MAX9789A [MAXIM]

Windows Vista-Compliant, Stereo Class AB Speaker Amplifiers and DirectDrive Headphone Amplifiers; 兼容Windows Vista的立体声,AB类扬声器放大器及DirectDrive耳机放大器
MAX9789A
型号: MAX9789A
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Windows Vista-Compliant, Stereo Class AB Speaker Amplifiers and DirectDrive Headphone Amplifiers
兼容Windows Vista的立体声,AB类扬声器放大器及DirectDrive耳机放大器

放大器
文件: 总26页 (文件大小:1028K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0606; Rev 0; 9/06  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
8/MX790A  
General Description  
Features  
The MAX9789A/MAX9790A combine a stereo, 2W Class  
AB speaker power amplifier with a stereo 100mW  
DirectDrive™ headphone amplifier in a single device.  
The MAX9789A/MAX9790A are designed for use with the  
Microsoft Windows Vista™ operating system and are fully  
compliant with Microsoft’s Windows Vista specifications.  
o Microsoft Windows Vista Compliant  
o Class AB 2W Stereo BTL Speaker Amplifier  
o 100mW DirectDrive Headphone Amplifier  
Eliminates Costly, Bulky DC-Blocking Capacitors  
o Excellent RF Immunity  
The headphone amplifier features Maxim’s patented  
o Integrated 120mA LDO (MAX9789A)  
o High +90dB PSRR, Low 0.002% THD+N  
o Low-Power Shutdown Mode  
o Click-and-Pop Suppression  
o Short-Circuit and Thermal-Overload Protection  
DirectDrive architecture that produces a ground-refer-  
enced output from a single supply to eliminate the need  
for large DC-blocking capacitors, as well as save cost,  
board space, and component height. A high +90dB  
PSRR and low 0.002% THD+N ensures clean, low-distor-  
tion amplification of the audio signal.  
o
8kV ESD-Protected Headphone Driver Outputs  
Separate speaker and headphone amplifier control  
inputs provide independent shutdown of the speaker  
and headphone amplifiers, allowing speaker and head-  
phone amplifiers to be active simultaneously, if  
required. The industry-leading click-and-pop suppres-  
sion circuitry reduces audible transients during startup  
and shutdown cycles.  
o Available in 32-Pin Thin QFN (5mm x 5mm x  
0.8mm) Package  
Ordering Information  
INTERNAL  
LDO  
PKG  
CODE  
PART  
PIN-PACKAGE  
MAX9789AETJ+  
MAX9790AETJ+  
32 Thin QFN-EP*  
32 Thin QFN-EP*  
Yes  
No  
T3255N-1  
T3255N-1  
The MAX9789A features an internal LDO that can be  
used as a clean power supply for a CODEC or other cir-  
cuits. The LDO output voltage is set internally at 4.75V or  
can be adjusted between 1.21V and 4.75V using a sim-  
ple resistive divider. The LDO is protected against ther-  
mal overloads and short circuits while providing 120mA  
of continuous output current and can be enabled inde-  
pendently of the audio amplifiers.  
Note: All devices are specified over the -40°C to +85°C extended  
temperature range.  
+Denotes lead-free package.  
*EP = Exposed paddle.  
Simplified Block Diagrams  
By disabling the speaker and headphone amplifiers, and  
the LDO (for MAX9789A), the MAX9789A/MAX9790A  
enter low-power shutdown mode and draw only 0.3µA.  
SPEAKER SUPPLY HEADPHONE SUPPLY  
4.5V TO 5.5V  
3.0V TO 5.5V  
The MAX9789A/MAX9790A operate from a single 4.5V  
to 5.5V supply and feature thermal-overload and out-  
put short-circuit protection. Devices are specified over  
the -40°C to +85°C extended temperature range.  
SPKR_INR  
MAX9789A  
SPKR_INL  
HP_INR  
Applications  
Notebook Computers  
Tablet PCs  
HP_INL  
SPKR_EN  
HP_EN  
Portable Multimedia Players  
MUTE  
GAIN1  
GAIN2  
Pin Configurations appear at end of data sheet.  
LDO  
1.21V TO 4.75V  
4.5V TO 5.5V  
U.S. Patent # 7,061,327  
Simplified Block Diagrams continued at end of data sheet.  
Windows Vista is a trademark of Microsoft Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V , PV , HPV  
,
Continuous Current (CPV , C1N, C1P, CPV , PV  
,
SS  
DD  
DD  
DD  
DD  
SS  
CPV  
to GND)..................................................-0.3V to +6.0V  
V
HPV , LDO_OUT, HPR, HPL) .............................850mA  
DD  
DD, DD  
GND to PGND, CPGND...................................................... 0.3V  
CPV , C1N, V to GND......................................-6.0V to +0.3V  
Continuous Input Current (all other pins) ......................... 20mA  
Continuous Power Dissipation (T = +70°C)  
SS  
SS  
A
HPR, HPL to GND............................................................... 3.0V  
32-Pin Thin QFN Single-Layer Board  
(derate 18.6mW/°C above +70°C)..............................1489mW  
32-Pin Thin QFN Multilayer Board  
Any Other Pin .............................................-0.3V to (V  
Duration of OUT_+, OUT_- Short Circuit  
+ 0.3V)  
DD  
to GND or PV ......................................................Continuous  
Duration of Short Circuit between OUT_+, OUT_-  
and LDO_OUT.........................................................Continuous  
Duration of Short Circuit between HPR, HPL and GND,  
(derate 24.9 mW/°C above +70°C).............................1990mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
V
or HPV ..........................................................Continuous  
SS  
DD  
Continuous Current (PV , OUT_+, OUT_-, PGND).............1.7A  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= PV  
= CPV  
= HPV  
= LDO_EN (MAX9789A only) = +5V, GND = PGND = CPGND = LDO_SET (MAX9789A only) = 0V,  
DD  
DD  
DD  
DD  
I
(MAX9789A only) = 0, C1 = C2 = C  
= 1µF. R = , unless otherwise specified, GAIN1 = 0, GAIN2 = 5V (A = 10dB,  
LDO_OUT  
BIAS  
L
VSP  
A
VHP  
= 3.5dB), T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
A
MIN  
8/MX790A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL  
Guaranteed by PSRR and LDO Line  
Regulation Tests  
Supply Voltage  
V
, PV  
4.5  
3.0  
5.5  
5.5  
V
V
DD  
DD  
CPV  
,
DD  
Headphone Supply Voltage  
Quiescent Current  
Guaranteed by PSRR Test  
HPV  
DD  
SPKR_EN  
HP_EN  
1 (MAX9789A)  
0 (MAX9789A)  
0.1  
0.3  
0.16  
6
mA  
µA  
1 (MAX9790A)  
0 (MAX9790A)  
I
DD  
1
0
0
1
0
1
7
13  
29  
40  
6
mA  
14  
18  
Shutdown Current  
Bias Voltage  
I
SPKR_EN = V , HP_EN = LDO_EN = GND  
0.3  
1.8  
100  
10  
µA  
V
SHDN  
DD  
V
1.7  
1.9  
BIAS  
Shutdown to Full Operation  
Gain Switching Time  
t
ms  
µs  
SON  
t
SW  
Channel-to-Channel Gain  
Tracking  
0.1  
dB  
SPEAKER AMPLIFIER  
R = 4Ω  
2
1
L
THD+N = 1%, f = 1kHz,  
= +25°C  
Output Power  
P
W
%
OUT  
T
A
R = 8Ω  
L
R = 8Ω, P  
= 1W, f = 1kHz  
= 1W, f = 1kHz  
0.002  
0.004  
90  
L
OUT  
Total Harmonic Distortion Plus  
Noise  
THD+N  
PSRR  
R = 4Ω, P  
L
OUT  
V
= 4.5V to 5.5V, T = +25°C  
72  
DD  
A
Power-Supply Rejection Ratio  
f = 1kHz, 200mV  
(Note 3)  
70  
dB  
P-P  
f = 10kHz, 200mV  
(Note 3)  
50  
P-P  
2
_______________________________________________________________________________________  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
8/MX790A  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= CPV  
= HPV  
= LDO_EN (MAX9789A only) = +5V, GND = PGND = CPGND = LDO_SET (MAX9789A only) = 0V,  
DD  
DD  
DD  
DD  
I
(MAX9789A only) = 0, C1 = C2 = C  
= 1µF. R = , unless otherwise specified, GAIN1 = 0, GAIN2 = 5V (A = 10dB,  
LDO_OUT  
BIAS  
L
VSP  
A
VHP  
= 3.5dB), T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GAIN1  
GAIN2  
0
0
1
1
0
1
0
1
6
Voltage Gain  
A
10  
dB  
V
15.6  
21.6  
Measured at speaker amplifier inputs  
GAIN1  
GAIN2  
0
0
1
1
0
1
0
1
80  
65  
45  
25  
Input Impedance  
R
kΩ  
IN  
Measured between OUT_+ and OUT_-,  
= +25°C  
Output Offset Voltage  
Click-and-Pop Level  
Signal-to-Noise Ratio  
V
1
15  
mV  
dBV  
dB  
OS  
T
A
R = 8Ω, peak voltage,  
L
Into shutdown  
-50  
-50  
K
A-weighted, 32 samples  
CP  
Out of shutdown  
per second (Notes 2, 3)  
A-weighted  
102  
99  
SNR  
R = 8Ω, P  
= 1W  
L
OUT  
f = 22Hz to 22kHz  
Noise  
V
BW = 22Hz to 22kHz  
30  
µV  
RMS  
n
Capacitive-Load Drive  
C
No sustained oscillations  
200  
pF  
L
L to R, R to L, R = 8Ω, FS = 0.707V  
,
RMS  
L
V
= 70.7nV  
, 20kHz AES17,  
Crosstalk  
Slew Rate  
-70  
1.4  
dB  
OUT  
RMS  
BW = 20Hz to 20kHz  
SR  
V/µs  
HEADPHONE AMPLIFIER  
R = 16Ω  
100  
55  
L
THD+N = 1%, f =  
Output Power  
P
mW  
OUT  
1kHz, T = +25°C  
A
R = 32Ω  
L
R = 32Ω, FS = 0.300V  
L
,
RMS  
V
= 210mV  
