MAX977ESD-T [MAXIM]

Comparator, 2 Func, 3000uV Offset-Max, 28ns Response Time, CMOS, PDSO14, SOP-14;
MAX977ESD-T
型号: MAX977ESD-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Comparator, 2 Func, 3000uV Offset-Max, 28ns Response Time, CMOS, PDSO14, SOP-14

放大器 光电二极管
文件: 总16页 (文件大小:261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1141; Rev 1; 11/98  
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
5/MAX97  
Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX975/MAX977 single/dual comparators feature  
three different operating modes, and are optimized for  
+3V and +5V single-supply applications. The operating  
modes are as follows: high speed, high speed with  
auto-standby, and low power. Propagation delay is 28ns  
in high-speed mode, while supply current is only 250µA.  
Supply current is reduced to 3µA in low-power mode.  
Three Operating Modes:  
High Speed  
High Speed with Auto-Standby  
Low Power  
28ns Propagation Delay (high-speed mode)  
5µA Max Supply Current in Low-Power/  
Auto-Standby Modes  
The a uto-sta ndb y fe a ture a llows the c omp a ra tor to  
automatically change from low-power mode to high-  
speed mode upon receipt of an input signal. In the  
absence of an input signal, the comparator reverts  
back to low-power mode after an adjustable timeout  
period. The timeout period for the MAX975 to enter  
standby is set by a single capacitor. The dual MAX977  
features independently adjustable timeout periods for  
each comparator using separate capacitors.  
+3V/+5V Single-Supply Operation  
Rail-to-Rail Outputs  
Ground-Sensing Input  
Internal Hysteresis (high-speed mode)  
Adjustable Timeout Period  
µMAX Package (MAX975)  
QSOP-16 Package (MAX977)  
The MAX975/MAX977s inputs have a common-mode  
voltage range of -0.2V to (V  
- 1.2V). The differential  
CC  
input voltage range extends rail to rail. The outputs are  
capable of rail-to-rail operation without external pull-up  
circuitry, making these devices ideal for interface with  
CMOS/TTL logic. All inputs and outputs can tolerate a  
continuous short-circuit fault condition to either rail. The  
comparators internal hysteresis in high-speed mode  
ensures clean output switching, even with slow-moving  
input signals.  
Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 SO  
MAX975ESA  
MAX975EUA  
MAX977ESD  
MAX977EEE  
8 µMAX  
14 SO  
16 QSOP  
The single MAX975 is available in 8-pin SO and 8-pin  
µMAX packages, while the dual MAX977 is available in  
14-pin SO and 16-pin QSOP packages.  
Fu n c t io n a l Dia g ra m  
V
CC  
________________________Ap p lic a t io n s  
MAX975  
IN+  
Battery-Powered Systems  
RF ID Tags  
LP  
HIGH SPEED  
ENABLE  
OUT  
Keyless Entry  
Threshold Detectors/Discriminators  
3V Systems  
TRANSITION  
MONITOR  
IR Receivers  
Digital-Line Receivers  
GND  
LOW POWER  
ENABLE  
IN-  
TIMING  
CIRCUIT  
STAT  
STO  
Pin Configurations appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V ) ............................................................+6V  
14-Pin SO (derate 8.33mW/°C above +70°C)................667mW  
16-Pin QSOP (derate 8.33mW/°C above +70°C)...........667mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
All Other Pins ..............................................-0.3V to (V + 0.3V)  
CC  
Duration of Output Short Circuit to GND_ or V ......Continuous  
CC  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin SO (derate 5.88mW/°C above +70°C)..................471mW  
8-Pin µMAX (derate 4.10mW/°C above +70°C) .............330mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +2.7V to +5.25V, specifications are for high-speed mode, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
CC  
A
T
A
= +25°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
5/MAX97  
POWER SUPPLY  
Supply-Voltage  
Operating Range  
V
CC  
2.7  
5.25  
High-speed mode  
Auto-standby/low-power modes  
250  
3
500  
5
Supply Current  
Per Comparator  
I
CC  
SO  
µA  
µMAX/QSOP  
3
6
High-speed mode  
Low-power mode  
63  
90  
77  
Power-Supply  
Rejection Ratio  
V
= 1V,  
CM  
PSRR  
dB  
2.7V V 5.25V  
CC  
COMPARATOR INPUTS  
Common-Mode  
Voltage Range  
V
CMR  
(Note 2)  
-0.2  
V
CC  
- 1.2  
V
High-speed mode, T = +25°C  
+0.2  
±2  
±3  
A
High-speed mode, T = T  
to T  
MAX  
A
MIN  
Input Offset Voltage  
(Note 3)  
V
V
CC  
= 1V,  
= 5V  
CM  
V
OS  
mV  
Auto-standby/  
low-power modes,  
SO  
±1  
±1  
±5  
±7  
µMAX/QSOP  
T
A
= T to T  
MIN MAX  
SO  
0.5  
0.3  
2
2
4
Input-Referred Hysteresis  
Input Bias Current  
V
V
= 1V, V = 5V (Note 4)  
mV  
nA  
HYS  
CM  
CC  
µMAX/QSOP  
SO  
4
-100  
-100  
-5  
-300  
-400  
High-speed mode  
Auto-standby/low-power modes  
I
µMAX/QSOP  
B
Input Offset Current  
Input Capacitance  
I
±20  
3
±100  
nA  
pF  
OS  
C
IN  
SO  
66  
54  
90  
High-speed mode  
Low-power mode  
Common-Mode  
Rejection Ratio  
-0.2V V  
CM  
CMRR  
µMAX/QSOP  
dB  
