MAX9791_V01 [MAXIM]

Windows Vista-Compliant Class D Speaker Amplifiers with DirectDrive Headphone Amplifiers;
MAX9791_V01
型号: MAX9791_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Windows Vista-Compliant Class D Speaker Amplifiers with DirectDrive Headphone Amplifiers

文件: 总34页 (文件大小:826K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4217; Rev 1; 6/10  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
General Description  
Features  
The MAX9791 combines a stereo 2W Class D power  
amplifier, a stereo 180mW DirectDrive® headphone  
amplifier, and a 120mA low-dropout (LDO) linear regu-  
lator in a single device. The MAX9792 combines a  
mono 3W Class D power amplifier, a stereo 180mW  
DirectDrive headphone amplifier, and a 120mA LDO  
linear regulator in a single device.  
o Windows Vista® Premium Compliant  
o Low EMI Filterless Class D Speaker Amplifiers  
Pass EN55022B Emissions Limit with 30cm of  
Speaker Cable  
o 180mW DirectDrive Headphone Amplifier  
o Excellent RF Immunity  
o Integrated 120mA LDO  
o Eliminates Headphone Ground Loop Noise  
o Wake-on-Beep Function  
o Click-and-Pop Suppression  
o Short-Circuit and Thermal-Overload Protection  
The MAX9791/MAX9792 feature Maxim’s DirectDrive  
headphone amplifier architecture that produces a  
ground-referenced output from a single supply, eliminat-  
ing the need for large DC-blocking capacitors, saving  
cost, board space, and component height. High 107dB  
DC PSRR and low 0.006% THD+N ensure clean, low-  
distortion amplification of the audio signal.  
The ground sense feature senses and corrects for the  
voltage difference between the output jack ground and  
device signal ground. This feature minimizes head-  
phone amplifier crosstalk by sensing the impedance in  
the ground return trace and correcting for it at the out-  
put jack. This feature also minimizes ground-loop noise  
when the output socket is used as a line out connection  
to other grounded equipment (for example, a PC con-  
nected to a home hi-fi system).  
The MAX9791/MAX9792 feature low RF susceptibility,  
allowing the amplifiers to successfully operate in close  
proximity to wireless applications. The MAX9791/  
MAX9792 Class D amplifiers feature Maxim’s spread-  
spectrum modulation and active emissions limiting cir-  
cuitry. Industry-leading click-and-pop suppression  
eliminates audible transients during power-up and shut-  
down cycles.  
o Thermally Efficient, Space-Saving Package  
28-Pin TQFN-EP (4mm x 4mm x 0.75mm)  
Ordering Information  
STEREO/  
MONO  
LDO  
OUTPUT  
PART  
PIN-PACKAGE  
MAX9791AETI+  
MAX9791BETI+  
MAX9791CETI+  
MAX9792AETI+  
MAX9792CETI+  
Stereo  
Stereo  
Stereo  
Mono  
Mono  
4.75V  
3.3V  
28 TQFN-EP*  
28 TQFN-EP*  
28 TQFN-EP*  
28 TQFN-EP*  
28 TQFN-EP*  
1.8V  
4.75V  
1.8V  
Note: All devices are specified over the -40°C to +85°C  
extended temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
The MAX9791/MAX9792 wake-on-beep feature wakes  
up the speaker and headphone amplifiers when a qual-  
ified beep signal is detected at the BEEP input.  
For maximum flexibility, separate speaker and head-  
phone amplifier control inputs provide independent  
shutdown of the speaker and headphone amplifiers.  
Additionally the LDO can be enabled independently of  
the audio amplifiers.  
Simplified Block Diagrams  
SPEAKER AND LDO  
SUPPLY  
2.7V TO 5.5V  
HEADPHONE SUPPLY  
2.7V TO 5.5V  
CLASS D  
AMP  
MAX9791  
The MAX9791/MAX9792 feature thermal-overload and  
output short-circuit protection. The devices are avail-  
able in 28-pin TQFN packages and are specified over  
the -40°C to +85°C extended temperature range.  
CLASS D  
AMP  
Applications  
Notebook Computers  
Tablet PCs  
SPKR_EN  
HP_EN  
LDO_EN  
BEEP  
AVDD  
LDO  
Portable Multimedia Players  
1.8V, 3.3V, OR 4.75V  
DirectDrive is a registered trademark of Maxim Integrated  
Products, Inc.  
Simplified Block Diagrams continued at end of data sheet.  
Windows Vista is a registered trademark of Microsoft Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage  
Continuous Input Current (All Other Pins) ........................ 20mA  
(AVDD, PVDD, HPVDD to GND)........................-0.3V to +6.0V  
(AVDD to PVDD) ............................................................. 0.3V  
GND to PGND, CPGND...................................................... 0.3V  
CPVSS, C1N to GND............................................-6.0V to + 0.3V  
HPL, HPR to CPVSS ...........................................-0.3V to lower of  
(HPVDD - CPVSS + 0.3V) and +9V  
Continuous Power Dissipation (T = +70°C)  
28-Pin Thin QFN Single-Layer Board (derate 20.8mW/°C  
above +70°C)..........................................................1667mW  
Junction-to-Ambient Thermal Resistance (θ  
(Note 2) .....................................................................40°C/W  
A
)
JA  
Junction-to-Case Thermal Resistance (θ  
)
JC  
HPL, HPR to HPVDD..................................+0.3V to the higher of  
(CPVSS - HPVDD - 0.3V) and -9V  
(Note 2) ....................................................................2.7°C/W  
28-Pin Thin QFN Multilayer Board (derate 28.6mW/°C  
above +70°C)..........................................................2286mW  
COM, SENSE........................................................-0.3V to + 0.3V  
Any Other Pin ..........................................-0.3V to (AVDD + 0.3V)  
Duration of Short Circuit between OUT_+, OUT_- and GND,  
PGND, AVDD, or PVDD..........................................Continuous  
Duration of Short Circuit between LDO_OUT and AVDD,  
GND (Note 1) .........................................................Continuous  
Duration of Short Circuit between HPR, HPL and  
GND .......................................................................Continuous  
Continuous Current (PVDD, OUT_+, OUT_-, PGND)............1.7A  
Continuous Current (C1N, C1P, CPVSS, AVDD, HPVDD,  
LDO_OUT, HPR, HPL) ..................................................850mA  
Junction-to-Ambient Thermal Resistance (θ  
(Note 2) .....................................................................35°C/W  
)
JA  
Junction-to-Case Thermal Resistance (θ  
)
JC  
(Note 2) ....................................................................2.7°C/W  
ESD Protection, Human Body Model................................... 2kV  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
1/MAX792  
Note 1: If short is present at power-up.  
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= V  
= 5V, V  
= V  
= V  
= 0, I  
= 0, C  
= 2µF (C  
= 4µF for 1.8V LDO option),  
LDO  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
LDO  
C1 = C2 = 1µF. R = , unless otherwise specified. R  
= 20k(A  
= 12dB), R  
= 40.2k(A  
= 0dB), C = 470nF,  
L
IN1  
VSPKR  
IN2  
VHP  
IN1  
C
= C  
= 1µF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
IN2  
COM  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL  
V
V
,
AVDD  
Supply Voltage  
Guaranteed by PSRR test (Note 4)  
Guaranteed by PSRR test  
2.7  
2.7  
5.5  
V
PVDD  
Headphone Supply Voltage  
Undervoltage Lockout  
V
5.5  
V
V
HPVDD  
UVLO  
2.65  
SPKR_EN  HP_EN LDO_EN  
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
1
0
0
0
1
0
0
0
250  
4.4  
400  
6
µA  
mA  
µA  
MAX9791  
10.5  
14.4  
250  
4.4  
15  
21  
400  
6
I
I
I
+
AVDD  
Quiescent Current  
+
PVD  
HPVDD  
MAX9792  
mA  
10.5  
14.4  
3.3  
18  
24  
7..3  
Shutdown Current  
Bias Voltage  
I
SPKR_EN = 1.8V  
HP_INR, HP_INL, SPKR_INR, SPKR_INL  
µA  
V
SHDN  
V
0
BIAS  
2
_______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V  
= 5V, V  
= V  
= V  
= 0, I  
= 0, C  
= 2µF (C  
= 4µF for 1.8V LDO option),  
LDO  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
LDO  
C1 = C2 = 1µF. R = , unless otherwise specified. R  
= 20k(A  
= 12dB), R  
= 40.2k(A  
= 0dB), C = 470nF,  
L
IN1  
VSPKR  
IN2  
VHP  
IN1  
C
= C  
= 1µF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
IN2  
COM  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.4  
MAX  
UNITS  
ms  
Shutdown to Full Operation  
Overtemperature Threshold  
SPEAKER AMPLIFIER  
t
ON  
+150  
°C  
R = 4  
(MAX9791)  
L
1.7  
1.2  
3
THD+N = 1%,  
f = 1kHz,  
R = 8ꢀ  
L
T
A
= +25°C  
(MAX9791)  
(Note 5)  
R = 3ꢀ  
L
(MAX9792)  
Output Power  
P
W
OUT  
R = 4ꢀ  
(MAX9791)  
L
2.2  
1.5  
3.7  
THD+N = 10%,  
f = 1kHz,  
R = 8ꢀ  
L
T
A
= +25°C  
(MAX9791)  
(Note 5)  
R = 3ꢀ  
L
(MAX9792)  
R = 8, P  
= 500mW, f = 1kHz (Note 5)  
