MAX9765 [MAXIM]

750mW Audio Amplifiers with Headphone Amp, Microphone Preamp, and Input Mux; 750MW音频放大器,耳机放大器,麦克风前置放大器和输入复用器
MAX9765
型号: MAX9765
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

750mW Audio Amplifiers with Headphone Amp, Microphone Preamp, and Input Mux
750MW音频放大器,耳机放大器,麦克风前置放大器和输入复用器

复用器 音频放大器
文件: 总32页 (文件大小:1095K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2862; Rev 1; 2/05  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
General Description  
Features  
The MAX9765/MAX9766/MAX9767 family combines  
speaker, headphone, and microphone amplifiers, all in  
a small thin QFN package. The MAX9765 is targeted at  
stereo speaker playback applications and includes a  
stereo bridge-tied load (BTL) speaker amp, stereo  
headphone amp, single-ended output mic amp, input  
750mW BTL Stereo Speaker Amplifier  
65mW Stereo Headphone Amplifier  
2.7V to 5.5V Single-Supply Operation  
Patented Click-and-Pop Suppression  
Low 0.003% THD+N  
2
MUX, and I C control. The MAX9766 is targeted at  
Low Quiescent Current: 13mA  
Low-Power Shutdown Mode: 5µA  
MUTE Function  
mono speaker playback applications and includes a  
mono BTL speaker amp, stereo headphone amp, differ-  
2
ential output mic amp, input MUX, and I C control. The  
MAX9767 is targeted at applications that do not require  
a headphone amp and includes a stereo BTL speaker  
amp, differential output mic amp, and parallel control.  
These devices operate from a single 2.7V to 5.5V supply.  
A high 95dB PSRR allows these devices to operate from  
noisy supplies without additional power conditioning. An  
ultra-low 0.003% THD+N ensures clean, low distortion  
amplification of the audio signal. Patented click-and-pop  
suppression eliminates audible transients on power and  
shutdown cycles.  
In speaker mode, the amplifiers can deliver up to  
750mW of continuous average power into a 4load. In  
headphone mode, the amplifier can deliver up to 65mW  
of continuous average power into a 16load. The gain  
of the amplifiers is externally set, allowing maximum  
flexibility in optimizing output levels for a given load.  
The MAX9765/MAX9766 also feature a 2:1 input multi-  
plexer, allowing multiple audio sources to be selected.  
The various functions are controlled by either an I2C-  
compatible (MAX9765/MAX9766) or simple parallel  
control interface (MAX9767).  
Headphone Sense Input  
Stereo 2:1 Input Multiplexer  
Optional 2-Wire, I2C-Compatible, or Parallel  
Interface  
Small 32-Pin Thin QFN (5mm 5mm 0.8mm)  
Package  
Ordering Information  
PART  
TEMP RANGE  
-40oC to +85oC  
-40oC to +85oC  
-40oC to +85oC  
PIN-PACKAGE  
32 Thin QFN-EP*  
32 Thin QFN-EP*  
32 Thin QFN-EP*  
MAX9765ETJ  
MAX9766ETJ  
MAX9767ETJ  
*EP = Exposed paddle.  
Pin Configurations and Functional Diagrams appear at end of data  
sheet.  
Simplified Diagram  
MUX  
All devices include two low-noise microphone pre-  
amps, a differential amp for internal microphones, and  
a single-ended amplifier for additional external micro-  
phones. A microphone bias output is provided, reduc-  
ing external component count.  
INL1  
HEADPHONE  
SPKR  
LEFT  
INL2  
MUX  
The MAX9765/MAX9766/MAX9767 are available in a  
thermally efficient 32-pin thin QFN package (5mm ✕  
5mm 0.8mm). All devices have short-circuit and  
thermal-overload protection (OVP) and are specified  
over the extended -40°C to +85°C temperature range.  
INR1  
INR2  
SPKR  
RIGHT  
DEVICE  
CONTROL  
Applications  
Notebooks  
CONTROL  
PDA Audio Systems  
Tablet PCs  
Digital Cameras  
MICIN-  
MICIN+  
Cell Phones  
MUX  
MICOUT  
2
AUXIN  
Purchase of I C components from Maxim Integrated Products,  
Inc., or one of its sublicensed Associated Companies, conveys a  
2
MAX9765  
license under the Philips I C Patent Rights to use these compo-  
nents in an I C system, provided that the system conforms to the  
I C Standard Specification defined by Philips.  
MICBIAS  
BIAS  
2
2
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND ...........................................................................+6V  
Continuous Power Dissipation (T = +70°C)  
A
SV  
SV  
PV  
to GND .........................................................................+6V  
32-Pin Thin QFN (derate 26.3mW/°C above +70°C) ...2105.3mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
DD  
DD  
to V .........................................................................-0.3V  
DD  
DD  
to V  
....................................................................... 0.3V  
PGND to GND..................................................................... 0.3V  
All Other Pins to GND.................................-0.3V to (V + 0.3V)  
DD  
Output Short-Circuit Duration (to V or GND)..........Continuous  
DD  
Continuous Input Current (into any pin except power-supply  
and output pins) ............................................................... 20mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= PV  
= 3.0V, GND = 0, HPS = MUTE = GND, SHDN = 3V, C  
= 1µF, R = R = 15k, R = . T = T  
to T  
, unless  
MAX  
DD  
DD  
BIAS  
IN  
F
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
28  
UNITS  
Supply Voltage Range  
V
/PV  
Inferred from PSRR test  
2.7  
V
DD  
DD  
MAX9765/MAX9767  
MAX9766  
12  
7
Speaker mode  
Quiescent Supply Current  
I
17  
mA  
DD  
(I  
+ I  
)
VDD  
PVDD  
Headphone mode, HPS = V  
7
17  
DD  
Shutdown Current  
Switching Time  
I
SHDN = GND  
5
18  
µA  
µs  
SHDN  
Gain or input switching  
(MAX9765/MAX9766)  
t
10  
SW  
C
C
= 1µF, settled to 90%  
250  
25  
BIAS  
BIAS  
Turn-On/Turn-Off Time  
t
ms  
ON/OFF  
= 0.1µF, settled to 90%  
Input Bias Current  
I
50  
nA  
oC  
oC  
A
BIAS  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
Output Short-Circuit Current  
150  
8
To V  
or GND  
1.2  
DD  
STANDBY SUPPLY (SV  
)
DD  
V
V
= 1.25V, V  
= 0V  
230  
400  
5
BIAS  
BIAS  
DD  
Standby Current  
I
µA  
SVDD  
= 1.5V, V  
= 3V  
DD  
OUTPUT AMPLIFIERS (SPEAKER MODE)  
Output Offset Voltage  
V
V
V
- V  
, A = 1V/V  
10  
85  
45  
mV  
dB  
OS  
OUT_+  
OUT_-  
V
= 2.7V to 5.5V  
72  
DD  
Power-Supply Rejection Ratio  
PSRR  
f = 1kHz, V  
= 200mV  
72  
RIPPLE  
P-P  
R = 8  
450  
750  
L
f
T
= 1kHz, THD+N = 1%,  
= +25oC (Note 2)  
IN  
Output Power  
P
mW  
%
OUT  
A
R = 4Ω  
L
400  
P
= 200mW,  
OUT  
0.033  
0.065  
89  
R = 8Ω  
L
Total Harmonic Distortion Plus  
Noise  
f
IN  
= 1kHz, BW = 22Hz to  
THD+N  
SNR  
22kHz  
P
= 400mW,  
OUT  
R = 4Ω  
L
R = 8, V  
22kHz  
= 1.4V , BW = 22Hz to  
RMS  
L
OUT_  
Signal-to-Noise Ratio  
dB  
2
_______________________________________________________________________________________  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= 3.0V, GND = 0, HPS = MUTE = GND, SHDN = 3V, C  
= 1µF, R = R = 15k, R = . T = T  
to T  
, unless  
MAX  
DD  
DD  
BIAS  
IN  
F
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
Maximum Capacitive Load Drive  
Slew Rate  
SYMBOL  
CONDITIONS  
MIN  
TYP  
400  
1.4  
MAX  
UNITS  
pF  
C
No sustained oscillations  
L
SR  
V/µs  
dB  
Crosstalk  
f
= 10kHz  
73  
IN  
OUTPUT AMPLIFIERS (HEADPHONE MODE)  
V
= 2.7V to 5.5V  
95  
75  
50  
40  
65  
DD  
Power-Supply Rejection Ratio  
Output Power  
PSRR  
f = 1kHz, V  
= 200mV  
dB  
RIPPLE  
P-P  
f = 20kHz, V  
= 200mV  
P-P  
RIPPLE  
R = 32Ω  
L
f
IN  
= 1kHz, THD+N = 1%,  
= +25oC (Note 2)  
P
mW  
OUT  
T
A
R = 16Ω  
L
35  
V
= 0.7  
,
OUT  
RMS  
0.002  
0.005  
0.004  
89  
R = 10kΩ  
L
Total Harmonic Distortion Plus  
Noise  
f
= 1kHz, BW = 22Hz to  
P
= 15mW,  
OUT  
IN  
THD+N  
%
22kHz  
R = 32Ω  
L
P
= 30mW,  
OUT  
R = 16Ω  
L
R = 8, V  
BW = 20Hz to 22kHz  
= 1.4V  
RMS  
,
L
OUT_  
Signal-to-Noise Ratio  
SNR  
SR  
dB  
Slew Rate  
0.7  
200  
79  
V/µs  
pF  
Maximum Capacitive Load Drive  
Crosstalk  
C
No sustained oscillations  
= 10kHz  
L
f
dB  
IN  
BIAS VOLTAGE (BIAS)  
BIAS Voltage  
V
1.4  
1.5  
50  
1.6  
V
BIAS  
Output Resistance  
R
kΩ  
BIAS  
MICROPHONE AMPLIFIER GENERAL  
V
V
V
V
- V  
35  
50  
80  
70  
0.6  
10  
50  
70  
DD  
OL  
DD  
OL  
OH  
R = 100kΩ  
L
- GND  
- V  
400  
150  
400  
Output Voltage Swing  
V
mV  
OUT  
OH  
R = 2kΩ  
L
- GND  
Slew Rate  
SR  
A = 10dB  
V
V/µs  
mA  
pF  
Output Short-Circuit Current  
Maximum Capacitive Load Drive  
To V  
or GND  
DD  
C
No sustained oscillations  
L
DIFFERENTIAL INPUT AMPLIFIER (MICIN+, MICIN-)  
Input Offset Voltage  
V
2
5
mV  
OS  
A = 20dB  
31  
V
Input Noise-Voltage Density  
e
f
IN  
= 1kHz  
nV/Hz  
N
A = 40dB  
V
11.6  
Total Harmonic Distortion Plus  
Noise  
V
= 3V, V  
= 0.35V  
A = 10dB,  
DD  
OUT  
RMS, V  
THD+N  
0.01  
%
f
= 1kHz, BW = 22Hz to 22kHz  
IN  
Small-Signal Bandwidth  
Input Resistance  
BW  
R
A = 40dB, V  
= 100mV  
P-P  
300  
100  
kHz  
-3dB  
V
OUT  
MICIN_ to GND  
kΩ  
IN  
_______________________________________________________________________________________  
3
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= 3.0V, GND = 0, HPS = MUTE = GND, SHDN = 3V, C  
= 1µF, R = R = 15k, R = . T = T  
to T  
, unless  
MAX  
DD  
DD  
BIAS  
IN  
F
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Resistance Matching  
R
1
2
2
2
%
MATCH  
MAX9765, A = 4dB to 39dB  
V
4
4
4
Differential Gain Accuracy  
A
%
MAX9766, A = 10dB to 45dB  
V
VDIFF  
MAX9767, A = 10dB, 20dB, 30dB  
V
A = 10dB, f = 1kHz, V  
R = 2kΩ  
S
= 200mV  
,
V
IN  
CM  
P-P  
Common-Mode Rejection Ratio  
CMRR  
PSRR  
60  
80  
80  
dB  
V
= 2.7V to 5.5V  
62  
DD  
f = 1kHz, V  
200mV  
=
RIPPLE  
A = 10dB, output  
V
referred  
Power-Supply Rejection Ratio  
P-P  
dB  
V
f = 20kHz, V  
200mV  
=
RIPPLE  
68  
1
P-P  
Common-Mode Input Voltage  
Range  
V
CM  
SINGLE-ENDED INPUT AMPLIFIER (AUXIN)  
Input Offset Voltage  
V
4
10  
mV  
OS  
Input Noise-Voltage Density  
e
A = 20dB, f = 1kHz  
73  
nV/Hz  
N
V
IN  
Total Harmonic Distortion Plus  
Noise  
A = 10dB, f = 1kHz, BW = 22Hz to  
V
IN  
THD+N  
0.01  
%
22kHz, V  
= 0.7V  
RMS  
OUT  
Small-Signal Bandwidth  
Input Resistance  
BW  
R
A = 20dB, V  
= 100mV  
P-P  
200  
