MAX9754 [MAXIM]

2.2W, Low-EMI, Stereo, Class D Power Amplifiers with DirectDrive Headphone Amplifiers;
MAX9754
型号: MAX9754
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2.2W, Low-EMI, Stereo, Class D Power Amplifiers with DirectDrive Headphone Amplifiers

文件: 总29页 (文件大小:593K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3666; Rev 0; 9/05  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
General Description  
Features  
The MAX9752/MAX9753/MAX9754 combine a high-effi-  
ciency, filterless, stereo Class D audio power amplifier  
with a DirectDrive™ headphone amplifier in a single  
device. The Class D amplifier operates from a single  
4.5V to 5.5V supply and provides 2.2W per channel into  
a 4Ω load. The headphone amplifier operates from a  
single 3V to 5.5V supply, and uses Maxim’s DirectDrive  
architecture to produce a ground-referenced output  
from a single supply.  
PC2001 Compliant  
2.2W Class D Stereo Speaker Amplifier  
Pin-for-Pin Compatible with Class AB  
MAX9750/MAX9751/MAX9755  
85% Efficiency (R = 8Ω, P  
= 1W)  
L
OUT  
62mW DirectDrive Headphone Amplifier  
High PSRR (70dB at 1kHz)  
The MAX9754 features a Class D stereo speaker ampli-  
fier and headphone driver. The MAX9752 adds an ana-  
log volume control and a BEEP input. The MAX9753  
adds a stereo 2:1 input multiplexer. All devices feature  
logic-selectable gain, and a headphone sense input  
that detects the presence of a headphone.  
Analog Volume Control (MAX9752)  
Beep Input with Glitch Filter (MAX9752)  
2:1 Stereo Input MUX (MAX9753)  
8kV ESD-Protected Headphone Outputs  
The MAX9752/MAX9753/MAX9754 come in 28-pin thin  
QFN (5mm x 5mm x 0.8mm) packages, and are speci-  
fied over the extended -40°C to +85°C temperature  
range. For a pin-for-pin-compatible Class AB version of  
these devices, refer to the MAX9750/MAX9751/  
MAX9755 data sheet.  
No Output DC-Blocking Capacitors  
Industry-Leading Click-and-Pop Suppression  
Ordering Information  
PKG  
CODE  
MAXIMUM  
GAIN (dB)  
Applications  
Flat-Panel TVs  
PART  
PIN-PACKAGE  
Notebook PCs  
Tablet PCs  
MAX9752AETI+  
MAX9752BETI+  
MAX9752CETI+  
MAX9753ETI+  
MAX9754ETI+  
28 TQFN-EP*  
28 TQFN-EP*  
28 TQFN-EP*  
28 TQFN-EP*  
28 TQFN-EP*  
T2855-1  
T2855-1  
T2855-1  
T2855-1  
T2855-1  
13.5  
19.5  
10.5  
13.5  
13.5  
PC Displays  
Portable DVDs  
LCD Projectors  
Note: All devices specified for -40°C to +85°C operation.  
+Denotes lead-free package.  
Pin Configurations appear at end of data sheet.  
*EP = Exposed paddle.  
Block Diagrams  
MAX9752  
MAX9753  
MAX9754  
S
CLASS  
D
CLASS  
D
CLASS  
D
S
AMP  
AMP  
AMP  
VOL  
INPUT  
MUX  
HPS  
HPS  
HPS  
SELECT  
BEEP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
ABSOLUTE MAXIMUM RATINGS  
V
, PV , HPV , CPV  
to GND ....................... -0.3V to +6V  
Continuous Current Into/Out of PV , OUT_, PGND ...........1.7A  
DD  
DD  
DD  
DD  
DD  
GND to PGND or CPGND .................................... -0.3V to +0.3V  
CPV or V to PGND ........................................ -6.0V to +0.3V  
Continuous Current Into/Out of CPV , C1N, CPGND,  
DD  
C1P, CPV , V , HPV , HP_ ......................................0.85A  
SS  
SS  
SS SS  
DD  
C1N to PGND.........................................(CPV - 0.3V) to +0.3V  
Continuous Input Current (all other pins) ........................ 20mA  
SS  
C1P to PGND........................................ -0.3V to (CPV  
+ 0.3V)  
+ 0.3V)  
Continuous Power Dissipation (T = +70°C)  
DD  
DD  
A
HP_ to PGND......................... (HPV - 0.3V) to (HPV  
28-Pin TQFN (derate 21.3mW/°C above +70°C) .......1702mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
SS  
HP_ to PGND.............................................................. -3V to +3V  
Any Other Pin to PGND ............................. -0.3V to (V + 0.3V)  
DD  
Duration of OUT_ Short Circuit to PGND or PV .........Continuous  
DD  
Duration of OUT_+ Short Circuit to OUT_-.................Continuous  
Duration of HP_ Short Circuit to PGND ......................Continuous  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= PV  
= HPV  
= CPV  
= +5.0V, GND = PGND = HPGND = 0V, V  
= V , CPV  
= V , C  
= 1µF,  
BIAS  
DD  
DD  
DD  
DD  
SHDN  
DD  
SS  
SS  
C
= 1µF, C1 = 1µF, speaker impedance = 8Ω connected between OUT_+ and OUT_-, headphone load is terminated to GND;  
CPVSS  
MAX9752: GAIN1 = GAIN2 = 0, V  
= 0V; MAX9753: GAIN = 0, V  
= 0V; MAX9754: GAIN = 0; T = T  
to T  
, unless otherwise  
VOL  
A/B  
A
MIN  
MAX  
noted. Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
GENERAL  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range,  
Speaker Amplifier  
V
, PV  
Inferred from PSRR test  
4.5  
3.0  
5.5  
5.5  
V
V
DD  
DD  
Supply Voltage Range,  
Headphone Amplifier  
HPV  
Inferred from PSRR test  
DD  
Speaker mode, no load  
14  
7.2  
0.2  
3
18  
9.5  
8
Quiescent Current  
I
mA  
DD  
Headphone mode, no load  
Shutdown Supply Current  
Gain Switching Time  
Mux Switching Time  
I
V
= 0V  
SHDN  
µA  
µs  
µs  
SHDN  
t
SWG  
SWM  
t
MAX9753 only  
MAX9752  
3
10  
20  
6.6  
25  
30  
Input Resistance  
R
kΩ  
IN  
MAX9753/MAX9754  
3.5  
10.0  
Turn-On Time  
t
ms  
ON  
CLASS D SPEAKER AMPLIFIERS (HPS = GND)  
MAX9752A,  
MAX9752B,  
MAX9753, MAX9754  
T
T
= +25°C  
9.6  
7
38.8  
55  
A
Output Offset Voltage  
OUT_+ to OUT_-  
= T  
to T  
A
MIN  
MAX  
V
mV  
dB  
OS  
T
T
= +25°C  
40  
60  
A
MAX9752C  
= T  
to T  
A
MIN  
MAX  
PV  
or V  
= 4.5V to 5.5V, T = +25°C  
50  
74  
70  
60  
DD  
DD  
A
Power-Supply Rejection Ratio  
(Note 3)  
PSRR  
f = 1kHz, V  
= 100mV  
RIPPLE P-P  
f = 10kHz, V  
= 100mV  
P-P  
RIPPLE  
2
_______________________________________________________________________________________  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= HPV  
= CPV  
= +5.0V, GND = PGND = HPGND = 0V, V  
= V , CPV  
= V , C  
= 1µF,  
BIAS  
DD  
DD  
DD  
DD  
SHDN  
DD  
SS  
SS  
C
= 1µF, C1 = 1µF, speaker impedance = 8Ω connected between OUT_+ and OUT_-, headphone load is terminated to GND;  
CPVSS  
MAX9752: GAIN1 = GAIN2 = 0, V  
= 0V; MAX9753: GAIN = 0, V  
= 0V; MAX9754: GAIN = 0; T = T  
to T  
, unless otherwise  
VOL  
A/B  
A
MIN  
MAX  
noted. Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
GAIN2 = 0, GAIN1 = 0  
MIN  
TYP  
9.0  
MAX  
UNITS  
GAIN2 = 0, GAIN1 = 1  
GAIN2 = 1, GAIN1 = 0  
GAIN2 = 1, GAIN1 = 1  
GAIN2 = 0, GAIN1 = 0  
GAIN2 = 0, GAIN1 = 1  
GAIN2 = 1, GAIN1 = 0  
GAIN2 = 1, GAIN1 = 1  
GAIN2 = 0, GAIN1 = 0  
GAIN2 = 0, GAIN1 = 1  
GAIN2 = 1, GAIN1 = 0  
GAIN2 = 1, GAIN1 = 1  
GAIN = 1  
10.5  
12.0  
13.5  
15.0  
16.5  
18.0  
19.5  
6.0  
MAX9752A  
MAX9752B  
MAX9752C  
Speaker Amplifier Gain (Note 4)  
A
dB  
V_SP  
7.5  
9.0  
10.5  
9.0  
MAX9753/MAX9754  
f = 1kHz, THD+N  
GAIN = 0  
10.5  
MAX9752A,  
MAX9752B, MAX9753,  
MAX9754  
1.3  
0.8  
2.2  
1.7  
= 1%, T = +25°C,  
A
R = 8Ω  
L
MAX9752C  
Output Power  
P
W
OUT_SP  
MAX9752A,  
MAX9752B, MAX9753,  
MAX9754  
f = 1kHz, THD+N  
= 1%, T = +25°C,  
A
R = 4Ω  
L
MAX9752C  
R = 8Ω  
0.023  
0.03  
90  
L
Total Harmonic Distortion Plus  
Noise  
THD+N  
SNR  
f = 1kHz, P  
= 1W  
%
OUT  
R = 4Ω  
L
Unweighted  
A-weighted  
P
= 1W, f = 1kHz,  
OUT  
Signal-to-Noise Ratio  
dB  
BW = 22Hz to 22kHz  
91  
Into shutdown  
Out of shutdown  
Differential  
-47  
Click-and-Pop Level (Note 5)  
K
dBV  
CP  
-34  
Capacitive-Load Drive  
Switching Frequency  
Crosstalk  
C
200  
1200  
70  
pF  
kHz  
dB  
L_MAX  
f
1000  
1400  
SW  
Channel to channel, f = 10kHz, P  
= 1W  
OUT  
MAX9753, unselected input to any active  
input, f = 10kHz  
Off-Isolation  
Efficiency  
70  
85  
dB  
%
η
R = 8Ω, P  
= 1W, f = 1kHz  
L
OUT  
_______________________________________________________________________________________  
3
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= HPV  
= CPV  
= +5.0V, GND = PGND = HPGND = 0V, V  
= V , CPV  
= V , C  
= 1µF,  
BIAS  
DD  
DD  
DD  
DD  
SHDN  
DD  
SS  
SS  
C
= 1µF, C1 = 1µF, speaker impedance = 8Ω connected between OUT_+ and OUT_-, headphone load is terminated to GND;  
CPVSS  
MAX9752: GAIN1 = GAIN2 = 0, V  
= 0V; MAX9753: GAIN = 0, V  
= 0V; MAX9754: GAIN = 0; T = T  
to T  
, unless otherwise  
VOL  
A/B  
A
MIN  
MAX  
noted. Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HEADPHONE AMPLIFIER (HPS = V  
)
DD  
T
T
= +25°C  
0.5  
3.5  
8
A
Output Offset Voltage  
V
mV  
OS  
= T  
to T  
MAX  
A
MIN  
GAIN2 = 0  
GAIN2 = 1  
GAIN = 1  
GAIN = 0  
0
3
MAX9752,  
GAIN1 = don’t care  
Maximum Headphone Amplifier  
Gain (Note 6)  
A
V_HP  
dB  
0
MAX9753/MAX9754  
3
HPV  
or V  
= 3V to 5.5V, T = +25°C  
66  
73  
80  
60  
31  
62  
DD  
DD  
A
Power-Supply Rejection Ratio  
(Note 3)  
PSRR  
f = 1kHz, V  
= 100mV  
dB  
RIPPLE  
P-P  