= 500mW, f = 1kHz (Note 5)  
0.04  
0.03  
80  
Total Harmonic Distortion Plus  
Noise  
L
OUT  
OUT  
THD+N  
PSRR  
%
R = 4, P  
L
V
AVDD  
= V  
= 2.7V to 5.5V, T = +25°C  
60  
PVDD  
A
f = 217Hz, 200mV  
73  
P-P  
Power-Supply Rejection Ratio  
dB  
f = 1kHz, 200mV  
75  
P-P  
f = 10kHz, 200mV  
62  
P-P  
Feedback Impedance  
Gain  
R
Guaranteed by design  
= 20kꢀ  
20  
kꢀ  
FSKR  
A
R
12  
dB  
V
IN1  
Measured between OUT_+ and OUT_-,  
= +25°C  
Output Offset Voltage  
V
3
10  
mV  
OS  
T
A
R = 8,  
peak voltage,  
L
Into shutdown  
-52.4  
Click-and-Pop Level  
K
CP  
A-weighted,  
dBV  
Out of  
shutdown  
32 samples per second  
(Notes 5, 6, and 7)  
-54  
98  
R = 8ꢀ  
L
A-weighted  
P
= 1.2W f = 1kHz,  
IN  
Signal-to-Noise Ratio  
Noise  
SNR  
dB  
OUT  
20Hz to 20kHz  
94  
38  
(Note 5)  
V
N
A-weighted  
µV  
RMS  
L to R, R to L, R = 8, V = -20dBFS =  
L
IN  
78  
70  
77  
100mV  
, f = 1kHz (Note 5)  
RMS IN  
L to R, R to L, R = 8, V = -20dBFS =  
L
IN  
Crosstalk  
dB  
100mV  
, f = 15kHz (Note 5)  
RMS IN  
HP to SPKR, R  
= 8, P = 20mW,  
HP  
LSPKR  
R
LHP  
= 32, f = 1kHz (Note 5)  
IN  
_______________________________________________________________________________________  
3
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V  
= 5V, V  
= V  
= V  
= 0, I  
= 0, C  
= 2µF (C  
= 4µF for 1.8V LDO option),  
LDO  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
LDO  
C1 = C2 = 1µF. R = , unless otherwise specified. R  
= 20k(A  
= 12dB), R  
= 40.2k(A  
= 0dB), C = 470nF,  
L
IN1  
VSPKR  
IN2  
VHP  
IN1  
C
= C  
= 1µF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
IN2  
COM  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
kHz  
kHz  
%
Class D Switching Frequency  
Spread-Spectrum Bandwidth  
Efficiency  
f
948  
1158  
SPK  
15  
83  
P
= 1.5W, f = 1kHz, R = 8(Note 5)  
IN L  
OUT  
HEADPHONE AMPLIFIER  
THD+N = 1%,  
f = 1kHz,  
R = 16ꢀ  
100  
180  
L
Output Power  
P
mW  
OUT  
R = 32ꢀ  
L
T
A
= +25°C  
R = 32, f = 6kHz, 20kHz AES17,  
L
IN  
-78  
-87  
V
= -3dBFS = 212mV  
IN  
RMS  
dBFS  
Total Harmonic Distortion Plus  
Noise  
R = 10k, f = 6kHz, 20kHz AES17,  
L
IN  
THD+N  
PSRR  
V
= -3dBFS = 500mV  
IN  
RMS  
1/MAX792  
R = 32, P  
= 100mW, f = 1kHz  
= 75mW, f = 1kHz  
0.006  
0.014  
107  
91  
L
OUT  
OUT  
%
R = 16, P  
L
V
= 2.7V to 5.5V, T = +25°C  
70  
HPVDD  
A
Power-Supply Rejection Ratio  
dB  
f = 1kHz, V  
= 200mV  
P-P  
RIPPLE  
f = 10kHz, V  
= 200mV  
80  
RIPPLE  
P-P  
Feedback Impedance  
Gain  
R
38.2  
40.2  
0
42.2  
3
kꢀ  
dB  
mV  
FHP  
A
R
= 40.2kꢀ  
IN2  
V
Output Offset Voltage  
V
T
A
= +25°C  
0.3  
OS  
R = 32,  
peak voltage,  
A-weighted, 32 samples  
per second (Notes 6, 7)  
L
Into shutdown  
-81  
Click-and-Pop Level  
Signal-to-Noise Ratio  
K
dBV  
dB  
CP  
Out of  
shutdown  
-72.5  
A-weighted  
= 40mW,  
102  
94  
R = 32, P  
L
OUT  
SNR  
f
= 1kHz  
IN  
20Hz to 20kHz  
Noise  
V
A-weighted  
No sustained oscillations  
8
µV  
RMS  
N
Maximum Capacitive Load  
C
100  
pF  
L
R = 32, V  
-20dBFS = 30mV  
=
IN  
L
L to R, R to L, f  
= 1kHz, COM  
and SENSE  
IN  
82  
89  
64  
70  
80  
RMS  
R = 10k, V  
=
IN  
L
connected  
-20dBFS = 0.7mV  
RMS  
R = 32, V  
=
IN  
L
L to R, R to L, f  
= 15kHz, COM  
and SENSE  
IN  
Crosstalk  
dB  
-20dBFS = 30mV  
RMS  
R = 10k, V  
=
IN  
L
connected  
-20dBFS = 70.7mV  
RMS  
SPKR to HP, R  
= 8, P  
= 1W,  
SPKR  
LSPKR  
R
LHP  
= 32, f = 1Hz  
IN  
4
_______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V  
= 5V, V  
= V  
= V  
= 0, I  
= 0, C  
= 2µF (C  
= 4µF for 1.8V LDO option),  
LDO  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
LDO  
C1 = C2 = 1µF. R = , unless otherwise specified. R  
= 20k(A  
= 12dB), R  
= 40.2k(A  
= 0dB), C = 470nF,  
L
IN1  
VSPKR  
IN2  
VHP  
IN1  
C
= C  
= 1µF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
IN2  
COM  
A
MIN  
MAX A  
PARAMETER  
COM Input Range  
SYMBOL  
CONDITIONS  
Inferred from CMRR test  
-300mV < V < +300mV  
MIN  
TYP  
MAX  
UNITS  
mV  
V
COM  
-300  
+300  
Common-Mode Rejection Ratio  
Slew Rate  
CMRR  
SR  
60  
dB  
COM  
0.38  
530  
V/µs  
kHz  
Charge-Pump Frequency  
BEEP INPUT (LDO_EN = 1)  
Beep Signal Minimum  
f
OSC  
f
Four-cycle count  
215  
221  
Hz  
ms  
ms  
BEEP  
Amplifier Turn-On Time  
Amplifier Hold Time  
t
0.4  
ONBEEP  
t
246  
271  
HOLDBEEP  
LOW-DROPOUT LINEAR REGULATOR  
LDO Ground Current  
Output Current  
Current Limit  
I
0.25  
0.4  
mA  
mA  
mA  
LDO  
OUT  
I
Inferred from load regulation  
120  
I
300  
-80  
LIM  
Speaker to LDO, V  
= 4.75V,  
LDO_OUT  
Crosstalk  
f =1kHz, I  
= 10mA, speaker P  
dB  
%
LDO_OUT  
OUT  
= 1.2W, R = 8(Note 6)  
L
V
V
V
= 4.75V  
= 3.3V  
1.5  
1.5  
LDO_OUT  
LDO_OUT  
LDO_OUT  
Output-Voltage Accuracy  
I
I
= 50mA  
46  
106  
30  
= 4.75V,  
= +25°C (Note 8)  
OUT  
OUT  
Dropout Voltage  
Startup Time  
V
mV  
µs  
DO  
T
A
= 120mA  
V
= 5V to 5.5V, V  
LDO_OUT  
= 4.75V,  
AVDD  
-4.8  
-4  
1.5  
0.2  
+4.8  
+4  
I
= 1mA, C  
= 2µF  
LDO  
LDO_OUT  
V
AVDD  
= 4.5V to 5.5V, V  
= 3.3V,  
LDO_OUT  
= 2µF  
Line Regulation  
mV/V  
I
= 1mA, C  
LDO  
LDO_OUT  
V
= 3V to 5.5V, V  
= 1.8V,  
AVDD  
LDO_OUT  
-6.4  
2.5  
+6.4  
I
= 1mA, C  
= 4µF  
LDO  
LDO_OUT  
V
= 4.75V, 1mA < I  
<
LDO_OUT  
LDO_OUT  
Load Regulation  
0.22  
mV/mA  
dB  
120mA  
V
V
I
= 200mV  
,
RIPPLE  
P-P  
f = 1kHz  
f = 10kHz  
56  
40  
Ripple Rejection  
= 4.75V  
= 10mA  
LDO_OUT  
LDO_OUT  
20Hz to 20kHz, C  
= 2 x 1µF,  
LDO_OUT  
Output-Voltage Noise  
130  
µV  
RMS  
I
= 120mA  
LDO_OUT  
DIGITAL INPUTS (SPKR_EN, HP_EN, LDO_EN, BEEP)  
Input-Voltage High  
Input-Voltage Low  
Input Bias Current  
V
1.4  
-1  
V
V
INH  
V
0.4  
+1  
INL  
µA  
_______________________________________________________________________________________  
5
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V  
= 5V, V  
= V  
= V  
= 0, I  
= 0, C  
= 2µF (C  
= 4µF for 1.8V LDO option),  
LDO  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
LDO  
C1 = C2 = 1µF. R = , unless otherwise specified. R  
= 20k(A  
= 12dB), R  
= 40.2k(A  
= 0dB), C  
= 470nF,  
L
IN1  
VSPKR  
IN2  
VHP  
IN1  
C
= C  
= 1µF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
IN2  
COM  
A
MIN  
MAX A  
Note 3: All devices are 100% production tested at room temperature. All temperature limits are guaranteed by design.  
Note 4: AVDD and PVDD must be tied together. If LDO is enabled, set AVDD and PVDD as specified in the Line Regulation row of  
the Electrical Characteristics table.  
Note 5: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For R = 3, L = 22µH.  
L
For R = 4, L = 33µH. For R = 8, L = 68µH.  
L
L
Note 6: Specified at T = +25°C with an 8+ 68µH load connected across BTL output for speaker amplifier. Specified at T = +25°C  
A
A
with a 32resistive load connected between HPR, HPL and GND for headphone amplifier. Speaker and headphone mode  
transitions are controlled by SPKR_EN and HP_EN inputs, respectively.  
Note 7: Amplifier Inputs AC-coupled to GND.  
Note 8: Guaranteed by ATE characterization; limits are not production tested.  
Typical Operating Characteristics  
(V  
= V  
= V  
IN1  
= 5V, V  
= V  
= 12dB), R  
= V  
IN2  
= 0, I  
= 40.2k(A  
= 0, C  
= 2 x 1µF, C1 = C2 = 1µF. R = , unless oth-  
LDO L  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
VHP  
erwise specified. R  
= 20k(A  
= 0dB), C  
= 470nF, C  
= C  
= 1µF, measurement BW  
COM  
VSPKR  
IN1  
IN2  
= 20kHz AES17, T = +25°C, unless otherwise noted. Speaker mode: SPKR_EN = 0, HP_EN = 0. Headphone mode: SPKR_EN = 1,  
A
1/MAX792  
HP_EN = 1.)  
SPEAKER  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY (MAX9792 SPEAKER MODE)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY (MAX9791 SPEAKER MODE)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY (MAX9791 SPEAKER MODE)  
0
0
0
R = 3  
IN  
R = 4Ω  
IN  
R = 8Ω  
L
L
L
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
= -3dBFS  
V
= -3dBFS  
V = -3dBFS  
IN  
FS = 707mV  
FS = 707mV  
RMS  
RMS  
FS = 1V  
RMS  
FS = 1V  
RMS  
FS = 1V  
1
RMS  
FS = 707mV  
1
RMS  
0.01  
0.1  
10  
100  
0.01  
0.1  
10  
100  
0.01  
0.1  
1
FREQUENCY (kHz)  
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER (MAX9792 SPEAKER MODE)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER (MAX9791 SPEAKER MODE)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER (MAX9791 SPEAKER MODE)  
100  
100  
100  
R = 3Ω  
L
R = 4Ω  
L
R = 8Ω  
L
10  
10  
10  
f = 6kHz  
f = 6kHz  