100  
4
kHz  
kΩ  
%
-3dB  
V
OUT  
IN  
Voltage Gain Accuracy  
A
V
V
= 2.7V to 5.5V  
65  
80  
DD  
f = 1kHz, V  
=
RIPPLE  
76  
58  
A = 10dB, output  
V
referred  
200mV  
Power-Supply Rejection Ratio  
PSRR  
P-P  
dB  
f = 20kHz, V  
=
RIPPLE  
200mV  
P-P  
MICROPHONE BIAS OUTPUT (MICBIAS)  
Microphone Bias Output Voltage  
Output Noise-Voltage Density  
V
V
= 2.7V to 5.5V, I = 500µA  
LOAD  
2.4  
63  
2.5  
52  
72  
70  
2.6  
V
MICBIAS  
DD  
e
f = 1kHz  
= 2.7V to 5.5V  
nV/Hz  
N
V
DD  
Power-Supply Rejection Ratio  
PSRR  
dB  
f
= 1kHz, V = 200mV  
RIPPLE P-P  
IN  
DIGITAL INPUTS (MUTE, SHDN, INT/EXT)  
Input Voltage High  
Input Voltage Low  
Input Leakage Current  
V
2
V
V
IH  
V
0.8  
1
IL  
I
µA  
IN  
MAX9767 MICGAIN INPUT (TRI-STATE PIN))  
Input Voltage High  
Input Voltage Low  
Input Voltage Mid  
V
V
V
V
V
IH  
DD  
V
V
GND  
IL  
FLOAT  
IZ  
4
_______________________________________________________________________________________  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= 3.0V, GND = 0, HPS = MUTE = GND, SHDN = 3V, C  
= 1µF, R = R = 15k, R = . T = T  
to T  
, unless  
MAX  
DD  
DD  
BIAS  
IN  
F
L
A
MIN  
otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HEADPHONE SENSE INPUT (HPS)  
0.9 x  
Input Voltage High  
V
V
IH  
V
DD  
0.7 x  
Input Voltage Low  
V
V
IL  
V
DD  
Input Leakage Current  
I
1
µA  
IN  
2-WIRE SERIAL INTERFACE (SCL, SDA, ADD) (MAX9765/MAX9766)  
V
V
> 3.6V  
3
2
DD  
DD  
Input Voltage High  
V
V
IH  
3.6V  
Input Voltage Low  
V
0.8  
V
V
IL  
Input Hysteresis  
0.2  
10  
Input High Leakage Current  
Input Low Leakage Current  
Input Capacitance  
I
V
V
= 3V  
= 0V  
1
1
µA  
µA  
pF  
V
IH  
IN  
IN  
I
IL  
C
IN  
OL  
OH  
Output Voltage Low  
Output Current High  
V
I
= 3mA  
0.4  
1
OL  
I
V
= 3V  
µA  
OH  
TIMING CHARACTERISTICS (MAX9765/MAX9766)  
Serial Clock Frequency  
f
400  
kHz  
µs  
SCL  
Bus Free Time Between STOP  
and START Conditions  
t
1.3  
BUF  
START Condition Hold Time  
START Condition Setup Time  
Clock Period Low  
t
0.6  
0.6  
1.3  
0.6  
100  
0
µs  
µs  
µs  
µs  
ns  
µs  
HD:STA  
t
SU:STA  
t
LOW  
Clock Period High  
t
HIGH  
Data Setup Time  
t
SU:DAT  
HD:DAT  
Data Hold Time  
t
(Note 3)  
0.9  
20 +  
Receive SCL/SDA Rise Time  
Receive SCL/SDA Fall Time  
t
(Note 4)  
(Note 4)  
300  
ns  
ns  
R
0.1C  
B
20 +  
0.1C  
t
t
300  
250  
F
F
B
20 +  
0.1C  
Transmit SDA Fall Time  
(Note 4)  
(Note 5)  
ns  
ns  
B
Pulse Width of Suppressed Spike  
t
SP  
50  
Note 1: All devices are 100% production tested at +25°C. All temperature limits are guaranteed by design.  
Note 2: P limits are tested by a combination of electrical and guaranteed by design.  
OUT  
Note 3: A device must provide a hold time of at least 300ns for the SDA signal to bridge the undefined region of SCL’s falling edge.  
Note 4: C = total capacitance of one of the bus lines in picofarads. Device tested with C = 400pF. 1kpullup resistors connected  
B
B
from SDA/SCL to V  
.
DD  
Note 5: Input filters on SDA, SCL, and ADD suppress noise spikes less than 50ns.  
_______________________________________________________________________________________  
5
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Typical Operating Characteristics  
(V  
= PV  
= 5V, BW = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
DD  
A
DD  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
1
P
= 100mW  
P
= 250mW  
OUT  
P
= 100mW  
OUT  
OUT  
P
= 100mW  
= 500mW  
P
= 250mW  
OUT  
P
= 250mW  
OUT  
OUT  
0.1  
0.1  
0.1  
0.01  
P
P
= 500mW  
OUT  
P
= 500mW  
OUT  
OUT  
0.01  
0.001  
0.01  
0.001  
V
= 5V  
V
= 5V  
DD  
L
V
V
= 3V  
DD  
L
V
DD  
R = 4  
A
R = 4Ω  
A
R = 4Ω  
L
= 2V/V  
= 4V/V  
A
= 2V/V  
V
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
1
1
1
P
= 250mW  
P
= 100mW  
OUT  
OUT  
P
= 50mW  
OUT  
P
= 50mW  
P
= 300mW  
P
= 300mW  
OUT  
OUT  
OUT  
0.1  
0.1  
0.1  
P
= 500mW  
OUT  
P
= 150mW  
P
= 150mW  
OUT  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
OUT  
V
= 3V  
V
= 5V  
R = 8Ω  
= 2V/V  
V
= 5V  
DD  
R = 8Ω  
A = 4V/V  
V
DD  
L
V
DD  
L
V
R = 4Ω  
A
L
= 4V/V  
A
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
1
100  
V
= 5V  
DD  
R = 4Ω  
V
L
A
f = 1kHz  
= 2V/V  
10  
P
= 50mW  
P
= 50mW  
OUT  
OUT  
P
= 150mW  
P
= 300mW  
OUT  
OUT  
0.1  
0.1  
1
f = 10kHz  
0.1  
P
= 300mW  
OUT  
P
= 150mW  
OUT  
0.01  
0.001  
0.01  
0.01  
0.001  
f = 20Hz  
V
= 3V  
R = 8Ω  
= 4V/V  
V
= 3V  
R = 8Ω  
= 4V/V  
DD  
L
V
DD  
L
V
A
A
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
0.25  
0.50  
0.75  
1.00  
1.25  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
OUTPUT POWER (W)  
6
_______________________________________________________________________________________  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Typical Operating Characteristics (continued)  
(V  
= PV  
= 5V, BW = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
DD  
A
DD  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
100  
100  
100  
V
= 5V  
V
= 3V  
DD  
DD  
V
= 3V  
DD  
f = 1kHz  
R =4Ω  
V
R = 4Ω  
V
L
L
A
f = 1kHz  
R = 4Ω  
V
L
f = 1kHz  
A
= 4V/V  
= 4V/V  
10  
A
= 2V/V  
10  
1
10  
1
1
f = 10kHz  
f = 10kHz  
f = 10kHz  
0.1  
0.1  
0.01  
0.1  
f = 20Hz  
0.01  
0.001  
0.01  
0.001  
f = 20Hz  
f = 20Hz  
0.2  
0.001  
0
0.25  
0.50  
0.75  
1.00  
0
0.4  
0.6  
0.8  
0
0.25  
0.50  
0.75  
1.00  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
100  
100  
100  
V
= 3V  
V
= 5V  
V
= 5V  
DD  
DD  
DD  
R = 8Ω  
V
f = 1kHz  
f = 1kHz  
R = 8Ω  
V
R = 8Ω  
L
A
L
L
f = 1kHz  
= 2V/V  
A
= 2V/V  
A = 4V/V  
V
10  
10  
10  
1
1
1
f = 10kHz  
f = 10kHz  
f = 10kHz  
0.1  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f = 20Hz  
f = 20Hz  
f = 20Hz  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7  
OUTPUT POWER (W)  
0
0.2  
0.4  
OUTPUT POWER (W)  
0.6  
0.8  
0
0.2  
0.4  
OUTPUT POWER (W)  
0.6  
0.8  
OUTPUT POWER vs. LOAD RESISTANCE  
(SPEAKER MODE)  
OUTPUT POWER vs. LOAD RESISTANCE  
(SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
1200  
1000  
800  
600  
400  
200  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
V
= 5V  
V
= 3V  
CC  
V
= 3V  
CC  
DD  
L
V
f = 1kHz  
R = 8Ω  
A
= 4V/V  
10  
1
THD+N = 10%  
THD+N = 1%  
f = 10kHz  
THD+N = 10%  
THD+N = 1%  
0.1  
0.01  
0.001  
f = 20Hz  
0
10  
100  
1k  
10k  
0
10  
100  
1k  
10k  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7  
OUTPUT POWER (W)  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
_______________________________________________________________________________________  
7
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Typical Operating Characteristics (continued)  
(V  
= PV  
= 5V, BW = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
DD  
A
DD  
POWER DISSIPATION vs. OUTPUT POWER  
(SPEAKER MODE)  
POWER DISSIPATION vs. OUTPUT POWER  
(SPEAKER MODE)  
POWER DISSIPATION vs. OUTPUT POWER  
(SPEAKER MODE)  
1.6  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 5V  
V
= 5V  
V
= 3V  
DD  
DD  
DD  
R = 4Ω  
R = 8Ω  
R = 4Ω  
L
L
L
f = 1kHz  
f = 1kHz  
f = 1kHz  
0
0.25  
0.50  
0.75  
1.00  
0
0.15  
0.30  
0.45  
0.60  
0.75  
0
0.25  
0.50  
0.75  
1.00  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
POWER DISSIPATION vs. OUTPUT POWER  
(SPEAKER MODE)  
OUTPUT POWER vs. TEMPERATURE  
(SPEAKER MODE)  
OUTPUT POWER vs. TEMPERATURE  
(SPEAKER MODE)  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
1200  
1000  
800  
600  
400  
200  
0
THD+N = 10%  
THD+N = 1%  
THD+N = 10%  
THD+N = 1%  
V
= 3V  
DD  
R = 8Ω  
f = 1kHz  
R = 8Ω  
L
L
f = 1kHz  
R = 4Ω  
L
f = 1kHz  
0
0.15  
0.30  
0.45  
0.60  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
OUTPUT POWER (W)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (SPEAKER MODE)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (SPEAKER MODE)  
ENTERING SHUTDOWN (SPEAKER MODE)  
MAX9765 toc27  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
= 3V  
V
= 5V  
DD  
DD  
SHDN  
2V/div  
OUT_+ AND  
OUT_-  
500mV/div  
OUT_+ -  
OUT_-  
100mV/div  
10  
100  
1k  
10k  
100k  
200ms/div  
10  
100  
1k  
10k  
100k  
R = 8Ω  
L
FREQUENCY (Hz)  
FREQUENCY (Hz)  
INPUT AC-COUPLED TO GND  
8
_______________________________________________________________________________________  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Typical Operating Characteristics (continued)  
(V  
= PV  
= 5V, BW = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
DD  
A
DD  
ENTERING POWER-DOWN  
(SPEAKER MODE)  
EXITING SHUTDOWN (SPEAKER MODE)  
MAX9765 toc28  
MAX9765 toc29  
V
CC  
SHDN  
2V/div  
2V/div  
OUT_+ AND  
OUT_-  
500mV/div  
500mV/div  
100mV/div  
OUT_+ AND  
OUT  
OUT_+ -  
OUT_-  
OUT_+ - OUT  
100mV/div  
200ms/div  
200ms/div  
INPUT AC-COUPLED TO GND  
R = 8Ω  
L
R = 8Ω  
L
INPUT AC-COUPLED TO GND  
= 1µF  
C
BIAS  
POWER-UP  
(SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
MAX9765 toc30  
1
V
= 5V  
DD  
R = 16Ω  
V
2V/div  
L
A
= 1V/V  
V
CC  
0.1  
500mV/div  
100mV/div  
OUT_+ AND  
OUT  
P
= 10mW  
OUT  
P
= 25mW  
OUT  
0.01  
0.001  
OUT_+ - OUT  
P
= 50mW  
OUT  
200ms/div  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
R = 8Ω  
L
INPUT AC-COUPLED TO GND  
= 1µF  
C
BIAS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
1
V
= 3V  
V
= 5V  
DD  
V
= 3V  
DD  
DD  
R = 16Ω  
R = 16Ω  
L
R = 16Ω  
L
L
A
V
= 1V/V  
A
= 2V/V  
A = 2V/V  
V
V
0.1  
0.1  
0.01  
0.1  
P
= 25mW  
P
= 10mW  
OUT  
OUT  
P
= 50mW  
OUT  
P
= 25mW  
OUT  
P
= 25mW  
P
= 50mW  
OUT  
OUT  
0.01  
0.001  
0.01  
0.001  
P
= 50mW  
P
= 10mW  
10k  
OUT  
OUT  
P
= 10mW  
OUT  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
_______________________________________________________________________________________  
9
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Typical Operating Characteristics (continued)  
(V  
= PV  
= 5V, BW = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
DD  
A
DD  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
1
V
= 3V  
V
= 5V  
V
= 5V  
DD  