f = 10kHz, V  
= 100mV  
P-P  
RIPPLE  
R = 32Ω  
L
THD+N = 1%, f  
1kHz, T = +25°C  
=
IN  
Output Power  
P
mW  
OUT_HP  
A
R = 16Ω  
L
R = 32Ω,  
L
0.005  
0.005  
95  
P
= 31mW  
OUT  
Total Harmonic Distortion Plus  
Noise  
THD+N  
SNR  
f
= 1kHz  
%
IN  
R = 16Ω,  
L
P
= 62mW  
OUT  
R = 32Ω,  
P
L
Unweighted  
A-weighted  
= 31mW,  
OUT  
Signal-to-Noise Ratio  
dB  
f
IN  
= 1kHz,  
101  
BW = 22Hz to 22kHz  
Into shutdown  
-33  
-37  
300  
60  
Click-and-Pop Level (Note 7)  
K
dBV  
CP  
Out of shutdown  
Capacitive-Load Drive  
Crosstalk  
C
No sustained oscillations  
pF  
dB  
L_MAX  
f = 10kHz, P  
= 62mW, R = 16Ω  
L
OUT  
MAX9753, unselected input to any active  
input, f = 10kHz  
Off-Isolation  
60  
dB  
Slew Rate  
SR  
0.8  
1
V/µs  
Output Impedance  
CHARGE PUMP  
Charge-Pump Frequency  
HPS = GND (disabled)  
kΩ  
f
540  
600  
660  
kHz  
CP  
VOLUME CONTROL (MAX9752 Only)  
VOL Input Impedance  
R
100  
50  
MΩ  
VOL  
VOL Input Hysteresis  
Full Mute Input Voltage  
Full Mute Attenuation  
HYST  
V
falling  
VOL  
mV  
VOL  
0.858 x  
V
V
VOL_MUTE  
V
DD  
A
f
IN  
= 1kHz  
-85  
dB  
V_MUTE  
4
_______________________________________________________________________________________  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= HPV  
= CPV  
= +5.0V, GND = PGND = HPGND = 0V, V  
= V , CPV  
= V , C  
= 1µF,  
BIAS  
DD  
DD  
DD  
DD  
SHDN  
DD  
SS  
SS  
C
= 1µF, C1 = 1µF, speaker impedance = 8Ω connected between OUT_+ and OUT_-, headphone load is terminated to GND;  
CPVSS  
MAX9752: GAIN1 = GAIN2 = 0, V  
= 0V; MAX9753: GAIN = 0, V  
= 0V; MAX9754: GAIN = 0; T = T  
to T  
, unless otherwise  
VOL  
A/B  
A
MIN  
MAX  
noted. Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Gain 10.5dB to 13.5dB  
MIN  
TYP  
0.2  
0.2  
0.3  
1.0  
MAX  
UNITS  
Gain 6.0dB to 10.0dB  
Gain -26dB to +4.0dB  
Gain -62dB to +30dB  
Channel Matching  
dB  
BEEP INPUT (MAX9752 Only)  
Beep Signal Minimum Amplitude  
(Note 8)  
V
R
BEEP  
= 47kΩ  
400  
300  
mV  
Hz  
BEEP  
Beep Signal Minimum Frequency  
f
BEEP  
/2  
LOGIC INPUTS (GAIN_, IN1 , SHDN, HPS)  
Input High Voltage  
Input Low Voltage  
V
2.0  
V
V
IH  
V
0.8  
+1  
IL  
GAIN_, SHDN  
-1  
Input Leakage Current  
I
µA  
LEAK  
IN1/2  
-2  
+2  
+1  
HPS  
-20  
Note 1: All devices are 100% production tested at T = +25°C. All temperature limits are guaranteed by design.  
A
Note 2: Speaker amplifier testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For  
R = 4Ω, L = 33µH. For R = 8Ω, L = 68µH.  
Note 3: Measured with the amplifier input connected to GND through C  
L
L
.
IN  
Note 4: Speaker amplifier gain is defined as A = (V  
- V  
) / V  
.
OUT_+  
OUT_-  
IN_  
Note 5: Testing performed with 8Ω resistive load in series with 68µH inductive load connected across the BTL output. Mode transitions  
are controlled by SHDN. Peak reading, THD+N = 1%, A-weighted, 32 samples per second. K level is calculated as:  
CP  
20 x log[(peak voltage under normal operation at rated power level) / (peak voltage during mode transition, no input signal)].  
Note 6: Headphone amplifier gain is defined as A = V  
/ V  
IN_  
.
HP_  
Note 7: Testing performed with 32Ω resistive load connected from HP_ output to GND. Mode transitions are controlled by SHDN.  
Peak reading, THD+N = 1%, A-weighted, 32 samples per second. K level is calculated as:  
CP  
20 x log[(peak voltage under normal operation at rated power level) / (peak voltage during mode transition, no input signal)].  
Note 8: The value of R  
dictates the minimum beep signal amplitude that is detected (see the Beep Input (MAX9752) section).  
BEEP  
_______________________________________________________________________________________  
5
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
Typical Operating Characteristics  
(V  
= PV  
= HPV  
= CPV  
= 5.0V, GND = PGND = HPGND = 0V, V  
= V , CPV  
= V , C  
= 1µF,  
BIAS  
DD  
DD  
DD  
DD  
SHDN  
DD  
SS  
SS  
C
= 1µF, C1 = 1µF, speaker impedance = 8Ω connected between OUT_+ and OUT_-, headphone load is terminated to GND;  
CPVSS  
MAX9752: GAIN1 = GAIN2 = 0, V  
= 0V; MAX9753: GAIN = 0, V  
= 0V; MAX9754: GAIN = 0; T = +25°C, unless otherwise noted.)  
VOL  
A/B A  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
10  
10  
10  
R = 3Ω  
L
R = 4Ω  
L
R = 8Ω  
L
1
0.1  
1
0.1  
1
0.1  
P
= 1.5W  
OUT  
P
= 1W  
P
= 1W  
OUT  
OUT  
P
= 750mW  
OUT  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
P
= 500mW  
OUT  
P
= 500mW  
10k  
OUT  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
100k  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
100  
10  
100  
10  
100  
10  
1
1
1
f
= 10kHz  
f
= 10kHz  
IN  
IN  
f
= 10kHz  
IN  
0.1  
0.1  
0.1  
f
= 20Hz  
IN  
f
= 20Hz  
f
= 1kHz  
IN  
IN  
f
= 1kHz  
0.01  
0.001  
0.01  
0.001  
IN  
0.01  
0.001  
f
= 1kHz AND 20Hz  
IN  
R = 3Ω  
L
R = 4Ω  
L
MAX9752C  
R = 3Ω  
MAX9752C  
L
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT POWER (W)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5 3.0  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
100  
10  
100  
10  
100  
10  
1
1
1
f
= 10kHz  
IN  
f = 10kHz  
IN  
f
= 10kHz  
IN  
0.1  
0.1  
0.1  
f
= 20Hz  
IN  
f
= 1kHz  
IN  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f
IN  
= 1kHz AND 20Hz  
0.5  
f
= 1kHz AND 20Hz  
R = 8Ω  
IN  
L
R = 4Ω  
L
MAX9752C  
R = 8Ω  
L
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
0
1.0  
1.5  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
6
_______________________________________________________________________________________  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= PV  
= HPV  
= CPV  
= 5.0V, GND = PGND = HPGND = 0V, V  
= V , CPV  
= V , C  
= 1µF,  
BIAS  
DD  
DD  
DD  
DD  
SHDN  
DD  
SS  
SS  
C
= 1µF, C1 = 1µF, speaker impedance = 8Ω connected between OUT_+ and OUT_-, headphone load is terminated to GND;  
CPVSS  
MAX9752: GAIN1 = GAIN2 = 0, V  
= 0V; MAX9753: GAIN = 0, V  
= 0V; MAX9754: GAIN = 0; T = +25°C, unless otherwise noted.)  
VOL  
A/B A  
OUTPUT POWER vs. LOAD RESISTANCE  
(SPEAKER MODE)  
OUTPUT POWER vs. LOAD RESISTANCE  
(SPEAKER MODE)  
4
5
4
3
2
1
0
THD+N = 10%  
3
THD+N = 10%  
2
THD+N = 1%  
1
THD+N = 1%  
0
1
10  
100  
1
10  
100  
LOAD RESISTANCE (Ω)  
LOAD RESISTANCE (Ω)  
POWER DISSIPATION vs. OUTPUT POWER  
(SPEAKER MODE)  
EFFICIENCY vs. OUTPUT POWER  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.0  
1.5  
1.0  
0.5  
0
R = 8Ω||68μH  
L
R = 4Ω||33μH  
L
R = 4Ω  
L
R = 8Ω  
L
0
2
4
6
0
1
2
3
4
OUTPUT POWER (W)  
OUTPUT POWER (W)  
TURN-OFF RESPONSE  
(SPEAKER MODE)  
TURN-ON RESPONSE  
(SPEAKER MODE)  
MAX9752/53/54 toc15  
MAX9752/53/54 toc14  
5V/div  
5V/div  
SHDN  
SHDN  
OUT  
(NO AUDIO)  
OUT  
(NO AUDIO)  
100mV/div  
500mV/div  
100mV/div  
OUT  
OUT  
500mV/div  
(1kHz, 2V  
)
P-P  
(1kHz, 2V  
)
P-P  
2ms/div  
4ms/div  
_______________________________________________________________________________________  
7
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= PV  
= HPV  
= CPV  
= 5.0V, GND = PGND = HPGND = 0V, V  
= V , CPV  
= V , C  
= 1µF,  
BIAS  
DD  
DD  
DD  
DD  
SHDN  
DD  
SS  
SS  
C
= 1µF, C1 = 1µF, speaker impedance = 8Ω connected between OUT_+ and OUT_-, headphone load is terminated to GND;  
CPVSS  
MAX9752: GAIN1 = GAIN2 = 0, V  
= 0V; MAX9753: GAIN = 0, V  
= 0V; MAX9754: GAIN = 0; T = +25°C, unless otherwise noted.)  
VOL  
A/B A  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
10  
1
10  
1
10  
1
V
= 5V  
V
= 5V  
V
= 3.3V  
DD  
DD  
DD  
R = 32Ω  
R = 16Ω  
R = 16Ω  
L
L
L
A
= 3dB  
A
V
= 3dB  
A = 3dB  
V
V
OUTPUT POWER = 30mW  
OUTPUT POWER = 45mW  
OUTPUT POWER = 90mW  
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
OUTPUT POWER = 10mW  
OUTPUT POWER = 30mW  
OUTPUT POWER = 10mW  
0.001  
0.001  
0.001  
0.0001  
0.0001  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
1000  
100  
10  
1000  
100  
10  
10  
1
V
= 5V  
V
= 5V  
DD  
V
= 3.3V  
DD  
DD  
R = 16Ω  
R = 32Ω  
R = 32Ω  
L
L
L
A
= 3dB  
A = 3dB  
V
A
V
= 3dB  
V
OUTPUT POWER = 45mW  
0.1  
0.01  
f
IN  
= 1kHz  
1
1
f
IN  
= 10kHz  
f
IN  
= 10kHz  
0.1  
0.1  
OUTPUT POWER = 10mW  
f
= 20Hz  
IN  
0.001  
0.01  
0.001  
0.01  
0.001  
f
= 1kHz  
100  
IN  
f
IN  
= 20Hz  
0.0001  
20  
0
25  
50  
75  
125  
150  
0
40  
60  
80  
100  
10  
100  
1k  
10k  
100k  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
OUTPUT POWER vs. LOAD RESISTANCE  
(HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
1000  
100  
10  
180  
160  
140  
120  
100  
80  
1000  
100  
10  
V
= 3.3V  
V
= 3.3V  
DD  
L
V
DD  
L
V
R = 32Ω  
A
R = 16Ω  
A
THD+N = 10%  
= 3dB  
= 3dB  
f
IN  
= 1kHz  
f
= 1kHz  
IN  
1
1
f
IN  
= 10kHz  
f
IN  
= 10kHz  
0.1  
0.1  
60  
40  
0.01  
0.001  
0.01  
0.001  