V - 1.2V  
CC  
82  
2
_______________________________________________________________________________________  
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
5/MAX97  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2.7V to +5.25V, specifications are for high-speed mode, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
CC  
A
T
A
= +25°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS  
LP Input Voltage High  
LP Input Voltage Low  
LP Fall Time  
V
0.7 xV  
V / 2  
CC  
V
V
LPIH  
CC  
V
LPIL  
V
/ 2 0.3 x V  
CC CC  
t
(Note 5)  
10  
µs  
µA  
V
LP  
LP Input Current  
I
0.01  
±1  
LPB  
STO_ Input Voltage Low  
STO_ Source Current  
DIGITAL OUTPUTS  
OUT_ Output Voltage High  
OUT_ Output Voltage Low  
V
V
/ 2 0.3 x V  
CIL  
CC CC  
I
V
CC  
= 3V  
0.15  
µA  
STO  
V
I
= 2mA, all modes  
= 2mA, all modes  
SINK  
V
- 0.4  
V - 0.1  
CC  
V
V
OH  
CC  
SOURCE  
V
I
0.1  
0.4  
50  
OL  
High-speed mode,  
overdrive = 5mV  
28  
0.82  
28  
ns  
µs  
ns  
µs  
Propagation Delay, Low to High  
(Note 6)  
C
= 10pF,  
LOAD  
t
PD+  
V
CC  
= 5V  
Low-power mode,  
overdrive = 10mV  
1.6  
50  
High-speed mode,  
overdrive = 5mV  
Propagation Delay, High to Low  
(Note 6)  
C
V
CC  
= 10pF,  
= 10pF  
LOAD  
t
PD-  
= 5V  
Low-power mode,  
overdrive = 10mV  
0.48  
1.6  
Propagation-Delay Skew (Note 6)  
Propagation-Delay Matching  
t
C
2
1
ns  
ns  
SKEW  
LOAD  
t  
MAX977 only, C  
= 10pF  
PD  
LOAD  
High-speed mode  
Low-power mode  
1.6  
1.6  
C
V
CC  
= 10pF,  
= 5.0V  
LOAD  
Rise/Fall Time  
ns  
STAT_ Output Voltage High  
STAT_ Output Voltage Low  
V
I
= 3mA, all modes  
V
CC  
- 0.4  
V
V
SH  
SOURCE  
V
SL  
I
= 400µA, all modes  
0.4  
SINK  
Note 1: The MAX975EUA is 100% production tested at T = +25°C; all temperature specifications are guaranteed by design.  
A
Note 2: Inferred by CMRR. Either input can be driven to the absolute maximum limit without false output inversion, as long as the  
other input is within the specified common-mode input voltage range.  
Note 3: V is defined as the mean of trip points. The trip points are the extremities of the differential input voltage required to make  
OS  
the comparator output change state (Figure 1).  
Note 4: The difference between the upper and lower trip points is equal to the width of the input-referred hysteresis zone (Figure 1).  
Note 5: Guaranteed by design. The LP pin is sensitive to noise. If fall times larger than 10µs are expected, bypass LP to ground  
using a 0.1µF capacitor.  
Note 6: Propagation delay is guaranteed by design. For low-overdrive conditions, V is added to the overdrive. The following  
OS  
equation defines propagation-delay skew: t  
= t  
- t  
SKEW  
PD+ PD-.  
_______________________________________________________________________________________  
3
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2.7V to +5.25V, specifications are for high-speed mode, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
CC  
A
T
A
= +25°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
16  
UNITS  
AUTO-STANDBY/LOW-POWER TIMING (Note 7; Figure 2)  
Auto-Standby Timeout  
t
(Note 8)  
(Note 9)  
5
10  
3
ms  
µs  
µs  
ASB  
Auto-Standby Enable Time  
Auto-Standby Wake-Up Time  
t
ASBE  
t
10mV overdrive (Note 10)  
2
4
ASD  
Auto-Standby Wake-Up Input  
or LP Pulse Width  
t
10mV overdrive (Note 11)  
1.6  
µs  
µs  
PWD  
Auto-Standby Comparator  
Disable  
t
(Note 12)  
0.8  
ASCD  
Low-Power Enable Time  
High-Speed Enable Time  
Low-Power Comparator Disable  
Low-Power STAT_ High  
t
(Note 13)  
(Note 14)  
(Note 15)  
(Note 16)  
3
µs  
µs  
µs  
ns  
LPE  
X
t
1.1  
0.7  
20  
4
HSE  
t
LPCD  
t
LPSH  
Note 7: Timing specifications are guaranteed by design.  
Note 8: Set by 1000pF external capacitor at the STO_ pin. t  
is defined as the time from last input transition to STAT_ = high.  
ASB  
Does not include time to go into standby condition (t  
.
ASBE)  
Note 9:  
t
is defined as the time from when STAT_ goes high to when the supply current drops to 5µA.  
ASBE  
Note 10: t  
is defined as the time from the last input transition to when STAT_ goes low. The comparator is in high-speed mode  
ASD  
before STAT_ is low.  
Note 11: t  
is defined as the minimum input or LP pulse width to trigger fast-mode operation from auto-standby.  
PWD  
Note 12: t  
Note 13: t  
Note 14: t  
is defined as the time from the last input transition to when the supply current increases to 300µA.  
is defined as the time from when LP is driven high to when the supply current drops to 5µA.  
is defined as the time from when LP goes low to when STAT goes low. The comparator is in high-speed mode before  
ASCD  
LPE  
HSE  
STAT_ is low.  
Note 15: t  
Note 16: t  
is defined as the time from when LP goes low to when the supply current increases to 300µA.  
is defined as the time from when LP goes high to when STAT_ goes high.  
LPCD  
LPSH  
4