L
DD  
L
V
DD  
L
V
R = 32Ω  
A
R = 32Ω  
A
R = 32Ω  
A = 2V/V  
V
= 1V/V  
= 1V/V  
0.1  
0.1  
0.01  
0.1  
P
= 10mW  
OUT  
P
= 5mW  
OUT  
P
= 10mW  
P
= 10mW  
OUT  
OUT  
P
= 5mW  
OUT  
P
= 5mW  
OUT  
0.01  
0.001  
0.01  
0.001  
P
= 20mW  
OUT  
P
= 20mW  
P
= 20mW  
10k  
OUT  
OUT  
0.001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
1
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
100  
100  
V
= 5V  
DD  
V
= 5V  
DD  
V
= 3V  
DD  
f = 1kHz  
R = 16Ω  
V
L
R = 16Ω  
f = 1kHz  
R = 32Ω  
L
L
A
= 1V/V  
A = 2V/V  
V
10  
A
= 2V/V  
10  
V
0.1  
1
1
P
= 10mW  
OUT  
P
= 5mW  
OUT  
f = 20Hz  
f = 10kHz  
f = 20Hz  
0.1  
0.1  
0.01  
0.001  
f = 10kHz  
0.01  
0.001  
0.01  
0.001  
P
= 20mW  
OUT  
0
20  
40  
60  
80  
100  
120  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
20  
40  
60  
80  
100  
120  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER vs. LOAD RESISTANCE  
(HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
160  
140  
120  
100  
80  
100  
100  
V = 5V  
CC  
V
= 3V  
V
= 3V  
DD  
DD  
f = 1kHz  
f = 1kHz  
R = 16Ω  
V
R = 16Ω  
V
L
L
A
= 2V/V  
A
= 1V/V  
10  
10  
1
1
THD+N = 10%  
THD+N = 1%  
f = 20Hz  
f = 10kHz  
f = 20Hz  
f = 10kHz  
0.1  
0.1  
60  
40  
0.01  
0.001  
0.01  
0.001  
20  
0
1
10  
100  
1k  
10k  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
LOAD RESISTANCE ()  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
10 ______________________________________________________________________________________  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Typical Operating Characteristics (continued)  
(V  
= PV  
= 5V, BW = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
DD  
A
DD  
OUTPUT POWER vs. LOAD RESISTANCE  
(HEADPHONE MODE)  
POWER DISSIPATION vs. OUTPUT POWER  
(HEADPHONE MODE)  
POWER DISSIPATION vs. OUTPUT POWER  
(HEADPHONE MODE)  
140  
120  
100  
80  
60  
50  
40  
30  
20  
10  
0
140  
V
= 3V  
CC  
R = 16Ω  
R = 16Ω  
L
L
120  
100  
80  
60  
40  
20  
0
R = 32Ω  
L
THD+ N = 10%  
THD+N = 1%  
R = 32Ω  
L
60  
40  
20  
V
= 5V  
V
= 3V  
DD  
DD  
f = 1kHz  
f = 1kHz  
0
1
10  
100  
1k  
10k  
0
25  
50  
75  
100  
0
15  
30  
45  
60  
75  
LOAD RESISTANCE ()  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER vs. TEMPERATURE  
(HEADPHONE MODE)  
OUTPUT POWER vs. TEMPERATURE  
(HEADPHONE MODE)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (HEADPHONE MODE)  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
THD+N = 10%  
V
= 5V  
DD  
THD+N = 10%  
THD+N = 1%  
THD+N = 1%  
f = 1kHz  
R = 32Ω  
L
f = 1kHz  
R = 16Ω  
L
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (HEADPHONE MODE)  
ENTERING SHUTDOWN (HEADPHONE MODE)  
EXITING SHUTDOWN (HEADPHONE MODE)  
MAX9765 toc51  
MAX9765 toc52  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
= 3V  
DD  
SHDN  
2V/div  
SHDN  
2V/div  
OUT_+  
500mV/div  
OUT_+  
500mV/div  
HP JACK  
100mV/div  
HP JACK  
100mV/div  
200ms/div  
200ms/div  
10  
100  
1k  
10k  
100k  
R = 16Ω  
R = 16Ω  
L
L
FREQUENCY (Hz)  
INPUT AC-COUPLED TO GND  
INPUT AC-COUPLED TO GND  
______________________________________________________________________________________ 11  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Typical Operating Characteristics (continued)  
(V  
= PV  
= 5V, BW = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
DD  
A
DD  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (DIFFERENTIAL INPUT)  
ENTERING POWER-DOWN (HEADPHONE MODE)  
EXITING POWER-DOWN (HEADPHONE MODE)  
MAX9765 toc53  
MAX9765 toc54  
1
0.1  
V
= 5V  
DD  
V
CC  
V
CC  
2V/div  
2V/div  
OUT_+  
500mV/div  
V
= 0.26V  
RMS  
OUT  
OUT_+  
500mV/div  
0.01  
0.001  
HP JACK  
100mV/div  
HP JACK  
100mV/div  
V
= 0.35V  
RMS  
OUT  
200ms/div  
INPUT AC-COUPLED TO GND  
200ms/div  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
R = 16Ω  
R = 16Ω  
L
L
INPUT AC-COUPLED TO GND  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT AMPLITUDE (DIFFERENTIAL INPUT)  
100  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (DIFFERENTIAL INPUT)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT AMPLITUDE (DIFFERENTIAL INPUT)  
1
100  
V
= 3V  
V
= 3V  
V
= 5V  
DD  
DD  
DD  
f = 1kHz  
10  
1
10  
1
0.1  
f = 1kHz  
V
= 0.26V  
RMS  
OUT  
f = 10kHz  
0.1  
0.1  
f = 10kHz  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
V
= 0.35V  
RMS  
OUT  
1k  
f = 100Hz  
f = 100Hz  
0
1
2
3
10  
100  
10k  
100k  
0
1
2
3
OUTPUT VOLTAGE (V  
)
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V  
)
RMS  
RMS  
DIFFERENTIAL MICROPHONE AMPLIFIER  
INPUT-REFERRED NOISE  
(DIFFERENTIAL MICROPHONE AMPLIFIER)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (DIFFERENTIAL INPUT)  
SMALL-SIGNAL TRANSIENT RESPONSE  
MAX9765 toc61  
1000  
0
-20  
IN  
50mV/div  
A
= 20dB  
V
-40  
100  
V
= 5V  
-60  
DD  
-80  
OUT  
50mV/div  
A
= 40dB  
100  
V
-100  
-120  
V
= 3V  
DD  
10  
200µs/div  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
A
= 4dB  
V
f
IN  
= 1kHz  
12 ______________________________________________________________________________________  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Typical Operating Characteristics (continued)  
(V  
= PV  
= 5V, BW = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
DD  
A
DD  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SINGLE-ENDED INPUT)  
DIFFERENTIAL MICROPHONE AMPLIFIER  
DIFFERENTIAL MICROPHONE AMPLIFIER  
OVERDRIVEN OUTPUT  
LARGE-SIGNAL TRANSIENT RESPONSE  
MAX9765 toc63  
MAX9765 toc62  
1
V
= 5V  
DD  
IN  
1V/div  
IN  
500mV/div  
0.1  
V
= 176mV  
RMS  
OUT  
0.01  
0.001  
OUT  
1V/div  
OUT  
1V/div  
V
= 265mV  
OUT  
RMS  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
200µs/div  
200µs/div  
A
f
= 4dB  
= 1kHz  
A
f
= 4dB  
= 1kHz  
V
IN  
V
IN  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT AMPLITUDE (SINGLE-ENDED INPUT)  
100  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SINGLE-ENDED INPUT)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT AMPLITUDE (SINGLE-ENDED INPUT)  
100  
1
V
= 3V  
V
= 3V  
V
= 5V  
DD  
DD  
DD  
10  
1
10  
1
0.1  
f = 1kHz  
V
= 176mV  
RMS  
OUT  
f = 10kHz  
f = 10kHz  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f = 100Hz  
f = 100Hz  
V
= 265mV  
RMS  
OUT  
1k  
f = 1kHz  
0.5  
0
1.0  
1.5  
)
2.0  
10  
100  
10k  
100k  
0
0.5  
1.0  
1.5  
)
2.0  
OUTPUT VOLTAGE (V  
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V  
RMS  
RMS  
INPUT-REFERRED NOISE  
(SINGLE-ENDED INPUT  
MICROPHONE AMPLIFIER)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (SINGLE-ENDED INPUT)  
0
-20  
600  
A
= 40dB  
V
500  
400  
300  
200  
100  
0
-40  
V
= 5V  
DD  
-60  
-80  
V
= 3V  
DD  
-100  
-120  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
______________________________________________________________________________________ 13  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Typical Operating Characteristics (continued)  
(V  
= PV  
= 5V, BW = 22Hz to 22kHz, T = +25°C, unless otherwise noted.)  
DD  
A
DD  
SINGLE-ENDED MICROPHONE AMPLIFIER  
SINGLE-ENDED MICROPHONE AMPLIFIER  
SMALL-SIGNAL TRANSIENT RESPONSE  
LARGE-SIGNAL TRANSIENT RESPONSE  
MAX9765 toc70  
MAX9765 toc71  
IN  
IN  
50mV/div  
500mV/div  
OUT  
100mV/div  
OUT  
1V/div  
200µs/div  
200µs/div  
A
= 10dB  
= 1kHz  
A
= 10dB  
= 1kHz  
V
V
f
IN  
f
IN  
SINGLE-ENDED MICROPHONE AMPLIFIER  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(SPEAKER MODE)  
OVERDRIVEN OUTPUT  
MAX9765 toc72  
20  
16  
12  
8
T
= +85°C  
A
T
= +25°C  
A
IN  
1V/div  
T
= -40°C  
A
OUT  
4
1V/div  
0
2.7  
3.4  
4.1  
4.8  
5.5  
200µs/div  
A
= 10dB  
= 1kHz  
V
SUPPLY VOLTAGE (V)  
f
IN  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(HEADPHONE MODE)  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
10  
8
30  
25  
20  
15  
10  
5
T
= +85°C  
A
T
= +25°C  
A
T
= +85°C  
A
6
T
= +25°C  
A
T
= -40°C  
A
4
2
T
= -40°C  
A
0
0
2.7  
3.4  
4.1  
4.8  
5.5  
2.7  
3.4  
4.1  
4.8  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
14 ______________________________________________________________________________________  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX9765  
MAX9766  
MAX9767  
1
1
1
SHDN  
Active-Low Shutdown. Connect SHDN to V  
for normal operation.  
DD  
2, 7, 8,  
18, 23,  
2, 7, 18  
2, 7, 18  
N.C.  
No Connection. Not internally connected.  
24, 27, 32  
Left-Channel Bridged Amplifier Positive Output. OUTL+ also serves as the  
left-channel headphone amplifier output.  
3
3
6
OUTL+  
4, 21  
5, 20  
6
4, 21  
5, 20  
6
4, 21  
5, 20  
3
PV  
Output Amplifier Power Supply. Connect PV to V  
DD  
.
DD  
DD  
PGND  
OUTL-  
INL2  
Power Ground. Connect PGND to GND.  
Left-Channel Bridged Amplifier Negative Output  
Left-Channel Input 2  
8
8
9
9
INL1  
Left-Channel Input 1  
10  
11  
12  
13  
10  
11  
12  
13  
10  
MICIN+  
MICIN-  
AUXIN  
Differential Microphone Amplifier Noninverting Input  
Differential Microphone Amplifier Inverting Input  
Single-Ended Microphone Amplifier Input  
Power Supply  
11  
12  
13  
V
DD  
Standby Power Supply. Connect to a standby power supply that is always on,  
or connect to V through a Schottky diode and bypass with a 220µF  
DD  
14  
14  
14  
SV  
DD  
capacitor to GND. Short to V  
if clickless operation is not essential.  
DD  
15  
16  
17  
19  
15  
17  
15  
19  
MICBIAS  
MICOUT  
GAINR  
Microphone Bias Output. Bypass MICBIAS with a 1µF capacitor to GND.  
Microphone Amplifier Output  
Right-Channel Gain Set  
OUTR-  
Right-Channel Bridged Amplifier Negative Output  
Right-Channel Bridged Amplifier Positive Output. OUTR+ also serves as the  
right-channel headphone amplifier output.  
22  
23  
22  
22  
OUTR+  
ADD  
Address Select. A logic high sets the address LSB to 1, a logic low sets the  
address LSB to 0.  
24  
25  
24  
25  
29  
SDA  
SCL  
Bidirectional Serial Data I/O  
Serial Clock Line  
26, 29  
27  
26, 29  
27  
GND  
INR2  
INR1  
HPS  
Ground  
Right-Channel Input 2  
Right-Channel Input 1  
Headphone Sense Input  