THD+N = 1%  
20  
0
40 50  
OUTPUT POWER (mW)  
90  
0
10 20 30  
60 70 80  
10  
100  
1000  
10  
40  
OUTPUT POWER (mW)  
0
20  
30  
50  
60  
LOAD RESISTANCE (Ω)  
8
_______________________________________________________________________________________  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= PV  
= HPV  
= CPV  
= 5.0V, GND = PGND = HPGND = 0V, V  
= V , CPV  
= V , C  
= 1µF,  
BIAS  
DD  
DD  
DD  
DD  
SHDN  
DD  
SS  
SS  
C
= 1µF, C1 = 1µF, speaker impedance = 8Ω connected between OUT_+ and OUT_-, headphone load is terminated to GND;  
CPVSS  
MAX9752: GAIN1 = GAIN2 = 0, V  
= 0V; MAX9753: GAIN = 0, V  
= 0V; MAX9754: GAIN = 0; T = +25°C, unless otherwise noted.)  
VOL  
A/B A  
OUTPUT POWER vs. SUPPLY VOLTAGE  
(HEADPHONE MODE)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (HEADPHONE MODE)  
POWER DISSIPATION vs. OUTPUT POWER  
(HEADPHONE MODE)  
250  
225  
200  
175  
150  
125  
100  
75  
125  
100  
75  
50  
25  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
A
= 200mV  
P-P  
= 10.5dB  
RIPPLE  
V
R = 16Ω  
L
OUTPUT REFERRED  
R = 16  
Ω
L
R = 32Ω  
L
R = 32  
Ω
L
V
= 5V  
50  
DD  
f = 1kHz  
= P  
25  
P
+ P  
OUTR  
OUT  
OUTL  
f = 1kHz  
0
0
25 50 75 100 125 150 175 200 225 250  
OUTPUT POWER (mW)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
SUPPLY VOLTAGE (V)  
CROSSTALK vs. FREQUENCY  
(HEADPHONE MODE)  
OUTPUT POWER vs. CHARGE-PUMP  
CAPACITANCE AND LOAD RESISTANCE  
0
-20  
200  
V
V
= 5V  
CC  
V
= 5V  
DD  
180  
160  
140  
120  
100  
80  
= 200mV  
RIPPLE  
P-P  
f = 1kHz  
THD+N = 1%  
R = 32Ω  
L
-40  
C1 = C2 = 2.2μF  
-60  
-80  
60  
RIGHT TO LEFT  
C1 = C2 = 1μF  
40  
-100  
-120  
20  
LEFT TO RIGHT  
0
10  
100  
1k  
10k  
100k  
10  
20  
30  
40  
50  
FREQUENCY (Hz)  
LOAD RESISTANCE (Ω)  
_______________________________________________________________________________________  
9
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= PV  
= HPV  
= CPV  
= 5.0V, GND = PGND = HPGND = 0V, V  
= V , CPV  
= V , C  
= 1µF,  
BIAS  
DD  
DD  
DD  
DD  
SHDN  
DD  
SS  
SS  
C
= 1µF, C1 = 1µF, speaker impedance = 8Ω connected between OUT_+ and OUT_-, headphone load is terminated to GND;  
CPVSS  
MAX9752: GAIN1 = GAIN2 = 0, V  
= 0V; MAX9753: GAIN = 0, V  
= 0V; MAX9754: GAIN = 0; T = +25°C, unless otherwise noted.)  
VOL  
A/B A  
TURN-ON RESPONSE  
(HEADPHONE MODE)  
HEADPHONE OUTPUT SPECTRUM  
MAX9752/53/54 toc31  
0
-20  
V
= 5V  
DD  
f = 1kHz  
= -60dB  
5V/div  
V
OUT  
R = 32Ω  
L
SHDN  
-40  
-60  
-80  
20mV/div  
HPOUT_  
-100  
-120  
-140  
R
= 32Ω  
L
0
5
10  
15  
20  
10ms/div  
FREQUENCY (Hz)  
TURN-OFF RESPONSE  
(HEADPHONE MODE)  
MAX9752/53/54 toc32  
5V/div  
SHDN  
20mV/div  
HPOUT_  
R
= 32Ω  
L
10ms/div  
10 ______________________________________________________________________________________  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
Pin Descriptions  
PIN  
NAME  
FUNCTION  
MAX9752  
MAX9753  
MAX9754  
1
2
2
3, 19  
4
INL  
Left-Channel Audio Input  
Audible Alert Beep Input  
Power Ground  
BEEP  
3, 19  
4
3, 19  
4
PGND  
OUTL+  
OUTL-  
Left-Channel Positive Speaker Output  
Left-Channel Negative Speaker Output  
Speaker Amplifier Power Supply  
5
5
5
6, 16  
7
6, 16  
7
6, 16  
7
PV  
DD  
CPV  
Charge-Pump Power Supply  
DD  
8
8
8
C1P  
Charge-Pump Flying-Capacitor Positive Terminal  
Charge-Pump Ground  
9
9
9
CPGND  
C1N  
10  
11  
12  
13  
14  
15  
17  
18  
20  
21  
10  
11  
12  
13  
14  
15  
17  
18  
20  
21  
10  
11  
12  
13  
14  
15  
17  
18  
20  
21  
Charge-Pump Flying-Capacitor Negative Terminal  
CPV  
Charge-Pump Output. Connect to V  
.
SS  
SS  
V
Headphone Amplifier Negative Power Supply  
Right-Channel Headphone Output  
SS  
HPOUTR  
HPOUTL  
Left-Channel Headphone Output  
HPV  
Headphone Positive Power Supply  
DD  
OUTR-  
OUTR+  
HPS  
Right-Channel Negative Speaker Output  
Right-Channel Positive Speaker Output  
Headphone Sense Input  
BIAS  
Common-Mode Bias Voltage. Bypass with a 1µF capacitor to GND.  
Shutdown. Drive SHDN low to disable the device. Connect SHDN to  
22  
22  
22  
SHDN  
V
for normal operation.  
DD  
23  
24  
25  
26  
27  
28  
25  
26  
1
GAIN2  
GAIN1  
Gain-Control Input 2  
Gain-Control Input 1  
25  
V
Power Supply  
DD  
23, 26  
28  
GND  
INR  
Ground  
Right-Channel Audio Input  
Analog Volume Control Input  
Left-Channel Audio Input 1  
Left-Channel Audio Input 2  
Input Select  
VOL  
INL1  
INL2  
IN1/2  
GAIN  
INR1  
INR2  
N.C.  
2
23  
24  
27  
28  
24  
Gain Select  
Right-Channel Audio Input 1  
Right-Channel Audio Input 2  
No Connection. Not internally connected.  
1, 27  
______________________________________________________________________________________ 11  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
MAX9752 ONLY  
V
DD  
IN_  
V
OUT  
V
DD  
/ 2  
GND  
OUT_+  
BIAS  
BIAS  
CONVENTIONAL DRIVER-BIASING SCHEME  
+V  
DD  
VOLUME  
CONTROL  
OUT_  
VOL  
BIAS  
GND  
GND  
HPOUT_  
-V  
DD  
DirectDrive BIASING SCHEME  
Figure 1. MAX9752/MAX9753/MAX9754 Signal Path  
Figure 2. Traditional Amplifier Output vs. DirectDrive Output  
have almost twice the supply range compared to other  
single-supply amplifiers, nearly quadrupling the available  
output power. The benefit of the GND bias is that the  
amplifier outputs no longer have a DC component (typi-  
Detailed Description  
The MAX9752/MAX9753/MAX9754 combine a 2.2W,  
Class D speaker amplifier and a 62mW DirectDrive  
headphone amplifier with integrated headphone sens-  
ing and comprehensive click-and-pop suppression.  
The speaker amplifiers offer Class AB performance with  
Class D efficiency, while occupying minimal board  
space. A unique filterless modulation scheme and  
spread-spectrum switching create a compact, flexible,  
low-noise, efficient audio power amplifier.  
cally V  
/ 2). This eliminates the large DC-blocking  
DD  
capacitors required with conventional headphone ampli-  
fiers, removing the dominant source of click and pop,  
conserving board space, system cost, and improving  
frequency response.  
An undervoltage lockout prevents operation from an  
insufficient power supply. The amplifiers include ther-  
mal-overload and short-circuit protection, and can with-  
stand ±±kV ESD strikes on the headphone amplifier  
outputs (IEC Air-Gap Discharge). An additional feature  
of the speaker amplifiers is that there is no phase inver-  
sion from input to output.  
The MAX9752 features an analog volume control, BEEP  
input, and four-level gain control. The MAX9753 fea-  
tures a 2:1 input stereo multiplexer and two-level gain  
control. The MAX9754 has only the Class D amplifiers  
and the headphone amplifiers.  
An input amplifier sets the gain of the signal path, and  
feeds both the speaker and headphone amplifier  
(Figure 1). The speaker amplifier uses a low-EMI, Class  
D architecture to drive the speakers, eliminating the  
need for an external filter for short speaker cables.  
Class D Speaker Amplifier  
The MAX9752/MAX9753/MAX9754 feature a unique  
spread-spectrum mode that flattens the wideband spec-  
tral components, improving EMI emissions that may be  
radiated by the speaker and cables. The switching fre-  
quency varies randomly by ±9ꢀkꢁH around the center  
frequency (12ꢀꢀkꢁH). Instead of a large amount of spec-  
tral energy present at multiples of the switching frequen-  
cy, the energy is now spread over a bandwidth that  
increases with frequency. Above a few megahertH, the  
wideband spectrum looks like white noise for EMI pur-  
poses (Figure 3).  
The headphone amplifiers use Maxim’s DirectDrive  
architecture eliminating the bulky output DC-blocking  
capacitors required by traditional headphone amplifiers.  
A charge pump inverts the positive supply (CPV ), cre-  
DD  
ating a negative supply (CPV ). The headphone ampli-  
SS  
fiers operate from these bipolar supplies with their  
outputs biased about GND (Figure 2). The amplifiers  
12 ______________________________________________________________________________________  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
30  
60  
80  
100  
120  
140  
160  
180  
200  
220  
240  
260  
280  
300  
FREQUENCY (MHz)  
Figure 3. MAX9752/MAX9753/MAX9754 Radiated Emissions with 76mm of Speaker Cable  
EFFICIENCY vs. OUTPUT POWER  
100  
V
IN_  
= 0V  
MAX9752  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
MAX9753  
MAX9754  
OUT_-  
OUT_+  
CLASS AB  
R = 8Ω  
L
0
0.5  
1.0  
OUTPUT POWER (W)  
1.5  
2.0  
V
- V = 0V  
OUT_+ OUT_-  
Figure 5. MAX9752/MAX9753/MAX9754 Class D Efficiency vs.  
MAX9750/MAX9751/MAX9755 Class AB Efficiency  
Figure 4. Second-Generation Class D Output Waveform with  
No Signal  
Filterless Modulation/Common-Mode Idle  
The MAX9752/MAX9753/MAX9754 use Maxim’s unique  