_______________________________________________________________________________________  
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
5/MAX97  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = 3.0V, T = +25°C, unless otherwise noted.)  
CC  
A
LOW-POWER OFFSET VOLTAGE  
vs. TEMPERATURE  
HIGH-SPEED INPUT BIAS CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT PER COMPARATOR  
vs. OUTPUT TRANSITION FREQUENCY  
-0.60  
-50  
-70  
-90  
10000  
1000  
100  
V
CC  
= 3V  
-0.65  
-0.70  
-0.75  
-0.80  
HIGH-SPEED MODE  
V
= 3V  
= 5V  
CC  
-0.85  
-0.90  
-0.95  
-1.00  
-1.05  
-1.10  
-1.15  
-1.20  
-110  
-130  
V
CC  
LOW-POWER MODE  
10  
1
-150  
-170  
-60 -40 -20  
0
20 40 60 80 100  
0.01k 0.1k 1k 10k 100k 1M 10M 100M  
-60 -40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
TRANSITION FREQUENCY (kHz)  
TEMPERATURE (°C)  
LOW-POWER INPUT BIAS CURRENT  
vs. TEMPERATURE  
HIGH-SPEED VOLTAGE TRIP POINTS/INPUT  
OFFSET VOLTAGE vs. TEMPERATURE  
HIGH-SPEED VOLTAGE TRIP POINTS/INPUT  
OFFSET VOLTAGE vs. TEMPERATURE  
7.0  
6.5  
1.0  
1.2  
1.0  
0.8  
0.6  
0.4  
V
CC  
= 5V  
V
CC  
= 3V  
0.8  
0.6  
V
TRIP+  
V
TRIP+  
6.0  
5.5  
0.4  
0.2  
0
0.2  
0
V
= 5V  
CC  
V
OS  
V
OS  
5.0  
4.5  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-0.2  
V
TRIP-  
V
CC  
= 3V  
-0.4  
-0.6  
-0.8  
-1.0  
4.0  
3.5  
3.0  
V
TRIP-  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LOW-POWER PROPAGATION DELAY  
vs. CAPACITIVE LOAD  
LOW-POWER PROPAGATION DELAY  
vs. INPUT OVERDRIVE  
AUTO-STANDBY TIMEOUT  
vs. TEMPERATURE  
600  
550  
500  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
10.2  
10.1  
C
LOAD  
=15pF  
V
= 5V  
= 3V  
CC  
10.0  
9.9  
t
+
PD  
V
= 5V  
= 3V  
CC  
450  
400  
350  
300  
t
V
CC  
= 3V  
PD+  
V
CC  
9.8  
V
CC  
9.7  
9.6  
V
CC  
= 3V  
= 5V  
V
CC  
= 5V  
V
CC  
= 3V  
= 5V  
t
PD-  
9.5  
9.4  
t
V
CC  
PD-  
250  
200  
V
CC  
50mV OVERDRIVE  
9.3  
0
50  
100  
150  
200  
250  
0
40  
80  
120  
160  
200  
240  
-60 -40 -20  
0
20 40 60 80 100  
CAPACITIVE LOAD (pF)  
INPUT OVERDRIVE (mV)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 3.0V, T = +25°C, unless otherwise noted.)  
CC  
A
OUTPUT HIGH VOLTAGE  
vs. OUTPUT SOURCE CURRENT  
OUTPUT LOW VOLTAGE  
vs. OUTPUT SINK CURRENT  
AUTO-STANDBY TIMEOUT  
vs. TIMEOUT CAPACITOR  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
100000  
V
CC  
= 3V  
V
= 3V  
CC  
T = +25°C  
A
T = +85°C  
A
10000  
1000  
100  
T = -40°C  
A
T = -40°C  
A
T = +85°C  
A
10  
5/MAX97  
T = +25°C  
A
1
1
10  
100  
1000  
10000  
0
5
10  
15  
20  
25 30  
35  
0
5
10 15 20 25 30 35 40  
SINK CURRENT (mA)  
CAPACITANCE (pF)  
SOURCE CURRENT (mA)  
HIGH-SPEED SUPPLY CURRENT  
PER COMPARATOR  
vs. TEMPERATURE (V = 5V)  
CC  
HIGH-SPEED PROPAGATION DELAY  
vs. TEMPERATURE (V = 5V)  
HIGH-SPEED PROPAGATION DELAY  
vs. TEMPERATURE (V = 3V)  
CC  
CC  
30  
26  
35  
400  
C
V
OD  
= 15pF  
= 50mV  
LOAD  
C
V
OD  
= 15pF  
= 50mV  
375  
350  
325  
300  
LOAD  
33  
31  
t
PD-  
29  
27  
25  
23  
OUT_ = HIGH  
OUT_ = LOW  
22  
18  
275  
250  
225  
200  
175  
150  
125  
100  
t
PD+  
t
PD-  
t
PD+  
21  
19  
17  
15  
14  
10  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
STANDBY/LOW-POWER SUPPLY  
CURRENT PER COMPARATOR  
STANDBY/LOW POWER-SUPPLY  
CURRENT PER COMPARATOR  
HIGH-SPEED SUPPLY CURRENT  
PER COMPARATOR  
vs. TEMPERATURE (V = 5V)  
CC  
vs. TEMPERATURE (V = 3V)  
CC  
vs. TEMPERATURE (V = 3V)  
CC  
4.5  
4.0  
3.5  
3.8  
300  
3.6  
3.4  
3.2  
280  
260  
OUT_ = LOW  
OUT_ = HIGH  
240  
220  
200  
180  
3.0  
2.8  
2.6  
OUT = LOW  
3.0  
2.5  
OUT_ = HIGH  
OUT_ = LOW  
2.4  
2.2  
2.0  
1.8  
160  
140  
120  
100  
2.0  
1.5  
OUT = HIGH  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
5/MAX97  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 3.0V, T = +25°C, unless otherwise noted.)  
CC  
A
HIGH-SPEED PROPAGATION DELAY  
vs. CAPACITIVE LOAD  
HIGH-SPEED PROPAGATION DELAY  
vs. INPUT OVERDRIVE  
LOW-POWER PROPAGATION DELAY  
vs. TEMPERATURE (V = 3V)  
CC  
30  
25  
20  
15  
10  
5
600  
560  
520  
480  
440  
400  
360  
320  
280  
240  
200  
45.0  
t
42.5  
40.0  
37.5  
35.0  
C
V
OD  
= 15pF  
= 50mV  
C
V
OD  
= 15pF  
= 50mV  
PD-  
LOAD  
LOAD  
V
= +3V  
CC  
V
= +3V  
= +5V  
CC  
t
PD-  
t
PD+  
32.5  
30.0  
27.5  
25.0  
t
V
CC  
= +5V  
PD+  
t
PD+  
t
PD-  
t
V
CC  
t
PD-  
PD+  
22.5  
20.0  
17.5  
15.0  
C
LOAD  
= 15pF  
0
0
50  
100  
150  
200  
250  
0
20 40 60 80 100 120 140 160 180 200  
INPUT OVERDRIVE (mV)  
-60 -40 -20  
0
20 40 60 80 100  
CAPACITIVE LOAD (pF)  
TEMPERATURE (°C)  
PROPAGATION DELAY t  
+
PD  
LOW-POWER PROPAGATION DELAY  
vs. TEMPERATURE (V = 5V)  
HIGH-SPEED MODE (V = +3V)  
CC  
CC  
750  
700  
650  
600  
550  
C
V
OD  
= 15pF  
= 50mV  
LOAD  
INPUT  
5mV/div  
V
OS  
V
CC  
t
500  
450  
400  
350  
300  
250  
200  
150  
PD+  
V
/2  
CC  
OUTPUT  
1V/div  
t
PD-  