28  
28  
30  
30  
DC Bias Bypass. See BIAS Capacitor section for capacitor selection.  
31  
31  
31  
BIAS  
Connect C  
capacitor from BIAS to GND.  
BIAS  
32  
32  
16  
GAINL  
Left-Channel Gain Set  
MICOUT+  
16  
Microphone Amplifier Positive Output  
______________________________________________________________________________________ 15  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX9765  
MAX9766  
MAX9767  
19  
23  
17  
9
MICOUT-  
GAINM  
INL  
Microphone Amplifier Negative Output  
Mono Mode Gain Set  
Left-Channel Input  
Internal (Differential) or External (Single-Ended) Input Select. Drive INT/EXT  
low to select internal or high to select external microphone amplifier.  
25  
26  
INT/EXT  
Microphone Amplifier Gain Set. Tri-State Pin. Connect to V  
float for gain = 20dB, and to GND for gain = 30dB.  
for gain = 10dB,  
DD  
MICGAIN  
28  
30  
INR  
MUTE  
EP  
Right-Channel Input  
Mute Input  
Exposed Pad. Connect to ground plane of PC board to optimize heatsinking.  
continuous average power into a 4load with less than  
Detailed Description  
1% THD+N in speaker mode. The MAX9765/MAX9766  
can deliver 70mW of continuous average power into a  
16load with less than 1% THD+N in headphone  
mode. The speaker amplifiers also feature thermal-  
overload and short-circuit current protection.  
The MAX9765/MAX9766/MAX9767 feature 750mW BTL  
speaker amplifiers, 65mW headphone amplifiers, input  
multiplexers, headphone sensing, differential and sin-  
gle-ended input microphone amplifiers, and compre-  
hensive click-and-pop suppression. The MAX9765/  
MAX9766 are controlled through an I2C-compatible, 2-  
wire serial interface. The MAX9767 is controlled  
through three logic inputs: MUTE, SHDN, INT (see the  
Selector Guide). The MAX9765 family features excep-  
tional PSRR (95dB at 1kHz), allowing these devices to  
operate from noisy digital supplies without the need for  
a linear regulator.  
All devices feature microphone amplifiers with both dif-  
ferential and single-ended inputs. Differential input is  
intended for use with internal microphones. Single-  
ended input is intended for use with external (auxiliary)  
microphones. The differential input configuration is par-  
ticularly effective when layout constraints force the  
microphone amplifier to be physically remote from the  
ECM microphone and/or the rest of the audio circuitry.  
The MAX9766/MAX9767 feature a complementary out-  
put, creating an ideal interface with CODECs and other  
devices with differential inputs. All devices also feature  
an internal microphone bias generator.  
The speaker amplifiers use a BTL configuration. The  
MAX9765/MAX9766 main amplifiers are composed of  
an input amplifier and an output amplifier. Resistor R  
IN  
sets the input amplifier’s gain, and resistor R sets the  
F
output amplifier’s gain. The output of these two ampli-  
fiers serves as the input to a slave amplifier configured  
as an inverting unity-gain follower. This results in two  
outputs, identical in magnitude, but 180° out of phase.  
The overall gain of the speaker amplifiers is twice the  
product of the two amplifier gains (see the Gain-Setting  
Resistor section). A unique feature of this architecture  
is that there is no phase inversion from input to output.  
The MAX9767 does not use a two-stage input amplifier  
and therefore has phase inversion from input to output.  
Amplifier Common-Mode Bias  
These devices feature an internally generated com-  
mon-mode bias voltage of 1.5V referenced to GND.  
BIAS provides both click-and-pop suppression and  
sets the DC bias level for the audio signal. BIAS is inter-  
nally connected to the noninverting input of each  
speaker amplifier (see the Typical Application Circuit).  
Choose the value of the bypass capacitor as described  
in the BIAS Capacitor section.  
When configured as a headphone (single-ended) ampli-  
fier, the slave amplifier is disabled, muting the speaker  
and the main amplifier drives the headphone. The  
MAX9765/MAX9766/MAX9767 can deliver 700mW of  
Input Multiplexer  
The MAX9765/MAX9766 feature a 2:1 input multiplexer  
on the front end of each amplifier. The multiplexer is  
controlled by bit 1 in the control register. A logic low  
16 ______________________________________________________________________________________  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
which mutes the speaker amplifier and sets the device  
into headphone mode.  
Connect HPS to the control pin of a 3-wire headphone  
MAX9765  
15k  
jack as shown in Figure 2. With no headphone present,  
IN_1  
the resistive voltage-divider created by R1 and R2 sets  
the voltage on HPS to 44mV, setting the device to speak-  
AUDIO  
INPUT  
30kΩ  
er mode. When a headphone plug is inserted into the  
jack, the control pin is disconnected from the tip contact,  
IN_2  
and HPS is pulled to V  
through R1, setting the device  
DD  
into headphone mode. Place a resistor in series with the  
control pin and HPS (R3) to prevent any audio signal  
from coupling into HPS when the device is in speaker  
mode.  
Figure 1. Using the Input Multiplexer for Gain Setting  
Shutdown  
selects input IN_1 and a logic high selects input IN_2.  
Both right- and left-channel multiplexers are controlled  
by the same input.  
The MAX9765/MAX9766/MAX9767 feature a 5µA, low-  
power shutdown mode that reduces quiescent current  
consumption and extends battery life. The drive and  
microphone amplifiers and the bias circuitry are dis-  
abled, the amplifier outputs (OUT_/MIC_) go high  
impedance, and BIAS and MICBIAS are driven to GND.  
The digital section of the MAX9765/MAX9766 remains  
active when the device is shut down through the inter-  
face. A logic high on bit 0 of the SHDN register places  
the MAX9765/MAX9766 in shutdown. A logic low  
enables the device. A logic low on the SHDN input  
places the devices into shutdown mode, disables the  
interface, and resets the I2C registers to a default state.  
A logic high on SHDN enables the device. A logic high  
on SHDN enables the devices.  
The input multiplexer can also be used to further  
expand the number of gain options available from the  
MAX9765/MAX9766. Connect the audio source to the  
device through two different input resistors for multiple  
gain configurations (Figure 1). Additionally, the input  
multiplexer allows a speaker equalization network to be  
switched into the speaker signal path. This is typically  
useful in optimizing acoustic response from speakers  
with small physical dimensions.  
Mono Mode  
The mono MAX9766 incorporates a mixer/attenuator  
(see the Functional Diagram). In speaker (mono) mode,  
the mixer/attenuator combines the two stereo inputs  
(INL_ and INR_) and attenuates the resultant signal by  
a factor of 2. This allows for full reproduction of a stereo  
signal through a single speaker while maintaining opti-  
mum headroom. The resistor connected between  
GAINM and OUTL+ sets the device gain in speaker  
mode. This allows the speaker amplifier to have a dif-  
ferent gain and feedback network from the headphone  
amplifier.  
MUTE  
All devices feature a mute mode. When the device is  
muted, the input is disconnected from the amplifiers.  
MUTE only affects the power amplifiers, and does not  
shut down the device. The MAX9765/MAX9766 MUTE  
mode is selected by writing to the MUTE register (see  
Command Byte Definitions). The left and right channels  
can be independently muted. The MAX9767 features  
an active-high MUTE input that mutes both channels.  
Headphone Sense Disable Input  
The headphone sensing function can be disabled by  
the HPS_D bit (MAX9765/MAX9766). HPS_D bit deter-  
mines whether the device is in automatic-detection  
mode, or fixed-mode operation.  
INT/EXT  
The MAX9767 microphone amplifier input configuration  
is controlled by the INT/EXT input. A logic low In  
INT/EXT selects internal (differential) microphone  
mode. A logic high selects external (single-ended)  
mode.  
Headphone Sense Input (HPS)  
When the MAX9765/MAX9766 are in automatic head-  
phone-detection mode, the state of the headphone  
sense input (HPS) determines the operating mode of  
Click-and-Pop Suppression  
The MAX9765/MAX9766/MAX9767 feature Maxim’s  
patented comprehensive click-and-pop suppression.  
During startup and shutdown, the common-mode bias  
voltage of the amplifiers is slowly ramped to and from  
the DC bias point using an S-shaped waveform. In  
the device. A voltage on HPS less than 0.7 V  
sets  
DD  
the device to speaker mode. A voltage greater than 0.9  
disables the inverting bridge amplifier (OUT_-),  
V  
DD  
______________________________________________________________________________________ 17  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
headphone mode, this waveform shapes the frequency  
3V  
spectrum, minimizing the amount of audible compo-  
R1  
680kΩ  
nents present at the headphone. In speaker mode, the  
R3  
47kΩ  
MAX9765  
MAX9766  
BTL amplifiers start up in the same fashion as in head-  
phone mode. When entering shutdown, both amplifier  
outputs ramp to GND quickly and simultaneously. The  
devices can also be connected to a standby power  
source that ensures that the device undergoes its full  
shutdown cycle even after power has been removed.  
The value of the capacitor on the BIAS pin affects the  
click-and-pop energy. For optimum click/pop perfor-  
mance, use a 1µF capacitor.  
HPS  
OUTL+  
OUTR+  
R2  
10kΩ  
10kΩ  
Standby Power Supply (SV  
)
DD  
Figure 2. HPS Configuration Circuit  
The MAX9765/MAX9766/MAX9767 feature a patented  
system that provides clickless power-down when  
slave-only devices, relying upon a master to generate a  
clock signal. The master (typically a microcontroller) ini-  
tiates data transfer on the bus and generates SCL to  
permit that transfer.  
power is removed from the device. SV  
is an optional  
DD  
secondary supply that powers the device through its  