, 20kHz AES17,  
-77  
dB FS  
%
OUT  
RMS  
BW = 20Hz to 20kHz  
R = 32Ω, P  
= 40mW, f = 1kHz  
= 60mW, f = 1kHz  
0.02  
0.03  
L
OUT  
OUT  
Total Harmonic Distortion Plus  
Noise  
THD+N  
R = 16Ω, P  
L
R = 10kΩ, FS = 0.707V  
,
L
RMS  
V
= 500mV  
, 20kHz AES17,  
-94  
dB FS  
OUT  
RMS  
BW = 20Hz to 20kHz  
_______________________________________________________________________________________  
3
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= CPV  
= HPV  
= LDO_EN (MAX9789A only) = +5V, GND = PGND = CPGND = LDO_SET (MAX9789A only) = 0V,  
DD  
DD  
DD  
DD  
I
(MAX9789A only) = 0, C1 = C2 = C  
= 1µF. R = , unless otherwise specified, GAIN1 = 0, GAIN2 = 5V (A = 10dB,  
LDO_OUT  
BIAS  
L
VSP  
A
VHP  
= 3.5dB), T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
= 3V to 5.5V, T = +25°C  
MIN  
TYP  
95  
84  
63  
3.5  
40  
2
MAX  
UNITS  
HPV  
70  
DD  
A
Power-Supply Rejection Ratio  
(Note 5)  
PSRR  
f = 1kHz, V  
= 200mV  
(Note 3)  
dB  
RIPPLE  
P-P  
f = 10kHz, V  
= 200mV  
(Note 3)  
RIPPLE  
P-P  
Voltage Gain  
A
dB  
kΩ  
mV  
V
Input Impedance  
Output Offset Voltage  
R
Measured at headphone amplifier inputs  
T = +25°C  
A
20  
80  
7
IN  
V
OS  
R = 32Ω, peak voltage,  
A-weighted, 32 samples  
per second (Notes 2, 3)  
L
Into shutdown  
-60  
-60  
Click-and-Pop Level  
K
dBV  
CP  
Out of shutdown  
R = 32Ω, f = 1kHz, A-weighted,  
L
89  
97  
FS = 0.300V  
, V  
= 300µV  
RMS OUT RMS  
Dynamic Range  
DR  
dB FS  
dB  
R = 10kΩ, f = 1kHz, A-weighted,  
L
FS = 0.707V  
, V  
= 707µV  
RMS OUT RMS  
22Hz to 22kHz  
A-weighted  
100  
103  
12  
R = 32Ω,  
8/MX790A  
L
Signal-to-Noise Ratio  
SNR  
P
= 60mW  
OUT  
Noise  
V
BW = 22Hz to 22kHz  
No sustained oscillations  
µV  
RMS  
n
Capacitive-Load Drive  
C
200  
pF  
L
R = 32Ω,  
FS = 0.300V  
L
,
-74  
-77  
RMS  
L to R, R to L,  
V
= 30mV  
RMS  
OUT  
20kHz AES17  
Crosstalk  
dB  
R = 10kΩ,  
L
BW = 20Hz to 20kHz  
FS = 0.707V  
,
RMS  
V
= 70.7mV  
RMS  
OUT  
Slew Rate  
SR  
0.4  
8
V/µs  
kV  
ESD  
ESD  
Human Body Model (HPR, HPL)  
Charge-Pump Frequency  
f
500  
4.5  
550  
600  
kHz  
OSC  
LOW-DROPOUT LINEAR REGULATOR  
Regulator Input Voltage Range  
V
Inferred from line regulation  
5.5  
V
DD  
I
I
= 0mA  
0.1  
-40  
0.16  
OUT  
Ground Current  
I
mA  
GND  
= 120mA  
OUT  
Output Current  
I
120  
mA  
dB  
%
OUT  
Crosstalk  
V
= 4.75V, f = 1kHz, speaker P  
= 2W  
OUT  
-88  
OUT  
Fixed Output Voltage Accuracy  
Adjustable Output Voltage Range  
LDO_SET Reference Voltage  
LDO_SET Dual-Mode Threshold  
I
= 1mA  
1.5  
4.75  
1.23  
OUT  
1.21  
1.19  
V
V
1.21  
200  
V
SET  
mV  
LDO_SET Input Bias Current  
(Note 4)  
I
20  
500  
nA  
SET  
V
= 4.75V (fixed  
OUT  
I
I
= 50mA  
25  
75  
50  
OUT  
Dropout Voltage (Note 5)  
V
output operation),  
= +25°C  
mV  
DO  
= 120mA  
150  
OUT  
T
A
4
_______________________________________________________________________________________  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
8/MX790A  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= PV  
= CPV  
= HPV  
= LDO_EN (MAX9789A only) = +5V, GND = PGND = CPGND = LDO_SET (MAX9789A only) = 0V,  
DD  
DD  
DD  
DD  
I
(MAX9789A only) = 0, C1 = C2 = C  
= 1µF. R = , unless otherwise specified, GAIN1 = 0, GAIN2 = 5V (A = 10dB,  
LDO_OUT  
BIAS  
L
VSP  
A
VHP  
= 3.5dB), T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
300  
20  
MAX  
UNITS  
mA  
Current Limit  
Startup Time  
I
LIM  
µs  
V
= 4.5V to 5.5V, LDO_OUT = 2.5V,  
IN  
Line Regulation  
-4.8  
+0.8  
0.2  
+4.8  
mV/V  
mV/mA  
dB  
I
= 1mA  
LDO_OUT  
V
= 4.75V,  
LDO_OUT  
Load Regulation  
Ripple Rejection  
Output Voltage Noise  
1mA < I  
< 120mA  
LDO_OUT  
f = 1kHz  
59  
42  
V
= 200mV  
RIPPLE  
P-P  
I
= 10mA  
LDO_OUT  
f = 10kHz  
20Hz to 22kHz, C  
= 2 x 1µF,  
LDO_OUT  
125  
µV  
RMS  
I
= 120mA  
LDO_OUT  
DIGITAL INPUTS (SPKR_EN, HP_EN, MUTE, GAIN1, GAIN2, LDO_EN (MAX9789A Only))  
Input-Voltage High  
Input-Voltage Low  
Input Bias Current  
V
2
V
V
INH  
V
0.8  
1
INL  
µA  
Note 1: All devices are 100% production tested at room temperature. All temperature limits are guaranteed by design.  
Note 2: Specified at room temperature with an 8Ω resistive load connected across BTL output for speaker amplifier. Specified at  
room temperature with a 32Ω resistive load connected between HPR, HPL, and GND for headphone amplifier. Speaker and  
headphone mode transitions are controlled by SPKR_EN and HP_EN control pins, respectively.  
Note 3: Amplifier inputs AC-coupled to GND.  
Note 4: Maximum value is due to test limitations.  
Note 5: V  
= V  
- 2%.  
LDO_OUT  
LDO_OUTNOMINAL  
Typical Operating Characteristics  
(V = PV = CPV = HPV = LDO_EN = +5V, GND = PGND = CPGND = LDO_SET = 0V, C1 = C2 = C  
= C = 1µF. R = ,  
IN L  
DD  
DD  
DD  
DD  
BIAS  
unless otherwise specified, GAIN1 = 0, GAIN2 = 1 (A  
= 10dB, A = 3.5dB), measurement BW = 20kHz AES17, T = +25°C,  
VHP A  
VSP  
unless otherwise noted. Headphone mode: SPKR_EN = 1, HP_EN = 0. Speaker mode: SPKR_EN = 0, HP_EN = 1.)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT VOLTAGE (HEADPHONE MODE)  
-60  
-60  
10  
R = 10kΩ  
L
FS = 0.707V  
HPV = 3V  
DD  
RMS  
V
= -3dB FS  
FS = 0.707V  
OUT  
RMS  
R = 10kΩ  
L
V
= -3dB FS  
-70  
-80  
OUT  
L
-70  
-80  
1
0.1  
R = 10kΩ  
f
= 20Hz  
IN  
f
= 10kHz  
IN  
-90  
-90  
0.01  
0.001  
-100  
-110  
f
= 1kHz  
IN  
-100  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
0.5  
1.0  
1.5  
2.0  
OUTPUT VOLTAGE (V  
)
RMS  
_______________________________________________________________________________________  
5
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(V = PV = CPV = HPV = LDO_EN = +5V, GND = PGND = CPGND = LDO_SET = 0V, C1 = C2 = C  
= C = 1µF. R = ,  
IN L  
DD  
DD  
DD  
DD  
BIAS  
unless otherwise specified, GAIN1 = 0, GAIN2 = 1 (A  
= 10dB, A = 3.5dB), measurement BW = 20kHz AES17, T = +25°C,  
VHP A  
VSP  
unless otherwise noted. Headphone mode: SPKR_EN = 1, HP_EN = 0. Speaker mode: SPKR_EN = 0, HP_EN = 1.)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT VOLTAGE (HEADPHONE MODE)  
CROSSTALK  
vs. FREQUENCY (HEADPHONE MODE)  
HEADPHONE OUTPUT SPECTRUM  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
HPV = 3V  
DD  
FS = 0.300V  
FS = 0.707V  
RMS  
V
R = 10kΩ  
RMS  
R = 10kΩ  
L
V
= -60dB FS  
= -20dB FS  
OUT  
OUT  
L
R = 10kΩ  
L
1
0.1  
f
= 20Hz  
IN  
f
= 10kHz  
IN  
LEFT TO RIGHT  
-90  
-100  
-110  
-120  
-130  
-140  
0.01  
0.001  
f
= 1kHz  
IN  
RIGHT TO LEFT  
10k 100k  
0
5k  
10k  
FREQUENCY (Hz)  
15k  
20k  
0
0.5  
1.0  
1.5  
2.0  
10  
100  
1k  
OUTPUT VOLTAGE (V  
)
FREQUENCY (Hz)  
RMS  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (SPEAKER MODE)  
8/MX790A  
-75  
-75  
-75  
V
= -3dB FS  
V
= -3dB FS  
OUT  
OUT  
-80  
-80  
-80  
-85  
V
= -3dB FS  
OUT  
-85  
-85  
-90  
-95  
-90  
-90  
-100  
-105  
-110  
-95  
-95  
FS = 0.707V  
R = 3Ω  
L
FS = 0.707V  
R = 8Ω  
L
RMS  
FS = 0.707V  
R = 4Ω  
L
RMS  
RMS  
-100  
-100  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (SPEAKER MODE)  
10  
10  
10  
R = 4Ω  
L
R = 8Ω  
L
R = 3Ω  
L
1
0.1  
1
0.1  
1
0.1  
f
= 10kHz  
IN  
f
= 10kHz  
IN  
f
= 10kHz  
IN  
f
= 20Hz  
IN  
f
= 1kHz  
IN  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f
= 1kHz  
IN  
f
= 20Hz  
0.5  
IN  
f
= 20Hz  
0.5  
f
= 1kHz  
IN  
IN  
0
1.0  
1.5  
2.0  
2.5  
3.0  
0
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
6
_______________________________________________________________________________________  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
8/MX790A  
Typical Operating Characteristics (continued)  
(V = PV = CPV = HPV = LDO_EN = +5V, GND = PGND = CPGND = LDO_SET = 0V, C1 = C2 = C  
= C = 1µF. R = ,  
IN L  
DD  
DD  
DD  
DD  
BIAS  
unless otherwise specified, GAIN1 = 0, GAIN2 = 1 (A  
= 10dB, A = 3.5dB), measurement BW = 20kHz AES17, T = +25°C,  
VHP A  
VSP  
unless otherwise noted. Headphone mode: SPKR_EN = 1, HP_EN = 0. Speaker mode: SPKR_EN = 0, HP_EN = 1.)  
CROSSTALK  
vs. FREQUENCY (SPEAKER MODE)  
OUTPUT POWER vs. LOAD RESISTANCE  
(SPEAKER MODE)  
SPEAKER OUTPUT SPECTRUM  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
f
= 1kHz  
IN  