GND  
MAX975/977 TOC23  
5ns/div  
t
-60 -40 -20  
0
20 40 60 80 100  
PD+  
TEMPERATURE (°C)  
PROPAGATION DELAY t  
PROPAGATION DELAY t  
PD-  
PD-  
HIGH-SPEED MODE (V = +3V)  
HIGH-SPEED MODE (V = +5V)  
CC  
CC  
INPUT  
V
OS  
INPUT  
V
OS  
5mV/div  
5mV/div  
V
CC  
V
/2  
CC  
V
CC  
OUTPUT  
1V/div  
OUTPUT  
2V/div  
V
/2  
GND  
CC  
GND  
MAX975/977 TOC24  
MAX975/977 TOC25  
5ns/div  
t
5ns/div  
t
PD-  
PD-  
_______________________________________________________________________________________  
7
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 3.0V, T = +25°C, unless otherwise noted.)  
CC  
A
PROPAGATION DELAY t  
PROPAGATION DELAY t  
PD-  
PD+  
LOW-POWER MODE (V = +3V)  
HIGH-SPEED MODE (V = +5V)  
CC  
CC  
INPUT  
5mV/div  
INPUT  
5mV/div  
V
OS  
V
OS  
V
CC  
V
/2  
CC  
V
CC  
OUTPUT  
1V/div  
OUTPUT  
2V/div  
V
/2  
CC  
GND  
GND  
5/MAX97  
MAX975/977 TOC27  
MAX975/977 TOC26  
100ns/div  
5ns/div  
t
t
PD-  
PD+  
PROPAGATION DELAY t  
PD+  
LOW-POWER MODE (V = +3V)  
CC  
INPUT  
V
OS  
5mV/div  
V
CC  
V
/2  
CC  
OUTPUT  
1V/div  
GND  
MAX975/977 TOC28  
100ns/div  
t
PD+  
PROPAGATION DELAY t  
PROPAGATION DELAY t  
PD+  
PD-  
LOW-POWER MODE (V = +5V)  
LOW-POWER MODE (V = +3V)  
CC  
CC  
INPUT  
5mV/div  
INPUT  
5mV/div  
V
OS  
V
OS  
V
CC  
V
CC  
OUTPUT  
2V/div  
OUTPUT  
2V/div  
V
/2  
V
/2  
CC  
CC  
GND  
GND  
MAX975/977 TOC29  
MAX975/977 TOC30  
100ns/div  
100ns/div  
t
t
PD+  
PD-  
8
_______________________________________________________________________________________  
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
5/MAX97  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 3.0V, T = +25°C, unless otherwise noted.)  
CC  
A
100kHz RESPONSE  
LOW-POWER MODE (V = +3V)  
100kHz RESPONSE  
LOW-POWER MODE (V = +5V)  
CC  
CC  
INPUT  
5mV/div  
V
OS  
INPUT  
5mV/div  
V
OS  
V
CC  
V
CC  
OUTPUT  
2V/div  
OUTPUT  
1V/div  
GND  
GND  
MAX975/977 TOC32  
2µs/div  
MAX975/977 TOC31  
2µs/div  
10MHz RESPONSE  
HIGH-SPEED MODE (V = +5V)  
CC  
INPUT  
V
OS  
5mV/div  
V
CC  
OUTPUT  
2V/div  
GND  
MAX975/977 TOC34  
20ns/div  
MAX975  
10MHz RESPONSE  
AUTO-STANDBY OPERATION  
HIGH-SPEED MODE (V = +3V)  
CC  
+100mV  
INPUT  
5mV/div  
V
OS  
I
np  
V
CC  
-100mV  
3V  
OUTPUT  
1V/div  
OUT  
0V  
250µA  
GND  
I
CC  
0µA  
MAX975/977 TOC35  
MAX975/977 TOC33  
1ms/div  
= 100pF  
20ns/div  
C
STO_  
_______________________________________________________________________________________  
9
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
_____________________________________________________________P in De s c rip t io n s  
MAX975  
PIN  
1
NAME  
FUNCTION  
V
CC  
Positive Supply Voltage, +2.7V to +5.25V  
Noninverting Comparator Input  
Inverting Comparator Input  
2
IN+  
IN-  
3
Mode Status Pin. Indicates the operating mode. STAT is high for auto-standby mode or low-power  
mode, and during the transition to high-speed mode. STAT = low indicates that the comparator is in  
high-speed mode. STAT can source 3mA to power additional circuitry.  
4
5
STAT  
STO  
Set Timeout Input. Connect a capacitor from STO to GND to program the time the comparator may  
remain idle before entering standby mode. Connect STO to GND to disable the auto-standby fea-  
ture. Calculate timeout with the following relationship: tASB = 10 x C µs, where C is in pF.  
5/MAX97  
6
7
GND  
OUT  
Ground  
Comparator Output  
Low Power Mode Input. Drive LP high for low-power mode. Drive LP low for high-speed mode  
(STO = GND) or for high-speed mode with auto-standby. Connect to GND if low-power mode will  
8
LP  
not be used. Connect to V if high-speed mode will not be used.  
CC  
MAX977  
SO  
QSOP  
NAME  
FUNCTION  
Set Idle Timeout Input A/B. Connect a capacitor from STOA/STOB to GND to program  
the time in which comparator A/B may remain idle before entering standby mode.  
Connect STOA/STOB to GND to disable the auto-standby feature for comparator A/B.  
STOA,  
STOB  
1, 8  
1, 9  
Calculate timeout with the following relationship: t  
= 10 x C µs, where C is in pF.  
ASB  
2, 9  
3, 10  
4
2, 10  
3, 11  
4, 5  
GNDA, GNDB Ground for Comparator A/B  
OUTA, OUTB Output for Comparator A/B  
V
Positive Supply Voltage, +2.7V to +5.25V. For QSOP, connect pin 4 to pin 5.  
Noninverting Input for Comparator B/A  
CC  
5, 12  
6, 13  
6, 14  
7, 15  
INB+, INA+  
INB-, INA-  
Inverting Input for Comparator B/A  
Mode Status Pin B/A. Indicates the operating mode of comparator B/A.  
STATB/STATA is high for auto-standby mode or for low-power mode, and during  
the transition to high-speed mode. STATB/STATA = low indicates that comparator  
B/A is in high-speed mode. STATB/STATA can source 3mA to power additional  
circuitry.  
STATB,  
STATA  
7, 14  
8, 16  
11  
12  
13  
N.C.  
LP  
No connection. Not internally connected.  
Low Power Mode Input for both comparators. Drive LP high for low-power mode.  
