MAX9888_V01 [MAXIM]

Stereo Audio CODEC with FlexSound Technology;
MAX9888_V01
型号: MAX9888_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Stereo Audio CODEC with FlexSound Technology

文件: 总115页 (文件大小:11070K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5235; Rev 1; 2/11  
Stereo Audio CODEC  
with FlexSound Technology  
General Description  
The MAX9888 is a full-featured audio CODEC whose  
high performance and low power consumption make it  
ideal for portable applications.  
Features  
S 100dB DR Stereo DAC (8kHz < f < 96kHz)  
S
S 91dB DR Stereo ADC (8kHz < f < 96kHz)  
S
S Stereo Low EMI Class D Amplifiers  
950mW/Channel (8I, V  
= 4.2V)  
SPKVDD_  
Class D speaker amplifiers provide efficient amplification  
for two speakers. Low radiated emissions enable com-  
pletely filterless operation. Integrated bypass switches  
optionally connect an external amplifier to the transducer  
when the Class D amplifiers are disabled.  
S Stereo DirectDrive Headphone Amplifiers  
S Differential Receiver Amplifier  
S 2 Stereo Single-Ended/Mono Differential Line  
Inputs  
S 3 Differential Microphone Inputs  
®
DirectDrive headphone amplifiers provide a true  
S FlexSound Technology  
5-Band Parametric EQ  
ground-referenced output, eliminating the need for  
large DC-blocking capacitors. 1.8V headphone opera-  
tion ensures low power consumption. The device also  
includes a differential receiver amplifier.  
Automatic Level Control (ALC)  
Excursion Limiter  
Speaker Power Limiter  
Speaker Distortion Limiter  
Microphone Automatic Gain Control  
and Noise Gate  
Three differential analog microphone inputs are available  
as well as support for two PDM digital microphones.  
Integrated switches allow microphone signals to be  
routed out to external devices. Two flexible single-ended  
or differential line inputs may be connected to an FM  
radio or other sources.  
S Dual I2S/PCM/TDM Digital Audio Interfaces  
S Asynchronous Digital Mixing  
S Supports Master Clock Frequencies from 10MHz  
to 60MHz  
Integrated FlexSoundK technology improves loud-  
speaker performance by optimizing the signal level and  
frequency response while limiting the maximum distor-  
tion and power at the output to prevent speaker damage.  
Automatic gain control (AGC) and a noise gate optimize  
the signal level of microphone input signals to make best  
use of the ADC dynamic range.  
S RF Immune Analog Inputs and Outputs  
S Extensive Click-and-Pop Reduction Circuitry  
S I2C Control Interface  
S 63 WLP Package (3.80mm x 3.30mm, 0.4mm Pitch)  
Ordering Information  
The device is fully specified over the -40NC to +85NC  
extended temperature range.  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX9888EWY+  
-40NC to +85NC  
63 WLP  
DirectDrive is a registered trademark and FlexSound is a  
trademark of Maxim Integrated Products, Inc.  
+Denotes lead(Pb)-free/RoHS-compliant package.  
Simplified Block Diagram  
2
I
2
2
I S/PCM  
C
I
S/PCM  
RECEIVER AMP  
DIGITAL  
AUDIO  
DIGITAL  
AUDIO  
CONTROL  
INTERFACE  
INTERFACE  
DIGITAL MICROPHONE  
SPEAKER AMP  
INPUT  
FlexSound TECHNOLOGY  
• 5-BAND PARAMETRIC EQ  
• AUTOMATIC LEVEL CONTROL  
• LOUDSPEAKER PROCESSING  
• EXCURSION LIMITER  
• THD LIMITER  
ADC  
DAC  
SPEAKER AMP  
MIX  
MIX  
• POWER LIMITER  
LINEIN A1  
• MICROPHONE PROCESSING  
• AUTOMATIC GAIN CONTROL  
• NOISE GATE  
• ASYNCHRONOUS DIGITAL  
MIXING  
HEADPHONE AMP  
ADC  
DAC  
LINEIN A2  
+
LINEIN B1  
MAX9888  
HEADPHONE AMP  
LINEIN B2  
+
_______________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Stereo Audio CODEC  
with FlexSound Technology  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Digital Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Input Clock Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Audio Interface Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Digital Microphone Timing Characterstics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2
I C Timing Characterstics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Microphone to ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Line to ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Digital Loopback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Analog Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
DAC to Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Line to Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
DAC to Speaker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Line to Speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
DAC to Headphone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Line to Headphone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Speaker Bypass Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
2
I C Slave Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Microphone Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Line Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
ADC Input Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Record Path Signal Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Microphone AGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Noise Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
2
Stereo Audio CODEC  
with FlexSound Technology  
TABLE OF CONTENTS (continued)  
ADC Record Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Sidetone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Digital Audio Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Clock Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Passband Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Playback Path Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Automatic Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Parametric Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Playback Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
DAC Input Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Preoutput Signal Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Preoutput Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Preoutput PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Receiver Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Receiver Output Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Receiver Output Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Speaker Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Speaker Output Volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Speaker Output Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Speaker Amplifier Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Excursion Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Power Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Distortion Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Headphone Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Headphone Output Mixers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Headphone Output Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Output Bypass Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Click-and-Pop Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Jack Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Jack Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Accessory Button Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Jack Removal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
3
Stereo Audio CODEC  
with FlexSound Technology  
TABLE OF CONTENTS (continued)  
Battery Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Device Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Device Revision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
I2C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
START and STOP Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Early STOP Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Write Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Read Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Typical Operating Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Analog Microphones and Bypass Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Digital Microphones and Receiver Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
Filterless Class D Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
RF Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Startup/Shutdown Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Optional Ferrite Bead Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Input Capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Charge-Pump Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Charge-Pump Flying Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Charge-Pump Holding Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Recommended PCB Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Supply Bypassing, Layout, and Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
WLP Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
4
Stereo Audio CODEC  
with FlexSound Technology  
Functional Diagram  
S D I N 2  
S D O U T 2  
L R C L K 2  
B C L K 2  
S D I N 1  
S D O U T 1  
L R C L K 1  
B C L K 1  
5
Stereo Audio CODEC  
with FlexSound Technology  
ABSOLUTE MAXIMUM RATINGS  
(Voltages with respect to AGND.)  