FS = 0.707V  
RMS  
FS = 0.707V  
RMS  
V
= -20dB FS  
V
= -60dB FS  
OUT  
OUT  
R = 8Ω  
L
R = 8Ω  
L
THD+N = 10%  
LEFT TO RIGHT  
RIGHT TO LEFT  
-90  
-100  
-110  
-120  
-130  
-140  
THD+N = 1%  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
5k  
10k  
FREQUENCY (Hz)  
15k  
20k  
1
10  
R (Ω)  
100  
L
POWER DISSIPATION PER CHANNEL  
vs. OUTPUT POWER (SPEAKER MODE)  
POWER-SUPPLY REJECTION RATIO  
(SPEAKER MODE)  
1.50  
0
-10  
-20  
f
= 1kHz  
V
= 200mV  
IN  
RIPPLE  
P-P  
OUTPUT REFERRED  
1.25  
1.00  
0.75  
0.50  
0.25  
0
-30  
-40  
R = 4Ω  
L
-50  
-60  
-70  
-80  
-90  
R = 8Ω  
L
100  
0
0.5  
1.0  
1.5  
2.0  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
OUTPUT POWER PER CHANNEL (W)  
SPEAKER STARTUP WAVEFORM  
SPEAKER SHUTDOWN WAVEFORM  
MAX9789A toc19  
MAX9789A toc18  
SPKR_EN  
5V/div  
SPKR_EN  
5V/div  
OUT_+ AND OUT_-  
2V/div  
OUT_+ AND OUT_-  
2V/div  
OUT_+ - OUT_-  
100mV/div  
OUT_+ - OUT_-  
100mV/div  
20ms/div  
20ms/div  
_______________________________________________________________________________________  
7
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(V = PV = CPV = HPV = LDO_EN = +5V, GND = PGND = CPGND = LDO_SET = 0V, C1 = C2 = C  
= C = 1µF. R = ,  
IN L  
DD  
DD  
DD  
DD  
BIAS  
unless otherwise specified, GAIN1 = 0, GAIN2 = 1 (A  
= 10dB, A = 3.5dB), measurement BW = 20kHz AES17, T = +25°C,  
VHP A  
VSP  
unless otherwise noted. Headphone mode: SPKR_EN = 1, HP_EN = 0. Speaker mode: SPKR_EN = 0, HP_EN = 1.)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
-65  
-65  
-65  
-70  
-75  
-70  
-75  
-70  
-75  
V
= -3dB FS  
OUT  
V
= -3dB FS  
OUT  
-80  
-80  
-80  
V
= -3dB FS  
OUT  
-85  
-85  
-85  
-90  
-90  
-90  
-95  
-95  
-95  
-100  
-105  
-110  
-100  
-105  
-110  
-100  
-105  
-110  
HPV = 3V  
DD  
FS = 0.300V  
R = 32Ω  
L
FS = 0.300V  
R = 32Ω  
L
FS = 0.300V  
R = 16Ω  
L
RMS  
RMS  
RMS  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
8/MX790A  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
-65  
10  
10  
-70  
-75  
V
= -3dB FS  
OUT  
f = 10kHz  
f = 10kHz  
-80  
1
0.1  
1
0.1  
f = 1kHz  
-85  
f = 20Hz  
f = 1kHz  
-90  
-95  
f = 20Hz  
-100  
-105  
-110  
HPV = 3V  
DD  
FS = 0.300V  
R = 16Ω  
L
RMS  
R = 32Ω  
L
R = 16Ω  
L
0.01  
0.01  
10  
100  
1k  
10k  
100k  
0
50  
100  
150  
200  
0
20  
40  
60  
80  
100  
FREQUENCY (Hz)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
CROSSTALK  
vs. FREQUENCY (HEADPHONE MODE)  
10  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
FS = 0.300V  
RMS  
V
= -20dB FS  
OUT  
R = 32Ω  
L
f = 10kHz  
f = 10kHz  
1
0.1  
1
0.1  
f = 20Hz  
f = 1kHz  
f = 20Hz  
LEFT TO RIGHT  
f = 1kHz  
HPV = 3V  
HPV = 3V  
DD  
R = 32Ω  
L
DD  
R = 16Ω  
L
RIGHT TO LEFT  
1k  
FREQUENCY (Hz)  
0.01  
0.01  
0
50  
100  
150  
0
20  
40  
60  
80  
100  
10  
100  
10k  
100k  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
8
_______________________________________________________________________________________  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
8/MX790A  
Typical Operating Characteristics (continued)  
(V = PV = CPV = HPV = LDO_EN = +5V, GND = PGND = CPGND = LDO_SET = 0V, C1 = C2 = C  
= C = 1µF. R = ,  
IN L  
DD  
DD  
DD  
DD  
BIAS  
unless otherwise specified, GAIN1 = 0, GAIN2 = 1 (A  
= 10dB, A = 3.5dB), measurement BW = 20kHz AES17, T = +25°C,  
VHP A  
VSP  
unless otherwise noted. Headphone mode: SPKR_EN = 1, HP_EN = 0. Speaker mode: SPKR_EN = 0, HP_EN = 1.)  
OUTPUT POWER vs. LOAD RESISTANCE  
(HEADPHONE MODE)  
OUTPUT POWER vs. LOAD RESISTANCE  
(HEADPHONE MODE)  
HEADPHONE OUTPUT SPECTRUM  
150  
100  
50  
100  
50  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
HPV = 3V  
f
= 1kHz  
DD  
IN  
FS = 0.707V  
RMS  
f
= 1kHz  
IN  
V
= -60dB FS  
OUT  
R = 32Ω  
L
THD+N = 10%  
THD+N = 10%  
-90  
-100  
-110  
-120  
-130  
-140  
THD+N = 1%  
THD+N = 1%  
0
10  
100  
R (Ω)  
1000  
10  
100  
1000  
0
5
10  
FREQUENCY (kHz)  
15  
20  
R (Ω)  
L
L
POWER DISSIPATION vs. OUTPUT POWER  
(HEADPHONE MODE)  
POWER DISSIPATION PER CHANNEL  
vs. OUTPUT POWER (HEADPHONE MODE)  
HEADPHONE OUTPUT POWER vs. HPV  
DD  
125  
100  
75  
50  
25  
0
125  
100  
75  
50  
25  
0
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
HPV = 3V  
DD  
R = 16Ω  
L
R = 16Ω  
L
R = 16Ω  
L
R = 32Ω  
L
R = 32Ω  
L
R = 32Ω  
L
50  
THD+N = 1%  
25  
f
= 1kHz  
IN  
0
0
20  
40  
60  
80  
3.0  
3.5  
4.0  
HPV (V)  
4.5  
5.0  
0
25  
50  
75  
100  
125  
OUTPUT POWER PER CHANNEL (mW)  
OUTPUT POWER PER CHANNEL (mW)  
DD  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (HEADPHONE MODE)  
HEADPHONE STARTUP WAVEFORM  
HEADPHONE SHUTDOWN WAVEFORM  
MAX9789A toc36  
MAX9789A toc37  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
= 200mV  
P-P  
RIPPLE  
OUTPUT REFERRED  
HP_EN  
5V/div  
HP_EN  
5V/div  
HP_  
500mV/div  
HP_  
500mV/div  
20ms/div  
20ms/div  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
_______________________________________________________________________________________  
9
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(V = PV = CPV = HPV = LDO_EN = +5V, GND = PGND = CPGND = LDO_SET = 0V, C1 = C2 = C  
= C = 1µF. R = ,  
IN L  
DD  
DD  
DD  
DD  
BIAS  
unless otherwise specified, GAIN1 = 0, GAIN2 = 1 (A  
= 10dB, A = 3.5dB), measurement BW = 20kHz AES17, T = +25°C,  
VHP A  
VSP  
unless otherwise noted. Headphone mode: SPKR_EN = 1, HP_EN = 0. Speaker mode: SPKR_EN = 0, HP_EN = 1.)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SHUTDOWN CURRENT vs. SUPPLY VOLTAGE  
20  
15  
10  
5
0.3  
0.2  
0.1  
0
SPKR_EN = 5V  
HP_EN = 0  
LDO_EN = 0 (MAX9789A)  
SPKR_EN = 0  
SPKR_EN = 0  
HP_EN = 1  
HP_EN = 0  
SPKR_EN = 1  
HP_EN = 0  
SPKR_EN = 1  
HP_EN = 1  
0
-5  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
8/MX790A  
LDO OUTPUT VOLTAGE ACCURACY  
LDO OUTPUT VOLTAGE ACCURACY  
vs. AMPLIFIER OUTPUT POWER  
vs. I  
LOAD  
2.0  
1.5  
1.0  
0.5  
0
0.10  
0.05  
0
V
= 4.75V  
LDO_OUT  
V
= 4.75V  
= 0A  
LDO_OUT  
I
LDO_OUT  
-0.5  
-1.0  
-1.5  
-2.0  
-0.05  
-0.10  
0
25  
50  
75  
(mA)  
100  
125  
150  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
I
AMPLIFIER OUTPUT POWER (W)  
LOAD  
LDO OUTPUT VOLTAGE ACCURACY  
vs. TEMPERATURE  
DROPOUT VOLTAGE vs. I  
LOAD  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.0  
1.5  
1.0  
0.5  
0
I
= 1mA  
LDO_OUT  
V
= 4.75V  
LDO_OUT  
V
= 3.3V  
LDO_OUT  
-0.5  
-1.0  
-1.5  
-2.0  
0
25  
50  
75  
(mA)  
100  
125  
150  
-40  
-15  
10  
35  
60  
85  
I
TEMPERATURE (°C)  
LOAD  
10 ______________________________________________________________________________________  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
8/MX790A  
Typical Operating Characteristics (continued)  
(V = PV = CPV = HPV = LDO_EN = +5V, GND = PGND = CPGND = LDO_SET = 0V, C1 = C2 = C  
= C = 1µF. R = ,  
IN L  
DD  
DD  
DD  
DD  
BIAS  
unless otherwise specified, GAIN1 = 0, GAIN2 = 1 (A  
= 10dB, A = 3.5dB), measurement BW = 20kHz AES17, T = +25°C,  
VHP A  
VSP  
unless otherwise noted. Headphone mode: SPKR_EN = 1, HP_EN = 0. Speaker mode: SPKR_EN = 0, HP_EN = 1.)  
RIPPLE REJECTION vs. FREQUENCY OUTPUT NOISE vs. FREQUENCY  
0
-10  
-20  
10  
1
V
= 200mV  
P-P  
= 10mA  
RIPPLE  
I
OUT  
OUTPUT REFERRED  
-30  
-40  
-50  
-60  
V
= 4.75V  
LDO_OUT  
0.1  
0.01  
-70  
-80  
-90  
V
= 3.3V  
10k  
LDO_OUT  
10  
100  
1k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LINE-TRANSIENT RESPONSE  
LDO LOAD-TRANSIENT RESPONSE  
MAX9789A toc46  
MAX9789A toc47  
V
DD  
1V/div  
5.5V  
I
LDO_OUT  
15mA/div  
4.5V  
LDO_OUT  
(AC-COUPLED)  
20mV/div  
AC-COUPLED  
V
LDO_OUT  
10mV/div  
1ms/div  
20ms/div  
LDO SHUTDOWN RESPONSE  
LDO CROSSTALK vs. FREQUENCY  
MAX9789A toc48  
-20  
-30  
I
= 0mA  
LOAD  
V
P
= 4.75V  
LDO_OUT  
= 2W  
OUT  
R = 4Ω  
LDO_EN  
2V/div  
L
-40  
I
= 0mA  
LOAD  
-50  
-60  
-70  
RIGHT SPEAKER TO LDO  
-80  
-90  
V
LDO_OUT  
2V/div  
-100  
-110  
-120  
LEFT SPEAKER TO LDO  
200ms/div  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
______________________________________________________________________________________ 11  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX9789A MAX9790A  
Regulator Feedback Input. Connect to GND for 4.75V fixed output. Connect to a resistor-  