Drive LP low for high-speed mode (STO_ = GND) or for high-speed mode with auto-  
standby. Connect to GND if low-power mode will not be used. Connect to V if  
CC  
high-speed mode will not be used.  
10 ______________________________________________________________________________________  
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
5/MAX97  
Table 1. Programming  
INPUTS  
STO_  
STAT  
OUTPUT  
MODE  
LP  
L
IDLE TIME  
High speed  
(Auto-standby enabled)  
t
t
= C  
= C  
x 10µs/pF  
<t  
L
H
L
ASB  
STO  
ASB  
L
x 10µs/pF  
t  
ASB  
Auto-standby  
ASB  
STO  
L
High speed  
(Auto-standby mode disabled)  
X
(falling edge)  
H
X
X
Low power  
H
_______________De t a ile d De s c rip t io n  
V
HYST  
The MAX975/MAX977 single/dual comparators have  
three operating modes, and use a +2.7V to +5.25V  
single supply. The operating modes are as follows:  
high speed, high speed with auto-standby, and low  
power. Propagation delay is typically 28ns in high-  
speed mode, while typical supply current is 250µA. In  
low-power mode, propagation delay is typically 480ns  
and power consumption is only 3µA. The auto-standby  
fe a ture s witc he s into low-p owe r s ta nd b y for e a c h  
comparator with unchanging outputs in high-speed  
mod e . The time out p e riod , or the time tha t OUT_  
mus t b e id le (unc ha ng e d s ta te ) for the MAX975/  
MAX977 to enter auto-standby, is adjustable by means  
of an external capacitor. All inputs and outputs can tol-  
erate a continuous short-circuit fault condition to either  
rail. Internal hysteresis in high-speed mode ensures  
clean output switching, even with slow-moving input  
signals.  
V
TRIP+  
V
+ V  
TRIP-  
TRIP+  
V
=
OS  
V
IN+  
2
V
TRIP-  
V = 0  
IN-  
V
OH  
COMPARATOR  
OUTPUT  
V
OL  
Figure 1. Input and Output Waveforms, Noninverting Input  
Varied  
input voltage (Figure 1). The difference between the trip  
points is the hysteresis. When the comparators’ input  
voltages are equal, the hysteresis effectively causes  
one comparator input voltage to move quickly past the  
other, taking the input out of the region where oscilla-  
tion occurs.  
Figure 1 illustrates the case where IN- has a fixed volt-  
a g e a p p lie d a nd IN+ is va rie d . If the inp uts we re  
reversed, the figure would be the same, except with an  
inverted output.  
The MAX975 functional diagram shows two paralleled  
comparators, a timing circuit, a transition detector, and  
logic gates. The upper comparator is high speed, while  
the lower comparator is a slower low-power compara-  
tor. The dual MAX977 features independent timeout  
adjustment. The following sections discuss the details  
of operation.  
Au t o -S t a n d b y Mo d e  
The MAX975/MAX977s auto-standby function operates  
only in hig h-s p e e d mod e . The d e vic e e nte rs a uto-  
standby when OUT_ remains unchanged for a prepro-  
grammed timeout period. In auto-standby mode, the  
low-power comparator is enabled while the high-speed  
comparator is disabled and STAT_ goes high. The logic  
s ta te a nd s ink/s ourc e c a p a b ilitie s of OUT_ re ma in  
unchanged, but propagation delay increases to 480ns.  
In this mode, the timing circuitry is powered down, and  
the transition detector monitors the low-power com-  
p a ra tor for a tra ns ition. Whe n a n outp ut tra ns ition  
occurs (OUT_ changes state), the timing circuitry is  
Hys t e re s is (Hig h -S p e e d Mo d e On ly)  
Most high-speed comparators can oscillate in the linear  
operating region because of noise or undesired para-  
sitic feedback. This tends to occur when the voltage on  
one input is equal to or very close to the voltage on the  
other input. The MAX975/MAX977 have internal hys-  
teresis to counter parasitic effects and noise.  
The hysteresis in a comparator creates two trip points:  
one for the rising input voltage and one for the falling  
______________________________________________________________________________________ 11  
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
t
t
PWD  
ASB  
V
OS  
DIFFERENTIAL  
INPUT  
VOLTAGE  
V
CC  
V
OH  
A
V
OL  
OUT_  
t
LPSH  
t
t
PD-  
t
PD+  
ASD  
V
CC  
STAT_  
0V  
t
ASCD  
300µA  
3µA  
I
CC (TYP)  
t
5/MAX97  
LPCD  
t
ASBE  
LP  
t
t
LPE  
HSE  
Figure 2. Timing Diagram  
powered up, the high-speed comparator is enabled,  
the low-power comparator is disabled, and STAT goes  
high, placing the MAX975 back into high-speed mode  
(Figure 2).  
Lo w -P o w e r Mo d e  
Driving LP high switches the MAX975/MAX977 to low-  
power mode. In this mode, the supply current drops to  
a maximum of 5µA, and propagation delay increases  
typically to 480ns. The high-speed comparator is dis-  
abled and the low-power comparator is enabled for  
continuous operation. Return to high-speed mode by  
driving LP low. The LP pin is sensitive to noise. If fall  
times larger than 10µs are expected, bypass LP with a  