f = 6kHz  
f = 1kHz  
1
1
0.1  
1
f = 1kHz  
f = 1kHz  
0.1  
0.1  
0.01  
0.01  
0.001  
0.01  
f = 100Hz  
f = 100Hz  
f = 100Hz  
0.001  
0.001  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT POWER (W)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
6
_______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
IN1  
= 5V, V  
= V  
= V  
= 0, I  
= 0, C  
= 2 x 1µF, C1 = C2 = 1µF. R = , unless oth-  
LDO L  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
erwise specified. R  
= 20k(A  
= 12dB), R  
= 40.2k(A  
= 0dB), C  
= 470nF, C  
= C  
= 1µF, measurement BW  
COM  
VSPKR  
IN2  
VHP  
IN1  
IN2  
= 20kHz AES17, T = +25°C, unless otherwise noted. Speaker mode: SPKR_EN = 0, HP_EN = 0. Headphone mode: SPKR_EN = 1,  
A
HP_EN = 1.)  
SPEAKER  
OUTPUT POWER vs. LOAD RESISTANCE  
(MAX9792 SPEAKER MODE)  
OUTPUT POWER vs. LOAD RESISTANCE  
(MAX9792 SPEAKER MODE)  
5.0  
4.5  
2.5  
2.0  
1.5  
1.0  
0.5  
0
f = 1kHz  
V
PVDD  
= V  
= 3.7V  
AVDD  
4.0  
3.5  
THD+N = 10%  
3.0  
2.5  
THD+N = 1%  
THD+N = 10%  
2.0  
1.5  
1.0  
0.5  
0
THD+N = 1%  
1
10  
100  
1
10  
100  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
OUTPUT POWER vs. LOAD RESISTANCE  
(MAX9791 SPEAKER MODE)  
OUTPUT POWER vs. LOAD RESISTANCE  
(MAX9791 SPEAKER MODE)  
EFFICIENCY vs. OUTPUT POWER  
(MAX9792 SPEAKER MODE)  
3.0  
2.5  
2.0  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f = 1kHz  
V
= V  
AVDD  
= 3.7V  
PVDD  
R = 8Ω  
L
THD+N = 10%  
R = 3Ω  
L
THD+N = 1%  
1.5  
1.0  
THD+N = 10%  
THD+N = 1%  
10  
0.5  
0
f
= 1kHz  
IN  
1
10  
100  
1
100  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT POWER (W)  
LOAD RESISTANCE ()  
LOAD RESISTANCE ()  
EFFICIENCY vs. OUTPUT POWER  
(MAX9792 SPEAKER MODE)  
EFFICIENCY vs. OUTPUT POWER  
(MAX9791 SPEAKER MODE)  
EFFICIENCY vs. OUTPUT POWER  
(MAX9791 SPEAKER MODE)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R = 8Ω  
L
R = 8Ω  
L
R = 8Ω  
L
R = 3Ω  
L
R = 4Ω  
L
R = 4Ω  
L
f
= 1kHz  
1.5  
V
= V  
= 3.7V  
V
PVDD  
= V  
AVDD  
= 3.7V  
IN  
PVDD  
AVDD  
f
IN  
= 1kHz  
f = 1kHz  
IN  
0
0.3  
0.6  
0.9  
1.2  
1.5  
0
0.3  
0.6  
0.9  
1.2  
1.8  
0
0.2  
0.4  
0.6  
0.8  
1.0  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
_______________________________________________________________________________________  
7
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
IN1  
= 5V, V  
= V  
= V  
= 0, I  
= 0, C  
= 2 x 1µF, C1 = C2 = 1µF. R = , unless oth-  
LDO L  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
erwise specified. R  
= 20k(A  
= 12dB), R  
= 40.2k(A  
= 0dB), C  
= 470nF, C  
= C  
= 1µF, measurement BW  
COM  
VSPKR  
IN2  
VHP  
IN1  
IN2  
= 20kHz AES17, T = +25°C, unless otherwise noted. Speaker mode: SPKR_EN = 0, HP_EN = 0. Headphone mode: SPKR_EN = 1,  
A
HP_EN = 1.)  
SPEAKER  
OUTPUT POWER vs. SUPPLY VOLTAGE  
(MAX9791 SPEAKER MODE)  
OUTPUT POWER vs. SUPPLY VOLTAGE  
(MAX9791 SPEAKER MODE)  
OUTPUT POWER vs. SUPPLY VOLTAGE  
(MAX9792 SPEAKER MODE)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
f = 1kHz  
f = 1kHz  
f = 1kHz  
R
= 4Ω  
R
= 8Ω  
R
= 8Ω  
LOAD  
LOAD  
LOAD  
THD+N = 10%  
THD+N = 10%  
THD+N = 10%  
THD+N = 1%  
THD+N = 1%  
THD+N = 1%  
1/MAX792  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
OUTPUT POWER vs. SUPPLY VOLTAGE  
(MAX9792 SPEAKER MODE)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (SPEAKER MODE)  
CROSSTALK vs. FREQUENCY  
(SPEAKER MODE)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
f = 1kHz  
V
= 200mV  
FS = 1V  
RMS  
V = -20dBFS  
R = 8Ω  
RIPPLE  
P-P  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
R
= 3Ω  
LOAD  
R = 8Ω  
L
IN  
L
THD+N = 10%  
LEFT  
RIGHT TO LEFT  
THD+N = 1%  
RIGHT  
LEFT TO RIGHT  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
SUPPLY VOLTAGE  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
8
_______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
IN1  
= 5V, V  
= V  
= V  
= 0, I  
= 0, C  
= 2 x 1µF, C1 = C2 = 1µF. R = , unless oth-  
LDO L  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
erwise specified. R  
= 20k(A  
= 12dB), R  
= 40.2k(A  
= 0dB), C  
= 470nF, C  
= C  
= 1µF, measurement BW  
COM  
VSPKR  
IN2  
VHP  
IN1  
IN2  
= 20kHz AES17, T = +25°C, unless otherwise noted. Speaker mode: SPKR_EN = 0, HP_EN = 0. Headphone mode: SPKR_EN = 1,  
A
HP_EN = 1.)  
SPEAKER  
SPEAKER STARTUP WAVEFORM  
SPEAKER SHUTDOWN WAVEFORM  
MAX9791 toc14  
MAX9791 toc13  
SPKR_EN  
2V/div  
SPKR_EN  
2V/div  
SPEAKER OUT  
SPEAKER OUT  
200µs/div  
200µs/div  
WIDEBAND OUTPUT SPECTRUM  
(SPEAKER MODE)  
OUTPUT FREQUENCY SPECTRUM  
(SPEAKER MODE)  
0
-10  
0
-20  
V
= -60dBV  
OUT  
f = 1kHz  
-20  
R = 8Ω  
L
-30  
UNWEIGHTED  
-40  
-40  
-50  
-60  
-60  
-80  
-70  
-80  
-100  
-120  
-140  
-90  
-100  
-110  
-120  
RBW = 1kHz  
INPUT AC GROUNDED  
0
1
10  
100  
1
5
10  
15  
20  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
9
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
IN1  
= 5V, V  
= V  
= V  
= 0, I  
= 0, C  
= 2 x 1µF, C1 = C2 = 1µF. R = , unless oth-  
LDO L  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
erwise specified. R  
= 20k(A  
= 12dB), R  
= 40.2k(A  
= 0dB), C  
= 470nF, C  
= C  
= 1µF, measurement BW  
COM  
VSPKR  
IN2  
VHP  
IN1  
IN2  
= 20kHz AES17, T = +25°C, unless otherwise noted. Speaker mode: SPKR_EN = 0, HP_EN = 0. Headphone mode: SPKR_EN = 1,  
A
HP_EN = 1.)  
HEADPHONE  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
-50  
-60  
-50  
-60  
-50  
-60  
R = 16Ω  
V
= 3V  
R = 32Ω  
L
V = -3dBFS  
IN  
L
HPVDD  
L
IN  
V
IN  
= -3dBFS  
R = 16Ω  
V
= -3dBFS  
FS = 300mV  
RMS  
-70  
-70  
-70  
FS = 300mV  
RMS  
FS = 300mV  
RMS  
-80  
-80  
-80  
FS = 1V  
FS = 1V  
RMS  
RMS  
-90  
-90  
-90  
FS = 1V  
1
RMS  
1/MAX792  
-100  
-100  
-100  
0.01  
0.1  
1
FREQUENCY (kHz)  
10  
100  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
-50  
-60  
100  
10  
100  
10  
R = 16Ω  
L
R = 32Ω  
L
V
= 3V  
HPVDD  
R = 32Ω  
L
V
IN  
= -3dBFS  
-70  
1
1
FS = 300mV  
RMS  
f = 6kHz  
f = 1kHz  
f = 1kHz  
-80  
0.1  
0.1  
f = 100Hz  
f = 6kHz  
-90  
0.01  
0.001  
0.01  
0.001  
FS = 1V  
1
f = 100Hz  
RMS  
-100  
100  
OUTPUT POWER (mW)  
200  
0.01  
0.1  
10  
100  
0
40  
80  
OUTPUT POWER (mW)  
120  
160  
200  
0
50  
150  
250  
FREQUENCY (kHz)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
OUTPUT POWER vs. LOAD RESISTANCE  
(HEADPHONE MODE)  
100  
10  
100  
10  
250  
200  
150  
f = 1kHz  
V
= 3V  
V
= 3V  
HPVDD  
HPVDD  
R = 16Ω  
L
R = 32Ω  
L
THD+N = 10%  
1
1
THD+N = 1%  
f = 100Hz  
f = 1kHz  
0.1  
0.1  
100  
50  
0
f = 1kHz  
f = 6kHz  
f = 100Hz  
0.01  
0.001  
0.01  
0.001  
f = 6kHz  
60  
0
10 20 30 40 50 60 70 80 90  
OUTPUT POWER (mW)  
0
10  
20  
30  
40  
50  
70  
1
10  
100  
OUTPUT POWER (mW)  
LOAD RESISTANCE ()  
10 ______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
IN1  
= 5V, V  
= V  
= V  
= 0, I  
= 0, C  
= 2 x 1µF, C1 = C2 = 1µF. R = , unless oth-  
LDO L  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
erwise specified. R  
= 20k(A  
= 12dB), R  
= 40.2k(A  
= 0dB), C  
= 470nF, C  
= C  
= 1µF, measurement BW  
COM  
VSPKR  
IN2  
VHP  
IN1  
IN2  
= 20kHz AES17, T = +25°C, unless otherwise noted. Speaker mode: SPKR_EN = 0, HP_EN = 0. Headphone mode: SPKR_EN = 1,  
A
HP_EN = 1.)  
HEADPHONE  
OUTPUT POWER vs. LOAD RESISTANCE  
(HEADPHONE MODE)  
POWER DISSIPATION vs. OUTPUT POWER  
(HEADPHONE MODE)  
POWER DISSIPATION vs. OUTPUT POWER  
(HEADPHONE MODE)  
90  
80  
70  
60  
50  
400  
350  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
V
= 3V  
HPVDD  
V
= 3V  
HPVDD  
R = 16Ω  
L
f = 1kHz  
R = 16Ω  
L
THD+N = 10%  
THD+N = 1%  
R = 32Ω  
L
40  
30  
20  
10  
0
R = 32Ω  
L
50  
0
0
10  
100  
1000  
0
25 50 75 100 125 150 175 200  
PER CHANNEL OUTPUT POWER (mW)  
0
20  
40  
60  
80  
100  
LOAD RESISTANCE ()  
PER CHANNEL OUTPUT POWER (mW)  
HEADPHONE OUTPUT POWER  
vs. HPVDD  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (HEADPHONE MODE)  
CROSSTALK vs. FREQUENCY  
(HEADPHONE MODE)  
250  
200  
150  
100  
50  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
THD+N = 1%  
f = 1kHz  
R = 32Ω  
FS = 300mV  
L
V
= 200mV  
RIGHT TO LEFT  
COM AND SENSE  
DISABLED  
RIPPLE  
P-P  
RMS  
R = 32Ω  
L
V
IN  
= -20dBFS  
RIGHT TO LEFT  
COM AND SENSE  
DISABLED  
R = 32Ω  
L
RIGHT  
RIGHT TO LEFT  
COM AND SENSE  
R = 16Ω  
L
LEFT TO RIGHT  
COM AND SENSE  
LEFT  
10  
0
-120  
2.5  
3.0  
3.5  
4.0  
HPVDD (V)  
4.5  