divider for adjustable output. See Figure 1.  
1
LDO_SET  
2
2
3
SPKR_INR Right-Channel Speaker Amplifier Input  
SPKR_INL Left-Channel Speaker Amplifier Input  
3
4
LDO_EN LDO Enable. Connect LDO_EN to V  
to enable the LDO.  
DD  
5, 21  
6
5, 21  
6
PGND  
OUTL+  
OUTL-  
Power Ground. Star-connect to GND.  
Left-Channel Speaker Amplifier Output, Positive Phase  
7
7
Left-Channel Speaker Amplifier Output, Negative Phase  
8, 18  
9
8, 18  
9
PV  
Speaker Amplifier Power-Supply Input. Bypass with a 0.1µF capacitor to PGND.  
DD  
CPV  
Charge-Pump Power Supply. Connect a 1µF capacitor between CPV and PGND.  
DD  
DD  
Charge-Pump Flying Capacitor Positive Terminal. Connect a 1µF capacitor between C1P  
to C1N.  
10  
11  
12  
13  
14  
10  
11  
12  
13  
14  
C1P  
CPGND  
C1N  
Charge-Pump Ground. Connect directly to PGND plane.  
8/MX790A  
Charge-Pump Flying Capacitor Negative Terminal. Connect a 1µF capacitor between C1P  
to C1N.  
CPV  
Charge-Pump Output. Connect to PV  
.
SS  
SS  
Headphone Amplifier Negative Power Supply. Connect a 1µF capacitor between PV and  
SS  
PGND.  
PV  
SS  
15  
16  
15  
16  
HPR  
HPL  
Right-Channel Headphone Amplifier Output  
Left-Channel Headphone Amplifier Output  
Headphone Amplifier Positive Power Supply. Connect a 10µF capacitor between HPV  
and PGND.  
DD  
17  
17  
HPV  
DD  
19  
20  
22  
23  
24  
25  
26  
27  
28  
29  
19  
20  
OUTR-  
OUTR+  
HP_EN  
Right-Channel Speaker Amplifier Output, Negative Phase  
Right-Channel Speaker Amplifier Output, Positive Phase  
Active-High Headphone Amplifier Enable  
22  
23  
SPKR_EN Active-Low Speaker Amplifier Enable  
24  
BIAS  
MUTE  
HP_INR  
HP_INL  
GND  
Common-Mode Bias Voltage. Bypass with a 1µF capacitor to GND.  
Active-Low Mute Enable. Mutes speaker and headphone amplifiers.  
Right-Channel Headphone Amplifier Input  
25  
26  
27  
Left-Channel Headphone Amplifier Input  
4, 28  
Signal Ground. Star-connect to PGND.  
LDO_OUT LDO Output. Bypass with two 1µF capacitors to GND.  
Positive Power Supply and LDO Input (MAX9789A). Bypass with one 0.1µF capacitor and  
two 1µF capacitors to GND (MAX9789A). Bypass with one 0.1µF capacitor and one 1µF  
capacitor to GND (MAX9790A).  
30  
30  
V
DD  
31  
32  
31  
32  
GAIN1  
GAIN2  
N.C.  
Speaker Amplifier Gain Select 1  
Speaker Amplifier Gain Select 2  
No Connection. Not internally connected.  
Exposed Paddle. Connect to GND.  
1, 29  
EP  
EP  
EP  
12 ______________________________________________________________________________________  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
8/MX790A  
conserve board space and system cost, as well as  
improve low-frequency response.  
Detailed Description  
The MAX9789A/MAX9790A combine a 2W BTL speaker  
The MAX9789A/MAX9790A feature programmable  
speaker amplifier gain, allowing the speaker gain to be  
set by the logic voltages applied to GAIN1 and GAIN2,  
while the headphone amplifiers feature a fixed 3.5dB  
gain. Both amplifiers feature an undervoltage lockout  
that prevents operation from an insufficient power sup-  
ply and click-and-pop suppression that eliminates  
audible transients on startup and shutdown. The ampli-  
fiers include thermal overload and short-circuit protec-  
tion, while the headphone amplifier outputs (IEC Air  
Discharge) can withstand 8kV ESD strikes. An addi-  
tional feature of the speaker amplifiers is that there is  
no phase inversion from input to output.  
amplifier with an 100mW DirectDrive headphone amplifi-  
er. These devices feature comprehensive click-and-pop  
suppression and programmable four-level speaker ampli-  
fier gain control. The MAX9789A/MAX9790A feature high  
+90dB PSRR, low 0.002% THD+N, industry-leading click-  
and-pop performance, low-power shutdown mode, and  
excellent RF immunity. The MAX9789A incorporates an  
integrated LDO that serves as a clean power supply for a  
CODEC or other circuits.  
The MAX9789A/MAX9790A is Microsoft Windows Vista  
compliant. See Table 1 for a comparison of the Microsoft  
Windows Vista premium mobile specifications and  
MAX9789A/MAX9790A specifications.  
Low-Dropout Linear Regulator  
(MAX9789A Only)  
The speaker amplifiers use BTL architecture, doubling the  
voltage drive to the speakers and eliminating the need for  
DC-blocking capacitors. The output consists of two sig-  
nals, identical in magnitude, but 180° out of phase.  
The MAX9789A’s low-dropout (LDO) linear regulator  
can be used to provide a clean power supply to a  
CODEC or other circuitry. The LDO can be enabled  
independently of the audio amplifiers. Set LDO_EN =  
The headphone amplifiers use Maxim’s patented  
DirectDrive architecture to eliminate the bulky output  
DC-blocking capacitors required by traditional head-  
phone amplifiers. A charge pump inverts a positive  
V
DD  
to enable the LDO or set LDO_EN = GND to dis-  
able the LDO. The LDO is capable of providing up to  
120mA continuous current and features Maxim’s Dual  
Mode™ feedback, easily enabling a fixed 4.75V output  
or a user-adjustable output. When LDO_SET is con-  
nected to GND, the output is internally set to 4.75V. The  
output voltage can be adjusted from 1.21V to 4.75V by  
connecting two external resistors as a voltage divider,  
at LDO_SET (Figure 1).  
supply (CPV ) to create a negative supply (CPV ).  
DD  
SS  
The headphone amplifiers operate from these bipolar  
supplies with their outputs biased about GND. The  
benefit of the GND bias is that the amplifier outputs no  
longer have a DC component (typically V  
/ 2). This  
DD  
feature eliminates the large DC-blocking capacitors  
required with conventional headphone amplifiers to  
Table 1. Windows Premium Mobile Vista Specifications vs. MAX9789A/MAX9790A  
Specifications  
WINDOWS PREMIUM MOBILE Vista  
SPECIFICATIONS  
MAX9789A/MAX9790A  
TYPICAL PERFORMANCE  
DEVICE TYPE  
REQUIREMENT  
-65dB FS  
[20Hz, 20kHz]  
-94dB FS  
[20Hz, 20kHz]  
THD+N  
Analog Line Output  
Dynamic range with  
signal present  
-80dB FS,  
A-weighted  
-97dB FS,  
A-weighted  
Jack (R = 10kΩ,  
L
FS = 0.707V  
)
RMS  
-50dB  
[20Hz, 20kHz]  
-77dB  
[20Hz, 20kHz]  
Line output crosstalk  
THD+N  
-45dB FS  
[20Hz, 20kHz]  
-77dB FS  
[20Hz, 20kHz]  
Analog Headphone  
Out Jack (R = 32Ω,  
Dynamic range with  
signal present  
-60dB FS,  
A-weighted  
-89dB FS,  
A-weighted  
L
FS = 0.300V  
)
RMS  
Headphone output  
crosstalk  
-50dB  
[20Hz, 20kHz]  
-74dB  
[20Hz, 20kHz]  
Note: THD+N, DR, FREQUENCY ACCURACY, and CROSSTALK should be measured in accordance with AES-17 audio measure-  
ments standards.  
Dual Mode is a trademark of Maxim Integrated Products, Inc.  
______________________________________________________________________________________ 13  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
The output voltage is set by the following equation:  
capacitors. Instead of two large capacitors (330µF typi-  
cally required to meet Vista magnitude response speci-  
fications), the MAX9789A/MAX9790A charge pump  
requires only two small 1µF ceramic capacitors, con-  
serving board space, reducing cost, and improving the  
low-frequency response of the headphone amplifier.  
R1  
R2  
V
= V  
1+  
LDO_OUT  
LDO_SET  
where V  
= 1.21V.  
LDO_SET  
Previous attempts to eliminate the output coupling  
capacitors involved biasing the headphone return  
(sleeve) to the DC bias voltage of the headphone  
amplifiers. This method raised some issues:  
To simplify resistor selection:  
V
LDO_OUT  
R1=R2  
1  
1.21  
• The sleeve is typically grounded to the chassis.  
Using this biasing approach, the sleeve must be iso-  
lated from system ground, complicating product  
design.  
Since the input bias current at LDO_SET is typically  
less than 500nA (max), large resistance values can be  
used for R1 and R2 to minimize power consumption  
without compromising accuracy. The parallel combina-  
tion of R1 and R2 should be less than 1MΩ.  
• During an ESD strike, the amplifier’s ESD structures  
are the only path to system ground. The amplifier  
must be able to withstand the full ESD strike.  
DirectDrive  
