±C  
7.5  
GAIN1 = ±, GAINꢁ = 1  
9
GAIN1 = 1, GAINꢁ = 1  
1±.5  
9
GAIN = 1  
GAIN = ±  
Gain (MAX9751/MAX9755)  
A
dB  
V
1±.5  
_______________________________________________________________________________________  
3
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= PV  
= CPV  
= HPV  
= 5V, V  
= V  
= V  
= ±V, SHDN = V , C  
= 1µF, C1 = Cꢁ = 1µF, speaker load  
DD  
DD  
DD  
GND  
PGND  
CPGND  
DD  
BIAS  
terminated between OUT_+ and OUT_-, headphone load terminated between HPOUT_ and GND, V  
= V  
= V  
= V  
= ±V,  
GAIN1  
GAINꢁ  
VOL  
GAIN  
T = T  
to T , unless otherwise noted. Typical values are at T = +ꢁ5°C.) (Note 1)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HEADPHONE AMPLIFIER (HPS = V  
)
DD  
Output Offset Voltage  
V
T
= +ꢁ5°C  
A
75  
7ꢀ  
6ꢀ  
7
mV  
dB  
OS  
HPV  
= ꢀV to 5.5V, T = +ꢁ5°C  
6±  
4±  
DD  
A
Power-Supply Rejection Ratio  
(Note ꢀ)  
PSRR  
f = 1kHz, V  
= ꢁ±±mV  
P-P  
RIPPLE  
f = 1±kHz, V  
= ꢁ±±mV  
P-P  
RIPPLE  
R = ꢀꢁΩ  
5±  
L
THD+N = 1%,  
f = 1kHz, T = +ꢁ5°C  
Output Power  
P
mW  
OUT  
A
R = 16Ω  
L
11±  
R = ꢀꢁΩ, P  
= ꢁ±mW, f = 1kHz  
±.±±7  
±.±ꢀ  
L
OUT  
Total Harmonic Distortion Plus  
Noise  
THD+N  
SNR  
%
R = 16Ω, P  
= 75mW, f = 1kHz  
L
OUT  
R = ꢀꢁΩ, P  
= 5±mW, BW = ꢁꢁHz to  
L
OUT  
Signal-to-Noise Ratio  
1±1  
dB  
ꢁꢁkHz  
Noise  
V
BW = ꢁꢁHz to ꢁꢁkHz  
11  
ꢁ±±  
88  
µV  
RMS  
n
Capacitive-Load Drive  
Crosstalk  
C
No sustained oscillations  
L to R, R to L, f = 1±kHz  
pF  
L
dB  
Any unselected input to any active input,  
f = 1±kHz (MAX9751), input referred  
Off-Isolation  
74  
Slew Rate  
ESD  
SR  
±.4  
±8  
V/µs  
kV  
01/MAX975  
ESD  
IEC air discharge  
GAINꢁ = GAIN = ±, GAIN1 = X  
GAINꢁ = GAIN = 1, GAIN1 = X  
Gain  
A
dB  
V
±
CHARGE PUMP  
Charge-Pump Frequency  
VOLUME CONTROL (MAX9750_)  
VOL Input Impedance  
VOL Input Hysteresis  
f
5±±  
55±  
6±±  
kHz  
OSC  
R
1±±  
1±  
MΩ  
VOL  
mV  
±.858 x  
HPV  
Full Mute Input Voltage  
(Note 5)  
V
DD  
Channel Matching  
A
R
= -ꢁ5dB to +1ꢀ.5dB  
±.ꢁ  
dB  
V
B
BEEP INPUT (MAX9750_)  
Beep Signal Minimum Amplitude  
Beep Signal Minimum Frequency  
V
= ꢀꢀkΩ (Note 6)  
±.8  
V
P-P  
BEEP  
f
ꢀ±±  
Hz  
BEEP  
4
_______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
01/MAX975  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= PV  
= CPV  
= HPV  
= 5V, V  
= V  
= V  
= ±V, SHDN = V , C  
= 1µF, C1 = Cꢁ = 1µF, speaker load  
DD  
DD  
DD  
GND  
PGND  
CPGND  
DD  
BIAS  
terminated between OUT_+ and OUT_-, headphone load terminated between HPOUT_ and GND, V  
= V  
= V  
= V  
= ±V,  
GAIN1  
MIN  
GAINꢁ  
VOL  
GAIN  
T = T  
to T , unless otherwise noted. Typical values are at T = +ꢁ5°C.) (Note 1)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
TYP  
MAX  
UNITS  
LOGIC INPUT (SHDN, GAIN1, GAIN2, GAIN, VOL, IN1/2)  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
V
V
V
IH  
V
±.8  
1
IL  
I
µA  
IN  
LOGIC INPUT HEADPHONE (HPS)  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
V
V
V
IH  
V
±.8  
IL  
I
1±  
µA  
IN  
Note 1: All devices are 1±±% production tested at room temperature. All temperature limits are guaranteed by design.  
Note 2: Guaranteed by design. Not production tested.  
Note 3: PSRR is specified with the amplifier input connected to GND through C  
.
IN  
Note 4: Output power levels are measured with the thin QFN’s exposed paddle soldered to the ground plane.  
Note 5: See Table ꢀ for details of the mute levels.  
Note 6: The value of R dictates the minimum beep signal amplitude (see the Beep Input section).  
B
_______________________________________________________________________________________  
5
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Typical Operating Characteristics  
(Measurement BW = ꢁꢁHz to ꢁꢁkHz, T = +ꢁ5°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
vs. FREQUENCY (SPEAKER MODE)  
10  
1
10  
1
10  
1
V
CC  
= 5V  
V
CC  
= 5V  
V
= 5V  
CC  
R = 8Ω  
R = 4Ω  
R = 3Ω  
L
L
L
A
V
= 10.5dB  
A
= 10.5dB  
A
= 10.5dB  
V
V
OUTPUT POWER = 1.25W  
OUTPUT POWER = 1.5W  
OUTPUT POWER = 100mW  
OUTPUT POWER = 600mW  
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
OUTPUT POWER = 500mW  
OUTPUT POWER = 500mW  
0.001  
0.001  
0.001  
0.0001  
0.0001  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
100  
100  
10  
1
100  
10  
1
V
A
= 5V  
= 13.5dB  
DD  
V
V
= 5V  
V
= 5V  
CC  
CC  
L
V
R = 4Ω  
R = 3Ω  
A
MAX9750C  
L
R = 3Ω  
L
A
V
= 10.5dB  
= 10.5dB  
10  
1
MAX9750C  
f = 10kHz  
f = 1kHz  
01/MAX975  
f
= 10kHz  
f
IN  
= 10kHz  
IN  
0.1  
0.1  
0.1  
0.01  
0.001  
0.01  
0.01  
f = 20Hz  
f
= 1kHz  
2.0  
f
= 1kHz  
IN  
IN  
f
= 20Hz  
IN  
f
= 20Hz  
IN  
0.001  
0.001  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
OUTPUT POWER (W)  
0
0.5  
1.0  
1.5  
2.5  
3.0  
0
2.0  
0.5  
1.0  
OUTPUT POWER (W)  
1.5  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
100  
100  
100  
10  
1
V
A
= 5V  
DD  
V
= 5V  
V
A
= 5V  
= 13.5dB  
CC  
DD  
V
= 13.5dB  
R = 8Ω  
V
L
R = 8Ω  
L
A
V
= 10.5dB  
R = 4Ω  
L
10  
10  
MAX9750C  
1
1
f = 10kHz  
f = 1kHz  
f = 10kHz  
0.1  
f = 1kHz  
0.1  
f = 10kHz  
IN  
0.1  
0.01  
0.001  
0.01  
0.001  
0.01  
f = 20Hz  
1.0  
f
= 1kHz  
0.8  
IN  
f
= 20Hz  
f = 20Hz  
0.5  
OUTPUT POWER (W)  
IN  
0.001  
0
1.0  
1.5  
0
1.2  
0
0.5  
1.5  
2.0  
2.5  
3.0  
0.2  
0.4  
0.6  
1.0  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
6
_______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
01/MAX975  
Typical Operating Characteristics (continued)  
(Measurement BW = ꢁꢁHz to ꢁꢁkHz, T = +ꢁ5°C, unless otherwise noted.)  
A
OUTPUT POWER  
vs. LOAD RESISTANCE (SPEAKER MODE)  
OUTPUT POWER  
vs. LOAD RESISTANCE (SPEAKER MODE)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
CC  
f = 1kHz  
= 10.5dB  
A
V
THD+N = 10%  
MAX9750C  
THD+N = 10%  
THD+N = 1%  
THD+N = 1%  
1
10  
LOAD RESISTANCE (Ω)  
100  
1
10  
100  
LOAD RESISTANCE (Ω)  
POWER DISSIPATION vs. OUTPUT POWER  
(SPEAKER MODE)  
POWER DISSIPATION vs. OUTPUT POWER  
(SPEAKER MODE)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (SPEAKER MODE)  
5
4
3
2
1
0
5
4
3
2
1
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
A
= 200mV  
P-P  
= 10.5dB  
RIPPLE  
V
V
= 5V  
V
DD  
= 5V  
DD  
f = 1kHz  
= P  
f = 1kHz  
= P  
OUTPUT REFERRED  
P
+ P  
OUTR  
P
+ P  
OUTL OUTR  
OUT  
OUTL  
OUT  
MAX9750C  
R = 4Ω  
L
R = 4Ω  
L
R = 8Ω  
L
R = 8Ω  
L
0
1
2
3
4
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT POWER (W)  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
OUTPUT POWER (W)  
TURN-ON RESPONSE  
(SPEAKER MODE)  
CROSSTALK vs. FREQUENCY  
(SPEAKER MODE)  
MAX9750/51 toc16  
0
V
V
= 5V  
CC  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
= 200mV  
5V/div  
RIPPLE  
P-P  
R = 4Ω  
L
SHDN  
OUT_+  
AND  
OUT_-  
2V/div  
LEFT TO RIGHT  
RIGHT TO LEFT  
-90  
OUT_+  
- OUT_-  
100mV/div  
-100  
-110  
-120  
R
= 8Ω  
L
10  
100  
1k  
10k  
100k  
20ms/div  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
7
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(Measurement BW = ꢁꢁHz to ꢁꢁkHz, T = +ꢁ5°C, unless otherwise noted.)  
A
TURN-OFF RESPONSE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
(SPEAKER MODE)  
MAX9750/51 toc17  
10  
1
V
= 5V  
DD  
R = 16Ω  
5V/div  
L
A
V
= 3dB  
SHDN  
OUTPUT POWER = 90mW  
OUT_+  
AND  
OUT_-  
0.1  
0.01  
2V/div  
OUTPUT POWER = 30mW  
OUT_+  
- OUT_-  
20mV/div  
0.001  
R
= 8Ω  
L
0.0001  
10  
100  
1k  
10k  
100k  