5.0  
5.5  
0.01  
0.1  
1
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
______________________________________________________________________________________ 11  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
IN1  
= 5V, V  
= V  
= V  
= 0, I  
= 0, C  
= 2 x 1µF, C1 = C2 = 1µF. R = , unless oth-  
LDO L  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
erwise specified. R  
= 20k(A  
= 12dB), R  
= 40.2k(A  
= 0dB), C  
= 470nF, C  
= C  
= 1µF, measurement BW  
COM  
VSPKR  
IN2  
VHP  
IN1  
IN2  
= 20kHz AES17, T = +25°C, unless otherwise noted. Speaker mode: SPKR_EN = 0, HP_EN = 0. Headphone mode: SPKR_EN = 1,  
A
HP_EN = 1.)  
HEADPHONE  
OUTPUT FREQUENCY SPECTRUM  
STARTUP WAVEFORM  
(HEADPHONE MODE)  
MAX9791 toc33  
RIGHT AND LEFT  
FS = 707mV  
0
-20  
RMS  
V
= -60dBFS  
IN  
R = 32Ω  
L
-40  
HP_EN  
2V/div  
-60  
-80  
HP_  
500mV/div  
-100  
1/MAX792  
-120  
-140  
200µs/div  
0
5
10  
FREQUENCY (kHz)  
15  
20  
HEADPHONE RF IMMUNITY  
vs. FREQUENCY  
SHUTDOWN WAVEFORM  
MAX9791 toc34  
R = 32Ω  
L
-10  
-30  
HP_EN  
2V/div  
-50  
LEFT  
-70  
HP_  
500mV/div  
-90  
RIGHT  
1000  
-110  
-130  
200µs/div  
500  
1500  
2000  
2500  
3000  
FREQUENCY (MHz)  
12 ______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
IN1  
= 5V, V  
= V  
= V  
= 0, I  
= 0, C  
= 2 x 1µF, C1 = C2 = 1µF. R = , unless oth-  
LDO L  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
erwise specified. R  
= 20k(A  
= 12dB), R  
= 40.2k(A  
= 0dB), C  
= 470nF, C  
= C  
= 1µF, measurement BW  
COM  
VSPKR  
IN2  
VHP  
IN1  
IN2  
= 20kHz AES17, T = +25°C, unless otherwise noted. Speaker mode: SPKR_EN = 0, HP_EN = 0. Headphone mode: SPKR_EN = 1,  
A
HP_EN = 1.)  
LINE OUT  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. FREQUENCY (HEADPHONE MODE)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-10  
-20  
-30  
-40  
-50  
-60  
100  
10  
R = 10kΩ  
V
= 3V  
R = 10kΩ  
L
L
HPVDD  
V
= -3dBFS  
R = 10kΩ  
IN  
L
V
= -3dBFS  
IN  
1
f = 6kHz  
0.1  
f = 100Hz  
FS = 707mV  
FS = 1V  
FS = 707mV  
FS = 1V  
RMS  
-70  
-80  
-70  
-80  
RMS  
RMS  
RMS  
0.01  
0.001  
0.0001  
-90  
-90  
f = 1kHz  
-100  
-110  
-100  
-110  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT POWER (mW)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
CROSSTALK vs. FREQUENCY  
(HEADPHONE MODE)  
OUTPUT FREQUENCY SPECTRUM  
(HEADPHONE MODE)  
100  
10  
-20  
-30  
R = 10kΩ  
L
V
= 3V  
RIGHT AND LEFT  
0
-20  
HPVDD  
FS = 707mV  
RMS  
R = 10kΩ  
L
R = 10kΩ  
L
V
IN  
= -20dBFS  
FS = 300mV  
-40  
RMS  
V
= -60dBFS  
IN  
-50  
1
-40  
-60  
-60  
RIGHT TO LEFT  
COM AND SENSE  
0.1  
-70  
f = 6kHz  
f = 100Hz  
-80  
-80  
0.01  
0.001  
0.0001  
-90  
-100  
-100  
-110  
-120  
LEFT TO RIGHT  
COM AND SENSE  
-120  
-140  
f = 1kHz  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.01  
0.1  
1
10  
100  
0
5
10  
15  
20  
OUTPUT POWER (mW)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
______________________________________________________________________________________ 13  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
IN1  
= 5V, V  
= V  
= V  
= 0, I  
= 0, C  
= 2 x 1µF, C1 = C2 = 1µF. R = , unless oth-  
LDO L  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
erwise specified. R  
= 20k(A  
= 12dB), R  
= 40.2k(A  
= 0dB), C  
= 470nF, C  
= C  
= 1µF, measurement BW  
COM  
VSPKR  
IN2  
VHP  
IN1  
IN2  
= 20kHz AES17, T = +25°C, unless otherwise noted. Speaker mode: SPKR_EN = 0, HP_EN = 0. Headphone mode: SPKR_EN = 1,  
A
HP_EN = 1.)  
GENERAL  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SHUTDOWN CURRENT vs. SUPPLY VOLTAGE  
8
20  
15  
10  
5
20  
15  
10  
5
LDO_EN = 1  
LDO_EN = 1, V  
= 3.3V OR 4.75V  
SPKR_EN = 1  
HP_EN = 0  
LDO_EN = 0  
LDO  
SPKR_EN = 0  
V
= 1.8V  
7
6
5
4
3
2
1
0
LDO_OUT  
SPKR_EN = 0  
HP_EN = 0  
SPKR_EN = 0  
HP_EN = 1  
SPKR_EN = 1  
SPKR_EN = 0  
0
0
1/MAX792  
SPKR_EN = 1  
HP_EN = 0  
SPKR_EN = 1  
HP_EN = 1  
SPKR_EN = 1  
-5  
-5  
4.50  
4.75  
5.00  
5.25  
5.50  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
14 ______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
IN1  
= 5V, V  
= V  
= V  
= 0, I  
= 0, C  
= 2 x 1µF, C1 = C2 = 1µF. R = , unless oth-  
LDO L  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
erwise specified. R  
= 20k(A  
= 12dB), R  
= 40.2k(A  
= 0dB), C  
= 470nF, C  
= C  
= 1µF, measurement BW  
COM  
VSPKR  
IN2  
VHP  
IN1  
IN2  
= 20kHz AES17, T = +25°C, unless otherwise noted. Speaker mode: SPKR_EN = 0, HP_EN = 0. Headphone mode: SPKR_EN = 1,  
A
HP_EN = 1.)  
LDO  
LDO OUTPUT ACCURACY  
vs. LOAD CURRENT  
LDO OUTPUT ACCURACY  
vs. AMPLIFIER OUTPUT POWER  
LDO OUTPUT ACCURACY  
vs. TEMPERATURE  
1.0  
0.5  
0
2.0  
1.5  
0.10  
0.09  
0.08  
0.07  
V
= 1.8V  
LDO_OUT  
1.0  
0.5  
0
V
= 3.3V  
LDO_OUT  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
-0.5  
V
= 4.75V  
LDO_OUT  
-0.5  
-1.0  
-1.0  
-1.5  
-2.0  
0
-40  
-15  
10  
35  
60  
85  
0
25  
50  
75  
100  
125  
150  
0
300  
600  
900  
1200  
1500  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
AMPLIFIER OUTPUT POWER (mW)  
LDO POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
LDO DROPOUT VOLTAGE vs. LOAD  
LDO OUTPUT NOISE  
40  
20  
200  
175  
150  
125  
100  
75  
300  
250  
200  
150  
100  
50  
C
LOAD  
= 2 x 1µF  
= 120mA  
V
I
= 200mV  
P-P  
= 10mA  
LDO_OUT = 4.75V  
RIPPLE  
LOAD  
I
LOAD  
0
-20  
-40  
-60  
-80  
-100  
V
= 3.3V  
LDO_OUT  
V
= 4.75V  
LDO_OUT  
V
= 1.8V  
10  
LDO_OUT  
1
0
50  
0
50  
100  
150  
(mA)  
200  
250  
300  
0.01  
0.1  
100  
0.01  
0.1  
1
10  
100  
I
FREQUENCY (kHz)  
FREQUENCY (kHz)  
LOAD  
______________________________________________________________________________________ 15  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
IN1  
= 5V, V  
= V  
= V  
= 0, I  
= 0, C  
= 2 x 1µF, C1 = C2 = 1µF. R = , unless oth-  
LDO L  
AVDD  
PVDD  
HPVDD  
GND  
PGND  
CPGND  
LDO_OUT  
erwise specified. R  
= 20k(A  
= 12dB), R  
= 40.2k(A  
= 0dB), C  
= 470nF, C  
= C  
= 1µF, measurement BW  
COM  
VSPKR  
IN2  
VHP  
IN1  
IN2  
= 20kHz AES17, T = +25°C, unless otherwise noted. Speaker mode: SPKR_EN = 0, HP_EN = 0. Headphone mode: SPKR_EN = 1,  
A
HP_EN = 1.)  
LDO  
LINE-TRANSIENT RESPONSE  
LOAD-TRANSIENT RESPONSE  
MAX9791 toc51  
MAX9791 toc50  
I
LDO_OUT  
CH1 LOW  
4.560V  
50mA/div  
CH1 HIGH  
5.500V  
CH2 LOW  
800.0µV  
AC-COUPLED  
V
LDO_OUT  
CH2 HIGH  
1.000mV  
9
10mV/div  
1.00ms/div  
100ms/div  
CROSSTALK vs. FREQUENCY  
SPEAKER TO LDO  
SHUTDOWN RESPONSE  
MAX9791 toc52  
0
-10  
-20  
-30  
-40  
BOTH SPEAKERS WITH SIGNAL  
P
R
= 1.2W  
SPKR  
= 8W  
LSPKR  
I
= 10mA  
LDO  
-50  
-60  
LEFT CHANNEL TO LDO  
LDO_EN  
2V/div  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
RIGHT CHANNEL TO LDO  
V
LDO_EN  
2V/div  
200µs/div  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
16 ______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
MAX9791 Pin Description  
PIN  
1
NAME  
FUNCTION  
SPKR_INL Left-Channel Speaker Amplifier Input  
2
HP_INR  
HP_INL  
COM  
Right-Channel Headphone Amplifier Input  
Left-Channel Headphone Amplifier Input  
Common-Mode Voltage Sense Input  
Signal Ground. Star connect to PGND.  
3
4
5
GND  
LDO Output. Bypass the MAX9791A/MAX9791B with two 1µF ceramic low ESR capacitors to GND.  
Bypass the MAX9791C with two 2µs ceramic low ESR capacitors to GND.  
6
LDO_OUT  
7
8
AVDD  
LDO_EN  
HPR  
Positive Power-Supply and LDO Input. Bypass with a 0.1µF and two 1µF capacitors to GND.  
LDO Enable. Connect LDO_EN to AVDD to enable the LDO.  
Right-Channel Headphone Amplifier Output  
9
10  
HPL  
Left-Channel Headphone Amplifier Output  
11  
SENSE  
CPVSS  
C1N  
Headphone Ground Sense  
12  
Headphone Amplifier Negative Power Supply. Connect a 1µF capacitor between CPVSS and PGND.  
Charge-Pump Flying Capacitor Negative Terminal. Connect a 1µF capacitor between C1P and C1N.  
Charge-Pump Ground. Connect directly to PGND plane.  
13  
14  
CPGND  
C1P  
15  
Charge-Pump Flying Capacitor Positive Terminal. Connect a 1µF capacitor between C1P and C1N.  
Headphone Amplifier Positive Power Supply. Connect a 10µF capacitor between HPVDD and PGND.  
Speaker Amplifier Power-Supply Input. Bypass with a 0.1µF capacitor to PGND.  
Left-Channel Speaker Amplifier Output, Negative Phase  
16  
HPVDD  
PVDD  
OUTL-  
OUTL+  
PGND  
BEEP  
17, 26  
18  
19  
Left-Channel Speaker Amplifier Output, Positive Phase  
20, 23  
21  
Power Ground. Star connect to GND.  