Conventional single-supply headphone amplifiers have  
their outputs biased about a nominal DC voltage  
• When using the headphone jack as a line out to  
other equipment, the bias voltage on the sleeve may  
conflict with the ground potential from other equip-  
ment, resulting in large ground loop current and  
possible damage to the amplifiers.  
(V  
DD  
/ 2) for maximum dynamic range. Large coupling  
8/MX790A  
capacitors are needed to block this DC bias from the  
headphones. Without these capacitors, a significant  
amount of DC current flows to the headphone, resulting  
in unnecessary power dissipation and possible dam-  
age to both headphone and headphone amplifier.  
Low-Frequency Response  
In addition to the cost and size disadvantages, the DC-  
blocking capacitors limit the low-frequency response of  
the amplifier and distort the audio signal:  
Maxim’s patented DirectDrive architecture uses a  
charge pump to create an internal negative supply volt-  
age. It allows the MAX9789A/MAX9790A headphone  
amplifier output to be biased about GND. With no DC  
component, there is no need for the large DC-blocking  
• The impedance of the headphone load and the DC-  
blocking capacitor form a highpass filter with the  
-3dB point determined by:  
1
f −  
=
3dB  
2πR C  
L
OUT  
where R is the impedance of the headphone and  
OUT  
L
LDO_OUT  
C
is the value of the DC-blocking capacitor.  
• The highpass filter is required by conventional single-  
ended, single-supply headphone amplifier to block  
the midrail DC component of the audio signal from the  
headphones. Depending on the -3dB point, the filter  
can attenuate low-frequency signals within the audio  
1μF  
1μF  
R1  
R2  
MAX9789A  
LDO_SET  
band. Larger values of C  
reduce the attenuation,  
OUT  
but are physically larger, more expensive capacitors.  
Figure 2 shows the relationship between the size of  
C
and the resulting low-frequency attenuation.  
OUT  
GND  
Note the Vista’s magnitude response specification  
calls for a -3dB point at 20Hz at the headphone jack.  
The -3dB point at 20Hz for a 32Ω headphone requires  
a 330µF blocking capacitor (Table 2).  
Figure 1. Adjustable Output Using External Feedback  
Resistors.  
14 ______________________________________________________________________________________  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
8/MX790A  
ADDITIONAL THD+N DUE TO  
DC-BLOCKING CAPACITORS  
LOW-FREQUENCY ROLLOFF  
(R = 16Ω)  
L
10  
1
0
C
= 100μF  
OUT  
-3  
R = 16Ω  
L
DirectDrive  
-6  
-9  
330μF  
220μF  
-12  
0.1  
TANTALUM  
-15  
-18  
100μF  
0.01  
0.001  
0.0001  
-21  
-24  
33μF  
ALUM/ELEC  
100  
-27  
-30  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 3. Distortion Contributed by DC-Blocking Capacitors  
Figure 2. Low-Frequency Attenuation of Common DC-Blocking  
Capacitor Values  
• The voltage coefficient of the capacitor, the change  
in capacitance due to a change in the voltage  
across the capacitor, distorts the audio signal. At  
frequencies around the -3dB point, this effect is  
maximized and the voltage coefficient appears as  
frequency-dependent distortion. Figure 3 shows the  
THD+N introduced by two different capacitor  
dielectrics. Note that around the -3dB point, THD+N  
increases dramatically.  
speed that minimizes noise generated by switching  
transients. Limiting the switching speed of the charge  
pump minimizes the di/dt noise caused by the parasitic  
bond wire and trace inductance.  
BIAS  
The MAX9789A/MAX9790A feature an internally gener-  
ated, power-supply independent, common-mode bias  
voltage of 1.8V referenced to GND. BIAS provides both  
click-and-pop suppression and sets the DC bias level  
for the amplifiers. The BIAS pin should be bypassed to  
GND with a 1µF capacitor. No external load should be  
applied to BIAS. Any load lowers the BIAS voltage,  
affecting the overall performance of the device.  
• The combination of low-frequency attenuation and fre-  
quency-dependent distortion compromises audio  
reproduction. DirectDrive improves low-frequency  
reproduction in portable audio equipment that empha-  
sizes low-frequency effects, such as multimedia lap-  
tops, MP3, CD, and DVD players (See Table 2).  
Headphone and Speaker Amplifier Gain  
The MAX9789A/MAX9790A feature programmable  
speaker amplifier gain, set by the logic voltages  
applied to pins GAIN1 and GAIN2. Table 3 shows the  
logic combinations that can be applied to pins GAIN1  
and GAIN2 and their affects on the speaker amplifier  
gain. The headphone amplifier gain is fixed at 3.5dB.  
Table 2. Low-Frequency Rolloff  
f
(Hz)  
-3dB  
C
(µF)  
OUT  
R = 16Ω  
L
R = 32Ω  
L
22  
452  
301  
99  
226  
151  
50  
33  
100  
220  
330*  
470  
Table 3. MAX9789A/MAX9790A  
Programmable Gain Settings  
45  
23  
30  
15  
MAX9789A/MAX9790A  
21  
11  
SPEAKER MODE  
GAIN (dB)  
HEADPHONE  
MODE GAIN (dB)  
GAIN1  
GAIN2  
*Vista requirement for 32Ω load.  
Charge Pump  
0
0
1
1
0
1
0
1
6
3.5  
3.5  
3.5  
3.5  
The MAX9789A/MAX9790A feature a low-noise charge  
pump. The 550kHz switching frequency is well beyond  
the audio range, and does not interfere with the audio  
signals. The switch drivers feature a controlled switching  
10  
15.6  
21.6  
______________________________________________________________________________________ 15  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
Headphone Amplifier  
Speaker and Headphone  
Amplifier Enable  
In conventional single-supply headphone amplifiers, the  
output-coupling capacitor is a major contributor of audi-  
ble clicks and pops. Upon startup, the amplifier charges  
the coupling capacitor to its bias voltage, typically  
The MAX9789A/MAX9790A feature control inputs for the  
independent enabling of the speaker and headphone  
amplifiers, allowing both to be active simultaneously if  
required. Driving SPKR_EN high disables the speaker  
amplifiers. Driving HP_EN low independently disables  
the headphone amplifiers. For applications that require  
only one of the amplifiers to be on at a given time,  
SPKR_EN and HP_EN can be tied together allowing a  
single logic voltage to enable either the speaker or the  
headphone amplifier as shown in Figure 4.  
V
DD  
/ 2. Likewise, during shutdown, the capacitor is dis-  
charged to GND. A DC shift across the capacitor results,  
which in turn, appears as an audible transient at the  
headphone. Since the MAX9789A/MAX9790A do not  
require output-coupling capacitors, no audible transient  
occurs.  
Additionally, the MAX9789A/MAX9790A features exten-  
sive click-and-pop suppression that eliminates any  
audible transient sources internal to the device. The  
startup/shutdown waveform in the Typical Operating  
Characteristics shows that there are minimal spectral  
components in the audible range at the output.  
MUTE  
The MAX9789A/MAX9790A allow for the speaker and  
headphone amplifiers to be muted. By driving MUTE  
low, both the speaker and headphone amplifiers are  
muted. When muted, the speaker outputs remain  
biased at V  
/ 2.  
DD  
Applications Information  
Shutdown  
BTL Speaker Amplifiers  
The MAX9789A/MAX9790A feature speaker amplifiers  
designed to drive a load differentially, a configuration  
referred to as bridge-tied load (BTL). The BTL configu-  
ration (Figure 5) offers advantages over the single-  
ended configuration, where one side of the load is  
connected to ground. Driving the load differentially  
doubles the output voltage compared to a single-  
ended amplifier operating under similar conditions. The  
doubling of the output voltage yields four times the out-  
put power at the load.  
The MAX9789A/MAX9790A feature a low-power shut-  
down mode, drawing 0.3µA of supply current. By dis-  
abling the speaker, headphone amplifiers and the LDO  
(for MAX9789A), the MAX9789A/MAX9790A enter low-  
8/MX790A  
power shutdown mode. Set SPKR_EN to V  
and  
DD  
HP_EN and LDO_EN to GND to disable the speaker  
amplifiers, headphone amplifiers, and LDO, respectively.  
Click-and-Pop Suppression  
Speaker Amplifier  
The MAX9789A/MAX9790A speaker amplifiers feature  
Maxim’s comprehensive, industry-leading click-and-  