20ms/div  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
10  
1
10  
1
10  
1
V
= 5V  
V
= 3.3V  
DD  
V
DD  
= 3.3V  
DD  
R = 32Ω  
R = 16Ω  
R = 32Ω  
L
L
L
A
V
= 3dB  
A = 3dB  
V
A
V
= 3dB  
OUTPUT POWER = 30mW  
OUTPUT POWER = 45mW  
OUTPUT POWER = 45mW  
0.1  
0.01  
0.1  
0.01  
0.1  
01/MAX975  
0.01  
OUTPUT POWER = 10mW  
OUTPUT POWER = 10mW  
OUTPUT POWER = 10mW  
0.001  
0.001  
0.001  
0.0001  
0.0001  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
1000  
100  
10  
1000  
100  
10  
1000  
100  
10  
V
DD  
= 5V  
V
DD  
= 5V  
V
DD  
= 3.3V  
R = 16Ω  
R = 32Ω  
R = 16Ω  
L
L
L
A
V
= 3dB  
A
= 3dB  
A = 3dB  
V
V
f
IN  
= 1kHz  
f
IN  
= 1kHz  
1
1
1
f
IN  
= 10kHz  
f
IN  
= 10kHz  
f
IN  
= 10kHz  
0.1  
0.1  
0.1  
f
IN  
= 20Hz  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f
= 1kHz  
100  
IN  
f
IN  
= 20Hz  
20  
10  
40  
OUTPUT POWER (mW)  
0
25  
50  
75  
125  
150  
0
40  
60  
80  
100  
0
20  
30  
50  
60  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
8
_______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
01/MAX975  
Typical Operating Characteristics (continued)  
(Measurement BW = ꢁꢁHz to ꢁꢁkHz, T = +ꢁ5°C, unless otherwise noted.)  
A
POWER DISSIPATION vs. OUTPUT POWER  
(HEADPHONE MODE)  
OUTPUT POWER vs. LOAD RESISTANCE  
(HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
250  
225  
200  
175  
150  
125  
100  
75  
1000  
100  
10  
180  
160  
140  
120  
100  
80  
V
= 3.3V  
DD  
R = 32Ω  
L
THD+N = 10%  
R = 16  
L
Ω
A
= 3dB  
V
f
IN  
= 1kHz  
1
f
IN  
= 10kHz  
R = 32  
L
Ω
0.1  
0.01  
60  
40  
V
= 5V  
50  
DD  
THD+N = 1%  
f = 1kHz  
= P  
20  
25  
P
+ P  
OUTR  
OUT  
OUTL  
0
0.001  
0
0
25 50 75 100 125 150 175 200 225 250  
OUTPUT POWER (mW)  
40 50  
OUTPUT POWER (mW)  
90  
10  
100  
1000  
0
10 20 30  
60 70 80  
LOAD RESISTANCE (Ω)  
OUTPUT POWER vs. SUPPLY VOLTAGE  
(HEADPHONE MODE)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (HEADPHONE MODE)  
125  
100  
75  
50  
25  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
A
= 200mV  
P-P  
= 10.5dB  
RIPPLE  
V
R = 16Ω  
L
OUTPUT REFERRED  
R = 32Ω  
L
f = 1kHz  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
SUPPLY VOLTAGE (V)  
CROSSTALK vs. FREQUENCY  
(HEADPHONE MODE)  
OUTPUT POWER vs. CHARGE-PUMP  
CAPACITANCE AND LOAD RESISTANCE  
0
200  
180  
160  
140  
120  
100  
80  
V
V
= 5V  
V
DD  
= 5V  
CC  
= 200mV  
f = 1kHz  
THD+N = 1%  
RIPPLE  
P-P  
-20  
-40  
R = 32Ω  
L
C1 = C2 = 2.2μF  
-60  
-80  
60  
RIGHT TO LEFT  
C1 = C2 = 1μF  
40  
-100  
-120  
20  
LEFT TO RIGHT  
0
10  
100  
1k  
10k  
100k  
10  
20  
30  
40  
50  
FREQUENCY (Hz)  
LOAD RESISTANCE (Ω)  
_______________________________________________________________________________________  
9
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(Measurement BW = ꢁꢁHz to ꢁꢁkHz, T = +ꢁ5°C, unless otherwise noted.)  
A
TURN-ON RESPONSE  
(HEADPHONE MODE)  
HEADPHONE OUTPUT SPECTRUM  
MAX9750/51 toc33  
0
V
DD  
= 5V  
f = 1kHz  
= -60dB  
R = 32Ω  
L
5V/div  
-20  
-40  
V
OUT  
SHDN  
-60  
-80  
20mV/div  
HPOUT_  
-100  
-120  
-140  
R
= 32Ω  
L
0
5
10  
15  
20  
10ms/div  
FREQUENCY (Hz)  
TURN-OFF RESPONSE  
(HEADPHONE MODE)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
MAX9750/51 toc34  
18  
16  
14  
12  
10  
5V/div  
HPS = GND  
SHDN  
HPS = V  
DD  
01/MAX975  
8
6
4
2
0
20mV/div  
HPOUT_  
R
= 32Ω  
L
4.50  
4.75  
5.00  
5.25  
5.50  
10ms/div  
SUPPLY VOLTAGE (V)  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
4.50  
4.75  
5.00  
5.25  
5.50  
SUPPLY VOLTAGE (V)  
10 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
01/MAX975  
Pin Description  
PIN  
MAX9751  
NAME  
FUNCTION  
MAX9750  
MAX9755  
1
INL  
Left-Channel Audio Input  
Audible Alert Beep Input  
BEEP  
Power Ground. Connect PGND to GND at a single point on the PCB near  
the device.  
ꢀ, 19  
ꢀ, 19  
ꢀ, 19  
PGND  
4
5
4
5
4
5
OUTL+  
OUTL-  
Left-Channel Positive Speaker Output  
Left-Channel Negative Speaker Output  
Speaker Amplifier Power Supply  
6, 16  
7
6, 16  
7
6, 16  
7
PV  
DD  
CPV  
Charge-Pump Power Supply  
DD  
8
8
8
C1P  
Charge-Pump Flying-Capacitor Positive Terminal  
Charge-Pump Ground. Connect CPGND to PGND.  
Charge-Pump Flying-Capacitor Negative Terminal  
9
9
9
CPGND  
C1N  
1±  
11  
1ꢁ  
1ꢀ  
14  
15  
17  
18  
ꢁ±  
ꢁ1  
1±  
11  
1ꢁ  
1ꢀ  
14  
15  
17  
18  
ꢁ±  
ꢁ1  
1±  
11  
1ꢁ  
1ꢀ  
14  
15  
17  
18  
ꢁ±  
ꢁ1  
CPV  
Charge-Pump Output. Connect to V  
.
SS  
SS  
V
Headphone Amplifier Negative Power Supply  
Right-Channel Headphone Output  
SS  
HPOUTR  
HPOUTL  
Left-Channel Headphone Output  
HPV  
Headphone Positive Power Supply  
DD  
OUTR-  
OUTR+  
HPS  
Right-Channel Negative Speaker Output  
Right-Channel Positive Speaker Output  
Headphone Sense Input  
BIAS  
Common-Mode Bias Voltage. Bypass with a 1µF capacitor to GND.  
Shutdown. Drive SHDN low to disable the device. Connect SHDN to V  
for normal operation.  
DD  
ꢁꢁ  
ꢁꢁ  
ꢁꢁ  
SHDN  
ꢁꢀ  
ꢁ4  
ꢁ5  
ꢁ5  
ꢁ5  
GAINꢁ  
GAIN1  
Gain Control Input ꢁ  
Gain Control Input 1  
Power Supply  
V
DD  
Ground. Connect GND to PGND at a single point on the PCB near the  
device.  
ꢁ6  
ꢁ6  
ꢁꢀ, ꢁ6  
GND  
ꢁ7  
ꢁ8  
EP  
1
ꢁ8  
INR  
VOL  
INL1  
INLꢁ  
IN1/2  
GAIN  
INR1  
INRꢁ  
N.C.  
N.C.  
EP  
Right-Channel Audio Input  
Analog Volume Control Input  
Left-Channel Audio Input 1  
Left-Channel Audio Input ꢁ  
Input Select  
ꢁꢀ  
ꢁ4  
ꢁ7  
ꢁ8  
EP  
ꢁ4  
Gain Select  
Right-Channel Audio Input 1  
Right-Channel Audio Input ꢁ  
No Connection. Not internally connected.  
No Connection. Not internally connected.  
Exposed Paddle. Connect to GND.  
1, ꢁ7  
1, ꢁ7  
EP  
______________________________________________________________________________________ 11  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
MAX9750 ONLY  
IN_  
V
DD  
V
OUT  
V
/2  
DD  
GND  
OUT_+  
BIAS  
BIAS  
CONVENTIONAL DRIVER-BIASING SCHEME  
+V  
DD  
VOLUME  
CONTROL  
OUT_  
VOL  
BIAS  
GND  
GND  
HPOUT_  
-V  
DD  
DirectDrive BIASING SCHEME  
Figure 2. Traditional Headphone Amplifier Output Waveform  
vs. DirectDrive Headphone Amplifier Output Waveform  
Figure 1. MAX9750/MAX9751 Signal Path  
The amplifiers have almost twice the supply range  
compared to other single-supply amplifiers, nearly qua-  
drupling the available output power. The benefit of the  
GND bias is that the amplifier outputs no longer have a  
Detailed Description  
01/MAX975  
The MAX9750/MAX9751/MAX9755 combine a 2.6W BTL  
speaker amplifier and a 110mW DirectDrive headphone  
amplifier with integrated headphone sensing and com-  
prehensive click-and-pop suppression. The MAX9750  
features an analog volume control, BEEP input, and  
four-level gain control. The MAX9751 features a 2:1  
input stereo multiplexer and two-level gain control. All  
devices feature high 90dB PSRR, low 0.01% THD+N,  
industry-leading click-pop performance, and a low-  
power shutdown mode.  
DC component (typically V  
/ 2). This eliminates the  
DD  
large DC-blocking capacitors required with convention-  
al headphone amplifiers, conserving board space and  
system cost, and improving frequency response.  
The MAX9750 features an analog volume control that  
varies the gain of the amplifiers based on the DC volt-  
age applied at VOL. Both devices feature an undervolt-  
age lockout that prevents operation from an insufficient  
power supply and click-and-pop suppression that elim-  