PC Beep Input. Connect to GND if beep detection function is disabled.  
Active-High Headphone Amplifier Enable  
22  
HP_EN  
OUTR+  
OUTR-  
24  
Right-Channel Speaker Amplifier Output, Positive Phase  
25  
Right-Channel Speaker Amplifier Output, Negative Phase  
27  
SPKR_EN  Active-Low Speaker Amplifier Enable  
28  
SPKR_INR Right-Channel Speaker Amplifier Input  
EP  
Exposed Pad. Connect to GND.  
______________________________________________________________________________________ 17  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
MAX9792 Pin Description  
PIN  
1, 5  
2
NAME  
GND  
FUNCTION  
Signal Ground. Star connect to PGND.  
Right-Channel Headphone Amplifier Input  
Left-Channel Headphone Amplifier Input  
Common-Mode Voltage Sense Input  
HP_INR  
HP_INL  
COM  
3
4
6
LDO_OUT LDO Output. Bypass with two 1µF ceramic low ESR capacitors to GND.  
AVDD Positive Power Supply and LDO Input. Bypass with a 0.1µF and two 1µF capacitors to GND.  
LDO_EN LDO Enable. Connect LDO_EN to AVDD to enable the LDO.  
7
8
9
HPR  
HPL  
Right-Channel Headphone Amplifier Output  
10  
Left-Channel Headphone Amplifier Output  
11  
SENSE  
CPVSS  
C1N  
Headphone Ground Sense  
12  
Headphone Amplifier Negative Power Supply. Connect a 1µF capacitor between CPVSS and PGND.  
Charge-Pump Flying Capacitor Negative Terminal. Connect a 1µF capacitor between C1P and C1N.  
Charge-Pump Ground. Connect directly to PGND plane.  
13  
14  
CPGND  
C1P  
1/MAX792  
15  
Charge-Pump Flying Capacitor Positive Terminal. Connect a 1µF capacitor between C1P and C1N.  
Headphone Amplifier Positive Power Supply. Connect a 10µF capacitor between HPVDD and PGND.  
Speaker Amplifier Power-Supply Input. Bypass with a 0.1µF capacitor to PGND.  
Speaker Amplifier Output, Negative Phase  
16  
HPVDD  
PVDD  
OUT-  
17, 26  
18, 25  
19, 24  
20, 23  
21  
OUT+  
PGND  
BEEP  
HP_EN  
Speaker Amplifier Output, Positive Phase  
Power Ground. Star connect to GND.  
PC Beep Input. Connect to GND if beep detection function is disabled.  
Active-High Headphone Amplifier Enable  
22  
27  
SPKR_EN Active-Low Speaker Amplifier Enable  
28  
SPKR_IN Speaker Amplifier Input  
EP  
Exposed Pad. Connect to GND.  
The MAX9791/MAX9792 feature spread-spectrum mod-  
ulation and active emission limiting circuitry that offers  
significant improvements to switch-mode amplifier tech-  
nology. These devices offer Class AB performance with  
Class D efficiency in a minimal board-space solution.  
Detailed Description  
The MAX9791 combines a stereo 2W Class D power  
amplifier, a stereo 175mW DirectDrive headphone  
amplifier, and a 120mA LDO linear regulator in a single  
device. The MAX9792 combines a mono 3W Class D  
power amplifier, a stereo 175mW DirectDrive head-  
phone amplifier, and a 120mA LDO linear regulator in a  
single device.  
The headphone amplifiers use Maxim’s DirectDrive  
architecture to eliminate the bulky output DC-blocking  
capacitors required by traditional headphone ampli-  
fiers. A charge pump inverts the positive supply  
(HPVDD) to create a negative supply (CPVSS). The  
headphone amplifiers operate from these bipolar sup-  
plies with their outputs biased about GND. The bene-  
fit of the GND bias is that the amplifier outputs no  
The MAX9791/MAX9792 feature wake-on-beep detec-  
tion, comprehensive click-and-pop suppression, low-  
power shutdown mode, and excellent RF immunity.  
These devices incorporate an integrated LDO that  
serves as a clean power supply for CODEC or other cir-  
cuits. The MAX9791/MAX9792 are Windows Vista  
Premium compliant. See Table 1 for a comparison of the  
Windows Vista Premium specifications and MAX9791/  
MAX9792 specifications.  
longer have a DC component (typically V /2). This  
DD  
feature eliminates the large DC-blocking capacitors  
required with conventional headphone amplifiers to  
18 ______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
Table 1. Windows Premium Mobile Vista Specifications vs. MAX9791/MAX9792  
Specifications  
WINDOWS PREMIUM  
MAX9791/MAX9792  
DEVICE TYPE  
REQUIREMENT  
THD+N  
MOBILE VISTA  
TYPICAL PERFORMANCE  
SPECIFICATIONS  
-65dB FS [100Hz, 20kHz]  
87dBFS [100Hz, 20kHz]  
Analog Line-Out Jack  
(R = 10k, FS =  
Dynamic range with signal -80dBV, A-weighted [20Hz,  
-98.9dB A-weighted [20Hz, 20kHz]  
L
present  
20kHz]  
0.707V  
)
RMS  
Line output crosstalk  
THD+N  
-50dB [20Hz, 15kHz]  
-45dB FS [100Hz, 20kHz]  
64dB [20Hz, 15kHz]  
82dBFS [100Hz, 20kHz]  
Dynamic range with signal -60dBV, A-weighted [20Hz,  
Analog Headphone-Out  
Jack (R = 32, FS =  
-91.5dB A-weighted [20Hz, 20kHz]  
64dB [20Hz, 15kHz]  
present  
20kHz]  
L
0.300V  
)
RMS  
Headphone output  
crosstalk  
-50dB [20Hz, 15kHz]  
Note: THD+N, dynamic range with signal present, and crosstalk should be measured in accordance with AES17 audio measure-  
ments standards.  
conserve board space and system cost, as well as  
improve low-frequency response and distortion.  
EFFICIENCY vs. IDEAL  
CLASS AB EFFICIENCY  
The MAX9791/MAX9792 amplifiers feature an under-  
voltage lockout that prevents operation from an insuffi-  
cient power supply and click-and-pop suppression that  
eliminates audible transients on startup and shutdown.  
The amplifiers include thermal overload and short-cir-  
cuit protection.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
MAX9791  
Class D Speaker Amplifier  
The MAX9791/MAX9792 integrate a filterless class D  
amplifier that offers much higher efficiency than class AB  
amplifiers. The high efficiency of a Class D amplifier is  
due to the switching operation of the output stage tran-  
sistors. In a Class D amplifier, the output transistors act  
as current steering switches and consume negligible  
additional power. Any power loss associated with the  
Class D output stage is mostly due to the I2R loss of the  
MOSFET on-resistance and quiescent current overhead.  
IDEAL CLASS AB  
0
0.25 0.50 0.75 1.00 1.25 1.50  
OUTPUT POWER (W)  
Figure 1. MAX9791 Efficiency vs. Class AB Efficiency  
The theoretical best efficiency of a linear amplifier is  
78%, however, that efficiency is only exhibited at peak  
output power. Under normal operating levels (typical  
music reproduction levels), efficiency falls below 45%,  
whereas the MAX9791/MAX9792 exhibit 67% efficiency  
under the same conditions (Figure 1).  
Ultra-Low EMI Filterless Output Stage  
In traditional Class D amplifiers, the high dv/dt of the  
rising and falling edge transitions resulted in increased  
electromagnetic-interference (EMI) emissions, which  
required the use of external LC filters or shielding to  
meet EN55022B EMI regulation standards. Limiting the  
dv/dt normally results in decreased efficiency. Maxim’s  
active emissions limiting circuitry actively limits the  
dv/dt of the rising and falling edge transitions, providing  
reduced EMI emissions while maintaining up to 83%  
efficiency.  
______________________________________________________________________________________ 19  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
V
DD  
CLASS D EMI PLOT  
40  
35  
30  
25  
20  
15  
10  
5
EN55022B LIMIT  
V
OUT  
V /2  
DD  
GND  
CONVENTIONAL AMPLIFIER BIASING SCHEME  
+V  
DD  
30  
100  
1000  
FREQUENCY (MHz)  
V
OUT  
GND  
Figure 2. EMI with 30cm of Speaker Cable  
1/MAX792  
In addition to active emission limiting, the MAX9791/  
MAX9792 feature spread-spectrum modulation that flat-  
tens the wideband spectral components. Proprietary  
techniques ensure that the cycle-to-cycle variation of the  
switching period does not degrade audio reproduction  
or efficiency (see the Typical Operating Characteristics).  
In spread-spectrum modulation mode, the switching fre-  
quency varies randomly by 15kHz around the center  
frequency (530kHz). The effect is to reduce the peak  
energy at harmonics of the switching frequency. Above  
10MHz, the wideband spectrum looks like noise for EMI  
purposes (see Figure 2).  
-V  
DD  
DirectDrive AMPLIFIER BIASING SCHEME  
Figure 3. Traditional Amplifier Output vs. MAX9791/MAX9792  
DirectDrive Output  
Maxim’s DirectDrive architecture uses a charge pump  
to create an internal negative supply voltage. This  
allows the headphone outputs of the MAX9791/  
MAX9792 to be biased at GND while operating from a  
single supply (Figure 3). Without a DC component,  
there is no need for the large DC-blocking capacitors.  
Instead of two large (220µF, typ) capacitors, the  