shutdown cycle when V is removed. During this  
DD  
cycle, the amplifier output DC level slowly ramps to  
GND, ensuring clickless power-down. If clickless  
A master device communicates to the MAX9765/  
MAX9766 by transmitting the proper address followed  
by a command and/or data words. Each transmit  
sequence is framed by a START (S) or REPEATED  
START (S ) condition and a STOP (P) condition. Each  
r
word transmitted over the bus is 8 bits long and is  
always followed by an acknowledge clock pulse.  
power-down is required, connect SV  
to either a sec-  
DD  
ondary power supply that is always on, or connect a  
reservoir capacitor from SV to GND. SV does not  
DD  
DD  
need to be connected to either a secondary power  
supply or reservoir capacitor for normal device opera-  
tion. If click-and-pop suppression during power-down  
The MAX9765/MAX9766 SDA and SCL amplifiers are  
open-drain outputs requiring a pullup resistor to gener-  
ate a logic-high voltage. Series resistors in line with  
SDA and SCL are optional. These series resistors pro-  
tect the input stages of the devices from high-voltage  
spikes on the bus lines, and minimize crosstalk and  
undershoot of the bus signals.  
is not required, connect SV  
to V  
directly.  
DD  
DD  
The clickless power-down cycle only occurs when the  
device is in headphone mode. The speaker mode is  
inherently clickless, the differential architecture cancels  
the DC shift across the speaker. The MAX9765/  
MAX9766/MAX9767 BTL outputs are pulled to GND  
quickly and simultaneously, resulting in no audible  
components. If the MAX9765/MAX9766/MAX9767 are  
only used as speaker amplifiers, then reservoir capaci-  
tors or secondary supplies are not necessary.  
Bit Transfer  
One data bit is transferred during each SCL clock  
cycle. The data on SDA must remain stable during the  
high period of the SCL clock pulse. Changes in SDA  
while SCL is high are control signals (see the START  
and STOP Conditions section). SDA and SCL idle high  
when the I2C bus is not busy.  
When using a reservoir capacitor, a 220µF capacitor  
provides optimum charge storage for the shutdown  
cycle for all conditions. If a smaller reservoir capacitor  
is desired, decrease the size of C  
. A smaller C  
BIAS  
BIAS  
causes the output DC level to decay at a faster rate,  
increasing the audible content at the speaker, but  
reducing the duration of the shutdown cycle.  
START and STOP Conditions  
When the serial interface is inactive, SDA and SCL idle  
high. A master device initiates communication by issu-  
ing a START condition. A START condition is a high-to-  
low transition on SDA with SCL high. A STOP condition  
is a low-to-high transition on SDA while SCL is high  
(Figure 4). A START condition from the master signals  
the beginning of a transmission to the MAX9765/  
MAX9766. The master terminates transmission by issu-  
ing the STOP condition; this frees the bus. If a REPEAT-  
ED START condition is generated instead of a STOP  
Digital Interface  
The MAX9765/MAX9766 feature an I2C/SMBus-compat-  
ible 2-wire serial interface consisting of a serial data  
line (SDA) and a serial clock line (SCL). SDA and SCL  
facilitate bidirectional communication between the  
MAX9765/MAX9766 and the master at clock rates up to  
400kHz. Figure 3 shows the 2-wire interface timing dia-  
gram. The MAX9765/MAX9766 are transmit/receive  
18 ______________________________________________________________________________________  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
SDA  
SCL  
t
BUF  
t
t
HD, STA  
SU, DAT  
t
t
SP  
HD, STA  
t
SU, STO  
t
t
HD, DAT  
LOW  
t
HIGH  
t
HD, STA  
t
t
F
R
START  
CONDITION  
REPEATED  
START  
STOP  
CONDITION  
START  
CONDITION  
CONDITION  
Figure 3. 2-Wire Serial Interface Timing Diagram  
condition, the bus remains active. When a STOP con-  
dition or incorrect address is detected, the  
MAX9765/MAX9766 internally disconnects SCL from  
the serial interface until the next START condition, mini-  
mizing digital noise and feedthrough.  
S
Sr  
P
SCL  
SDA  
Early STOP Conditions  
The MAX9765/MAX9766 recognize a STOP condition at  
any point during the transmission except if a STOP con-  
dition occurs in the same high pulse as a START condi-  
tion (Figure 5). This condition is not a legal I2C format;  
at least one clock pulse must separate any START and  
STOP conditions.  
Figure 4. START/STOP Conditions  
REPEATED START Conditions  
tem fault has occurred. In the event of an unsuccessful  
data transfer, the bus master should reattempt commu-  
nication at a later time.  
A REPEATED START (S ) condition may indicate a  
r
change of data direction on the bus. Such a change  
occurs when a command word is required to initiate a  
Slave Address  
The bus master initiates communication with a slave  
device by issuing a START condition followed by a 7-bit  
slave address (Figure 6). When idle, the MAX9765/  
MAX9766 wait for a START condition followed by its  
slave address. The serial interface compares each  
address value bit-by-bit, allowing the interface to power  
down immediately if an incorrect address is detected.  
The LSB of the address word is the Read/Write (R/W)  
bit. R/W indicates whether the master is writing to or  
reading from the MAX9765/MAX9766 (R/W = 0 selects  
the write condition, R/W = 1 selects the read condition).  
After receiving the proper address, the MAX9765/  
MAX9766 issue an ACK by pulling SDA low for one  
clock cycle.  
read operation. S may also be used when the bus  
r
master is writing to several I2C devices and does not  
want to relinquish control of the bus. The MAX9765/  
MAX9766 serial interface supports continuous write  
operations with or without an S condition separating  
r
them. Continuous read operations require S conditions  
r
because of the change in direction of data flow.  
Acknowledge Bit (ACK)  
The acknowledge bit (ACK) is the ninth bit attached to  
any 8-bit data word. The receiving device always gen-  
erates ACK. The MAX9765/MAX9766 generate an ACK  
when receiving an address or data by pulling SDA low  
during the ninth clock period. When transmitting data,  
the MAX9765/MAX9766 wait for the receiving device to  
generate an ACK. Monitoring ACK allows for detection  
of unsuccessful data transfers. An unsuccessful data  
transfer occurs if a receiving device is busy or if a sys-  
The MAX9765 has a factory/user-programmed address  
(Table 2). The MAX9766 has a factory-programmed  
address: 1001011.  
______________________________________________________________________________________ 19  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Table 1. HPS Setting (MAX9765/MAX9766)  
SCL  
SPKR/  
HP BIT  
HPS_D BIT  
HPS  
MODE  
0
0
1
1
0
1
X
X
X
X
0
1
BTL  
SE  
SDA  
BTL  
SE  
STOP  
START  
LEGAL STOP CONDITION  
2
Table 2. I C Slave Addresses  
SCL  
SDA  
ADD CONNECTION  
I2C ADDRESS  
GND  
100 1000  
100 1001  
100 1010  
100 1011  
V
DD  
SDA  
SCL  
START  
ILLEGAL  
STOP  
Table 3. MUTE Register Format  
ILLEGAL EARLY STOP CONDITION  
REGISTER  
0000 0001  
ADDRESS  
Figure 5. Early STOP Condition  
BIT  
7
NAME  
VALUE  
Don’t Care  
Don’t Care  
Don’t Care  
0*  
DESCRIPTION  
X
X
X
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
6
5
Figure 6. Slave Address Byte Definition  
Unmute right channel  
4
3
MUTER  
MUTEL  
1
Mute right channel  
Write Data Format  
0*  
Unmute left channel  
There are three registers that configure the  
MAX9765/MAX9766: the MUTE register, SHDN register,  
and control register. In write data mode (R/W = 0), the  
register address and data byte follow the device  
address (Figure 7).  
1
Mute left channel  
2
1
0
X
X
X
Don’t Care  
Don’t Care  
Don’t Care  
MUTE Register  
The MUTE register (01hex) is a read/write register that  
sets the MUTE status of the device. Bit 3 (MUTEL) of  
the MUTE register controls the left channel, bit 4  
(MUTER) controls the right channel. A logic high mutes  
the respective channel, a logic low brings the channel  
out of mute.  
*Default state.  
Control Register  
The control register (03hex) is a read/write register that  
determines the device configuration. Bit 1 (IN1/IN2)  
controls the input multiplexer, a logic high selects input  
1, a logic low selects input 2. Bit 2 (HPS_EN) controls  
the headphone sensing. A logic low configures the  
device in automatic headphone detection mode. A  
logic high disables the HPS input. Bit 3 (INT/EXT) con-  
trols the microphone amplifier inputs. A logic low  
selects differential (internal) input mode. A logic high  
selects single-ended (external) input mode. Bit 4  
(SPKR/HP) selects the amplifier operating mode when  
SHDN Register  
The SHDN register (02hex) is a read/write register that  
controls the power-up state of the device. A logic high  
in bit 0 of the SHDN register shuts down the device; a  
logic low turns on the device. A logic high is required in  
bits 2 to 7 to reset all registers to their default register  
settings.  
20 ______________________________________________________________________________________  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Table 4. SHDN Register Format  
Table 5. Control Register Format  
REGISTER  
0000 0011  
ADDRESS  
REGISTER  
0000 0010  
ADDRESS  
BIT  
7
NAME  
MG2  
VALUE  
DESCRIPTION  
BIT  
NAME  
VALUE  
DESCRIPTION  
0*  
Reset device  
Microphone amplifier  
gain set; 3-bit code sets  
the gain of the  
microphone amplifiers  
(Table 6)  
7
RESET  
6
MG1  
1
0*  
6
5
4
3
RESET  
RESET  
RESET  
RESET  
5
4
MG0  
1
Reset device  
0*  
0*  
1
Speaker mode selected  
1
Reset device  
SPKR/HP  
Headphone mode  
selected  
0*  
1
Reset device  
0*  
1
Differential input selected  
0*  
3
2
INT/EXT  
Single-ended input  
selected  
1
Reset device  
0*  
2
1
0
RESET  
X
Automatic headphone  
detection enabled  
0*  
1
1
Reset device  
Don’t Care  
HPS_D  
Automatic headphone  
detection disabled  
(HPS ignored)  
0*  
1
Normal operation  
Shutdown  
SHDN  
*Default state.  
0*  
1
Input 1 selected  