pop suppression. During startup, the click-and-pop  
suppression circuitry eliminates any audible transient  
sources internal to the device. When entering shut-  
down, the differential speaker outputs ramp to GND  
quickly and simultaneously.  
Since the differential outputs are biased at mid-supply,  
there is no net DC voltage across the load. This elimi-  
nates the need for DC-blocking capacitors required for  
single-ended amplifiers. These capacitors can be  
large, expensive, consume board space, and degrade  
low-frequency performance.  
V
+1  
OUT(P-P)  
MAX9789A/MAX9790A  
2 x V  
OUT(P-P)  
SINGLE  
CONTROL PIN  
SPKR_EN  
-1  
HP_EN  
V
OUT(P-P)  
Figure 5. Bridge-Tied Load Configuration  
Figure 4. Enabling Either the Speaker or Headphone Amplifier  
with a Single Control Pin  
16 ______________________________________________________________________________________  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
8/MX790A  
Mono Speaker Configuration  
The MAX9789A stereo BTL Class AB speaker amplifier  
can be configured to drive a mono speaker. Rather  
than combining the CODEC’s left- and right-input sig-  
nals in a resistive network prior to one channel of the  
speaker amplifier input, the transducer itself can be  
connected to the BTL speaker amplifier output as  
shown in Figure 6. When compared to the resistive net-  
work implementation, the configuration in Figure 6 will:  
Output Power (Speaker Amplifier)  
The increase in power delivered by the BTL configura-  
tion directly results in an increase in internal power dis-  
sipation over the single-ended configuration. The  
maximum power dissipation for a given V  
given by the following equation:  
and load is  
DD  
2
2V  
DD  
P
=
DISS(MAX)  
2
π R  
L
1) Eliminate noise pickup by eliminating the high-  
impedance node at the CODEC’s left- and right-  
signal mixing point. SNR performance will be  
improved as a result.  
If the power dissipation for a given application exceeds  
the maximum allowed for a given package, either reduce  
DD  
temperature, or add heat sinking to the device. Large  
output, supply, and ground PC board traces improve the  
maximum power dissipation in the package.  
V
, increase load impedance, decrease the ambient  
2) Eliminate gain error by eliminating any resistive  
mismatch between the external resistance used to  
sum the left and right signals and the MAX9789A  
internal resistance.  
Thermal-overload protection limits total power dissipa-  
tion in these devices. When the junction temperature  
exceeds +150°C, the thermal-protection circuitry dis-  
ables the amplifier output stage. The amplifiers are  
enabled once the junction temperature cools by +15°C.  
This results in a pulsing output under continuous ther-  
mal-overload conditions as the device heats and cools.  
Power Dissipation and Heat Sinking  
Under normal operating conditions, the MAX9789A/  
MAX9790A can dissipate a significant amount of  
power. The maximum power dissipation for each pack-  
age is given in the Absolute Maximum Ratings section  
under Continuous Power Dissipation, or can be calcu-  
lated by the following equation:  
Power Supplies  
The MAX9789A/MAX9790A have separate supply pins  
for each portion of the device, allowing for the optimum  
combination of headroom and power dissipation and  
noise immunity. The speaker amplifiers are powered  
T
T  
A
J(MAX)  
P
=
DISSPKG(MAX)  
θ
JA  
from PV . PV  
ranges from 4.5V to 5.5V. The head-  
DD  
DD  
where T  
is +150°C, T is the ambient tempera-  
phone amplifiers are powered from HPV  
and PV  
.
SS  
J(MAX)  
A
DD  
ture, and θ is the reciprocal of the derating factor in  
HPV  
is the positive supply of the headphone ampli-  
JA  
DD  
°C/W as specified in the Absolute Maximum Ratings  
fiers and ranges from 3V to 5.5V. PV is the negative  
SS  
section. For example, θ for the 32-pin TQFN-EP pack-  
supply of the headphone amplifiers. Connect PV to  
SS  
JA  
age is +40.2°C/W for a multilayer PC board.  
CPV . The charge pump is powered by CPV  
.
DD  
SS  
CPV  
ranges from 3V to 5.5V and should be the same  
DD  
potential as HPV . The charge pump inverts the volt-  
DD  
age at CPV , and the resulting voltage appears at  
DD  
C
IN1  
IN1  
CODEC  
SPKR_OUTL  
CPV . The internal LDO and the remainder of the  
SS  
OUTL+  
OUTL-  
SPKR_INL  
device is powered by V  
.
DD  
Component Selection  
C
MAX9789A  
SPKR_OUTR  
SPKR_INR  
Supply Bypassing  
OUTR+  
OUTR-  
The MAX9789A/MAX9790A have separate supply pins  
for each portion of the device, allowing for the optimum  
combination of headroom and power dissipation and  
noise immunity.  
C
C
IN2  
LINE_OUTR  
LINE_OUTL  
HP_INL  
HP_INR  
HPL  
HPR  
IN2  
Speaker Amplifier Power-Supply Input (PV  
)
DD  
The speaker amplifiers are powered from PV . PV  
DD  
DD  
ranges from 4.5V to 5.5V. Bypass PV  
with a 0.1µF  
DD  
capacitor to PGND. Note additional bulk capacitance is  
required at the device if long input traces between  
Figure 6. Mono Signal Output Configuration for MAX9789A  
PV  
and the power source are used.  
DD  
______________________________________________________________________________________ 17  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
Headphone Amplifier Power-Supply  
INPUT COUPLING CAPACITOR-INDUCED THD+N  
vs. FREQUENCY (HEADPHONE MODE)  
-50  
Input (HPV and PV  
)
DD  
SS  
The headphone amplifiers are powered from HPV  
DD  
and PV . HPV  
is the positive supply of the head-  
SS  
DD  
phone amplifiers and ranges from 3.0V to 5.5V. Bypass  
HPV with a 10µF capacitor to PGND. PV is the  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
0402 6.3V X5R 10% 1μF  
0603 10V X5R 10% 1μF  
DD  
SS  
negative supply of the headphone amplifiers. Bypass  
PV with a 1µF capacitor to PGND. Connect PV to  
SS  
SS  
DD  
CPV . The charge pump is powered by CPV  
.
SS  
DD  
CPV  
ranges from 3.0V to 5.5V and should be the  
same potential as HPV . Bypass CPV  
with a 1µF  
DD  
DD  
capacitor to PGND. The charge pump inverts the volt-  
0805 25V X7R 10% 1μF  
age at CPV , and the resulting voltage appears at  
DD  
V
= 3dB FS  
RMS  
OUT  
1206 25 X7R 10% 1μF  
FS = 1V  
R = 32Ω  
CPV . A 1µF capacitor must be connected between  
SS  
L
C1N and C1P.  
10  
100  
1000  
Power Supply and LDO Input (V  
)
DD  
FREQUENCY (Hz)  
The internal LDO and the remainder of the device is  
powered by V . V ranges from 4.5V to 5.5V.  
Figure 8. Input Coupling Capacitor-Induced THD vs.  
Frequency (Headphone Mode)  
DD  
DD  
Bypass V  
with a 0.1µF capacitor to GND and two  
DD  
1µF capacitors in parallel to GND. Note additional bulk  
capacitance is required at the device if long input  
BIAS Capacitor  
BIAS is the output of the internally generated DC bias  
voltage. The BIAS bypass capacitor, C improves  
PSRR and THD+N by reducing power supply and other  
noise sources at the common-mode bias node, and  
also generates the clickless/popless, startup/shutdown  
DC bias waveforms for the speaker and headphone  
amplifiers. Bypass BIAS with a 1µF capacitor to GND.  
8/MX790A  
traces between V  
and the power source are used.  
DD  
BIAS  
Input Filtering  
The input capacitor (C ), in conjunction with the ampli-  
IN  
fier input resistance (R ), forms a highpass filter that  
IN  
removes the DC bias from the incoming signal. The AC-  
coupling capacitor allows the amplifier to bias the sig-  
nal to an optimum DC level. Assuming zero source  
impedance, the -3dB point of the highpass filter is  
given by:  
Charge-Pump Capacitor Selection  
Use capacitors with an ESR less than 100mΩ for opti-  
mum performance. Low ESR ceramic capacitors mini-  
mize the output resistance of the charge pump. For  
best performance over the extended temperature  
range, select capacitors with an X7R dielectric.  
1
f −  
=
3dB  
2πR C  
IN IN  
R
is the amplifier’s internal input resistance value  
IN  
Flying Capacitor (C1)  
The value of the flying capacitor (C1) affects the load  
regulation and output resistance of the charge pump. A  
C1 value that is too small degrades the device’s ability  
to provide sufficient current drive, which leads to a loss  
of output voltage. Connect a 1µF capacitor between  