0.1µF c a p a c itor to GND. The log ic s ta te a nd s ink/  
source capabilities of OUT_ remain unchanged in low-  
power mode.  
Use an external capacitor, C  
, to program the timeout  
STO  
p e riod re q uire d for the c omp a ra tor to e nte r a uto-  
standby mode. Determine the capacitor required for a  
particular timeout period by the relationship t  
=
ASB  
10 x Cµs, where C is in pF. For example, connecting a  
0.1µF capacitor to STO_ results in a timeout period of  
1sec. The propagation delay of OUT_ when exiting auto  
standby mode is equivalent to the low-power-mode  
propagation delay. When STAT_ goes low, the low-  
power comparator is disabled and the high-speed com-  
parator is ready for operation. To bring the comparator  
out of auto-standby mode without a transition occurring  
on OUT_, toggle LP low-high-low. The LP pin is sensitive  
to noise. If fall times larger than 10µs are expected,  
bypass LP with a 0.1µF capacitor to GND. To disable  
auto-standby mode, drive STO_ low or connect it to  
g round . Note tha t d riving STO_ low while in a uto-  
standby mode will not bring the comparator out of auto-  
standby mode. Also, if driving STO_ with an open drain,  
le a ka g e mus t b e le s s tha n 1nA. On p owe r-up , the  
device is in high-speed mode unless LP is high. The  
MAX977 operates in the same manner as the MAX975.  
In p u t -S t a g e Circ u it ry  
The MAX975/MAX977 input common-mode range is  
from -0.2V to (V  
- 1.2V). But the voltage range for  
CC  
each comparator input extends to both V  
and GND  
CC  
rails. The output remains in the correct logic state while  
one or both of the inputs are within the common-mode  
range. If both input levels are out of the common-mode  
range, input-stage current saturation occurs and the  
output becomes unpredictable.  
12 ______________________________________________________________________________________  
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
5/MAX97  
__________Ap p lic a t io n s In fo rm a t io n  
P o w e rin g Circ u it ry w it h S TAT  
STAT’s function is to indicate the comparators operat-  
ing mode. When STAT is low, the comparator is in high-  
speed mode and will meet the guaranteed propagation  
delay. When STAT is high, the comparator is in auto-  
standby mode, in low-power mode, or in transition to  
high-speed mode. An additional feature of this pin is  
that it can source 3mA of current. When STAT is high,  
additional circuitry can be powered. This circuitry can  
b e a utoma tic a lly p owe re d up or p owe re d d own,  
depending on the input signal or lack of input signal  
received by the MAX975/MAX977.  
CMOS  
LOGIC  
STO_  
Figure 3. Driving STO_ with CMOS Logic  
V
CC  
R3  
V
CC  
V
CC  
OUT  
S TO_ Co n s id e ra t io n s  
The charge currents for the capacitor connected to  
STO_ are on the order of 100nA. This necessitates cau-  
tion in c a p a c itor typ e s e le c tion a nd b oa rd la yout.  
Capacitor leakage currents must be less than 1nA to  
prevent timing errors. Ceramic capacitors are available  
in values up to 1µF, and are an excellent choice for this  
application. If a larger capacitance value is needed,  
use parallel ceramic capacitors to get the required  
c a p a c ita nc e . Aluminum a nd ta nta lum e le c trolytic  
capacitors are not recommended due to their higher  
leakage currents.  
R
D
STAT  
LOSS OF SIGNAL  
GND  
R1  
R2  
MAX975  
V
CC  
Figure 4. IR Receiver  
1) Use a printed circuit board with an unbroken, low-  
inductance ground plane.  
Board layout can create timing errors due to parasitic  
effects. Make the STO_ traces as short as possible to  
reduce capacitance and coupling effects. When driving  
STO_ to disa b le a uto-sta nd by mod e , use sta nda rd  
CMOS logic isolated with a low-leakage (<1nA) diode,  
such as National’s FJT1100 (Figure 3). 15nA leakage  
typically results in 10% error.  
2) Pla c e a d e c oup ling c a p a c itor (a 0.1µF c e ra mic  
capacitor is a good choice) as close to V as pos-  
CC  
sible.  
3) Keep lead lengths short on the inputs and outputs, to  
avoid unwanted parasitic feedback around the com-  
parators.  
The MAX977 has separate timing inputs (STOA and  
STOB). These pins must have separate capacitors. The  
timing c irc uits will not op e ra te c orre c tly if a s ing le  
capacitor is used with STOA and STOB connected  
together.  
4) Solder the devices directly to the printed circuit  
board instead of using a socket.  
5) Minimize input impedance.  
6) For slowly varying inputs, use a small capacitor  
(~1000pF) across the inputs to improve stability.  
The relationship between the timeout period and the  
STO_ capacitor is t  
= 10 x C  
_ µs, where C  
_
ASB  
STO  
STO  
IR Re c e ive r  
Figure 4 shows an application using the MAX975 as an  
infrared receiver. The infrared photodiode creates a  
current relative to the amount of infrared light present.  