modulation scheme that eliminates the LC filter required  
by traditional Class D amplifiers, improving efficiency,  
reducing component count, and conserving board  
space and system cost (Figure 4). With no input signal,  
the outputs are two low-duty-cycle pulses that are in-  
phase. This lowers the high-frequency energy and spec-  
tral content. In comparison, conventional Class D  
amplifiers output a 50% duty cycle when no input signal  
is present. For most applications with short speaker  
cables, no filtering is required.  
Efficiency  
Efficiency of a Class D amplifier is attributed to the  
region of operation of the output stage transistors. In a  
Class D amplifier, the output transistors act as switches  
and consume negligible power. Any power loss associ-  
ated with the Class D output stage is mostly due to the  
I2R loss of the MOSFET on-resistance, and quiescent  
current overhead.  
The theoretical best efficiency of a linear amplifier is 78%,  
however, that efficiency is only exhibited at peak output  
powers. Under normal operating levels (typical music  
reproduction levels), efficiency falls below 30%, whereas  
the MAX9752/MAX9753/MAX9754 still exhibit > 80%  
efficiencies under the same conditions (Figure 5).  
______________________________________________________________________________________ 13  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
3) When using the headphone jack as a line out to  
other equipment, the bias voltage on the sleeve  
may conflict with the ground potential from other  
equipment, resulting in large ground-loop current  
and possible damage to the amplifiers.  
Headphone Amplifier  
DirectDrive  
Conventional single-supply headphone amplifiers have  
their outputs biased about a nominal DC voltage (typi-  
cally half the supply) for maximum dynamic range.  
Large coupling capacitors are needed to block the DC  
bias from the headphones.  
Low-Frequency Response  
In addition to the cost and size disadvantages, the DC-  
blocking capacitors limit the low-frequency response of  
the amplifier and distort the audio signal:  
Maxim’s DirectDrive architecture uses a charge pump to  
create an internal negative supply voltage. This allows the  
MAX9752/MAX9753/MAX9754 headphone amplifier out-  
put to be biased about GND, almost doubling the dynam-  
ic range, while operating from a single supply. With no DC  
component, there is no need for the large DC-blocking  
capacitors. Instead of two large capacitors (220µF, typ),  
the charge pump requires only two small ceramic capaci-  
tors (1µF typ), conserving board space, reducing cost,  
and improving the frequency response of the headphone  
amplifier. See the Output Power vs. Charge-Pump  
Capacitance and Load Resistance graph in the Typical  
Operating Characteristics for details of the possible  
capacitor values.  
1) The impedance of the headphone load and the DC-  
blocking capacitor form a highpass filter with the  
-3dB point determined by:  
1
f3dB  
=
2πR C  
L
OUT  
where R is the impedance of the headphone and  
L
C
is the value of the DC-blocking capacitor.  
OUT  
The highpass filter is required by conventional single-  
ended, single-supply headphone amplifiers to block  
the midrail DC component of the audio signal from  
the headphones. Depending on the -3dB point, the  
filter can attenuate low-frequency signals within the  
Previous attempts to eliminate the output-coupling capac-  
itors involved biasing the headphone return (sleeve) to  
the DC bias voltage of the headphone amplifiers. This  
method raised some issues:  
audio band. Larger values of C  
reduce the atten-  
OUT  
uation, but are physically larger, more expensive  
capacitors. Figure 6 shows the relationship between  
the size of C  
and the resulting low-frequency  
OUT  
1) The sleeve is typically grounded to the chassis. Using  
this biasing approach, the sleeve must be isolated  
from system ground, complicating product design.  
attenuation. Note the -3dB point for a 16Ω head-  
phone with a 100µF blocking capacitor is 100Hz, well  
within the audio band.  
2) During an ESD strike, the amplifier’s ESD structures  
are the only path to system ground. The amplifier  
must be able to withstand the full ESD strike.  
2) The voltage coefficient of the capacitor, the change in  
capacitance due to a change in the voltage across  
the capacitor, distorts the audio signal. At frequen-  
cies around the -3dB point, the reactance of the  
capacitor dominates, and the voltage coefficient  
appears as frequency-dependent distortion. Figure 7  
shows the THD+N introduced by two different  
capacitor dielectrics. Note that around the -3dB point,  
THD+N increases dramatically.  
LOW-FREQUENCY ROLLOFF  
(R = 16Ω)  
L
0
-3  
-6  
DirectDrive  
330μF  
220μF  
100μF  
The combination of low-frequency attenuation and  
frequency-dependent distortion compromises audio  
reproduction. DirectDrive improves low-frequency  
reproduction in portable audio equipment that  
emphasizes low-frequency effects such as multi-  
media laptops, MP3, CD, and DVD players.  
-9  
-12  
-15  
33μF  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 6. Low-Frequency Attenuation of Common DC-Blocking  
Capacitor Values  
14 ______________________________________________________________________________________  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
ADDITIONAL THD+N DUE  
TO DC-BLOCKING CAPACITORS  
V
DD  
10  
1
MAX9752  
MAX9753  
MAX9754  
0.1  
R1  
100kΩ  
TANTALUM  
0.01  
0.001  
0.0001  
HPS  
OUTL  
ALUM/ELEC  
OUTR  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 7. Distortion Contributed by DC-Blocking Capacitors  
Figure 8. HPS Configuration  
Table 1. MAX9752 Gain Settings  
SPEAKER MODE GAIN (dB)  
GAIN2  
GAIN1  
HEADPHONE MODE GAIN (dB)  
MAX9752A  
9.0  
MAX9752B  
15.0  
MAX9752C  
0
0
1
1
0
1
0
1
6.0  
7.5  
0
0
3
3
10.5  
16.5  
12.0  
18.0  
9.0  
13.5  
19.5  
10.5  
Charge Pump  
ance of the headphone amplifier pulls HPS low. When a  
headphone plug is inserted into the jack, the control pin  
is disconnected from the tip contact and HPS is pulled  
The MAX9752/MAX9753/MAX9754 feature a low-noise  
charge pump. The 600kHz switching frequency is well  
beyond the audio range, and does not interfere with the  
audio signals. The switch drivers feature a controlled  
switching speed that minimizes noise generated by turn-  
on and turn-off transients. Limiting the switching speed  
of the charge pump minimizes the di/dt noise caused by  
the parasitic bond wire and trace inductance. Although  
not typically required, additional high-frequency ripple  
attenuation can be achieved by increasing the size of C2  
(see the Functional Diagrams).  
to V  
through the internal 100kΩ pullup resistor.  
DD  
Bias  
The MAX9752/MAX9753/MAX9754 feature an internally  
generated, power-supply-independent, common-mode  
bias voltage referenced to GND. BIAS provides both  
click-and-pop suppression and sets the DC bias level  
for the amplifiers. Choose the value of the bypass  
capacitor as described in the BIAS Capacitor section.  
No external load should be applied to BIAS.  
Headphone Sense Input (HPS)  
The headphone sense input (HPS) monitors the head-  
phone jack, and automatically configures the device  
based upon the voltage applied at HPS. A voltage of  
less than 0.8V sets the device to speaker mode. A volt-  
age of greater than 2V disables the speaker amplifiers  
and enables the headphone amplifiers.  
Gain Selection  
MAX9752  
The MAX9752 features externally controlled gain with  
four pin-selectable gain ranges. GAIN1 and GAIN2 set  
the maximum gain of the MAX9752 speaker and head-  
phone amplifiers (Table 1). The voltage at VOL varies  
the gain of the speaker and headphone amplifiers, pro-  
viding a user-adjusted volume control, see the Analog  
Volume Control (VOL, MAX9752) section.  
For automatic headphone detection, connect HPS to the  
control pin of a 3-wire headphone jack as shown in  
Figure 8. With no headphone present, the output imped-  
______________________________________________________________________________________ 15  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
Table 2. MAX9752 Speaker Amplifier Gain  
Settings for Maximum Output Power  
Table 3. MAX9753/MAX9754 Maximum  
Gain Settings  
GAIN  
(dB)  
INPUT  
(V  
R
(Ω)  
P
OUT  
(W)  
L
SPEAKER MODE  
GAIN (dB)  
HEADPHONE MODE  
GAIN (dB)  
GAIN  
)
RMS  
MAX9752A  
9.0  
0
1
10.5  
9.0  
3
0
1.004  
0.844  
0.710  
0.598  
1.099  
0.925  
0.778  
0.655  
4
4
4
4
8
8
8
8
2.0  
2.0  
2.0  
2.0  
1.2  
1.2  
1.2  
1.2  
10.5  
12.0  
13.5  
9.0  
Table 4. MAX9753/MAX9754 Input Voltage  
and Gain Settings for Maximum Output  
Power  
10.5  
12.0  
13.5  