inates audible transients on startup and shutdown. The  
amplifiers include thermal-overload and short-circuit  
protection, and can withstand 8kV ESD strikes on the  
headphone amplifier outputs (IEC air discharge). An  
additional feature of the speaker amplifiers is that there  
is no phase inversion from input to output.  
Each signal path consists of an input amplifier that sets  
the gain of the signal path and feeds both the speaker  
and headphone amplifier (Figure 1). The speaker  
amplifier uses a BTL architecture, doubling the voltage  
drive to the speakers and eliminating the need for DC-  
blocking capacitors. The output consists of two signals,  
identical in magnitude, but 180° out of phase.  
The headphone amplifiers use Maxim’s DirectDrive  
architecture that eliminates the bulky output DC-block-  
ing capacitors required by traditional headphone ampli-  
fiers. A charge pump inverts the positive supply  
DirectDrive  
Conventional single-supply headphone amplifiers have  
their outputs biased about a nominal DC voltage (typi-  
cally half the supply) for maximum dynamic range.  
Large coupling capacitors are needed to block this DC  
bias from the headphones. Without these capacitors, a  
(CPV ), creating a negative supply (CPV ). The  
DD  
SS  
headphone amplifiers operate from these bipolar sup-  
plies with their outputs biased about GND (Figure 2).  
12 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
01/MAX975  
significant amount of DC current flows to the headphone,  
resulting in unnecessary power dissipation and possible  
damage to both headphone and headphone amplifier.  
LOW-FREQUENCY ROLLOFF  
(R = 16Ω)  
L
0
Maxim’s DirectDrive architecture uses a charge pump to  
an internal negative supply voltage. This allows the  
MAX9750/MAX9751/MAX9755 headphone amplifier out-  
put to be biased about GND, almost doubling the dynam-  
ic range while operating from a single supply. With no DC  
component, there is no need for the large DC-blocking  
capacitors. Instead of two large capacitors (220µF typ),  
the MAX9750/MAX9751/MAX9755 charge pump requires  
only two small ceramic capacitors (1µF typ), conserving  
board space, reducing cost, and improving the frequen-  
cy response of the headphone amplifier. See the Output  
Power vs. Charge-Pump Capacitance and Load  
Resistance graph in the Typical Operating  
Characteristics for details of the possible capacitor val-  
ues.  
-3  
DirectDrive  
330μF  
220μF  
-6  
-9  
-12  
-15  
-18  
100μF  
33μF  
-21  
-24  
-27  
-30  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 3. Low-Frequency Attenuation of Common DC-Blocking  
Capacitor Values  
Previous attempts to eliminate the output coupling  
capacitors involved biasing the headphone return  
(sleeve) to the DC bias voltage of the headphone  
amplifiers. This method raised some issues:  
the filter can attenuate low-frequency signals within  
the audio band. Larger values of C  
reduce the  
OUT  
attenuation but are physically larger, more expen-  
sive capacitors. Figure 3 shows the relationship  
1) The sleeve is typically grounded to the chassis. Using  
this biasing approach, the sleeve must be isolated  
from system ground, complicating product design.  
between the size of C  
and the resulting low-fre-  
OUT  
quency attenuation. Note that the -3dB point for a  
16Ω headphone with a 100µF blocking capacitor is  
100Hz, well within the audio band.  
2) During an ESD strike, the amplifier’s ESD structures  
are the only path to system ground. The amplifier  
must be able to withstand the full ESD strike.  
2) The voltage coefficient of the capacitor, the change  
in capacitance due to a change in the voltage  
across the capacitor, distorts the audio signal. At  
frequencies around the -3dB point, the reactance of  
the capacitor dominates, and the voltage coefficient  
appears as frequency-dependent distortion. Figure  
4 shows the THD+N introduced by two different  
capacitor dielectrics. Note that around the -3dB  
point, THD+N increases dramatically.  
3) When using the headphone jack as a lineout to other  
equipment, the bias voltage on the sleeve may con-  
flict with the ground potential from other equipment,  
resulting in large ground-loop current and possible  
damage to the amplifiers.  
Low-Frequency Response  
In addition to the cost and size disadvantages, the DC-  
blocking capacitors limit the low-frequency response of  
the amplifier and distort the audio signal:  
The combination of low-frequency attenuation and fre-  
quency-dependent distortion compromises audio  
reproduction. DirectDrive improves low-frequency  
reproduction in portable audio equipment that empha-  
sizes low-frequency effects such as multimedia lap-  
tops, and MP3, CD, and DVD players.  
1) The impedance of the headphone load to the DC-  
blocking capacitor forms a highpass filter with the  
-3dB point determined by:  
1
f
=
3dB  
2πR C  
L
OUT  
Charge Pump  
The MAX9750/MAX9751/MAX9755 feature a low-noise  
charge pump. The 550kHz switching frequency is well  
beyond the audio range, and does not interfere with the  
audio signals. The switch drivers feature a controlled  
switching speed that minimizes noise generated by turn-  
on and turn-off transients. Limiting the switching speed of  
the charge pump minimizes the di/dt noise caused by the  
where R is the impedance of the headphone and  
L
C
OUT  
is the value of the DC-blocking capacitor.  
The highpass filter is required by conventional sin-  
gle-ended, single-supply headphone amplifiers to  
block the midrail DC component of the audio signal  
from the headphones. Depending on the -3dB point,  
______________________________________________________________________________________ 13  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
V
DD  
ADDITIONAL THD+N DUE  
TO DC-BLOCKING CAPACITORS  
MAX9750/  
MAX9751/  
MAX9755  
10  
1
10μA  
SHUTDOWN  
CONTROL  
20  
14  
HPS  
0.1  
HPOUTL  
TANTALUM  
13  
0.01  
0.001  
0.0001  
HPOUTR  
1kΩ  
1kΩ  
ALUM/ELEC  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 4. Distortion Contributed by DC-Blocking Capacitors  
Figure 5. HPS Configuration  
parasitic bond wire and trace inductance. Although not  
typically required, additional high-frequency ripple atten-  
uation can be achieved by increasing the size of Cꢁ (see  
the Block Diagrams).  
Gain Selection  
MAX9750  
The MAX975± features an internally set, selectable gain.  
The GAIN1 and GAINꢁ inputs set the maximum gain of  
the MAX975± speaker and headphone amplifiers (Table  
1). The gain of the device can vary based upon the volt-  
age at VOL (see the Analog Volume Control (VOL) sec-  
tion). However, the maximum gain cannot be exceeded.  
Headphone Sense Input (HPS)  
The headphone sense input (HPS) monitors the head-  
phone jack and automatically configures the device  
based upon the voltage applied at HPS. A voltage of  
less than ±.8V sets the device to speaker mode. A volt-  
age of greater than ꢁV disables the bridge amplifiers  
and enables the headphone amplifiers.  
01/MAX975  
MAX9751/MAX9755  
The gain of the MAX9751/MAX9755 is set by the GAIN  
input. Driving GAIN high sets the gain of the speaker  
amplifiers to 9dB and the gain of the headphone ampli-  
fiers to ±dB. Driving GAIN low sets the gain of the  
speaker amplifiers to 1±.5dB, and the gain of the head-  
phone amplifiers to ꢀdB (Table ꢁ).  
For automatic headphone detection, connect HPS to the  