REG, INA1, INA2, INB1, INB2, MIC1P/DIGMICDATA,  
DVDD, AVDD, HPVDD .........................................-0.3V to +2.2V  
SPKLVDD, SPKRVDD, DVDDS1, DVDDS2..........-0.3V to +6.0V  
DGND, HPGND, SPKLGND, SPKRGND..............-0.1V to +0.1V  
HPVSS ...............................(HPGND - 2.2V) to (HPGND + 0.3V)  
C1N .................................... (HPVSS - 0.3V) to (HPGND + 0.3V)  
C1P.....................................(HPGND - 0.3V) to (HPVDD + 0.3V)  
PREG..................................................... -0.3V to (AVDD + 0.3V)  
REF, MICBIAS .................................-0.3V to (SPKLVDD + 0.3V)  
MCLK, SDINS1, SDINS2, JACKSNS,  
MIC1N/DIGMICCLK, MIC2P, MIC2N ...............-0.3V to +2.2V  
HPSNS...............................(HPGND - 0.3V) to (HPGND + 0.3V)  
HPL, HPR ............................(HPVSS - 0.3V) to (HPVDD + 0.3V)  
RECP, RECN ..............(SPKLGND - 0.3V) to (SPKLVDD + 0.3V)  
SPKLP, SPKLN...........(SPKLGND - 0.3V) to (SPKLVDD + 0.3V)  
SPKRP, SPKRN .........(SPKRGND - 0.3V) to (SPKRVDD + 0.3V)  
Continuous Power Dissipation (T = +70NC)  
A
63-Bump WLP (derate 25.6mW/NC above +70NC)........2.05W  
Operating Temperature Range.......................... -40NC to +85NC  
Storage Temperature Range............................ -65NC to +150NC  
Soldering Temperature (reflow) ......................................+260NC  
SDA, SCL, IRQ .................................................-0.3V to +6.0V  
LRCLKS1, BCLKS1, SDOUTS1.........-0.3V to (DVDDS1 + 0.3V)  
LRCLKS2, BCLKS2, SDOUTS2.........-0.3V to (DVDDS2 + 0.3V)  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
ADCGAIN  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1.  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
MIN  
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
V
,
SPKLVDD  
2.8  
5.5  
SPKRVDD  
V
, V  
,
DVDD AVDD  
Supply Voltage Range  
Guaranteed by PSRR  
1.65  
1.65  
1.8  
2.0  
3.6  
V
V
HPVDD  
V
V
,
DVDDS1  
DVDDS2  
Analog  
Speaker  
Digital  
6.37  
1.98  
1.49  
2.71  
1.65  
2.93  
1.85  
8.22  
2.94  
10  
3.5  
3
Full-duplex 8kHz mono,  
receiver output (Note 3)  
Analog  
Speaker  
Digital  
4
DAC playback 48kHz stereo,  
headphone outputs (Note 3)  
2.5  
4.5  
3
Analog  
Speaker  
Digital  
DAC playback 48kHz stereo,  
speaker outputs (Note 3)  
18  
5
Total Supply Current (Note 2)  
I
mA  
VDD  
Analog  
Speaker  
Digital  
12.75  
1.7  
18  
3
Full-duplex 48kHz stereo,  
microphone inputs,  
headphone outputs (Note 3)  
3.75  
5.5  
Analog  
Speaker  
Digital  
5.11  
0.58  
0.03  
7
1
Stereo line playback,  
IN_DIF = 0, INA1 to HPL,  
INA2 to HPR, V  
= 0V  
MCLK  
0.06  
6
Stereo Audio CODEC  
with FlexSound Technology  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
ADCGAIN  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1.  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