MAX9791/MAX9792 charge pump requires two small  
1µF ceramic capacitors, conserving board space,  
reducing cost, and improving the frequency response  
of the headphone amplifier.  
Speaker Current Limit  
When the output current of the speaker amplifier  
exceeds the current limit (2A, typ) the MAX9791/  
MAX9792 disable the outputs for approximately 100µs.  
At the end of 100µs, the outputs are re-enabled. If the  
fault condition still exists, the MAX9791/MAX9792 con-  
tinue to disable and re-enable the outputs until the fault  
condition is removed.  
The MAX9791/MAX9792 feature a low-noise charge  
pump. The nominal switching frequency of 530kHz is  
well beyond the audio range, and thus does not inter-  
fere with audio signals. The switch drivers feature a  
controlled switching speed that minimizes noise gener-  
ated by turn-on and turn-off transients. By limiting the  
switching speed of the charge pump, the di/dt noise  
caused by the parasitic trace inductance is minimized.  
DirectDrive Headphone Amplifier  
Traditional single-supply headphone amplifiers bias the  
outputs at a nominal DC voltage (typically half the sup-  
ply). Large coupling capacitors are needed to block  
this DC bias from the headphone. Without these capac-  
itors, a significant amount of DC current flows to the  
headphone, resulting in unnecessary power dissipation  
and possible damage to both headphone and head-  
phone amplifier.  
20 ______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
R
FHP  
CROSSTALK  
vs. GROUND RESISTANCE (RG)  
C
IN2  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
HP_INL  
COM  
R = 5  
R = 32Ω  
L
S
HPL  
R
IN2  
HPR  
C
COM  
R
FHP  
SENSE  
R
COM  
C
IN2  
HP_INR  
R
IN2  
0
0.025 0.050 0.075 0.100 0.125 0.150  
RG ()  
R
FHP  
Figure 4. Connecting COM for Ground Sense  
Figure 5. Crosstalk vs. Ground Resistance  
Common-Mode Sense  
Windows Vista-compliant platforms are restricted to only  
115mof ground return impedance. If the headphone  
jack ground is connected close to the audio device  
ground using a solid ground plane, the return path resis-  
tance can be quite low. However, it is often necessary to  
locate some jacks far from the audio device. The  
MAX9791/MAX9792 COM and SENSE inputs allow the  
headphone jack to be placed further away from the  
device without degrading crosstalk performance.  
The headphone amplifier output impedance, trace  
resistance, and contact resistance of the jack are  
grouped together to represent the source resistance,  
R . The resistance between the load and the sleeve,  
S
the sleeve contact resistance, and the system ground  
return resistance are grouped together to represent the  
ground resistance, R .  
G
Assuming a typical source resistance of 5, the ground  
return impedance would need to be limited to 115mΩ  
to meet Windows Vista’s crosstalk specification of 50dB  
(Figure 5). This is further complicated by the fact that  
the impedance of the sleeve connection in the 3.5mm  
stereo jack can make up 30m–90malone.  
The MAX9791/MAX9792 COM and SENSE inputs  
reduce crosstalk performance by eliminating effects of  
28.5mof ground return path resistance. If ground  
sensing is not required, connect COM directly to GND  
and leave SENSE unconnected (Figure 6).  
The MAX9791/MAX9792 SENSE and COM inputs sense  
and correct for the difference between the headphone  
return and device ground. When using common-mode  
sense, connect COM through a resistor to GND of the  
device (Figure 4). For optimum common-mode rejec-  
tion, use the same value resistors for R  
and R  
.
IN2  
COM  
To improve AC CMRR, add a capacitor equal to C  
IN2  
between GND and R  
.
COM  
Configuring SENSE and COM in this way improves sys-  
tem crosstalk performance by reducing the negative  
effects of the headphone jack ground return resistance.  
Wake-on-Beep  
The MAX9791/MAX9792 beep-detection circuit wakes  
up the device (speaker and headphone amplifiers)  
once a qualified beep signal is detected at BEEP and  
the LDO is enabled. The amplifier wake command from  
the beep-detection circuit overrides the logic signal  
applied at HP_EN and SPKR_EN.  
R
G
Crosstalk in dB = 20 log  
R
+ R  
S
L
______________________________________________________________________________________ 21  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
A qualified BEEP signal consists of a 3.3V typical,  
215Hz minimum signal that is present at BEEP for four  
consecutive cycles. Once the first rising edge transition  
is detected at BEEP, the beep circuit wakes up and  
begins counting the beep cycles. Once four consecu-  
tive cycles of a qualified beep signal are counted, the  
device (speaker and headphone amplifiers) enables  
within 400µs. If the first rising edge is not followed by  
three consecutive rising edges within 16ms, the device  
remains shutdown (i.e., glitch protection).  
CROSSTALK vs. FREQUENCY  
(HEADPHONE MODE)  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
R = 32  
L
RIGHT TO LEFT  
COM AND SENSE  
DISABLED  
FS = 300mV  
RMS  
V
= -20dBFS  
OUT  
LEFT TO RIGHT  
COM AND SENSE  
DISABLED  
RIGHT TO LEFT  
COM AND SENSE  
The device (speaker and headphone amplifiers) returns  
to its programmed logic state once 246ms has elapsed  
from the time the last rising edge was detected. This  
246ms amplifier hold time ensures complete beep pro-  
files are passed to the amplifier outputs (Figure 7).  
Ground BEEP when the wake-on-beep feature is not  
used. Do not leave BEEP unconnected.  
LEFT TO RIGHT  
COM AND SENSE  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
Low-Dropout Linear Regulator  
The LDO regulator can be used to provide a clean  
power supply to a CODEC or other circuitry. The LDO  
can be enabled independently of the audio amplifiers.  
Set LDO_EN = AVDD to enable the LDO or set LDO_EN  
= GND to disable the LDO. The LDO can provide up to  
120mA of continuous current.  
1/MAX792  
Figure 6. MAX9791/MAX9792 COM and SENSE Inputs Reduce  
Crosstalk  
time, connect SPKR_EN and HP_EN together, allowing  
a single logic voltage to enable either the speaker or  
the headphone amplifier as shown in Figure 8.  
Speaker and Headphone Amplifier Enable  
The MAX9791/MAX9792 feature control inputs for the  
independent enabling of the speaker and headphone  
amplifiers, allowing both to be active simultaneously  
if required. Driving SPKR_EN high disables the speaker  
amplifiers. Driving HP_EN low independently disables  
the headphone amplifiers. For applications that  
require only one of the amplifiers to be on at a given  
Shutdown  
The MAX9791/MAX9792 feature a low-power shutdown  
mode, drawing 3.3µA of supply current. By disabling  
the speaker, headphone amplifiers, and the LDO, the  
MAX9791/MAX9792 enter low-power shutdown mode.  
Set SPKR_EN to AVDD and HP_EN and LDO_EN to  
GND to disable the speaker amplifiers, headphone  
amplifiers, and LDO, respectively.  
16ms  
BEEP  
1
2
4
3
240ms  
SPKR AND HP  
AMPS ENABLE  
400µs  
Figure 7. Qualified BEEP Signal Timing  
22 ______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
MAX9791  
R
FB  
MAX9791  
MAX9792  
20k  
MONO  
CLASS D  
AMPLIFIER  
OUT_+  
OUT_-  
SINGLE  
CONTROL  
C
IN1  
SPKR_EN  
HP_EN  
R
IN1  
SPKR_IN_  
Figure 8. Enabling Either the Speaker or Headphone Amplifier  
with a Single Control Pin  
Figure 9. Setting Speaker Amplifier Gain  
Click-and-Pop Suppression  
The MAX9791/MAX9792 feature a common-mode bias  
voltage of 0V. A 0V BIAS allows the MAX9791/MAX9792  
to quickly turn on/off with no resulting clicks and pops.  
With the HDA CODEC outputs biased and the  
MAX9791/MAX9792 inputs sitting as 0V in shutdown  
Applications Information  
Filterless Class D Operation  
Traditional Class D amplifiers require an output filter to  
recover the audio signal from the amplifier’s output. The  
filters add cost and size and can decrease efficiency  
and THD+N performance. The traditional PWM scheme  
uses large differential output swings (2 x PVDD peak-  
to-peak) causing large ripple currents. Any parasitic  
resistance in the filter components results in a loss of  
power, lowering the efficiency.  
and normal operation, the R x C time constant is  
IN  
IN  
eliminated.  
Speaker Amplifier  
The MAX9791/MAX9792 speaker amplifiers feature  
Maxim’s comprehensive, industry leading click-and-  
pop suppression. During startup and shutdown, the  
click-and-pop suppression circuitry eliminates any  
audible transient sources internal to the device.  