is in pF. This equation is for larger capacitance values,  
and does not take into account variations due to board  
capacitance and board leakage. If less than 1ms is  
desired, subtract the ~3pF STO_ parasitic capacitance  
from the calculated value.  
This current creates a voltage across R . When this  
D
voltage level crosses the voltage applied by the voltage  
divider to the inverting input, the output transitions. If  
the photodiode is not receiving enough signal to cause  
transitions on the MAX975s output, STAT is used as a  
loss-of-signal indicator. R3 adds additional hysteresis  
for noise immunity.  
Circ u it La yo u t a n d Byp a s s in g  
The MAX975/MAX977s high gain bandwidth requires  
design precautions to realize the comparators full high-  
speed capability. The following precautions are recom-  
mended:  
______________________________________________________________________________________ 13  
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
V
CC  
R3  
14  
15  
3V  
0.1µF  
V
IN  
0.1µF  
4
82.1k, 1%  
UNDERVOLTAGE  
1/2  
MAX977  
3
1
V
CC  
WAKE-UP IRQ  
2
STAT  
LP  
C
STOA  
V
CC  
I/0  
µP  
R2  
MAX975  
STO  
POWER GOOD  
24.9k, 1%  
1
I/0  
V
CC  
50Ω  
6
7
2
MAX6120  
3
5
C
STO  
11  
OVERVOLTAGE  
1/2  
GND  
MAX977  
X-BAND  
DETECTOR  
9
5/MAX97  
3V  
C
STOB  
10  
R1  
100k, 1%  
4.7k  
1M  
0.1µF  
(PIN NUMBERS SHOWN ARE FOR QSOP PACKAGE)  
Figure 5. Window Comparator  
Figure 6. Toll-Tag Reader  
4) Calculate R3 with the following formula:  
R3 = (R2 + R3) - R2  
Win d o w Co m p a ra t o r  
The MAX977 is ideal for making a window detector  
(undervoltage/overvoltage detector). The schematic  
shown in Figure 5 uses a MAX6120 reference and com-  
ponent values selected for a 2.0V undervoltage thresh-  
old and a 2.5V overvoltage threshold. Choose different  
thresholds by changing the values of R1, R2, and R3.  
OUTA provides an active-low undervoltage indication,  
and OUTB gives an active-low overvoltage indication.  
ANDing the two outp uts p rovid e s a n a c tive -hig h,  
power-good signal. The design procedure is as follows:  
5) Verify the resistor values. The equations are as  
follows:  
V
OTH  
= (V  
+ V ) x (R1 + R2 + R3) / R1  
REF H  
V
UTH  
= (V  
- V ) x (R1 + R2 + R3) / (R1 + R2)  
REF H  
To ll-Ta g Circ u it  
The circuit shown in Figure 6 uses a MAX975 in a very  
low standby-power AM demodulator circuit that wakes  
up a toll ta g (p a rt of a n a utoma te d roa d wa y toll-  
collection system). This application requires very long  
standby times with brief and infrequent interrogations.  
In the awake state, it is capable of demodulating the  
typical 600kHz AM carrier riding on the 2.4GHz RF sig-  
nal. In this state, the comparator draws its 250µA high-  
speed current. After communications have ceased, or  
when instructed by the microcontroller, the comparator  
returns to its low-power state. The comparator draws  
only 3µA in this state, while monitoring for RF activity.  
Typically, this application requires two comparators  
a nd a d is c re te p owe r-ma na g e me nt a nd s ig na l-  
switchover circuit. The MAX975 circuit is smaller, sim-  
pler, less costly, and saves design time.  
1) Select R1. The leakage current into INB- is normally  
100nA, so the current through R1 should exceed  
10µA for the thresholds to be accurate. R1 values in  
the 50kto 100krange are typical.  
2) Choose the overvoltage threshold (V ) when V  
OTH IN  
is rising, and calculate R2 and R3 with the following  
formula:  
R2 + R3 = R1 x [V  
/ (V  
+ V ) - 1]  
OTH  
REF H  
where V = 1/2V  
.
H
HYST  
3) Choose the undervoltage threshold (V ) when V is  
UTH IN  
falling, and calculate R2 with the following formula:  
R2 = (R1 + R2 + R3) x [(V - V ) / V ] - R1  
REF  
H
UTH  
where V = 1/2V  
.
H
HYST  
14 ______________________________________________________________________________________  
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
5/MAX97  
__________________________________________________________P in Co n fig u ra t io n s  
TOP VIEW  
STOA  
GNDA  
OUTA  
1
2
3
4
5
6
7
8
STATA  
16  
1
2
3
4
5
6
7
14 STATA  
STOA  
GNDA  
OUTA  
15 INA-  
14 INA+  
13 LP  
13  
12  
11  
10  
9
INA-  
V
1
2
3
4
8
7
6
5
LP  
CC  
INA+  
LP  
V
CC  
MAX977  
IN+  
IN-  
OUT  
GND  
STO  
MAX975  
V
CC  
MAX977  
V
CC  
12 N.C.  
11 OUTB  
STAT  
INB+  
INB-  
OUTB  
GNDB  
STOB  
INB+  
INB-  
10  
9
GNDB  
STOB  
STATB  
8
STATB  
SO/µMAX  
SO  
QSOP  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 522 (MAX975)  
1044 (MAX977)  
______________________________________________________________________________________ 15  
S in g le /Du a l, +3 V/+5 V Du a l-S p e e d  
Co m p a ra t o rs w it h Au t o -S t a n d b y  
________________________________________________________P a c k a g e In fo rm a t io n  
5/MAX97  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX978