control pin of a ꢀ-wire headphone jack as shown in  
Figure 5. With no headphone present, the output imped-  
ance of the headphone amplifier pulls HPS low. When a  
headphone plug is inserted into the jack, the control pin  
is disconnected from the tip contact and HPS is pulled  
Analog Volume Control (VOL)  
The MAX975± features an analog volume control that  
varies the gain of the device in ꢀ1 discrete steps based  
upon the DC voltage applied to VOL. The input range of  
to V  
through a 1±µA current source.  
DD  
BIAS  
The MAX975±/MAX9751/MAX9755 feature an internally  
generated, power-supply independent, common-mode  
bias voltage of 1.8V referenced to GND. BIAS provides  
both click-and-pop suppression and sets the DC bias  
level for the amplifiers. Choose the value of the bypass  
capacitor as described in the BIAS Capacitor section.  
No external load should be applied to BIAS. Any load  
lowers the BIAS voltage, affecting the overall perfor-  
mance of the device.  
V
is from ± (full volume) to ±.858 x HPV  
(full mute),  
VOL  
DD  
with example step sizes shown in Table ꢀ. Connect the  
reference of the device driving VOL (Figure 6) to HPV  
Since the volume control ADC is ratiometric to HPV  
.
,
DD  
DD  
any changes in HPV  
are negated. The gain step sizes  
DD  
are not constant; the step sizes are ±.5dB/step at the  
upper extreme, ꢁdB/step in the midrange, and 4dB/step  
at the lower extreme. Figure 7 shows the transfer function  
of the volume control for a ꢀ.ꢀV supply.  
14 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
01/MAX975  
Table 1. MAX9750 Maximum Gain Settings  
SPEAKER MODE GAIN (dB)  
GAIN2  
GAIN1  
HEADPHONE MODE GAIN (dB)  
MAX9750A  
MAX9750B  
MAX9750C  
±
±
1
1
±
1
±
1
9
15  
16.5  
18  
6
7.5  
9
±
±
1±.5  
1ꢁ  
1ꢀ.5  
19.5  
1±.5  
Table 2. MAX9751/MAX9755 Gain Settings  
SPEAKER MODE  
GAIN (dB)  
HEADPHONE  
MODE GAIN (dB)  
GAIN  
MAX9750  
HPV  
VOL  
DD  
±
1
1±.5  
9
±
V
REF  
DAC  
BEEP Input  
The MAX975± features an audible alert beep input  
(BEEP) that accepts a mono system alert signal and  
mixes it into the stereo audio path. When the amplitude  
Figure 6. Volume Control Circuit  
of V  
exceeds 8±±mV  
(Figure 8) and the  
P-P  
BEEP(OUT)  
Input Multiplexer  
frequency of the beep signal is greater than ꢀ±±Hz, the  
beep signal is mixed into the active audio path (speaker  
The MAX9751 features a ꢁ:1 input multiplexer on each  
amplifier, allowing input selection between two stereo  
sources. The logic input IN1/2 controls both multiplex-  
ers. A logic high selects input IN_1 and a logic low  
selects input IN_ꢁ.  
or headphone). If the signal at V  
is either  
BEEP(OUT)  
< 8±±mV  
or < ꢀ±±Hz, the BEEP signal is not mixed  
P-P  
into the audio path. The amplitude of the BEEP signal at  
the device output is roughly the amplitude of V  
times the gain of the selected signal path.  
BEEP(OUT)  
Shutdown  
The MAX975±/MAX9751/MAX9755 features a ±.ꢁµA,  
low-power shutdown mode that reduces quiescent cur-  
rent consumption and extends battery life. Driving  
SHDN low disables the drive amplifiers, bias circuitry,  
and charge pump, and drives BIAS and all outputs to  
The input resistor (R ) sets the gain of the BEEP input  
B
amplifier, and thus the amplitude of V  
. Choose  
BEEP(OUT)  
R based on:  
B
V
× R  
INT  
±.ꢀ  
IN  
R
B
GND. Connect SHDN to V  
for normal operation.  
DD  
Click-and-Pop Suppression  
where R  
is the value of the BEEP amplifier feedback  
INT  
resistor (47kΩ) and V is the BEEP input amplitude.  
IN  
Speaker Amplifier  
The MAX975±/MAX9751/MAX9755 speaker amplifiers  
feature Maxim’s comprehensive, industry-leading click-  
and-pop suppression. During startup, the click-pop  
suppression circuitry eliminates any audible transient  
sources internal to the device. When entering shut-  
down, both amplifier outputs ramp to GND quickly and  
simultaneously.  
Note that the BEEP amplifier can be set up as either an  
attenuator, if the original alert signal amplitude is too  
large, or set to gain up the alert signal if it is below  
8±±mV . AC couple the alert signal to BEEP. Choose  
P-P  
the value of the coupling capacitor as described in the  
Input Filtering section. Multiple beep inputs can be  
summed (Figure 8).  
______________________________________________________________________________________ 15  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Table 3A. MAX9750A Volume Levels  
V
(V)  
SPEAKER MODE GAIN (dB)  
HEADPHONE MODE GAIN (dB)  
VOL  
GAIN1 = 0,  
GAIN2 = 0  
GAIN1 = 1,  
GAIN2 = 0  
GAIN1 = 0,  
GAIN2 = 1  
GAIN1 = 1  
GAIN2 = 1  
GAIN1 = X,  
GAIN2 = 0  
GAIN1 = X,  
GAIN2 = 1  
V
*
V
MAX  
*
HPV  
*
DD  
MIN  
±
±.49  
±.±74  
±.16±  
±.18ꢀ  
±.ꢁ±7  
±.ꢁꢀ±  
±.ꢁ5ꢀ  
±.ꢁ77  
±.ꢀ±±  
±.ꢀꢁ4  
±.ꢀ47  
±.ꢀ71  
±.ꢀ94  
±.418  
±.441  
±.464  
±.488  
±.511  
±.5ꢀ5  
±.558  
±.58ꢁ  
±.6±5  
±.6ꢁ8  
±.65ꢁ  
±.675  
±.699  
±.7ꢁꢁ  
±.746  
±.769  
±.79ꢀ  
±.816  
±.8ꢀ9  
±.858  
9
8
1±.5  
1±  
1ꢁ  
11.5  
11  
1ꢀ.5  
1ꢀ  
±
-1  
ꢁ.5  
±.49  
±.567ꢀ  
±.6447  
±.7ꢁꢁ  
±.567ꢀ  
±.6447  
±.7ꢁꢁ  
7
9
1ꢁ.5  
1ꢁ  
-ꢁ  
6
8
1±.5  
1±  
-ꢀ  
1.5  
1
±.7994  
±.8767  
±.9541  
1.±ꢀ14  
1.1±88  
1.1861  
1.ꢁ6ꢀ5  
1.ꢀ4±8  
1.418ꢁ  
1.4955  
1.57ꢁ8  
1.65±ꢁ  
1.7ꢁ75  
1.8±49  
1.88ꢁꢁ  
1.9596  
ꢁ.±ꢀ69  
ꢁ.114ꢀ  
ꢁ.1916  
ꢁ.ꢁ69  
4
7
11.5  
11  
-5  
±.7994  
±.8767  
±.9541  
1.±ꢀ14  
1.1±88  
1.1861  
1.ꢁ6ꢀ5  
1.ꢀ4±8  
1.418ꢁ  
1.4955  
1.57ꢁ8  
1.65±ꢁ  
1.7ꢁ75  
1.8±94  
1.88ꢁꢁ  
1.9596  
ꢁ.±ꢀ69  
ꢁ.114ꢀ  
ꢁ.1916  
ꢁ.ꢁ69  
6
9
-7  
±
±
4
8
1±.5  
1±  
-9  
-1  
-ꢁ  
7
-11  
-1ꢀ  
-15  
-17  
-19  
-ꢁ1  
-ꢁꢀ  
-ꢁ5  
-ꢁ7  
-ꢁ9  
-ꢀ1  
-ꢀꢀ  
-ꢀ5  
-ꢀ7  
-ꢀ9  
-41  
-4ꢀ  
-47  
-51  
-55  
-59  
-6ꢀ  
-67  
-71  
MUTE  
-ꢁ  
-4  
±
6
9
-ꢀ  
-6  
-ꢁ  
4
8
-5  
-8  
-4  
7
-7  
-1±  
-1ꢁ  
-14  
-16  
-18  
-ꢁ±  
-ꢁꢁ  
-ꢁ4  
-ꢁ6  
-ꢁ8  
-ꢀ±  
-ꢀꢁ  
-ꢀ4  
-ꢀ8  
-4ꢁ  
-46  
-5±  
-54  
-58  
-6ꢁ  
MUTE  
-6  
±
6
-9  
-8  
-ꢁ  
4
-11  
-1ꢀ  
-15  
-17  
-19  
-ꢁ1  
-ꢁꢀ  
-ꢁ5  
-ꢁ7  
-ꢁ9  
-ꢀ1  
-ꢀꢀ  
-ꢀ5  
-ꢀ7  
-ꢀ9  
-41  
-4ꢀ  
-47  
-51  
MUTE  
-1±  
-1ꢁ  
-14  
-16  
-18  
-ꢁ±  
-ꢁꢁ  
-ꢁ4  
-ꢁ6  
-ꢁ8  
-ꢀ±  
-ꢀꢁ  
-ꢀ4  
-ꢀ8  
-4ꢁ  
-46  
-5±  
-54  
MUTE  
-4  
-6  
±
-8  
-ꢁ  
-1±  
-1ꢁ  
-14  
-16  
-18  
-ꢁ±  
-ꢁꢁ  
-ꢁ4  
-ꢁ6  
-ꢁ8  
-ꢀ±  
-ꢀꢁ  
-ꢀ4  
-ꢀ8  
-4ꢁ  
MUTE  
-4  
-6  
-8  
01/MAX975  
-1±  
-1ꢁ  
-14  
-16  
-18  
-ꢁ±  
-ꢁꢁ  
-ꢁ4  
-ꢁ6  
-ꢁ8  
-ꢀ±  
-ꢀꢁ  
MUTE  
ꢁ.ꢀ46ꢀ  
ꢁ.4ꢁꢀ7  
ꢁ.5±1  
ꢁ.ꢀ46ꢀ  
ꢁ.4ꢁꢀ7  
ꢁ.5±1  
ꢁ.578ꢀ  
ꢁ.6557  
ꢁ.7ꢀꢀ  
ꢁ.578ꢀ  
ꢁ.6557  
ꢁ.7ꢀꢀ  
ꢁ.81±4  
ꢀ.ꢀ  
ꢁ.81±4  
*Based on HPV = ꢀ.ꢀV  
DD  
X = Don’t care.  
16 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
01/MAX975  
Table 3B. MAX9750B Volume Levels  
HEADPHONE MODE GAIN  
(dB)  
V
(V)  
SPEAKER MODE GAIN (dB)  
VOL  
GAIN1 = 0,  
GAIN2 = 0  
GAIN1 = 1,  
GAIN2 = 0  
GAIN1 = 0,  
GAIN2 = 1  
GAIN1 = 1  
GAIN2 = 1  
GAIN1 = X,  
GAIN2 = 0  
GAIN1 = X,  
GAIN2 = 1  
V
*
V
MAX  
*
HPV  
*
DD  
MIN  
±
±.49  
±.±74  
±.16±  
±.18ꢀ  
±.ꢁ±7  
±.ꢁꢀ±  
±.ꢁ5ꢀ  
±.ꢁ77  
±.ꢀ±±  
±.ꢀꢁ4  
±.ꢀ47  
±.ꢀ71  
±.ꢀ94  
±.418  
±.441  
±.464  
±.488  
±.511  
±.5ꢀ5  
±.558  
±.58ꢁ  
±.6±5  
±.6ꢁ8  
±.65ꢁ  
±.675  
±.699  
±.7ꢁꢁ  
±.746  
±.769  
±.79ꢀ  
±.816  
±.8ꢀ9  
±.858  
15  
14  
16.5  
16  
18  
17.5  
17  
19.5  
19  
±
-1  
ꢁ.5  
±.49  
±.567ꢀ  
±.6447  
±.7ꢁꢁ  
±.567ꢀ  
±.6447  
±.7ꢁꢁ  
1ꢀ  
15  
18.5  
18  
-ꢁ  
1ꢁ  
14  
16.5  
16  
-ꢀ  
1.5  
1
±.7994  
±.8767  
±.9541  
1.±ꢀ14  
1.1±88  
1.1861  
1.ꢁ6ꢀ5  
1.ꢀ4±8  
1.418ꢁ  
1.4955  
1.57ꢁ8  