Input 2 selected  
1
0
IN1/IN2  
X
Don’t Care  
S
S
ADDRESS  
7 BITS  
WR ACK  
COMMAND  
8 BITS  
ACK  
DATA  
ACK  
P
1
8 BITS  
2
I C SLAVE ADDRESS.  
SELECTS DEVICE.  
REGISTER ADDRESS.  
SELECTS REGISTER TO BE  
WRITTEN TO.  
REGISTER DATA.  
ADDRESS  
7 BITS  
WR ACK  
COMMAND  
8 BITS  
ACK  
S
ADDRESS  
7 BITS  
WR ACK  
DATA  
P
1
8 BITS  
2
2
I C SLAVE ADDRESS.  
SELECTS DEVICE.  
REGISTER ADDRESS.  
SELECTS REGISTER  
TO BE READ.  
I C SLAVE ADDRESS.  
SELECTS DEVICE.  
DATA FROM  
SELECTED REGISTER.  
Figure 7. Write/Read Data Format Example  
HPS_EN = 1. A logic high selects speaker mode, a  
logic low selects headphone mode. Bits 5 to 7 (MG0-2)  
control the gain of the microphone amplifiers (Table 5).  
direction of the data flow reverses following the  
address acknowledge by the MAX9765/MAX9766. The  
master device reads the contents of all registers,  
including the read-only status register. Table 7 shows  
the status register format. Figure 7 shows an example  
read data sequence.  
Read Data Format  
In read mode (R/W = 1), the MAX9765/MAX9766 write  
the contents of the selected register to the bus. The  
______________________________________________________________________________________ 21  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Table 6. Microphone Gain Setting  
MAX9765  
DIFF GAIN (dB)  
MAX9766  
DIFF GAIN (dB)  
SINGLE-ENDED GAIN  
(dB)  
MG2  
MG1  
MG0  
0*  
0
0
0
1
1
1
1
0*  
0
1
1
0
0
1
1
0*  
1
0
1
0
1
0
1
4
10  
15  
20  
25  
30  
35  
40  
45  
10  
15  
20  
25  
29  
34  
36  
40  
9
14  
19  
24  
29  
34  
39  
*Default state.  
2
I C Compatibility  
V
OUT(PP)  
The MAX9765/MAX9766 are compatible with existing I2C  
systems. SCL and SDA are high-impedance inputs; SDA  
has an open drain that pulls the data line low during the  
ninth clock pulse. The communication protocol supports  
the standard I2C 8-bit communications. The general call  
address is ignored. The MAX9765/MAX9766 addresses  
are compatible with the 7-bit I2C addressing protocol  
only. No 10-bit formats are supported.  
V
=
=
RMS  
2 2  
2
V
RMS  
P
OUT  
R
L
Since the outputs are differential, there is no net DC  
voltage across the load. This eliminates the need for  
DC-blocking capacitors required for single-ended  
amplifiers. These capacitors can be large, expensive,  
consume board space, and degrade low-frequency  
performance.  
Applications Information  
BTL Amplifiers  
The MAX9765/MAX9766/MAX9767 feature speaker  
amplifiers designed to drive a load differentially, a con-  
figuration referred to as bridge-tied load (BTL). The BTL  
configuration (Figure 8) offers advantages over the sin-  
gle-ended configuration, where one side of the load is  
connected to ground. Driving the load differentially  
doubles the output voltage compared to a single-  
ended amplifier under similar conditions. Thus, the  
devices’ differential gain is twice the closed-loop gain  
of the input amplifier. The effective gain is given by:  
Single-Ended Headphone Amplifier  
The MAX9765/MAX9766 can be configured as single-  
ended headphone amplifiers through software or by  
sensing the presence of a headphone plug (HPS). In  
headphone mode, the inverting output of the BTL  
amplifier is disabled, muting the speaker. The gain is  
1/2 that of the device in speaker mode, and the output  
power is reduced by a factor of 4.  
In headphone mode, the load must be capacitively  
coupled to the device, blocking the DC bias voltage  
from the load (see the Typical Application Circuit and  
the Output-Coupling Capacitor section).  
R
F
A
= 2×  
VD  
R
IN  
Microphone Amplifiers  
Substituting 2 x V  
for V  
into the follow-  
OUT(P-P)  
OUT(P-P)  
Differential Microphone Amplifier  
The MAX9765/MAX9766/MAX9767 feature a low-noise,  
high CMRR, differential input microphone amplifier. The  
differential input structure is almost essential in noisy  
digital systems where amplification of low-amplitude  
analog signals is necessary such as notebooks and  
PDAs. When properly employed, the differential input  
architecture offers the following advantages:  
ing equations yields four times the output power due to  
doubling of the output voltage:  
22 ______________________________________________________________________________________  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Table 7. Status Register Format  
REGISTER ADDRESS  
0000 0000  
BIT  
NAME  
VALUE  
DESCRIPTION  
0
Device temperature below thermal limit  
Device temperature exceeding thermal limit  
OUTR- current below current limit  
OUTR- current exceeding current limit  
OUTR+ current below current limit  
OUTR+ current exceeding current limit  
OUTL- current below current limit  
OUTL- current exceeding current limit  
OUTL+ current below current limit  
OUTL+ current exceeding current limit  
Device in speaker mode  
7
6
5
4
3
2
THRM  
1
0
AMPR-  
AMPR+  
AMPL-  
AMPL+  
HPSTS  
1
0
1
0
1
0
1
0
1
Device in headphone mode  
1
0
X
X
Don’t Care  
Don’t Care  
Improved PSRR.  
Higher ground noise immunity.  
V
+1  
Microphone and preamplifier can be placed physi-  
cally farther apart, easing PC board layout require-  
ments.  
OUT(P-P)  
2 x V  
V
OUT(P-P)  
Common-Mode Rejection Ratio  
Common-mode rejection ratio (CMRR) refers to an  
amplifier’s ability to reject any signal applied equally to  
both inputs. In the case of amplifying a low-level micro-  
phone signal in noisy digital environments, CMRR is a  
key figure of merit. In audio circuits, CMRR is given by:  
-1  
OUT(P-P)  
Figure 8. Bridge-Tied Load Configuration  
A
A
V
INDIFF  
DM  
CM  
CMRR(dB) =  
=
V  
Power Dissipation and Heat Sinking  
Under normal operating conditions, the MAX9765/  
MAX9766/MAX9767 can dissipate a significant amount  
of power. The maximum power dissipation for each  
package is given in the Absolute Maximum Ratings  
section under Continuous Power Dissipation or can be  
calculated by the following equation:  
INCM  
where A  
is the differential gain, A  
is the common-  
DM  
CM  
mode gain, V  
is the change in input common-  
INCM  
mode voltage (IN+ and IN- connected together), and  
is the differential input voltage.  
V
INDIFF  
Typical input voltage magnitudes are small enough  
such that the output is not clipped in either differential  
or common-mode application. The MAX9765/MAX9766/  
MAX9767 differential microphone amplifier architecture  
CMRR actually improves as A  
tional advantage to the use of differential inputs.  
T
T  
A
J(MAX)  
P
=
DISSPKG(MAX)  
θ
JA  
increases—an addi-  
DM  
where T  
is +150°C, T is the ambient tempera-  
J(MAX) A  
ture, and θ is the reciprocal of the derating factor in  
JA  
°C/W as specified in the Absolute Maximum Ratings  
______________________________________________________________________________________ 23  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
section. For example, θ  
of the QFN package is  
As shown, the two-stage amplifier architecture results  
in a noninverting gain configuration, preserving relative  
phase through the MAX9765/MAX9766. The gain of the  
device in BTL mode is twice that of the single-ended  
JA  
+42°C/W.  
The increase in power delivered by the BTL configura-  
tion directly results in an increase in internal power dis-  
sipation over the single-ended configuration. The  
maximum power dissipation for a given V  
given by the following equation:  
mode. Choose R between 10kand 15kand R  
IN  
F
between 15kand 100k.  
and load is  
DD  
Input Filter  
The input capacitor (C ), in conjunction with R , forms  
IN  
IN  
2
2V  
DD  
a highpass filter that removes the DC bias from an  
incoming signal. The AC-coupling capacitor allows the  
amplifier to bias the signal to an optimum DC level.  
Assuming zero-source impedance, the -3dB point of  
the highpass filter is given by:  
P
=
DISS(MAX)  
2
π R  
L
If the power dissipation for a given application exceeds  
the maximum allowed for a given package, either reduce  
V
, increase load impedance, decrease the ambient  
DD  
temperature, or add heatsinking to the device. Large  
output, supply, and ground PC board traces improve the  
maximum power dissipation in the package.  
1
f
=
3dB  
2πR C  
IN IN  
Thermal-overload protection limits total power dissipa-  
tion in these devices. When the junction temperature  
exceeds +150°C, the thermal-protection circuitry dis-  
ables the amplifier output stage. The amplifiers are  
enabled once the junction temperature cools by 8°C.  
This results in a pulsing output under continuous ther-  
mal-overload conditions as the device heats and cools.  
Choose R according to the Gain-Setting Resistors  
IN  
section. Choose the C such that f  
is well below  
IN  
-3dB  
the lowest frequency of interest. Setting f  
too high  
-3dB  
affects the amplifier’s low-frequency response. Use  
capacitors whose dielectrics have low-voltage coeffi-  
cients, such as tantalum or aluminum electrolytic.  
Capacitors with high-voltage coefficients, such as  
ceramics, may result in an increased distortion at low  
frequencies.  
Component Selection  
Gain-Setting Resistors  
Other considerations when designing the input filter  
include the constraints of the overall system,  
the actual frequency band of interest, and click-and-  
pop suppression. Although high-fidelity audio calls for  
a flat gain response between 20Hz and 20kHz,  
portable voice-reproduction devices such as cellular  
phones and two-way radios need only concentrate on  
the frequency range of the spoken human voice (typi-  
cally 300Hz to 3.5kHz). In addition, speakers used in  
portable devices typically have a poor response below  
150Hz. Taking these two factors into consideration, the  
input filter may not need to be designed for a 20Hz to  
20kHz response, saving both board space and cost  
due to the use of smaller capacitors.  
External feedback components set the gain of the  
MAX9765/MAX9766/MAX9767. Resistor R sets the  
IN  
gain of the input amplifier (A ) and resistor R sets  
VIN  
F