The MAX9791/MAX9792 do not require an output filter.  
The devices rely on the inherent inductance of the speak-  
er coil and the natural filtering of both the speaker and  
the human ear to recover the audio component of the  
square-wave output. Eliminating the output filter results in  
a smaller, less costly, and more efficient solution.  
Headphone Amplifier  
In conventional single-supply headphone amplifiers,  
the output-coupling capacitor is a major contributor of  
audible clicks and pops. Upon startup, the amplifier  
charges the coupling capacitor to its bias voltage, typi-  
Because the frequency of the MAX9791/MAX9792 out-  
put is well beyond the bandwidth of most speakers,  
voice coil movement due to the square-wave frequency  
is very small. For optimum results, use a speaker with a  
series inductance > 10µH. Typical 8speakers exhibit  
series inductances in the 20µH to 100µH range.  
cally V /2. During shutdown, the capacitor is dis-  
DD  
charged to GND; a DC shift across the capacitor  
results, which in turn appears as an audible transient at  
the speaker. Because the MAX9791/MAX9792 do not  
require output-coupling capacitors, no audible transient  
occurs.  
The MAX9791/MAX9792 headphone amplifiers feature  
extensive click-and-pop suppression that eliminates  
any audible transient sources internal to the device.  
______________________________________________________________________________________ 23  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
Setting Speaker Amplifier Gain  
External input resistors in conjunction with the internal  
L1*  
feedback resistors (R  
) set the speaker amplifier  
FSPKR  
MAX9791  
MAX9792  
gain of the MAX9791/MAX9792. Set gain by using  
resistor R  
as follows (Figure 9):  
IN1  
L2*  
20kΩ  
A
= -4  
V / V  
330pF  
330pF  
VSPKR  
R
IN1  
where A  
is the desired voltage gain. An R  
of  
VSPKR  
IN1  
*L1 = L2 = WÜRTH 742792040  
20kyields a gain of 4V/V, or 12dB.  
Figure 10. Optional Ferrite Bead Filter  
Component Selection  
Optional Ferrite Bead Filter  
In applications where speaker leads exceed 15cm, use  
a filter constructed from a ferrite bead and a capacitor  
to ground (Figure 10) to provide additional EMI sup-  
pression. Use a ferrite bead with low DC resistance,  
high frequency (> 1.2MHz) impedance of 100to  
600, and rated for at least 1A. The capacitor value  
varies based on the ferrite bead chosen and the actual  
speaker lead length. Select the capacitor value based  
on EMI performance.  
TOTAL HARMONIC DISTORTION + NOISE  
vs. OUTPUT POWER (HEADPHONE MODE)  
100  
10  
R = 32Ω  
L
1/MAX792  
OUT OF PHASE  
IN PHASE  
1
0.1  
Output Power (Headphone Amplifier)  
The headphone amplifiers are specified for the worst-  
case scenario when both inputs are in phase. Under  
this condition, the drivers simultaneously draw current  
from the charge pump, leading to a slight loss in head-  
room of CPVSS. In typical stereo audio applications, the  
left and right signals have differences in both magni-  
tude and phase, subsequently leading to an increase in  
the maximum attainable output power. Figure 11 shows  
the two extreme cases for in and out of phase. In most  
cases, the available power lies between these  
extremes.  
0.01  
0.001  
0
50  
100  
150  
200  
250  
OUTPUT POWER (mW)  
Figure 11. Output Power vs. Supply Voltage with Inputs In/Out  
of Phase; 32Load Conditions and 3.5dB Gain  
Power Supplies  
The MAX9791/MAX9792 speaker amplifiers are pow-  
ered from PVDD with a range from 2.7V to 5.5V. The  
headphone amplifiers are powered from HPVDD and  
CPVSS. HPVDD is the positive supply of the headphone  
amplifiers and charge pump ranging from 2.7V to 5.5V.  
CPVSS is the negative supply of the headphone ampli-  
fiers. The charge pump inverts the voltage at HPVDD,  
and the resulting voltage appears at CPVSS. AVDD  
powers the LDO and the remainder of the device.  
AVDD and PVDD must be tied together. If LDO is  
enabled, set AVDD and PVDD as specified in the Line  
Regulation row of the Electrical Characteristics table.  
Headphone Amplifier Gain  
Gain-Setting Resistors  
External input resistors in conjunction with the internal  
feedback resistors (R  
) set the headphone amplifier  
FHP  
gain of the MAX9791/MAX9792. Set gain by using  
resistor R  
(Figure 4) as follows:  
IN2  
40.2kΩ  
A
= -  
V / V  
VHP  
R
IN2  
where A  
is the desired voltage gain. An R  
of  
IN2  
VHP  
40.2kyields a gain of 1V/V, or 0dB.  
24 ______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
SPEAKER RF IMMUNITY  
vs. FREQUENCY  
INPUT COUPLING CAPACITOR-INDUCED THD+N  
vs. FREQUENCY (HEADPHONE MODE)  
-50  
0
-10  
-20  
V
- -3dBFS  
RMS  
OUT  
0402 6.3V X5R 10% 1µF  
FS = 1V  
R =32Ω  
L
-60  
-30  
-40  
-50  
RIGHT  
-70  
0603 10V X5R 10% 1µF  
0805 50V X7R 10% 1µF  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-80  
LEFT  
-90  
0603 10V X7R 10% 1µF  
-100  
10  
100  
1000  
0
500 1000 1500 2000 2500 3000  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
Figure 12. Input Coupling Capacitor-Induced THD+N vs.  
Frequency  
Figure 13. Speaker RF Immunity  
Input Filtering  
Component Selection  
The input capacitor (C ), in conjunction with the ampli-  
IN_  
Speaker Amplifier Power-Supply Input (PVDD)  
PVDD powers the speaker amplifiers. PVDD ranges  
from 2.7V to 5.5V. AVDD and PVDD must be tied  
together. If LDO is enabled, set AVDD and PVDD as  
specified in the Line Regulation row of the Electrical  
Characteristics table. Bypass PVDD with a 0.1µF  
capacitor to PGND. Apply additional bulk capacitance  
at the device if long input traces between PVDD and  
the power source are used.  
fier input resistance (R ), forms a highpass filter that  
IN_  
removes the DC bias from the incoming signal. The AC-  
coupling capacitor allows the amplifier to bias the signal  
to an optimum DC level. Assuming zero source imped-  
ance, the -3dB point of the highpass filter is given by:  
1
f
=
-3dB  
2πR  
C
IN_ IN_  
R
is the amplifier’s external input resistance value.  
IN_  
Choose C  
Headphone Amplifier Power-Supply Input  
(HPVDD and CPVSS)  
such that f  
is well below the lowest  
-3dB  
IN_  
frequency of interest. Setting f  
too high affects  
-3dB  
The headphone amplifiers are powered from HPVDD  
and CPVSS. HPVDD is the positive supply of the head-  
phone amplifiers and ranges from 2.7V to 5.5V. Bypass  
HPVDD with a 10µF capacitor to PGND. CPVSS is the  
negative supply of the headphone amplifiers. Bypass  
CPVSS with a 1µF capacitor to PGND. The charge  
pump inverts the voltage at HPVDD, and the resulting  
voltage appears at CPVSS. A 1µF capacitor should be  
connected between C1N and C1P.  
the amplifier’s low frequency response. Use capaci-  
tors with adequately low-voltage coefficients (see  
Figure 12). Capacitors with higher voltage coeffi-  
cients, such as ceramics, result in increased distor-  
tion at low frequencies.  
Charge-Pump Capacitor Selection  
Use capacitors with an ESR less than 100mfor opti-  
mum performance. Low ESR ceramic capacitors mini-  
mize the output resistance of the charge pump. For  
best performance over the extended temperature  
range, select capacitors with an X7R dielectric.  
Positive Power Supply and LDO Input (AVDD)  
The internal LDO and the remainder of the device are  
powered by AVDD. AVDD ranges from 2.7V to 5.5V.  
AVDD and PVDD must be tied together. If LDO is  
enabled, set AVDD and PVDD as specified in LDO line  
regulation. Bypass AVDD with a 0.1µF capacitor to  
GND and two 1µF capacitors to GND. Note additional  
bulk capacitance is required at the device if long input  
traces between AVDD and the power source are used.  
Flying Capacitor (C1)  
The value of the flying capacitor (C1) affects the load  
regulation and output resistance of the charge pump. A  
C1 value that is too small degrades the device’s ability  
to provide sufficient current drive, which leads to a loss  
of output voltage. Connect a 1µF capacitor between  
C1P and C1N.  
______________________________________________________________________________________ 25  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
Charge-Pump Output Capacitor (C2)  
The MAX9791/MAX9792 is inherently designed for  
excellent RF immunity. For best performance, add  
ground fills around all signal traces on top or bottom  
PCB planes.  
Connect a 1µF capacitor between CPVSS and PGND.  
LDO Output Capacitor (CLDO)  