1.65±ꢁ  
1.7ꢁ75  
1.8±49  
1.88ꢁꢁ  
1.9596  
ꢁ.±ꢀ69  
ꢁ.114ꢀ  
ꢁ.1916  
ꢁ.ꢁ69  
1±  
1ꢀ  
17.5  
17  
-5  
±.7994  
±.8767  
±.9541  
1.±ꢀ14  
1.1±88  
1.1861  
1.ꢁ6ꢀ5  
1.ꢀ4±8  
1.418ꢁ  
1.4955  
1.57ꢁ8  
1.65±ꢁ  
1.7ꢁ75  
1.8±49  
1.88ꢁꢁ  
1.9596  
ꢁ.±ꢀ69  
ꢁ.114ꢀ  
ꢁ.1916  
ꢁ.ꢁ69  
8
1ꢁ  
15  
-7  
±
6
1±  
14  
16.5  
16  
-9  
-1  
4
8
1ꢀ  
-11  
-1ꢀ  
-15  
-17  
-19  
-ꢁ1  
-ꢁꢀ  
-ꢁ5  
-ꢁ7  
-ꢁ9  
-ꢀ1  
-ꢀꢀ  
-ꢀ5  
-ꢀ7  
-ꢀ9  
-41  
-4ꢀ  
-47  
-51  
-55  
-59  
-6ꢀ  
-67  
-71  
MUTE  
-ꢁ  
6
1ꢁ  
15  
-ꢀ  
±
4
1±  
14  
-5  
-ꢁ  
8
1ꢀ  
-7  
-4  
±
6
1ꢁ  
-9  
-6  
-ꢁ  
4
1±  
-11  
-1ꢀ  
-15  
-17  
-19  
-ꢁ1  
-ꢁꢀ  
-ꢁ5  
-ꢁ7  
-ꢁ9  
-ꢀ1  
-ꢀꢀ  
-ꢀ5  
-ꢀ7  
-ꢀ9  
-41  
-4ꢀ  
-47  
-51  
MUTE  
-8  
-4  
8
-1±  
-1ꢁ  
-14  
-16  
-18  
-ꢁ±  
-ꢁꢁ  
-ꢁ4  
-ꢁ6  
-ꢁ8  
-ꢀꢁ  
-ꢀ6  
-4±  
-44  
-48  
-5ꢁ  
-56  
MUTE  
-6  
±
6
-8  
-ꢁ  
4
-1±  
-1ꢁ  
-14  
-16  
-18  
-ꢁ±  
-ꢁꢁ  
-ꢁ4  
-ꢁ6  
-ꢁ8  
-ꢀꢁ  
-ꢀ6  
-4±  
-44  
-48  
MUTE  
-4  
-6  
±
-8  
-ꢁ  
-1±  
-1ꢁ  
-14  
-16  
-18  
-ꢁ±  
-ꢁꢁ  
-ꢁ4  
-ꢁ6  
-ꢁ8  
-ꢀꢁ  
-ꢀ6  
MUTE  
-4  
-6  
-8  
-1±  
-1ꢁ  
-14  
-16  
-18  
-ꢁ±  
-ꢁꢁ  
-ꢁ4  
-ꢁ6  
MUTE  
ꢁ.ꢀ46ꢀ  
ꢁ.4ꢁꢀ7  
ꢁ.5±1  
ꢁ.ꢀ46ꢀ  
ꢁ.4ꢁꢀ7  
ꢁ.5±1  
ꢁ.578ꢀ  
ꢁ.6557  
ꢁ.7ꢀꢀ  
ꢁ.578ꢀ  
ꢁ.6557  
ꢁ.7ꢀꢀ  
ꢁ.81±4  
ꢀ.ꢀ  
ꢁ.81±4  
*Based on HPV = ꢀ.ꢀV  
DD  
X = Don’t care.  
______________________________________________________________________________________ 17  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Table 3C. MAX9750C Volume Levels  
V
(V)  
SPEAKER MODE GAIN (dB)  
HEADPHONE MODE GAIN (dB)  
VOL  
GAIN1 = 0,  
GAIN2 = 0  
GAIN1 = 1,  
GAIN2 = 0  
GAIN1 = 0,  
GAIN2 = 1  
GAIN1 = 1  
GAIN2 = 1  
GAIN1 = X,  
GAIN2 = 0  
GAIN1 = X,  
GAIN2 = 1  
V
*
V
*
HPV  
*
DD  
MIN  
MAX  
±
±.49  
±.±74  
±.16±  
±.18ꢀ  
±.ꢁ±7  
±.ꢁꢀ±  
±.ꢁ5ꢀ  
±.ꢁ77  
±.ꢀ±±  
±.ꢀꢁ4  
±.ꢀ47  
±.ꢀ71  
±.ꢀ94  
±.418  
±.441  
±.464  
±.488  
±.511  
±.5ꢀ5  
±.558  
±.58ꢁ  
±.6±5  
±.6ꢁ8  
±.65ꢁ  
±.675  
±.699  
±.7ꢁꢁ  
±.746  
±.769  
±.79ꢀ  
±.816  
±.8ꢀ9  
±.858  
6
5
7.5  
7
9
8.5  
8
1±.5  
1±  
9.5  
9
±
-1  
ꢁ.5  
±.49  
±.567ꢀ  
±.6447  
±.7ꢁꢁ  
±.567ꢀ  
±.6447  
±.7ꢁꢁ  
4
6
-ꢁ  
5
7.5  
7
-ꢀ  
1.5  
1
±.7994  
±.8767  
±.9541  
1.±ꢀ14  
1.1±88  
1.1861  
1.ꢁ6ꢀ5  
1.ꢀ4±8  
1.418ꢁ  
1.4955  
1.57ꢁ8  
1.65±ꢁ  
1.7ꢁ75  
1.8±49  
1.88ꢁꢁ  
1.9596  
ꢁ.±ꢀ69  
ꢁ.114ꢀ  
ꢁ.1916  
ꢁ.ꢁ69  
1
4
8.5  
8
-5  
±.7994  
±.8767  
±.9541  
1.±ꢀ14  
1.1±88  
1.1861  
1.ꢁ6ꢀ5  
1.ꢀ4±8  
1.418ꢁ  
1.4955  
1.57ꢁ8  
1.65±ꢁ  
1.7ꢁ75  
1.8±49  
1.88ꢁꢁ  
1.9596  
ꢁ.±ꢀ69  
ꢁ.114ꢀ  
ꢁ.1916  
ꢁ.ꢁ69  
-1  
6
-7  
±
-ꢀ  
1
5
7.5  
7
-9  
-1  
-5  
-1  
4
-11  
-1ꢀ  
-15  
-17  
-19  
-ꢁ1  
-ꢁꢀ  
-ꢁ5  
-ꢁ7  
-ꢁ9  
-ꢀ1  
-ꢀꢀ  
-ꢀ5  
-ꢀ7  
-ꢀ9  
-41  
-4ꢀ  
-47  
-51  
-55  
-59  
-6ꢀ  
-67  
-71  
MUTE  
-ꢁ  
-7  
-ꢀ  
6
-ꢀ  
-9  
-5  
1
5
-5  
-11  
-1ꢀ  
-15  
-17  
-19  
-ꢁ1  
-ꢁꢀ  
-ꢁ5  
-ꢁ7  
-ꢁ9  
-ꢀ1  
-ꢀꢀ  
-ꢀ5  
-ꢀ7  
-41  
-45  
-48  
-5ꢀ  
-57  
-61  
-65  
MUTE  
-7  
-1  
4
-7  
-9  
-ꢀ  
-9  
-11  
-1ꢀ  
-15  
-17  
-19  
-ꢁ1  
-ꢁꢀ  
-ꢁ5  
-ꢁ7  
-ꢁ9  
-ꢀ1  
-ꢀ  
-5  
1
-11  
-1ꢀ  
-15  
-17  
-19  
-ꢁ1  
-ꢁꢀ  
-ꢁ5  
-ꢁ7  
-ꢁ9  
-ꢀ1  
-ꢀꢀ  
-ꢀ5  
-ꢀ7  
-ꢀ9  
-41  
-4ꢀ  
-47  
-51  
MUTE  
-7  
-1  
-9  
-ꢀ  
-11  
-1ꢀ  
-15  
-17  
-9  
-5  
-7  
-9  
01/MAX975  
-11  
-1ꢀ  
-15  
-17  
-19  
-ꢁ1  
-ꢁꢀ  
-ꢁ5  
-ꢁ7  
-ꢁ9  
-ꢀ1  
-ꢀꢀ  
-ꢀ5  
MUTE  
-ꢁ1  
-ꢁꢀ  
-ꢁ  
-ꢁ7  
-ꢁ9  
-ꢀ1  
-ꢀꢀ  
-ꢀ5  
-ꢀ7  
-41  
-45  
MUTE  
ꢁ.ꢀ46ꢀ  
ꢁ.4ꢁꢀ7  
ꢁ.5±1  
-ꢀ5  
-ꢀ7  
-41  
-45  
-49  
-5ꢀ  
-57  
MUTE  
ꢁ.ꢀ46ꢀ  
ꢁ.4ꢁꢀ7  
ꢁ.5±1  
ꢁ.578ꢀ  
ꢁ.6557  
ꢁ.7ꢀꢀ  
ꢁ.578ꢀ  
ꢁ.6557  
ꢁ.7ꢀꢀ  
ꢁ.81±4  
ꢀ.ꢀ  
ꢁ.81±4  
*Based on HPV = ꢀ.ꢀV  
DD  
X = Don’t care.  
18 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
01/MAX975  
MAX9750A  
VOLUME CONTROL TRANSFER FUNCTION  
MAX9750B  
VOLUME CONTROL TRANSFER FUNCTION  
20  
10  
20  
10  
GAIN1 = GAIN2 = 0  
GAIN1 = GAIN2 = 0  
0
0
SPEAKER MODE  
SPEAKER MODE  
AUDIO  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
AUDIO  
TAPER POT  
TAPER POT  
HEADPHONE MODE  
HEADPHONE MODE  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(V)  
V
VOL  
V
VOL  
Figure 7a. Volume Control Transfer Function  
Figure 7b. Volume Control Transfer Function  
Headphone Amplifier  
MAX9750C  
VOLUME CONTROL TRANSFER FUNCTION  
In conventional single-supply headphone amplifiers,  
the output-coupling capacitor is a major contributor of  
audible clicks and pops. Upon startup, the amplifier  
charges the coupling capacitor to its bias voltage, typi-  
cally half the supply. Likewise, during shutdown, the  
capacitor is discharged to GND. A DC shift across the  
capacitor results, which in turn appears as an audible  
transient at the speaker. Since the MAX975±/MAX9751/  
MAX9755 do not require output-coupling capacitors, no  
audible transient occurs.  
20  
GAIN1 = GAIN2 = 0  
10  
0
-10  
SPEAKER MODE  
-20  
AUDIO  
TAPER POT  
-30  
-40  
-50  
HEADPHONE MODE  
-60  
Additionally, the MAX975±/MAX9751/MAX9755 features  
extensive click-and-pop suppression that eliminates  
any audible transient sources internal to the device.  
The Turn-On Response (Headphone Mode) and Turn-  
Off Response (Headphone Mode) graphs in the Typical  
Operating Characteristics shows that there are minimal  
transient components in the audible range at the output  
upon startup and shutdown.  
-70  
-80  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(V)  
V
VOL  
Figure 7c. Volume Control Transfer Function  
R
B1  
0.47μF  
0.47μF  
0.47μF  
47kΩ  
R
INT  
SOURCE 1  
SOURCE 2  
SOURCE 3  
47kΩ  
R
B2  
47kΩ  
SPEAKER/HEADPHONE  
AMPLIFER INPUTS  
BEEP  
V
OUT(BEEP)  
WINDOW  
R
B3  
47kΩ  
DETECTOR  
(0.8V THRESHOLD)  
P-P  
BIAS  
FREQUENCY  
DETECTOR  
MAX9750  
(300Hz THRESHOLD)  
Figure 8. BEEP Input  
______________________________________________________________________________________ 19  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
1000  
V
DD  
= 5V  
R = 16Ω  
L
100  
10  
A = 3dB  
V
V
+1  
-1  
OUT(P-P)  
OUTPUTS IN PHASE  
1
2 x V  
OUT(P-P)  
0.1  
V
OUT(P-P)  
0.01  
0.001  
OUTPUTS 180° OUT OF PHASE  
0
25  
50  
75  
100  
125  
150  
OUTPUT POWER (mW)  
Figure 9. Bridge-Tied Load Configuration  
Figure 1±. Total Harmonic Distortion Plus Noise vs. Output Power  
with Inputs In/Out of Phase (Headphone Mode)  
Power Dissipation and Heat Sinking  
Under normal operating conditions, the MAX975±/  
MAX9751/MAX9755 can dissipate a significant amount  
of power. The maximum power dissipation for each  
package is given in the Absolute Maximum Ratings  
under Continuous Power Dissipation, or can be calcu-  
lated by the following equation:  
Applications Information  
BTL Speaker Amplifiers  
The MAX975±/MAX9751/MAX9755 feature speaker  
amplifiers designed to drive a load differentially, a con-  
figuration referred to as bridge-tied load (BTL). The BTL  
configuration (Figure 9) offers advantages over the sin-  
gle-ended configuration, where one side of the load is  
connected to ground. Driving the load differentially  
doubles the output voltage compared to a single-  
ended amplifier under similar conditions. Thus, the  
device’s differential gain is twice the closed-loop gain  
of the input amplifier. The effective gain is given by:  
T
T  
A
J(MAX)  
P
=
DISSPKG(MAX)  
01/MAX975  
θ
JA  
where T  
is +15±°C, T is the ambient tempera-  
A
J(MAX)  
ture, and θ is the reciprocal of the derating factor in  
JA  
°C/W as specified in the Absolute Maximum Ratings  
section. For example, θ of the thin QFN package is  
JA  
R
F
A
= ×  