C1P and C1N.  
given in the Electrical Characteristics. Choose C such  
IN  
that f  
Setting f  
is well below the lowest frequency of interest.  
-3dB  
-3dB  
too high affects the amplifier’s low fre-  
quency response. Use capacitors with adequately low  
voltage coefficient dielectrics, such as 1206-sized X7R  
ceramic capacitors. Capacitors with higher voltage  
coefficients result in increased distortion at low fre-  
quencies (see Figure 8).  
18 ______________________________________________________________________________________  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
8/MX790A  
Output Capacitor (C2)  
Connect C2 and C3 to the PGND plane. Connect PV  
SS  
The output capacitor value and ESR directly affect the  
and CPV  
together at C2. Place the charge-pump  
SS  
ripple at CPV . Increasing the value of C2 reduces  
SS  
capacitors (C1, C2, and C3) as close as possible to  
the device. Bypass PV with a 0.1µF capacitor to  
output ripple. Likewise, decreasing the ESR of C2  
reduces both ripple and output resistance. Lower  
capacitance values can be used in systems with low  
maximum output power levels.  
DD  
PGND. Place the bypass capacitors as close as possi-  
ble to the device.  
Use large, low-resistance output traces. As load imped-  
ance decreases, the current drawn from the device out-  
puts increase. At higher current, the resistance of the  
output traces decrease the power delivered to the load.  
For example, if 2W is delivered from the speaker output  
to a 4Ω load through a 100mΩ trace, 49mW is con-  
sumed in the trace. If power is delivered through a  
10mΩ trace, only 5mW is consumed in the trace. Large  
output, supply and GND traces also improve the power  
dissipation of the device.  
CPV  
Bypass Capacitor (C3)  
bypass capacitor (C3) lowers the output  
DD  
The CPV  
DD  
impedance of the power supply and reduces the  
impact of the MAX9789A/MAX9790A’s charge-pump  
switching transients. Bypass CPV  
with 1µF, the same  
DD  
value as C1, and place it physically close to the CPV  
and CPGND pins.  
DD  
Layout and Grounding  
Proper layout and grounding are essential for optimum  
performance. Use large traces for the power-supply  
inputs and amplifier outputs to minimize losses due to  
parasitic trace resistance, as well as route heat away  
from the device. Good grounding improves audio per-  
formance, minimizes crosstalk between channels, and  
prevents switching noise from coupling into the audio  
signal. Connect PGND and GND together at a single  
point on the PC board. Route PGND and all traces that  
carry switching transients away from GND and the  
traces and components in the audio signal path.  
The MAX9789A/MAX9790A thin QFN package features  
an exposed thermal pad on its underside. This pad low-  
ers the package’s thermal resistance by providing a  
direct heat conduction path from the die to the printed  
circuit board. Connect the exposed thermal pad to GND  
by using a large pad and multiple vias to the GND plane.  
______________________________________________________________________________________ 19  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
Block Diagrams  
4.5V TO 5.5V  
0.1μF  
PV  
DD  
8, 18  
MAX9789A  
6
7
OUTL+  
OUTL-  
1.0μF  
1.0μF  
SPKR_INL  
SPKR_INR  
3
2
STEREO  
BTL  
AMPLIFIER  
OUTR+  
20  
19 OUTR-  
BIAS  
24  
8/MX790A  
TO HPV  
1.0μF  
DD  
1.0μF  
1.0μF  
HP_INL  
HP_INR  
HP_EN  
27  
26  
22  
16 HPL  
TO PV  
SS  
3V TO 5.5V  
MUTE 25  
15 HPR  
17 HPV  
3V TO 5.5V  
C3  
SPKR_EN 23  
CONTROL  
DD  
DD  
32  
31  
GAIN2  
GAIN1  
9
CPV  
10μF  
3V TO 5.5V  
10 C1P  
4.5V TO 5.5V  
LDO_EN  
VDD  
4
C1  
1μF  
11 CPGND  
30  
CHARGE  
PUMP  
1.0μF  
1.0μF  
1.0μF  
0.1μF  
1.0μF  
LDO_SET  
LDO_OUT  
1
LDO BLOCK  
C1N  
12  
29  
TO CODEC  
28  
5, 21  
14  
PV  
13  
CPV  
GND  
PGND  
SS  
SS  
C2  
1.0μF  
LOGIC PINS CONFIGURED FOR:  
LDO_EN = 1, LDO ENABLED  
SPKR_EN = 0, SPEAKER AMPLIFIERS ENABLED  
HP_EN = 1, HEADPHONE AMPLIFIER ENABLED  
MUTE = 1, MUTE DISABLED  
GAIN1 = 0 GAIN = 0, 6dB SPEAKER GAIN  
20 ______________________________________________________________________________________  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
8/MX790A  
Block Diagrams (continued)  
4.5V TO 5.5V  
0.1μF  
0.1μF  
V
PV  
DD  
DD  
30  
8, 18  
MAX9790A  
6
7
OUTL+  
OUTL-  
1.0μF  
1.0μF  
SPKR_INL  
SPKR_INR  
3
2
STEREO  
BTL  
AMPLIFIER  
OUTR+  
20  
19 OUTR-  
BIAS  
24  
TO HPV  
1.0μF  
DD  
1.0μF  
1.0μF  
HP_INL  
HP_INR  
27  
26  
16 HPL  
TO PV  
SS  
3V TO 5.5V  
15 HPR  
17 HPV  
3V TO 5.5V  
C3  
HP_EN  
22  
DD  
DD  
MUTE 25  
9
CPV  
SPKR_EN 23  
CONTROL  
10μF  
10 C1P  
32  
31  
GAIN2  
GAIN1  
C1  
1μF  
11 CPGND  
CHARGE  
PUMP  
C1N  
12  
4, 28  
GND  
5, 21  
14  
PV  
13  
CPV  
PGND  
SS  
SS  
C2  
1.0μF  
LOGIC PINS CONFIGURED FOR:  
SPKR_EN = 0, SPEAKER AMPLIFIERS ENABLED  
HP_EN = 1, HEADPHONE AMPLIFIER ENABLED  
MUTE = 1, MUTE DISABLED  
GAIN1 = 0 GAIN = 0, 6dB SPEAKER GAIN  
______________________________________________________________________________________ 21  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
System Diagrams  
5.0V  
5.0V  
C
BULK  
10μF  
0.1μF  
1μF  
1μF  
1μF  
V
V
PV  
DD  
DD  
HPV  
DD  
LDO_OUT  
BIAS  
OUTL+  
OUTL-  
C
IN  
4Ω  
4Ω  
1μF  
SPKR_L  
SPKR_INL  
SPKR_INR  
HP_INR  
C
IN  
1μF  
SPKR_R  
HDA  
CODEC  
C
IN  
OUTR+  
OUTR-  
1μF  
HP_R  
C
IN  
1μF  
HP_L  
HP_INL  
HPL  
HPR  
5.0V  
MONO  
AGND  
MAX9789A  
DGND  
CPV  
C1P  
DD  
8/MX790A  
C
1μF  
3
C
1μF  
1
4.75V  
LDO_SET  
LDO_OUT  
C1N  
SPKR_EN  
1μF  
1μF  
HP_EN  
LDO_EN  
GAIN1  
μC  
CPV  
PV  
SS  
C
2
SS  
GAIN2  
1μF  
CPGND  
MUTE  
PGND  
GND  
12V  
100μF  
1μF  
V
DD  
FS2  
FS1  
G1  
OUT+  
8Ω  
OUT-  
G2  
MAX9713  
SHDN  
C1P  
0.47μF  
0.47μF  
0.1μF  
IN+  
C1N  
V
DD  
IN-  
SS  
1μF  
CHOLD  
REG  
0.47μF  
AGND  
PGND  
0.01μF  
22 ______________________________________________________________________________________  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
8/MX790A  
System Diagrams (continued)  
+5V  
+3.3V  
10μF  
1μF  
1μF  
0.1μF  
V
V
PV  
DD  
DD  
HPV  
DD  
LDO_OUT  
OUTL+  
OUTL-  
1μF  
SPKR_L  
SPKR_INL  
SPKR_INR  
HP_INR  
1μF  
1μF  
1μF  
SPKR_R  
HDA  
CODEC  
HP1_R  
OUTR+  
OUTR-  
HP1_L  
HP2_R  
HP2_L  
HP_INL  
HP1  
HPL  
HPR  
+3.3V  
MAX9789A  
CPV  
C1P  
DD  
C
1μF  
3
DGND AGND  
C
1
4.75V  
LDO_SET  
LDO_OUT  
1μF  
C1N  
SPKR_EN  
HP_EN  
1μF  
1μF  
μC  
LDO_EN  
CP  
P
VSS  
GAIN2  
GAIN1  
C
1μF  
2
VSS  
CPGND  
MUTE  
PGND  
GND  
C1P  
C1N  
SHDNR  
SHDNL  
1μF  
1μF  
MAX4411  
HP2  
OUTL  
OUTR  
INR  
INL  
1μF  
+3.3V  
PV  
SV  
DD  
PV  
SV  
SS  
1μF  
SS  
DD  
PGND  
SGND  
1μF  
______________________________________________________________________________________ 23  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
Pin Configurations  
TOP VIEW  
24 23 22 21 20 19 18 17  
24 23 22 21 20 19 18 17  
16  
15  
MUTE 25  
HPL  
HPR  
16  
15  
MUTE 25  
HPL  
HPR  
HP_INR 26  
HP_INR 26  
14 PV  
27  
SS  
14 PV  
HP_INL  
27  
SS  
HP_INL  
CPV  
SS  
28  
13  
12  
CPV  
SS  
GND  
28  
29  
30  
31  
32  
13  
12  
GND  
MAX9790A  
MAX9789A  
29  
30  
31  
32  
N.C.  
C1N  
LDO_OUT  
C1N  
11 CPGND  
V
11 CPGND  
V
DD  
DD  
EP*  
EP*  
10  
9
C1P  
CPV  
GAIN1  
GAIN2  
10  
9
C1P  
CPV  
GAIN1  
GAIN2  
+
+
DD  
DD  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
8/MX790A  
TQFN  
TQFN  
*EP = EXPOSED PADDLE  
*EP = EXPOSED PADDLE  
Chip Information  
Simplified Block Diagrams  
(continued)  
PROCESS: BiCMOS  
SPEAKER SUPPLY HEADPHONE SUPPLY  
4.5V TO 5.5V  
3.0V TO 5.5V  
MAX9790A  
SPKR_INR  
SPKR_INL  
HP_INR  
HP_INL  
SPKR_EN  
HP_EN  
MUTE  
GAIN1  
GAIN2  
24 ______________________________________________________________________________________  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
8/MX790A  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 25  
Windows Vista-Compliant, Stereo Class AB Speaker  
Amplifiers and DirectDrive Headphone Amplifiers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
8/MX790A  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
26 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9789AETJ+