the gain of the second-stage amplifier (A  
):  
VOUT  
15kΩ  
R
F
15kΩ  
A
= −  
, A  
= −  
VOUT  
VIN  
R
IN  
Combining A  
and A  
, R and R set the single-  
VIN  
VOUT IN  
F
ended gain of the device as follows:  
15kΩ  
R
15kΩ  
R
F
F
A
= A  
× A = −  
VOUT  
× −  
= +  
V
VIN  
R
R
IN  
IN  
(MAX9765/MAX9766)  
= −  
R
F
A
(MAX9767)  
VIN  
R
IN  
24 ______________________________________________________________________________________  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Output-Coupling Capacitor  
The MAX9765/MAX9766/MAX9767 require output-cou-  
pling capacitors to operate in single-ended (head-  
phone) mode. The output-coupling capacitor blocks the  
DC component of the amplifier output, preventing DC  
current from flowing to the load. The output capacitor  
and the load impedance form a highpass filter with a  
-3dB point determined by:  
Smaller capacitor values produce faster turn-on/off  
times and may impact the click/pop levels.  
Supply Bypassing  
Proper power-supply bypassing ensures low-noise,  
low-distortion performance. Place a 0.1µF ceramic  
capacitor from V  
to GND. Add additional bulk  
DD  
capacitance as required by the application. Bypass  
PV with a 100µF capacitor to GND. Locate bypass  
DD  
capacitors as close to the device as possible.  
1
f
=
3dB  
2πR C  
Layout and Grounding  
L
OUT  
Good PC board layout is essential for optimizing perfor-  
mance. Use large traces for the power-supply inputs  
and amplifier outputs to minimize losses due to para-  
sitic trace resistance, as well as route heat away from  
the device. Good grounding improves audio perfor-  
mance, minimizes crosstalk between channels, and  
prevents any digital switching noise from coupling into  
the audio signal. If digital signal lines must cross over  
or under audio signal lines, ensure that they cross per-  
pendicular to each other.  
As with the input capacitor, choose C  
such that  
OUT  
f
is well below the lowest frequency of interest.  
-3dB  
Setting f  
quency response.  
too high affects the amplifier‘s low-fre-  
-3dB  
Load impedance is a concern when choosing C  
.
OUT  
Load impedance can vary, changing the -3dB point of  
the output filter. A lower impedance increases the cor-  
ner frequency, degrading low-frequency response.  
Select C  
such that the worst-case load/C  
com-  
OUT  
OUT  
bination yields an adequate response. Select capaci-  
tors with low ESR.  
The MAX9765/MAX9766/MAX9767 thin QFN packages  
feature exposed thermal pads on their undersides. This  
pad lowers the package’s thermal resistance by provid-  
ing a direct heat conduction path from the die to the  
printed circuit board. Connect the pad to signal ground  
by using a large pad, or multiple vias to the ground  
plane.  
BIAS Capacitor  
BIAS is the output of the internally generated 1.5VDC  
bias voltage. The BIAS bypass capacitor, C  
,
BIAS  
improves PSRR and THD+N by reducing power supply  
and other noise sources at the common-mode bias  
node, and also generates the clickless/popless, start-  
up/shutdown DC bias waveforms for the speaker ampli-  
fiers. Bypass BIAS with a 1µF capacitor to GND.  
______________________________________________________________________________________ 25  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Typical Application Circuit  
0.1µF  
V
DD  
PV  
DD  
BIAS  
SV  
DD  
*C  
SVDD  
220µF  
1µF  
15kΩ  
GAINL  
OUTL+  
0.47µF 15kΩ  
0.47µF 15kΩ  
INL1  
INL2  
OUTL-  
HPF  
CODEC  
MAX9765  
0.47µF 15kΩ  
0.47µF 15kΩ  
INR1  
INR2  
OUTR-  
HPF  
OUTR+  
GAINR  
220µF  
15kΩ  
SCL  
SDA  
ADD  
HPS  
0.1µF  
MICROCONTROLLER  
AUX_IN  
SHDN  
2.2kΩ  
MICBIAS  
MICOUT  
2.2kΩ  
0.1µF  
0.1µF  
IN+  
IN-  
*C  
IS ONLY REQUIRED IF LOW CLICK-AND-POP LEVELS ARE NECESSARY DURING POWER-DOWN.  
SVDD  
26 ______________________________________________________________________________________  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Functional Diagrams  
V
DD  
*
0.1µF  
C
SVDD  
V
SV  
DD  
PV  
DD  
DD  
15kΩ  
GAINL  
OUTL+  
V
DD  
0.47µF  
0.47µF  
15kΩ  
15kΩ  
AUDIO  
INPUT  
INL1  
INL2  
2:1  
INPUT  
MUX  
15kΩ  
15kΩ  
680kΩ  
AUDIO  
INPUT  
220µF  
15kΩ  
BIAS  
BIAS  
15kΩ  
1µF  
OUTL-  
GAINR  
15kΩ  
0.47µF  
0.47µF  
15kΩ  
15kΩ  
AUDIO  
INPUT  
INR1  
INR2  
2:1  
INPUT  
MUX  
15kΩ  
15kΩ  
AUDIO  
INPUT  
OUTR+  
220µF  
15kΩ  
SHDN  
SCL  
15kΩ  
2
I C  
OUTR-  
HPS  
SDA  
ADD  
LOGIC  
47kΩ  
HPS  
0.1µF  
AUXIN  
10kΩ  
2.2kΩ  
2:1  
OUTPUT  
MUX  
MICOUT  
MICBIAS  
MIC  
BIAS  
0.1µF  
2.2kΩ  
0.1µF  
0.1µF  
MICIN+  
MICIN-  
MAX9765  
GND  
*C  
IS ONLY REQUIRED IF LOW CLICK-AND-POP LEVELS ARE NECESSARY DURING POWER-DOWN.  
SVDD  
______________________________________________________________________________________ 27  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Functional Diagrams (continued)  
V
DD  
*
0.1µF  
C
SVDD  
PV  
DD  
V
SV  
DD  
DD  
15kΩ  
GAINL  
GAIN  
MUX  
GAINM  
0.47µF  
0.47µF  
15kΩ  
15kΩ  
V
DD  
AUDIO  
INPUT  
INL1  
INL2  
2:1  
INPUT  
MUX  
15kΩ  
15kΩ  
15kΩ  
AUDIO  
INPUT  
OUTL+  
680kΩ  
220µF  
BIAS  
BIAS  
15kΩ  
1µF  
15kΩ  
OUTL-  
15kΩ  
GAINR  
OUTR  
0.47µF  
0.47µF  
15kΩ  
15kΩ  
AUDIO  
INPUT  
INR1  
INR2  
2:1  
INPUT  
MUX  
15kΩ  
15kΩ  
AUDIO  
INPUT  
220µF  
SHDN  
SCL  
I2C  
LOGIC  
SDA  
47kΩ  
0.1µF  
HPS  
AUXIN  
HPS  
MAX9766  
10kΩ  
2.2kΩ  
MICBIAS  
MIC  
BIAS  
MICOUT+  
MICOUT-  
0.1µF  
2:1  
OUTPUT  
MUX  
2.2kΩ  
0.1µF  
0.1µF  
MICIN+  
MICIN-  
GND  
*C  
SVDD  
IS ONLY REQUIRED IF LOW CLICK-AND-POP LEVELS ARE NECESSARY DURING POWER-DOWN.  
28 ______________________________________________________________________________________  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Functional Diagrams (continued)  
15kΩ  
15kΩ  
0.1µF  
15kΩ  
INL  
AUDIO  
INPUT  
OUTL+  
OUTL-  
15kΩ  
15kΩ  
V
DD  
V
DD  
0.1µF  
PV  
DD  
BIAS  
0.1µF  
OUTR+  
OUTR+  
SHDN  
MUTE  
INTEXT  
15kΩ  
15kΩ  
0.47µF  
15kΩ  
INR  
AUDIO  
INPUT  
0.1µF  
MAX9767  
AUXIN  
MICOUT+  
MICOUT-  
2.2kΩ  
OUTPUT  
MUX  
MICBIAS  
MIC  
BIAS  
1µF  
2.2kΩ  
0.1µF  
GND  
MICIN+  
MICIN-  
PGND  
0.1µF  
GADJ  
GAIN  
CONTROL  
______________________________________________________________________________________ 29  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Pin Configurations  
32 31 30 29 28 27 26 25  
32 31 30 29 28 27 26 25  
SHDN  
N.C.  
1
2
3
4
5
6
7
8
24 SDA  
23 ADD  
22 OUTR+  
SHDN  
N.C.  
1
2
3
4
5
6
7
8
24 SDA  
23 GAINM  
22 OUTR+  
OUTL+  
OUTL+  
PV  
DD  
21 PV  
DD  
PV  
DD  
21 PV  
DD  
MAX9765  
MAX9766  
PGND  
OUTL-  
N.C.  
20 PGND  
19 OUTR-  
18 N.C.  
PGND  
OUTL-  
N.C.  
20 PGND  
19 MICOUT-  
18 N.C.  
INL2  
17 GAINR  
INL2  
17 GAINR  
9
10 11 12 13 14 15 16  
9
10 11 12 13 14 15 16  
THIN QFN  
THIN QFN  
32 31 30 29 28 27 26 25  
SHDN  
N.C.  
1
24 N.C.  
23 N.C.  
22 OUTR+  
2
3
4
5
6
7
8
OUTL-  
PV  
DD  
21 PV  
DD  
MAX9767  
PGND  
OUTL+  
N.C.  
20 PGND  
19 OUTR-  
18 N.C.  
N.C.  
17 MICOUT-  
9
10 11 12 13 14 15 16  
THIN QFN  
30 ______________________________________________________________________________________  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Selector Guide  
MICROPHONE  
AMPLIFIER  
OUTPUT  
CONTROL  
INTERFACE  
SPEAKER  
AMPLIFIER  
INPUT  
MULTIPLEXER  
HEADPHONE  
AMPLIFIER  
PART  
MAX9765  
MAX9766  
MAX9767  
I2C compatible  
I2C compatible  
Parallel  
Stereo  
Mono  
Stereo  
Stereo  
Single ended  
Differential  
Differential  
Stereo  
Chip Information  
MAX9765 TRANSISTOR COUNT: 4829  
MAX9766 TRANSISTOR COUNT: 4533  
MAX9767 TRANSISTOR COUNT: 4731  
PROCESS: BiCMOS  
______________________________________________________________________________________ 31  
750mW Audio Amplifiers with Headphone Amp,  
Microphone Preamp, and Input Mux  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
XXXXX  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45  
DETAIL A  
e
PIN # 1  
I.D.  
(ND-1) X  
e
DETAIL B  
e
L
C
C
L
L1  
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32L THIN QFN, 5x5x0.8mm  
1
-DRAWING NOT TO SCALE-  
21-0140  
G
2
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
MIN. NOM. MAX. MIN. NOM. MAX. ±0.15  
DOWN  
BONDS  
ALLOWED  
L
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
PKG.  
CODES  
T1655-1  
T1655-2  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
A
**  
**  
**  
**  
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05  
0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF.  
A1  
0
0
0
0
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
A3  
b
T2055-2  
T2055-3  
T2055-4  
T2055-5  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
Y
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
**  
**  
D
E
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
e
0.80 BSC.  
0.25  
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50  
0.65 BSC.  
0.50 BSC.  
0.50 BSC.  
T2855-1  
T2855-2  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
NO  
NO  
**  
**  
**  
**  
k
-
-
0.25  
-
-
0.25  
-
-
0.25  
-
-
L
T2855-3  
T2855-4  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
YES  
YES  
NO  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
N
ND  
16  
4
20  
5
28  
7
32  
8
T2855-5  
T2855-6  
T2855-7  
T2855-8  
**  
**  
**  
NO  
YES  
4
5
7
8
NE  
2.80  
3.35  
3.35  
3.20  
2.60 2.70  
3.15 3.25  
2.60 2.70 2.80  
3.15 3.25 3.35  
3.15 3.25 3.35  
3.00 3.10 3.20  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
JEDEC  
0.40  
Y
N
NO  
T2855N-1 3.15 3.25  
**  
**  
**  
NOTES:  
T3255-2  
T3255-3  
T3255-4  
3.00 3.10  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
YES  
NO  
**  
**  
NO  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
**SEE COMMON DIMENSIONS TABLE  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1,  
T2855-3 AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
PACKAGE OUTLINE,  
16, 20, 28, 32L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
G
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________32  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9765ETJ