MAX9752B  
15.0  
16.5  
18.0  
19.5  
15.0  
16.5  
18.0  
19.5  
MAX9752C  
6.0  
GAIN  
(dB)  
INPUT  
(V  
R
(Ω)  
P
OUT  
(W)  
L
)
RMS  
10.5  
9.0  
0.844  
1.004  
0.925  
1.099  
4
4
8
8
2.0  
2.0  
1.2  
1.2  
0.503  
0.423  
0.356  
0.300  
0.551  
0.464  
0.390  
0.328  
4
4
4
4
8
8
8
8
2.0  
2.0  
2.0  
2.0  
1.2  
1.2  
1.2  
1.2  
10.5  
9.0  
Table 4 shows the amplifier input voltage needed to  
attain maximum speaker output power from a given  
gain setting and load.  
Analog Volume Control (VOL, MAX9752)  
The MAX9752 features an analog volume control that  
varies the speaker and headphone amplifier’s gain in 31  
discrete steps based upon the DC voltage applied to  
VOL. The input range of VOL is from 0 (full volume) to  
1.418  
1.193  
1.004  
0.844  
1.553  
1.307  
1.099  
0.925  
4
4
4
4
8
8
8
8
2.0  
2.0  
2.0  
2.0  
1.2  
1.2  
1.2  
1.2  
0.858 x HPV (full mute). Example step sizes are shown  
DD  
7.5  
in Table 5. Control VOL with either a DAC or potentiome-  
ter as shown in Figure 9. Because the VOL input is high  
impedance (typically 100MΩ), it can also be driven with  
an RC-filtered PWM signal. Connect the reference of the  
9.0  
10.5  
6.0  
DAC or potentiometer to HPV . Since the volume con-  
DD  
trol is ratiometric to HPV , any changes in HPV  
7.5  
are  
DD  
DD  
9.0  
negated. The gain step sizes are not constant, the step  
sizes at the upper extreme are 0.5dB/step, 2.0dB/step in  
the midrange, and 4.0dB/step at the lower extreme.  
Figure 10 shows the transfer function of the volume con-  
10.5  
Table 2 shows the amplifier gain settings needed to  
attain maximum speaker output power from a given  
input voltage and load.  
trol for HPV = 3.3V.  
DD  
MAX9753/MAX9754  
The gain of the MAX9753/MAX9754 is set by GAIN.  
Drive GAIN high to set the gain of the speaker ampli-  
fiers to 9dB, and the gain of the headphone amplifiers  
to 0dB. Drive GAIN low to set the gain of the speaker  
amplifiers to 10.5dB, and the gain of the headphone  
amplifiers to 3dB (Table 3).  
16 ______________________________________________________________________________________  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
Table 5a. MAX9752A Volume Levels  
V
(V)  
SPEAKER MODE GAIN (dB)  
HEADPHONE MODE GAIN (dB)  
VOL  
FRACTION  
OF  
GAIN1 = 0,  
GAIN2 = 0  
GAIN1 = 1,  
GAIN2 = 0  
GAIN1 = 0,  
GAIN2 = 1  
GAIN1 = 1  
GAIN2 = 1  
GAIN1 = X,  
GAIN2 = 0  
GAIN1 = X,  
GAIN2 = 1  
V
*
V
MAX  
*
MIN  
HPV  
DD  
0
0.4900  
0.5673  
0.6447  
0.7220  
0.7994  
0.8767  
0.9541  
1.0314  
1.1088  
1.1861  
1.2635  
1.3408  
1.4182  
1.4955  
1.5728  
1.6502  
1.7275  
1.8049  
1.8822  
1.9596  
2.0369  
2.1143  
2.1916  
2.2690  
2.3463  
2.4237  
2.5010  
2.5783  
2.6557  
2.7330  
2.8104  
3.3000  
0.074  
0.160  
0.183  
0.207  
0.230  
0.253  
0.277  
0.300  
0.324  
0.347  
0.371  
0.394  
0.418  
0.441  
0.464  
0.488  
0.511  
0.535  
0.558  
0.582  
0.605  
0.628  
0.652  
0.675  
0.699  
0.722  
0.746  
0.769  
0.793  
0.816  
0.839  
0.858  
9
8
10.5  
10  
12  
11.5  
11  
13.5  
13  
0
-1  
3
2.5  
2
0.4900  
0.5673  
0.6447  
0.7220  
0.7994  
0.8767  
0.9541  
1.0314  
1.1088  
1.1861  
1.2635  
1.3408  
1.4182  
1.4955  
1.5728  
1.6502  
1.7275  
1.8094  
1.8822  
1.9596  
2.0369  
2.1143  
2.1916  
2.2690  
2.3463  
2.4237  
2.5010  
2.5783  
2.6557  
2.7330  
2.8104  
7
9
12.5  
12  
-2  
6
8
10.5  
10  
-3  
1.5  
1
4
7
11.5  
11  
-5  
2
6
9
-7  
0
0
4
8
10.5  
10  
-9  
-1  
-2  
2
7
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-47  
-51  
-55  
-59  
-63  
-67  
-71  
MUTE  
-2  
-4  
0
6
9
-3  
-6  
-2  
4
8
-5  
-8  
-4  
2
7
-7  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-32  
-34  
-38  
-42  
-46  
-50  
-54  
-58  
-62  
MUTE  
-6  
0
6
-9  
-8  
-2  
4
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-47  
-51  
MUTE  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-32  
-34  
-38  
-42  
-46  
-50  
-54  
MUTE  
-4  
2
-6  
0
-8  
-2  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-32  
-34  
-38  
-42  
MUTE  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-32  
MUTE  
*Based on HPV = 3.3V.  
DD  
X = Don’t care.  
______________________________________________________________________________________ 17  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
Table 5b. MAX9752B Volume Levels  
V
(V)  
SPEAKER MODE GAIN (dB)  
HEADPHONE MODE GAIN (dB)  
VOL  
FRACTION  
OF  
GAIN1 = 0,  
GAIN2 = 0  
GAIN1 = 1,  
GAIN2 = 0  
GAIN1 = 0,  
GAIN2 = 1  
GAIN1 = 1  
GAIN2 = 1  
GAIN1 = X,  
GAIN2 = 0  
GAIN1 = X,  
GAIN2 = 1  
V
*
V
*
MAX  
MIN  
HPV  
DD  
0
0.4900  
0.5673  
0.6447  
0.7220  
0.7994  
0.8767  
0.9541  
1.0314  
1.1088  
1.1861  
1.2635  
1.3408  
1.4182  
1.4955  
1.5728  
1.6502  
1.7275  
1.8049  
1.8822  
1.9596  
2.0369  
2.1143  
2.1916  
2.2690  
2.3463  
2.4237  
2.5010  
2.5783  
2.6557  
2.7330  
2.8104  
3.3000  
0.074  
0.160  
0.183  
0.207  
0.230  
0.253  
0.277  
0.300  
0.324  
0.347  
0.371  
0.394  
0.418  
0.441  
0.464  
0.488  
0.511  
0.535  
0.558  
0.582  
0.605  
0.628  
0.652  
0.675  
0.699  
0.722  
0.746  
0.769  
0.793  
0.816  
0.839  
0.858  
15  
14  
16.5  
16  
18  
17.5  
17  
19.5  
19  
0
-1  
3
2.5  
2
0.4900  
0.5673  
0.6447  
0.7220  
0.7994  
0.8767  
0.9541  
1.0314  
1.1088  
1.1861  
1.2635  
1.3408  
1.4182  
1.4955  
1.5728  
1.6502  
1.7275  
1.8049  
1.8822  
1.9596  
2.0369  
2.1143  
2.1916  
2.2690  
2.3463  
2.4237  
2.5010  
2.5783  
2.6557  
2.7330  
2.8104  
13  
15  
18.5  
18  
-2  
12  
14  
16.5  
16  
-3  
1.5  
1
10  
13  
17.5  
17  
-5  
8
12  
15  
-7  
0
6
10  
14  
16.5  
16  
-9  
-1  
4
8
13  
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-47  
-51  
-55  
-59  
-63  
-67  
-71  
MUTE  
-2  
2
6
12  
15  
-3  
0
4
10  
14  
-5  
-2  
2
8
13  
-7  
-4  
0
6
12  
-9  
-6  
-2  
4
10  
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-47  
-51  
MUTE  
-8  
-4  
2
8
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-32  
-36  
-40  
-44  
-48  
-52  
-56  
MUTE  
-6  
0
6
-8  
-2  
4
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-32  
-36  
-40  
-44  
-48  
MUTE  
-4  
2
-6  
0
-8  
-2  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-32  
-36  
MUTE  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
MUTE  
*Based on HPV = 3.3V.  
DD  
X = Don’t care.  
18 ______________________________________________________________________________________  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
Table 5c. MAX9752C Volume Levels  
V
(V)  
SPEAKER MODE GAIN (dB)  
HEADPHONE MODE GAIN (dB)  
VOL  
FRACTION  
OF  
GAIN1 = 0,  
GAIN2 = 0  
GAIN1 = 1,  
GAIN2 = 0  
GAIN1 = 0,  
GAIN2 = 1  
GAIN1 = 1  
GAIN2 = 1  
GAIN1 = X,  
GAIN2 = 0  
GAIN1 = X,  
GAIN2 = 1  
V
*
V
*
MAX  
MIN  
HPV  
DD  
0
0.4900  
0.5673  
0.6447  
0.7220  
0.7994  
0.8767  
0.9541  
1.0314  
1.1088  
1.1861  
1.2635  
1.3408  
1.4182  
1.4955  
1.5728  
1.6502  
1.7275  
1.8049  
1.8822  
1.9596  
2.0369  
2.1143  
2.1916  
2.2690  
2.3463  
2.4237  
2.5010  
2.5783  
2.6557  
2.7330  
2.8104  
3.3000  
0.074  
0.160  
0.183  
0.207  
0.230  
0.253  
0.277  
0.300  
0.324  
0.347  
0.371  
0.394  
0.418  
0.441  
0.464  
0.488  
0.511  
0.535  
0.558  
0.582  
0.605  
0.628  
0.652  
0.675  
0.699  
0.722  
0.746  
0.769  
0.793  
0.816  
0.839  
0.858  
6
5
7.5  
7
9
8.5  
8
10.5  
10  
9.5  
9
0
-1  
3
2.5  
2
0.4900  
0.5673  
0.6447  
0.7220  
0.7994  
0.8767  
0.9541  
1.0314  
1.1088  
1.1861  
1.2635  
1.3408  
1.4182  
1.4955  
1.5728  
1.6502  
1.7275  
1.8049  
1.8822  
1.9596  
2.0369  
2.1143  
2.1916  
2.2690  
2.3463  
2.4237  
2.5010  
2.5783  
2.6557  
2.7330  
2.8104  
4
6
-2  
3
5
7.5  
7
-3  
1.5  
1
1
4
8.5  
8
-5  
-1  
3
6
-7  
0
-3  
1
5
7.5  
7
-9  
-1  
-5  
-1  
4
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-47  
-51  
-55  
-59  
-63  
-67  
-71  
MUTE  
-2  
-7  
-3  
3
6
-3  
-9  
-5  
1
5
-5  
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-41  
-45  
-48  
-53  
-57  
-61  
-65  
MUTE  
-7  
-1  
4
-7  
-9  
-3  
3
-9  
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-3  
-5  
1
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
-37  
-39  
-41  
-43  
-47  
-51  
MUTE  
-7  
-1  
-9  
-3  
-11  
-13  
-15  
-17  
-9  
-5  
-7  
-9  
-11  
-13  
-15  
-17  
-19  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
-35  
MUTE  
-21  
-23  
-2  
-27  
-29  
-31  
-33  
-35  
-37  
-41  
-45  
MUTE  
-35  
-37  
-41  
-45  
-49  
-53  
-57  
MUTE  
*Based on HPV = 3.3V.  
DD  
X = Don’t care.  
______________________________________________________________________________________ 19  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
MAX9752C  
VOLUME-CONTROL TRANSFER FUNCTION  
20  
GAIN1 = GAIN2 = 0  
10  
0
-10  
MAX9752  