+4ꢁ°C/W. For optimum power dissipation, the exposed  
paddle of the package should be connected to the  
ground plane (see the Layout and Grounding section).  
VD  
R
IN  
Substituting ꢁ x V  
into the following equation  
OUT(P-P)  
yields four times the output power due to double the  
output voltage:  
Output Power (Speaker Amplifier)  
The increase in power delivered by the BTL configura-  
tion directly results in an increase in internal power dis-  
sipation over the single-ended configuration. The  
V
OUT(PP)  
V
=
=
RMS  
maximum power dissipation for a given V  
given by the following equation:  
and load is  
DD  
ꢁ ꢁ  
V
RMS  
P
OUT  
ꢁV  
DD  
R
P
=
L
DISS(MAX)  
π R  
L
Since the differential outputs are biased at midsupply,  
there is no net DC voltage across the load. This elimi-  
nates the need for DC-blocking capacitors required for  
single-ended amplifiers. These capacitors can be large  
and expensive, can consume board space, and can  
degrade low-frequency performance.  
If the power dissipation for a given application exceeds  
the maximum allowed for a given package, either reduce  
DD  
temperature, or add heatsinking to the device. Large  
output, supply, and ground PC board traces improve the  
maximum power dissipation in the package.  
V
, increase load impedance, decrease the ambient  
20 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
01/MAX975  
Table 4. Suggested Capacitor Manufacturers  
SUPPLIER  
Taiyo Yuden  
TDK  
PHONE  
FAX  
WEBSITE  
8±±-ꢀ48-ꢁ496  
8±7-8±ꢀ-61±±  
847-9ꢁ5-±899  
847-ꢀ9±-44±5  
www.t-yuden.com  
www.component.tdk.com  
Thermal-overload protection limits total power dissipa-  
tion in these devices. When the junction temperature  
exceeds +16±°C, the thermal-protection circuitry dis-  
ables the amplifier output stage. The amplifiers are  
enabled once the junction temperature cools by 15°C.  
This results in a pulsing output under continuous ther-  
mal-overload conditions as the device heats and cools.  
1
f
=
ꢀdB  
πR C  
IN IN  
R
is the amplifier’s internal input resistance value  
IN  
given in the Electrical Characteristics table. Choose C  
IN  
such that f  
is well below the lowest frequency of  
-ꢀdB  
interest. Setting f  
too high affects the amplifier’s  
-ꢀdB  
Output Power (Headphone Amplifier)  
The headphone amplifiers have been specified for the  
worst-case scenario—when both inputs are in phase.  
Under this condition, the drivers simultaneously draw  
current from the charge pump, leading to a slight loss in  
low-frequency response. Use capacitors with low-volt-  
age coefficient dielectrics, such as tantalum or alu-  
minum electrolytic. Capacitors with high-voltage  
coefficients, such as ceramics, may result in increased  
distortion at low frequencies.  
headroom of V . In typical stereo audio applications,  
SS  
BIAS Capacitor  
the left and right signals have differences in both magni-  
tude and phase, subsequently leading to an increase in  
the maximum attainable output power. Figure 1± shows  
the two extreme cases for in and out of phase. In reality,  
the available power lies between these extremes.  
BIAS is the output of the internally generated DC bias  
voltage. The BIAS bypass capacitor, C  
, improves  
BIAS  
PSRR and THD+N by reducing power supply and other  
noise sources at the common-mode bias node, and  
also generates the clickless/popless, startup/shutdown  
DC bias waveforms for the speaker amplifiers. Bypass  
BIAS with a 1µF capacitor to GND.  
Power Supplies  
The MAX975±/MAX9751/MAX9755 have different sup-  
plies for each portion of the device, allowing for the opti-  
mum combination of headroom and power dissipation  
and noise immunity. The speaker amplifiers are pow-  
Charge-Pump Capacitor Selection  
Use capacitors with an ESR less than 1±±mΩ for opti-  
mum performance. Low-ESR ceramic capacitors mini-  
mize the output resistance of the charge pump. For  
best performance over the extended temperature  
range, select capacitors with an X7R dielectric. Table 4  
lists suggested manufacturers.  
ered from PV . PV  
ranges from 4.5V to 5.5V. The  
DD  
DD  
headphone amplifiers are powered from HPV  
and  
DD  
V
. HPV  
is the positive supply of the headphone  
SS  
DD  
amplifiers and ranges from ꢀV to 5.5V. V is the nega-  
SS  
tive supply of the headphone amplifiers. Connect V to  
SS  
DD  
CPV . The charge pump is powered by CPV  
.
SS  
Flying Capacitor (C1)  
The value of the flying capacitor (C1) affects the load  
regulation and output resistance of the charge pump. A  
C1 value that is too small degrades the device’s ability  
to provide sufficient current drive, which leads to a loss  
of output voltage. Increasing the value of C1 improves  
load regulation and reduces the charge-pump output  
resistance to an extent. See the Output Power vs.  
Charge-Pump Capacitance and Load Resistance  
graph in the Typical Operating Characteristics. Above  
ꢁ.ꢁµF, the on-resistance of the switches and the ESR of  
C1 and Cꢁ dominate.  
CPV  
ranges from ꢀV to 5.5V and should be the same  
DD  
potential as HPV . The charge pump inverts the volt-  
DD  
age at CPV , and the resulting voltage appears at  
DD  
CPV . The remainder of the device is powered by V  
.
SS  
DD  
Component Selection  
Input Filtering  
The input capacitor (C ), in conjunction with the ampli-  
IN  
fier input resistance (R ), forms a highpass filter that  
IN  
removes the DC bias from an incoming signal (see the  
Block Diagrams). The AC-coupling capacitor allows the  
amplifier to bias the signal to an optimum DC level.  
Assuming zero source impedance, the -ꢀdB point of  
the highpass filter is given by:  
Output Capacitor (C2)  
The output capacitor value and ESR directly affect the  
ripple at CPV . Increasing the value of Cꢁ reduces  
SS  
output ripple. Likewise, decreasing the ESR of Cꢁ  
______________________________________________________________________________________ 21  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
reduces both ripple and output resistance. Lower  
capacitance values can be used in systems with low  
maximum output power levels. See the Output Power  
vs. Charge-Pump Capacitance and Load Resistance  
graph in the Typical Operating Characteristics.  
together at a single point on the PC board. Route  
CPGND and all traces that carry switching transients  
away from GND, PGND, and the traces and compo-  
nents in the audio signal path.  
Connect all components associated with the charge  
pump (Cꢁ and Cꢀ) to the CPGND plane. Connect V  
SS  
CPV  
Bypass Capacitor (C3)  
DD  
and CPV  
together at the device. Place the charge-  
SS  
The CPV  
bypass capacitor (Cꢀ) lowers the output  
DD  
pump capacitors (C1, Cꢁ, and Cꢀ) as close to the  
device as possible. Bypass HPV and PV with a  
impedance of the power supply and reduces the  
impact of the MAX975±/MAX9751/MAX9755’s charge-  
DD  
DD  
±.1µF capacitor to GND. Place the bypass capacitors  
as close to the device as possible.  
pump switching transients. Bypass CPV  
with Cꢀ, the  
DD  
same value as C1, and place it physically close to  
CPV and PGND (refer to the MAX975± Evaluation Kit  
Use large, low-resistance output traces. As load imped-  
ance decreases, the current drawn from the device out-  
puts increase. At higher current, the resistance of the  
output traces decrease the power delivered to the load.  
For example, when compared to a ±Ω trace, a 1±±mΩ  