750mW Audio Amplifiers with Headphone Amp, Microphone Preamp, and Input Mux
MAXIM

MAX9765ETJ+

暂无描述
MAXIM

MAX9765ETJ+T

Audio Amplifier, 0.75W, 2 Channel(s), 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, EXPOSED PAD, TQFN-32
MAXIM

MAX9765ETJ-T

暂无描述
MAXIM

MAX9765EVSYS/EVKIT

Evaluation System/Evaluation Kit for the MAX9765
MAXIM

MAX9765_07

750mW Audio Amplifiers with Headphone Amp, Microphone Preamp, and Input Mux
MAXIM

MAX9765|MAX9766|MAX9767

750mW Audio Amplifiers with Headphone Amp. Microphone Preamp. and Input Mux
MAXIM

MAX9766ETJ

750mW Audio Amplifiers with Headphone Amp, Microphone Preamp, and Input Mux
MAXIM

MAX9766ETJ+

Audio Amplifier, 0.75W, 2 Channel(s), 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, EXPOSED PAD, TQFN-32
MAXIM

MAX9767ETJ

750mW Audio Amplifiers with Headphone Amp, Microphone Preamp, and Input Mux
MAXIM

MAX9767ETJ-T

Audio Amplifier, 0.75W, 2 Channel(s), 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, EXPOSED PAD, TQFN-32
MAXIM

MAX9768

10W Mono Class D Speaker Amplifier with Volume Control
MAXIM