SPEAKER MODE  
AUDIO  
TAPER POT  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
HPV  
VOL  
DD  
V
REF  
DAC  
HEADPHONE MODE  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(V)  
V
VOL  
Figure 9. MAX9752 Volume-Control Circuit  
Figure 10c. MAX9752C Volume-Control Transfer Functions  
Beep Input (MAX9752)  
The MAX9752 features an audible alert beep input  
(BEEP). BEEP serves as the alert signal detector and the  
alert input to the amplifiers. AC-couple the alert output of  
a µC to BEEP. The MAX9752 monitors the signal at  
MAX9752A  
VOLUME-CONTROL TRANSFER FUNCTION  
20  
10  
GAIN1 = GAIN2 = 0  
0
SPEAKER MODE  
AUDIO  
BEEP. When a signal exceeding 400mV  
with a fre-  
P-P  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
quency greater than 300Hz is detected at BEEP, the  
MAX9752 connects the signal to the amplifiers after eight  
periods of the input signal. In speaker mode, the alert  
signal appears at both speaker outputs, mixed with any  
audio that may be present. In headphone mode, the alert  
signal appears at the headphone outputs, mixed with  
any audio that may be present. A signal with less than  
eight input periods is ignored. Multiple BEEP signals can  
be summed as shown in Figure 11. Adding external  
resistors in series with BEEP increase the minimum volt-  
age amplitude sensitivity.  
TAPER POT  
HEADPHONE MODE  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(V)  
V
VOL  
Figure 10a. MAX9752A Volume-Control Transfer Functions  
Input Mux (MAX9753)  
The MAX9753 features a 2:1 input multiplexer on each  
amplifier, allowing input selection between two stereo  
sources. The logic input IN1/2 controls both multiplexers.  
A logic-high selects input IN_1 and a logic-low selects  
input IN_2. The unselected inputs are high impedance.  
MAX9752B  
VOLUME-CONTROL TRANSFER FUNCTION  
20  
GAIN1 = GAIN2 = 0  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
SPEAKER MODE  
AUDIO  
TAPER POT  
Shutdown  
The MAX9752/MAX9753/MAX9754 feature an 8µA, low-  
power shutdown mode reducing quiescent current con-  
sumption and extending battery life. Driving SHDN low  
disables the drive amplifiers, bias circuitry, charge  
pump, and sets the headphone amplifier output imped-  
ance to 1kΩ, and drives BIAS to GND. Connect SHDN to  
HEADPHONE MODE  
V
DD  
for normal operation.  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(V)  
V
VOL  
Figure 10b. MAX9752B Volume-Control Transfer Functions  
20 ______________________________________________________________________________________  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
R
S1  
0.47μF  
0.47μF  
0.47μF  
47kΩ  
R
INT  
SOURCE 1  
SOURCE 2  
SOURCE 3  
47kΩ  
R
S2  
47kΩ  
SPEAKER/HEADPHONE  
AMPLIFIER INPUTS  
BEEP  
V
OUT(BEEP)  
WINDOW  
R
S3  
47kΩ  
DETECTOR  
(0.4V THRESHOLD)  
P-P  
MAX9752  
FREQUENCY  
DETECTOR  
BIAS  
(300Hz THRESHOLD)  
Figure 11. MAX9752 Beep Summing Circuit  
Click-and-Pop Suppression  
The MAX9752/MAX9753/MAX9754 feature Maxim’s  
comprehensive, industry-leading click-and-pop sup-  
pression eliminating audible transients at startup. The  
Turn-On and Turn-Off Response waveforms in the  
Typical Operating Characteristics show that there are  
minimal spectral components in the audible range at  
the output upon startup and shutdown.  
Power Dissipation and Heat Sinking  
Because the MAX9752/MAX9753/MAX9754 have high-  
efficiency, Class D speaker drivers, the intrinsic pack-  
age power dissipation capabilities are sufficient for  
cooling. No special heatsinking is needed in normal  
operating conditions.  
Headphone Amplifier Output Power  
The headphone amplifiers have been specified for the  
worst-case scenario—when both inputs are in-phase.  
Under this condition, the drivers simultaneously draw cur-  
rent from the charge pump, leading to a slight loss in  
Applications Information  
Compatibility with  
MAX9750/MAX9751/MAX9755  
headroom of V . In typical stereo audio applications, the  
SS  
The MAX9752/MAX9753/MAX9754 provide a high-effi-  
ciency, Class D speaker driver with very low EMI (see  
the Typical Operating Characteristics). If a Class AB  
output is desired, the MAX9750/MAX9751/MAX9755  
can be substituted. The MAX9750, MAX9751, and  
MAX9755 are pin-for-pin compatible with the MAX9752,  
MAX9753, and MAX9754, respectively.  
left and right signals have differences in both magnitude  
and phase, subsequently leading to an increase in the  
maximum attainable output power. Figure 12 shows the  
two cases for in- and out-of-phase. In reality, the available  
power lies between these extremes.  
1000  
Filterless Operation  
The MAX9752/MAX9753/MAX9754 do not require an  
output filter in most applications. The devices rely on  
the inherent inductance of the speaker coil and the nat-  
ural filtering of both the speaker and the human ear to  
recover the audio component of the square-wave out-  
put. Eliminating the output filter results in a smaller, less  
costly, more efficient solution.  
V
= 5V  
DD  
L
R = 16Ω  
A
100  
10  
= 3dB  
V
OUTPUTS IN-PHASE  
1
0.1  
Voice coil movement due to the square-wave frequency  
is very small because the switching frequency is well  
beyond the bandwidth of speakers. Although this move-  
ment is small, a speaker not designed to handle the  
additional power can be damaged. Use a speaker with a  
series inductance > 30µH for optimum results. Typical  
8Ω speakers exhibit series inductances in the 30µH to  
100µH range. Highest efficiency is achieved with speak-  
er inductances > 60µH.  
0.01  
0.001  
OUTPUTS 180° OUT-OF-PHASE  
0
25  
50  
75  
100  
125  
150  
OUTPUT POWER (mW)  
Figure 12. THD+N vs. P  
In- and Out-of-Phase  
with Headphone Output Signals  
OUT  
______________________________________________________________________________________ 21  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
Power Supplies  
The MAX9752/MAX9753/MAX9754 have different sup-  
plies for each portion of the device allowing for the opti-  
mum combination of headroom, power dissipation, and  
noise immunity. The speaker amplifiers are powered from  
Charge-Pump Capacitor Selection  
Use capacitors with less than 100mΩ of equivalent  
series resistance (ESR). Low-ESR ceramic capacitors  
minimize the output impedance of the charge pump.  
Capacitors with an X7R dielectric provide the best per-  
formance over the extended temperature range.  
PV . PV  
ranges from 4.5V to 5.5V. The headphone  
DD  
DD  
amplifiers are powered from HPV  
and V . HPV  
is  
DD  
SS  
DD  
Flying Capacitor (C1)  
The value of the flying capacitor (C1) affects the load  
regulation and output resistance of the charge pump.  
Choosing C1 too small degrades the ability to provide  
sufficient current drive, which leads to a loss of output  
voltage. Increasing the value of C1 improves load regu-  
lation and reduces the charge-pump output resistance.  
See the Output Power vs. Charge-Pump Capacitance  
and Load Resistance graph in the Typical Operating  
Characteristics. Above 2.2µF, the on-resistance of the  
switches and the ESR of C1 and C2 dominate. The rec-  
ommended range of capacitors is from 0.33µF to 3.3µF.  
the positive supply of the headphone amplifiers and  
ranges from 3V to 5.5V. V is the negative supply input  
SS  
for the headphone amplifiers. Connect V to CPV . The  
SS  
SS  
charge pump is powered by CPV , which ranges from  
DD  
3V to 5.5V. CPV  
should be the same potential as  
DD  
HPV . The charge pump inverts the voltage at CPV  
,
DD  
DD  
and the resulting voltage appears at CPV . The remain-  
SS  
der of the device is powered by V  
.
DD  
Component Selection  
Input Filtering  
The input capacitor (C ), in conjunction with the ampli-  
IN  
fier input resistance (R ), forms a highpass filter that  
IN  
Output Capacitor (C2)  
removes the DC bias from an incoming signal (see the  
Functional Diagrams). The AC-coupling capacitor  
allows the amplifier to bias the signal to an optimum DC  
level. Assuming zero source impedance, the -3dB point  
of the highpass filter is given by:  
The output capacitor value and ESR directly affect the  
ripple at CPV . Increasing the value of C2 reduces  
SS  
output ripple. Decreasing the ESR of C2 reduces both  
ripple and output resistance. Lower capacitance values  
can be used in systems with low, maximum output  
power levels. See the Output Power vs. Charge-Pump  
Capacitance and Load Resistance graph in the Typical  
Operating Characteristics. C2 must be greater than or  
equal to C1. The recommended range of capacitors is  
from 0.33µF to 3.3µF.  
1
f3dB  
=
2πR C  
IN IN  
R
is the amplifier’s internal input resistance value given  
IN  
in the Electrical Characteristics table. Choose C so  
IN  
f