Single/Dual/Quad, SOT23, Single-Supply, High-Speed, Low-Power Comparators
MAXIM

MAX9787

2.2W Stereo Audio Power Amplifier with Analog Volume Control
MAXIM

MAX9787ETI

2.2W Stereo Audio Power Amplifier with Analog Volume Control
MAXIM

MAX9787ETI+

Audio Amplifier, 2 Channel(s), BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WHHD-1, TQFN-28
MAXIM

MAX9787_V01

2.2W Stereo Audio Power Amplifier with Analog Volume Control
MAXIM

MAX9788

14VP-P,Class G Ceramic Speaker Driver
MAXIM

MAX9788EBP+T

14VP-P,Class G Ceramic Speaker Driver
MAXIM

MAX9788EBP+T*

14VP-P,Class G Ceramic Speaker Driver
MAXIM

MAX9788ETI+

14VP-P,Class G Ceramic Speaker Driver
MAXIM

MAX9788ETI+C6F

Audio Amplifier, 2.4W, 1 Channel(s), 1 Func, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, TQFN-28
MAXIM

MAX9788EVKIT

Delivers Greater than 14VP-P into a Ceramic Speaker
MAXIM

MAX9788EVKIT+

Delivers Greater than 14VP-P into a Ceramic Speaker
MAXIM