Connect 2 x 1µF capacitors between LDO_OUT and  
GND for 4.75V and 3.3V LDO options (MAX979_A and  
MAX979_B, respectively). Connect two parallel 2µF  
capacitors between LDO_OUT and GND for the 1.8V  
LDO option (MAX979_C).  
Use large, low-resistance output traces. As load imped-  
ance decreases, the current drawn from the device out-  
puts increase. At higher current, the resistance of the  
output traces decrease the power delivered to the load.  
For example, if 2W is delivered from the speaker output  
to a 4load through a 100mtrace, 49mW is wasted  
in the trace. If power is delivered through a 10mΩ  
trace, only 5mW is wasted in the trace. Large output,  
supply, and GND traces also improve the power dissi-  
pation of the device.  
Layout and Grounding  
Proper layout and grounding are essential for optimum  
performance. Use large traces for the power-supply  
inputs and amplifier outputs to minimize losses due to  
parasitic trace resistance, as well as route heat away  
from the device. Good grounding improves audio per-  
formance, minimizes crosstalk between channels, and  
prevents switching noise from coupling into the audio  
signal. Connect PGND and GND together at a single  
point on the PCB. Route PGND and all traces that carry  
switching transients away from GND, and the traces  
and components in the audio signal path.  
The MAX9791/MAX9792 thin QFN package features an  
exposed thermal pad on its underside. This pad lowers  
the package’s thermal resistance by providing a direct  
heat conduction path from the die to the printed circuit  
board. Connect the exposed thermal pad to GND by  
using a large pad and multiple vias to the GND plane.  
1/MAX792  
Chip Information  
Connect C2 to the PGND plane. Place the charge-  
pump capacitors (C1, C2) as close as possible to the  
device. Bypass PVDD with a 0.1µF capacitor to PGND.  
Place the bypass capacitors as close as possible to the  
device.  
PROCESS: BiCMOS  
26 ______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
Pin Configurations  
TOP VIEW  
TOP VIEW  
21 20 19 18 17 16 15  
21 20 19 18 17 16 15  
14  
13  
14  
13  
HP_EN 22  
PGND 23  
CPGND  
C1N  
HP_EN 22  
PGND 23  
CPGND  
C1N  
12 CPVSS  
12 CPVSS  
24  
25  
26  
27  
28  
24  
25  
26  
27  
28  
OUTR+  
OUTR-  
OUT+  
OUT-  
SENSE  
HPL  
SENSE  
HPL  
11  
10  
9
11  
10  
9
MAX9791  
MAX9792  
PVDD  
PVDD  
*EP  
*EP  
HPR  
HPR  
SPKR_EN  
SPKR_INR  
SPKR_EN  
SPKR_IN  
+
+
8
8
LDO_EN  
LDO_EN  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
TQFN  
TQFN  
(4mm x 4mm x 0.75mm)  
(4mm x 4mm x 0.75mm)  
*EP = EXPOSED PAD  
*EP = EXPOSED PAD  
Simplified Block Diagrams  
(continued)  
SPEAKER AND LDO  
SUPPLY  
2.7V TO 5.5V  
HEADPHONE SUPPLY  
2.7V TO 5.5V  
CLASS D  
AMP  
SPKR_IN  
MAX9792  
HP_INR  
HP_INL  
SPKR_EN  
HP_EN  
AVDD  
LDO  
LDO_EN  
BEEP  
1.8V OR 4.75V  
______________________________________________________________________________________ 27  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
MAX9791A/MAX9791B Block Diagram  
2.7V TO 5.5V  
0.1µF  
10µF  
0.1µF  
1.0µF  
1.0µF  
AVDD  
PVDD  
17, 26  
7
MAX9791A  
MAX9791B  
C
C
IN3  
R
IN3  
20kΩ  
19 OUTL+  
18 OUTL-  
IN1  
RIN1  
RIN1  
SPKR_INL  
1
STEREO  
CLASS D  
AMPLIFIER  
CIN1  
OUTR+  
SPKR_INR 28  
24  
1/MAX792  
25 OUTR-  
C
IN3  
R
IN3  
20kΩ  
C
IN2  
R
IN2  
40.2kΩ  
HP_INL  
HP_INR  
3
2
C
TO HPVDD  
IN2  
R
IN2  
10 HPL  
2.7V TO 5.5V  
TO CPVSS  
LDO_EN  
8
9
HPR  
HP_EN 22  
BEEP 21  
CONTROL  
µC BEEP INPUT  
27  
SPKR_EN  
TO HPVDD  
C
COM  
R
COM  
2.7V TO 5.5V  
C3  
SENSE  
40.2kΩ  
11  
COM  
4
40.2kΩ  
16 HPVDD  
15 C1P  
10µF  
C1  
1.0µF  
14 CPGND  
CHARGE  
PUMP  
LDO_OUT  
6
TO CODEC  
LDO BLOCK  
C1N  
13  
1.0µF  
1.0µF  
5
20, 23  
PGND  
12  
NOTE: LOGIC PINS CONFIGURED FOR:  
CPVSS  
GND  
LDO_EN = 1, LDO ENABLED  
SPKR_EN = 0, SPEAKER AMPLIFIERS ENABLED  
HP_EN = 1, HEADPHONE AMPLIFIER ENABLED  
C2  
1.0µF  
28 ______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
MAX9791C Block Diagram  
2.7V TO 5.5V  
0.1µF  
10µF  
0.1µF  
1.0µF  
1.0µF  
AVDD  
PVDD  
17, 26  
7
C
C
MAX9791C  
IN3  
R
IN3  
20kΩ  
19 OUTL+  
18 OUTL-  
IN1  
RIN1  
RIN1  
SPKR_INL  
1
STEREO  
CLASS D  
AMPLIFIER  
CIN1  
OUTR+  
SPKR_INR 28  
24  
25 OUTR-  
C
IN3  
R
IN3  
20kΩ  
C
IN2  
R
IN2  
40.2kΩ  
HP_INL  
HP_INR  
3
2
C
TO HPVDD  
IN2  
R
IN2  
10 HPL  
2.7V TO 5.5V  
TO CPVSS  
LDO_EN  
8
9
HPR  
HP_EN 22  
CONTROL  
BEEP 21  
µC BEEP INPUT  
27  
4
SPKR_EN  
COM  
TO HPVDD  
C
COM  
R
COM  
2.7V TO 5.5V  
C3  
SENSE  
40.2kΩ  
11  
40.2kΩ  
16 HPVDD  
15 C1P  
10µF  
C1  
1.0µF  
14 CPGND  
CHARGE  
PUMP  
LDO_OUT  
6
TO CODEC  
LDO BLOCK  
C1N  
13  
2.0µF  
2.0µF  
5
20, 23  
PGND  
12  
NOTE: LOGIC PINS CONFIGURED FOR:  
CPVSS  
GND  
LDO_EN = 1, LDO ENABLED  
SPKR_EN = 0, SPEAKER AMPLIFIER ENABLED  
HP_EN = 1, HEADPHONE AMPLIFIER ENABLED  
C2  
1.0µF  
______________________________________________________________________________________ 29  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
MAX9792A Block Diagram  
2.7V TO 5.5V  
0.1µF  
10µF  
0.1µF  
1.0µF  
1.0µF  
AVDD  
PVDD  
17, 26  
7
MAX9792A  
C
IN3  
R
IN3  
20kΩ  
19, 24 OUT+  
18, 25 OUT-  
MONO  
CLASS D  
AMPLIFIER  
C
IN1  
RIN1  
IN2  
SPKR_IN 28  
C
IN2  
R
1/MAX792  
40.2kΩ  
TO HPVDD  
HP_INL  
HP_INR  
3
2
C
IN2  
R
IN2  
10 HPL  
2.7V TO 5.5V  
TO CPVSS  
LDO_EN  
8
9
HPR  
HP_EN 22  
CONTROL  
BEEP 21  
µC BEEP INPUT  
27  
4
SPKR_EN  
COM  
TO HPVDD  
C
COM  
R
COM  
2.7V TO 5.5V  
C3  
SENSE  
40.2kΩ  
11  
40.2kΩ  
16 HPVDD  
15 C1P  
10µF  
C1  
1.0µF  
14 CPGND  
CHARGE  
PUMP  
LDO_OUT  
6
TO CODEC  
LDO BLOCK  
C1N  
13  
1.0µF  
1.0µF  
1, 5  
20, 23  
PGND  
12  
NOTE: LOGIC PINS CONFIGURED FOR:  
CPVSS  
GND  
LDO_EN = 1, LDO ENABLED  
SPKR_EN = 0, SPEAKER AMPLIFIER ENABLED  
HP_EN = 1, HEADPHONE AMPLIFIER ENABLED  
C2  
1.0µF  
30 ______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
MAX9792C Block Diagram  
2.7V TO 5.5V  
0.1µF  
10µF  
0.1µF  
1.0µF  
1.0µF  
AVDD  
PVDD  
17, 26  
7
MAX9792C  
C
IN3  
R
IN3  
20kΩ  
19, 24 OUT+  
18, 25 OUT-  
MONO  
CLASS D  
AMPLIFIER  
C
IN1  
RIN1  
IN2  
SPKR_IN 28  
C
IN2  
R
40.2kΩ  
TO HPVDD  
HP_INL  
HP_INR  
3
2
C
IN2  
R
IN2  
10 HPL  
2.7V TO 5.5V  
TO CPVSS  
LDO_EN  
8
9
HPR  
HP_EN 22  
BEEP 21  
CONTROL  
µC BEEP INPUT  
27  
SPKR_EN  
COM  
TO HPVDD  
C
COM  
R
COM  
2.7V TO 5.5V  
C3  
SENSE  
40.2kΩ  
11  
4
40.2kΩ  
16 HPVDD  
15 C1P  
10µF  
C1  
1.0µF  
14 CPGND  
CHARGE  
PUMP  
LDO_OUT  
6
TO CODEC  
LDO BLOCK  
C1N  
13  
2.0µF  
2.0µF  
1, 5  
20, 23  
PGND  
12  
NOTE: LOGIC PINS CONFIGURED FOR:  
CPVSS  
GND  
LDO_EN = 1, LDO ENABLED  
SPKR_EN = 0, SPEAKER AMPLIFIER ENABLED  
HP_EN = 1, HEADPHONE AMPLIFIER ENABLED  
C2  
1.0µF  
______________________________________________________________________________________ 31  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
21-0139  
LAND PATTERN NO.  
90-0068  
28 TQFN-EP  
T2844-1  
1/MAX792  
32 ______________________________________________________________________________________  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
1/MAX792  
Package Information (continued)  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
______________________________________________________________________________________ 33  
Windows Vista-Compliant Class D Speaker  
Amplifiers with DirectDrive Headphone Amplifiers  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
11/08  
Initial release  
Adding MAX9791C/MAX9792C versions  
1–7, 10, 13–16,  
19, 21–30  
1
6/10  
1/MAX792  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
34 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9792

Windows Vista-Compliant Class D Speaker Amplifiers with DirectDrive Headphone Amplifiers
MAXIM

MAX9792A

Wake-on-Beep Function
MAXIM

MAX9792AETI+

Windows Vista-Compliant Class D Speaker Amplifiers with DirectDrive Headphone Amplifiers
MAXIM

MAX9792AETI+T

暂无描述
MAXIM

MAX9792AEVKIT

Wake-on-Beep Function
MAXIM

MAX9792AEVKIT+

Wake-on-Beep Function
MAXIM

MAX9792CETI+

Audio Amplifier, 0.18W, 2 Channel(s), 1 Func, BICMOS, 4 X 4 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, TQFN-28
MAXIM

MAX9796

2.3W, High-Power Class D Audio Subsystem with DirectDrive Headphone Amplifiers
MAXIM

MAX9796EBX+

Audio Amplifier, 2 Func, BICMOS, PBGA36
MAXIM

MAX9796EBX+T

2.3W, High-Power Class D Audio Subsystem with DirectDrive Headphone Amplifiers
MAXIM

MAX9796EBX+TG45

Volume Control Circuit
MAXIM

MAX98088

Stereo Audio Codec with FLEXSOUND Technology
MAXIM