trace reduces the power delivered to a 4Ω load from  
ꢁ.1W to ꢁW. Large output, supply, and GND traces also  
improve the power dissipation of the device.  
DD  
for a suggested layout).  
Powering Other Circuits from a  
Negative Supply  
An additional benefit of the MAX975±/MAX9751/  
MAX9755 is the internally generated negative supply volt-  
age (CPV ). CPV  
is used by the MAX975±/  
SS  
SS  
MAX9751/MAX9755 to provide the negative supply for  
the headphone amplifiers. It can also be used to power  
The MAX975±/MAX9751/MAX9755 thin QFN package  
features an exposed thermal pad on its underside. This  
pad lowers the package’s thermal resistance by provid-  
ing a direct heat conduction path from the die to the  
printed circuit board. Connect the exposed thermal  
pad to GND by using a large pad and multiple vias to a  
GND plane on the bottom of the PCB.  
other devices within a design. Current draw from CPV  
SS  
should be limited to 5mA, exceeding this affects the oper-  
ation of the headphone amplifier. A typical application is  
a negative supply to adjust the contrast of LCD modules.  
When considering the use of CPV  
in this manner,  
SS  
note that the charge-pump voltage of CPV is roughly  
SS  
proportional to CPV  
and is not a regulated voltage.  
DD  
01/MAX975  
The charge-pump output impedance plot appears in  
the Typical Operating Characteristics.  
Layout and Grounding  
Proper layout and grounding are essential for optimum  
performance. Use large traces for the power-supply  
inputs and amplifier outputs to minimize losses due to  
parasitic trace resistance, as well as route head away  
from the device. Good grounding improves audio per-  
formance, minimizes crosstalk between channels, and  
prevents any switching noise from coupling into the  
audio signal. Connect CPGND, PGND and GND  
22 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
01/MAX975  
Simplified Block Diagrams (continued)  
MUX  
MAX9751  
MAX9755  
______________________________________________________________________________________ 23  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Block Diagrams  
4.5V TO 5.5V  
0.1μF  
V
DD  
25  
6, 16  
PV  
DD  
4.5V TO 5.5V  
0.1μF  
MAX9750  
C
1μF  
IN  
4
5
OUTL+  
OUTL-  
GAIN/  
VOLUME  
CONTROL  
1
INL  
BTL  
AMPLIFIER  
LEFT-CHANNEL  
AUDIO INPUT  
C
1μF  
IN  
18  
OUTR+  
GAIN/  
VOLUME  
CONTROL  
27  
21  
INR  
BTL  
AMPLIFIER  
RIGHT-CHANNEL  
AUDIO INPUT  
17 OUTR-  
BIAS  
VOL  
C
BIAS  
15  
20  
HPV  
HPS  
DD  
28  
24  
23  
2
1μF  
3V TO 5.5V  
10μF  
GAIN/  
VOLUME  
CONTROL  
01/MAX975  
GAIN1  
GAIN2  
BEEP  
V
V
DD  
HEADPHONE  
DETECTION  
14  
13  
DD  
HPOUTL  
R
B
1μF  
47kΩ  
BEEP  
DETECTION  
SHUTDOWN  
CONTROL  
22  
SHDN  
V
DD  
HPOUTR  
CPV  
DD  
7
3V TO 5.5V  
C3  
1μF  
8
C1P  
C1  
1μF  
CHARGE  
PUMP  
10  
C1N  
9
CPGND  
26  
3, 19  
PGND  
11 12  
CPV  
V
SS  
GND  
SS  
C2  
1μF  
24 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
01/MAX975  
Block Diagrams (continued)  
4.5V TO 5.5V  
0.1μF  
V
DD  
25  
6, 16  
PV  
DD  
4.5V TO 5.5V  
0.1μF  
MAX9751  
C
1μF  
IN  
1
2
INL1  
INL2  
4
5
OUTL+  
OUTL-  
LEFT CHANNEL  
AUDIO INPUT  
BTL  
AMPLIFIER  
C
INPUT  
MUX  
IN  
1μF  
LEFT CHANNEL  
AUDIO INPUT  
C
1μF  
IN  
27  
INR1  
INR2  
BIAS  
18  
17  
RIGHT CHANNEL  
AUDIO INPUT  
OUTR+  
OUTR-  
BTL  
AMPLIFIER  
INPUT  
MUX  
C
IN  
28  
21  
1μF  
RIGHT CHANNEL  
AUDIO INPUT  
C
1μF  
BIAS  
15  
20  
HPV  
HPS  
DD  
3V TO 5.5V  
10μF  
MUX AND  
GAIN  
CONTROL  
24  
23  
22  
GAIN  
IN1/2  
SHDN  
V
V
DD  
14  
13  
HPOUTL  
HEADPHONE  
DETECTION  
DD  
V
DD  
SHUTDOWN  
CONTROL  
HPOUTR  
CPV  
7
DD  
3V TO 5.5V  
C3  
1μF  
8
C1P  
C1  
1μF  
CHARGE  
PUMP  
10  
C1N  
9
CPGND  
11 12  
26  
3, 19  
PGND  
CV  
SS  
V
SS  
GND  
C2  
1μF  
LOGIC PINS CONFIGURED FOR:  
GAIN = 1, 9dB SPEAKER GAIN/0dB HEADPHONE GAIN.  
IN1/2 = 1, SELECTED INPUT LINE 1.  
SHDN = 1, PART ACTIVE.  
______________________________________________________________________________________ 25  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Block Diagrams (continued)  
4.5V TO 5.5V  
0.1μF  
V
DD  
25  
6, 16 PV  
DD  
4.5V TO 5.5V  
0.1μF  
MAX9755  
C
1μF  
4
5
OUTL+  
OUTL-  
IN  
INL  
2
BTL  
AMPLIFIER  
LEFT CHANNEL  
AUDIO INPUT  
18  
17  
OUTR+  
OUTR-  
C
1μF  
IN  
28  
21  
INR  
BTL  
AMPLIFIER  
RIGHT CHANNEL  
AUDIO INPUT  
BIAS  
C
1μF  
BIAS  
HPV  
DD  
15  
20  
3V TO 5.5V  
10μF  
GAIN  
CONTROL  
01/MAX975  
HPS  
24  
22  
GAIN  
V
V
DD  
HEADPHONE  
DETECTION  
14  
13  
HPOUTL  
SHDN  
DD  
SHUTDOWN  
CONTROL  
HPOUTR  
CPV  
DD  
7
3V TO 5.5V  
C3  
1μF  
8
C1P  
C1  
1μF  
CHARGE  
PUMP  
10  
C1N  
9
CPGND  
23, 26  
GND  
3, 19  
PGND  
11 12  
CPV  
V
SS  
SS  
C2  
1μF  
LOGIC PINS CONFIGURED FOR:  
GAIN = 1, 9dB SPEAKER GAIN/0dB HEADPHONE GAIN.  
SHDN = 1, PART ACTIVE.  
26 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
01/MAX975  
System Diagrams  
4.5V TO 5.5V 3V TO 5.5V  
10μF  
0.1μF  
1μF  
V
PV  
DD  
HPV  
DD  
DD  
BIAS  
OUTL+  
OUTL-  
MAX9750  
1μF  
1μF  
1μF  
1μF  
OUTR+  
OUTR-  
AUX_IN  
INL  
OUT  
CODEC  
INR  
HPOUTL  
33kΩ  
2kΩ  
MAX4060  
BEEP  
BIAS  
HPS  
HPOUTR  
2kΩ  
SHDN  
GAIN1  
GAIN2  
HPV  
DD  
μC  
1μF  
1μF  
IN+  
IN-  
VOL  
CPV  
SS  
3V TO 5.5V  
CPV  
DD  
1μF  
V
SS  
1μF  
C1P  
1μF  
CPGND  
C1N  
GND  
PGND  
______________________________________________________________________________________ 27  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
System Diagrams (continued)  
4.5V TO 5.5V 3V TO 5.5V  
10μF  
0.1μF  
V
PV  
DD  
HPV  
DD  
DD  
1μF  
OUTL+  
OUTL-  
INL1  
INL2  
CODEC  
MAX9751  
1μF  
OUTR+  
OUTR-  
AUX_IN  
1μF  
INR1  
INR2  
OUT  
2kΩ  
HPOUTL  
MAX4060  
BIAS  
HPS  
SHDN  
IN1/2  
GAIN  
CPV  
HPOUTR  
2kΩ  
μC  
1μF  
1μF  
IN+  
IN-  
CPV  
SS  
3V TO 5.5V  
DD  
1μF  
V
SS  
C1P  
1μF  
1μF  
CPGND  
BIAS  
01/MAX975  
C1N  
GND  
PGND  
1μF  
28 ______________________________________________________________________________________  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
01/MAX975  
Pin Configurations  
TOP VIEW  
21 20  
19 18  
17 16  
15  
21 20  
19 18  
17 16  
15  
SHDN 22  
IN1/2 23  
GAIN 24  
14 HPOUTL  
13 HPOUTR  
SHDN 22  
GAIN2 23  
GAIN1 24  
14 HPOUTL  
13 HPOUTR  
12  
V
SS  
12  
V
SS  
MAX9751  
MAX9750  
V
25  
11 CPV  
10 C1N  
V
25  
11 CPV  
10 C1N  
DD  
SS  
DD  
SS  
GND 26  
INR1 27  
INR2 28  
GND 26  
INR 27  
VOL 28  
9
8
CPGND  
C1P  
9
8
CPGND  
C1P  
+
+
1
2
3
4
5
6
7
1
2
3
4
5
6
7
THIN QFN  
THIN QFN  
21 20  
19 18  
17 16  
15  
SHDN 22  
GND 23  
GAIN 24  
14 HPOUTL  
13 HPOUTR  
12  
V
SS  
MAX9755  
V
25  
11 CPV  
10 C1N  
DD  
SS  
GND 26  
N.C. 27  
INR 28  
9
8
CPGND  
C1P  
+
1
2
3
4
5
6
7
THIN QFN  
Package Information  
Chip Information  
For the latest package outline information and land patterns, go  
PROCESS: BiCMOS  
to www.maxim-ic.com/packages.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
ꢁ8 TQFN  
Tꢁ855N-1  
21-0140  
______________________________________________________________________________________ 29  
2.6W Stereo Audio Power Amplifiers and  
DirectDrive Headphone Amplifiers  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
8
6/±8  
Removed TSSOP package  
1, ꢁ, 11, ꢁ±, ꢁ4, ꢁ5, ꢁ6, ꢁ9  
01/MAX975  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
30 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© ꢁ±±8 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9750|MAX9751|MAX9755