Windows Vista-Compliant, Stereo Class AB Speaker Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9789AETJ+T

Audio Amplifier, 2W, 2 Channel(s), 1 Func, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WHHD-2,TQFN-32
MAXIM

MAX9789AEVKIT

Integrated 120mA Low-Dropout Linear Regulator
MAXIM

MAX9789AEVKIT+

Integrated 120mA Low-Dropout Linear Regulator
MAXIM

MAX9789BETJ+

Windows Vista-Compliant, Stereo Class AB Speaker Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9789BETJ+T

Audio Amplifier
MAXIM

MAX9789CETJ+

Windows Vista-Compliant, Stereo Class AB Speaker Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX9789_09

Windows Vista-Compliant, Stereo Class AB Speaker Amplifiers and DirectDrive Headphone Amplifiers
MAXIM

MAX978EEE

Single/Dual/Quad, SOT23, Single-Supply, High-Speed, Low-Power Comparators
MAXIM

MAX978EEE+

Comparator, 4 Func, 3000uV Offset-Max, 28ns Response Time, CMOS, PDSO16, QSOP-16
MAXIM

MAX978EEE+T

Comparator, 4 Func, 3000uV Offset-Max, 28ns Response Time, CMOS, PDSO16, QSOP-16
MAXIM

MAX978EEE-T

Comparator, 4 Func, 3000uV Offset-Max, 28ns Response Time, CMOS, PDSO16, QSOP-16
MAXIM