is well below the lowest frequency of interest.  
-3dB  
Setting f  
too high affects the amplifier’s low-frequency  
-3dB  
CPV  
Bypass Capacitor  
DD  
response. Use capacitors with low-voltage coefficient  
dielectrics, such as tantalum or aluminum electrolytic.  
Capacitors with high-voltage coefficients, such as ceram-  
ics, may result in increased distortion at low frequencies.  
The CPV  
bypass capacitor (C3) lowers the output  
DD  
impedance of the power supply and reduces the  
impact of the charge-pump switching transients on the  
headphone driver outputs. Bypass CPV  
with C3, the  
DD  
same value as C1, and place it physically close to  
CPV and PGND.  
Optional Output Filtering  
In most applications, the low-EMI, Class D outputs do not  
require output filters. The device passes FCC emissions  
standards with 76mm of unshielded speaker cables.  
Output filtering can be used if lower EMI is desired. Use a  
ferrite bead filter when radiated frequencies above  
10MHz are of concern. Use an LC filter when radiated fre-  
quencies below 10MHz are of concern, or when long  
leads (> 76mm) connect the amplifier to the speaker.  
DD  
Layout and Grounding  
Proper layout and grounding are essential for optimum  
performance. Use large traces for the power-supply  
inputs and amplifier outputs to minimize losses due to  
parasitic trace resistance. Large traces also aid in mov-  
ing heat away from the package. Proper grounding  
improves audio performance, minimizes crosstalk  
between channels, and prevents any switching noise  
from coupling into the audio signal. Connect CPGND,  
PGND, and GND together at a single point on the PC  
board. Route CPGND, PGND, and all traces that carry  
switching transients away from GND and the traces and  
components in the audio signal path.  
BIAS Capacitor  
BIAS is the output of the internally generated DC bias  
voltage. The BIAS bypass capacitor, C  
, improves  
BIAS  
PSRR and THD+N by reducing power supply and other  
noise sources at the common-mode bias node, and  
also generates the clickless/popless, startup/shutdown,  
DC bias waveforms for the speaker amplifiers. Bypass  
BIAS with a 1µF capacitor to GND.  
22 ______________________________________________________________________________________  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
Connect all components associated with the charge  
pump (C2 and C3) to CPGND. Connect V and CPV  
SS  
SS  
together at C2. Place the charge-pump capacitors (C1,  
C2, and C3) as close to the device as possible. Bypass  
HPV  
with 1µF to GND. Bypass PV  
with a 0.1µF  
DD  
DD  
100Ω  
47nF  
capacitor and a 100µF capacitor to PGND. Place the  
bypass capacitors as close to the device as possible.  
OUT_+  
CLASS D  
IN+  
AUDIO  
ANALYZER  
Use large, low-resistance output traces. Current drawn  
from the outputs increases as load impedance  
decreases. High-output-trace resistance decreases the  
power delivered to the load. For example, when com-  
pared to a 0Ω trace, a 100mΩ trace reduces the power  
delivered to a 4Ω load from 2.1W to 2.0W. Large out-  
put, supply, and GND traces allow more heat to move  
from the MAX9752/MAX9753/MAX9754 to the air,  
reducing the thermal impedance of the system.  
MODULATOR  
AND H-BRIDGE  
R
L
47nF  
OUT_-  
IN-  
100Ω  
Figure 13. Connecting a Class D Output to an Analog Analyzer  
The MAX9752/MAX9753/MAX9754 thin QFN packages  
feature exposed pads on their undersides. Connect the  
exposed pad to GND with a large copper pad and mul-  
tiple vias to the ground plane.  
the switching components obscure the audio signal. On  
an audio analyzer they overload the input signal, degrad-  
ing the measurement from the true audio performance of  
the amplifier. A simple RC filter can be used (Figure 13)  
to aid in evaluation of Class D amplifiers in the lab. This  
circuit provides a single-pole response at 34kHz, with a  
minimal insertion loss. More complex designs such as L-  
C filters can provide more performance, but must be veri-  
fied to ensure they do not add their own distortion  
signature to the amplifier’s output.  
Measuring Class D Outputs  
with an Analog Analyzer  
Filterless Class D amplifiers use the loudspeaker’s coil  
inductance to filter out switching energy. Additionally, the  
loudspeaker does not respond to the switching frequen-  
cy of Class D amplifiers, nor could human ears hear  
these frequencies. However, audio analyzers and oscil-  
loscopes can detect these signals. On an oscilloscope,  
______________________________________________________________________________________ 23  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
MAX9752 Functional Diagram  
4.5V TO 5.5V  
0.1μF  
V
DD  
25  
6, 16 PV  
DD  
4.5V TO 5.5V  
MAX9752  
1μF  
C
1μF  
IN  
4
5
OUTL+  
OUTL-  
GAIN/  
VOLUME  
CONTROL  
INL  
1
CLASS D  
AMPLIFIER  
LEFT-CHANNEL  
AUDIO INPUT  
C
1μF  
IN  
18 OUTR+  
17 OUTR-  
GAIN/  
VOLUME  
CONTROL  
INR 27  
CLASS D  
AMPLIFIER  
RIGHT-CHANNEL  
AUDIO INPUT  
BIAS 21  
VOL 28  
C
1μF  
BIAS  
15 HPV  
20 HPS  
DD  
3V TO 5.5V  
GAIN/  
VOLUME  
CONTROL  
1μF  
GAIN1 24  
GAIN2 23  
V
V
DD  
HEADPHONE  
DETECTION  
DD  
14 HPOUTL  
1μF  
47kΩ  
BEEP  
DETECTION  
BEEP  
2
SHUTDOWN  
CONTROL  
SHDN 22  
V
DD  
13 HPOUTR  
CPV  
7
DD  
3V TO 5.5V  
1μF  
C1P  
8
C1  
1μF  
CHARGE  
PUMP  
10  
C1N  
CPGND  
9
11 12  
26  
3, 19  
PGND  
CPV  
V
SS  
GND  
SS  
C2  
1μF  
24 ______________________________________________________________________________________  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
MAX9753 Functional Diagram  
4.5V TO 5.5V  
0.1μF  
V
DD  
25  
6, 16 PV  
DD  
4.5V TO 5.5V  
MAX9753  
1μF  
C
IN  
1μF  
INL1  
INL2  
1
2
4
5
OUTL+  
OUTL-  
LEFT-CHANNEL  
AUDIO INPUT  
CLASS D  
AMPLIFIER  
INPUT  
MUX  
LEFT-CHANNEL  
AUDIO INPUT  
C
IN  
1μF  
C
IN  
1μF  
INR1 27  
INR2 28  
RIGHT-CHANNEL  
AUDIO INPUT  
18 OUTR+  
17 OUTR-  
INPUT  
MUX  
CLASS D  
AMPLIFIER  
RIGHT-CHANNEL  
AUDIO INPUT  
C
IN  
1μF  
BIAS  
21  
15 HPV  
20 HPS  
DD  
C
1μF  
BIAS  
3V TO 5.5V  
MUX AND  
GAIN  
CONTROL  
1μF  
GAIN 24  
V
V
DD  
IN1/2 23  
SHDN 22  
14 HPOUTL  
HEADPHONE  
DETECTION  
DD  
V
DD  
SHUTDOWN  
CONTROL  
13 HPOUTR  
CPV  
7
DD  
3V TO 5.5V  
1μF  
C1P  
8
C1  
1μF  
CHARGE  
PUMP  
10  
C1N  
CPGND  
9
26  
3, 19  
PGND  
11 12  
CV  
SS  
V
SS  
GND  
C2  
1μF  
LOGIC PINS CONFIGURED FOR:  
GAIN = 1, 9dB SPEAKER GAIN/0dB HEADPHONE GAIN.  
IN1/2 = 1, SELECTED INPUT LINE 1.  
SHDN = 1, PART ACTIVE.  
______________________________________________________________________________________ 25  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
MAX9754 Functional Diagram  
4.5V TO 5.5V  
0.1μF  
V
DD  
25  
6, 16 PV  
DD  
4.5V TO 5.5V  
MAX9754  
1μF  
C
1μF  
IN  
4
5
OUTL+  
OUTL-  
INL  
2
CLASS D  
AMPLIFIER  
LEFT-CHANNEL  
AUDIO INPUT  
C
1μF  
IN  
18 OUTR+  
17 OUTR-  
INR 28  
CLASS D  
AMPLIFIER  
RIGHT-CHANNEL  
AUDIO INPUT  
BIAS 21  
C
1μF  
BIAS  
15 HPV  
20 HPS  
DD  
3V TO 5.5V  
GAIN  
CONTROL  
1μF  
GAIN 24  
SHDN 22  
V
V
DD  
HEADPHONE  
DETECTION  
14 HPOUTL  
DD  
SHUTDOWN  
CONTROL  
13 HPOUTR  
CPV  
7
DD  
3V TO 5.5V  
1μF  
C1P  
8
C1  
1μF  
CHARGE  
PUMP  
10  
C1N  
CPGND  
9
23, 26  
GND  
3, 19  
PGND  
11 12  
CPV  
V
SS  
SS  
C2  
1μF  
LOGIC PINS CONFIGURED FOR:  
GAIN = 1, 9dB SPEAKER GAIN/0dB HEADPHONE GAIN.  
SHDN = 1, PART ACTIVE.  
26 ______________________________________________________________________________________  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
Pin Configurations  
TOP VIEW  
21 20 19 18 17 16 15  
21 20 19 18 17 16 15  
SHDN 22  
GAIN2 23  
14 HPOUTL  
SHDN 22  
IN1/2 23  
14 HPOUTL  
13 HPOUTR  
13 HPOUTR  
V
V
SS  
24  
12  
11  
SS  
24  
12  
11  
10  
9
GAIN1  
V
GAIN  
V
CPV  
CPV  
C1N  
MAX9753  
MAX9752  
DD 25  
SS  
DD 25  
SS  
GND  
GND  
INR1  
10 C1N  
26  
INR 27  
VOL 28  
26  
27  
CPGND  
C1P  
CPGND  
C1P  
9
8
INR2 28  
8
1
2
3
4
5
6
7
1
2
3
4
5
6
7
THIN QFN  
THIN QFN  
21 20 19 18 17 16 15  
SHDN 22  
GND 23  
14 HPOUTL  
13 HPOUTR  
V
SS  
24  
12  
11  
GAIN  
V
CPV  
MAX9754  
DD 25  
SS  
GND  
10 C1N  
26  
N.C. 27  
INR 28  
9
8
CPGND  
C1P  
1
2
3
4
5
6
7
THIN QFN  
Chip Information  
MAX9752 TRANSISTOR COUNT: 12,263  
MAX9753/MAX9754 TRANSISTOR COUNT: 12,137  
PROCESS: BiCMOS  
______________________________________________________________________________________ 27  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
28 ______________________________________________________________________________________  
2.2W, Low-EMI, Stereo, Class D Power Amplifiers  
with DirectDrive Headphone Amplifiers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 29  
© 2005 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9754ETI+