2.6W Stereo Audio Power Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9751

2.6W Stereo Audio Power Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9751ETI

2.6W Stereo Audio Power Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9751ETI+

Volume Control Circuit, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-1, TQFN-28
MAXIM

MAX9751EUI

2.6W Stereo Audio Power Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9751EUI-T

Audio Amplifier, 2.6W, 2 Channel(s), 1 Func, BICMOS, PDSO28, 4.40 MM, MO-153AE, TSSOP-28
MAXIM

MAX9752

2.2W, Low-EMI, Stereo, Class D Power Amplifiers with DirectDrive Headphone Amplifiers
MAXIM

MAX9752AETI+

2.2W, 2 CHANNEL, AUDIO AMPLIFIER, QCC28, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-1, TQFN-28
ROCHESTER

MAX9752AETI+

2.2W, Low-EMI, Stereo, Class D Power Amplifiers with DirectDrive Headphone Amplifiers
MAXIM

MAX9752AETI+T

Audio Amplifier, 2.2W, 2 Channel(s), 1 Func, BICMOS, PQCC28, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-28
MAXIM

MAX9752BETI+

2.2W, 2 CHANNEL, AUDIO AMPLIFIER, QCC28, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-1, TQFN-28
ROCHESTER

MAX9752BETI+

2.2W, Low-EMI, Stereo, Class D Power Amplifiers with DirectDrive Headphone Amplifiers
MAXIM