2.2W, 2 CHANNEL, AUDIO AMPLIFIER, QCC28, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-1, TQFN-28
ROCHESTER

MAX9754ETI+

Audio Amplifier, 2.2W, 2 Channel(s), 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-1, TQFN-28
MAXIM

MAX9754ETI+T

Audio Amplifier, 2.2W, 2 Channel(s), 1 Func, BICMOS, PQCC28, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, TQFN-28
MAXIM

MAX9755

2.6W Stereo Audio Power Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9755AETI

2.6W Stereo Audio Power Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9755AEUI

2.6W Stereo Audio Power Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9755ETI

2.6W Stereo Audio Power Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9755ETI+T

Audio Amplifier, 2.6W, 2 Channel(s), 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-1, TQFN-28
MAXIM

MAX9755EUI

2.6W Stereo Audio Power Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9755EUI+

Volume Control Circuit, BICMOS, PDSO28, 4.40 MM, MO-153AE, TSSOP-28
MAXIM

MAX9756

2.3W Stereo Speaker Amplifiers and DirectDrive Headphone Amplifiers with Automatic Level Control
MAXIM

MAX9756ETX+

Audio Amplifier, 2.3W, 2 Channel(s), 1 Func, BICMOS, PQCC36, 6 X 6 MM, 0.80 MM HIEGHT, LEAD FREE, MO-220WJJD-1, QFN-36
MAXIM