Analog  
MIN  
TYP  
0.2  
0.1  
1
MAX UNITS  
2
Shutdown Supply Current  
(Note 2)  
T
A
= +25NC  
Speaker  
Digital  
1
5
FA  
REF Voltage  
PREG Voltage  
REG Voltage  
2.5  
1.6  
0.7  
30  
V
V
V
SLEW = 0  
SLEW = 1  
Shutdown to Full Operation  
MICROPHONE TO ADC PATH  
Dynamic Range (Note 4)  
ms  
17  
f = 8kHz, MODE = 0 (IIR voice),  
S
DR  
75  
88  
dB  
AV  
= 0dB  
MICPRE_  
V
= 0.1V , MCLK = 12.288MHz,  
P-P  
IN  
-77  
-82  
-71  
65  
-65  
f = 8kHz, f = 1kHz  
S
Total Harmonic Distortion +  
Noise  
THD+N  
CMRR  
AV  
= 0dB, V = 1V , f = 1kHz  
dB  
dB  
MICPRE_  
IN  
P-P  
AV  
f = 1kHz  
= +30dB, V = 32mV  
,
MICPRE_  
IN  
P-P  
Common-Mode Rejection Ratio  
V
V
= 100mV , f = 217Hz  
P-P  
IN  
= 1.65V to 2.0V, input referred, MIC  
AVDD  
60  
100  
inputs floating  
f = 217Hz, V  
input referred  
= 100mV , AV = 0dB,  
ADC  
RIPPLE  
P-P  
100  
91  
Power-Supply Rejection Ratio  
PSRR  
dB  
f = 1kHz, V  
= 100mV , AV = 0dB,  
ADC  
RIPPLE  
P-P  
input referred  
f = 10kHz, V  
input referred  
= 100mV , AV = 0dB,  
ADC  
RIPPLE  
P-P  
70  
MODE = 0 (IIR voice)  
8kHz  
2.2  
1.1  
4.5  
0.76  
1kHz, 0dB input,  
highpass filter  
MODE = 0 (IIR voice)  
16kHz  
Path Phase Delay  
disabled measured  
from analog input to  
digital output  
ms  
MODE = 1 (FIR audio)  
8kHz  
MODE = 1 (FIR audio)  
48kHz  
7
Stereo Audio CODEC  
with FlexSound Technology  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
ADCGAIN  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1.  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
= 0dB  
MIN  
TYP  
MAX UNITS  
MICROPHONE PREAMP  
Full-Scale Input  
AV  
1.05  
0
V
P-P  
MICPRE_  
PA1EN/PA2EN = 01  
PA1EN/PA2EN = 10  
PA1EN/PA2EN = 11  
PGAM1/PGAM2 = 0x00  
PGAM1/PGAM2 = 0x14  
Preamplifier Gain  
AV  
(Note 5)  
19.5  
29.4  
19.5  
20  
30  
20  
0
20.5  
30.5  
20.5  
dB  
MICPRE_  
PGA Gain  
AV  
(Note 5)  
dB  
MICPGA_  
All gain settings, measured at MIC1P/MIC1N/  
MIC2P/MIC2N  
MIC Input Resistance  
R
30  
50  
kI  
IN_MIC  
MICROPHONE BIAS  
MICBIAS Output Voltage  
Load Regulation  
V
I
I
= 1mA  
2.14  
2.2  
0.5  
100  
92  
2.25  
11  
V
MICBIAS  
LOAD  
= 1mA to 2mA  
mV  
FV  
LOAD  
Line Regulation  
V
= 2.8V to 5.5V  
SPKLVDD  
f = 217Hz, V  
f = 10kHz, V  
= 100mV  
RIPPLE (SPKLVDD)  
RIPPLE (SPKLVDD)  
P-P  
Ripple Rejection  
dB  
= 100mV  
83  
P-P  
A-weighted, f = 20Hz to 20kHz  
P-weighted, f = 20Hz to 4kHz  
f = 1kHz  
3.8  
2.1  
33  
FV  
RMS  
Noise Voltage  
nV/Hz  
MICROPHONE BYPASS SWITCH  
I
V
= 100mA, INABYP = MIC2BYP = 1,  
MIC1_  
On-Resistance  
R
3.5  
-80  
60  
20  
I
ON  
= V  
= (0V, V  
)
MIC2_  
INA_  
AVDD  
Total Harmonic Distortion +  
Noise  
V
= 2V , V  
= 0.9V, R = 10kI,  
IN  
P-P CM L  
THD+N  
dB  
dB  
FA  
f = 1kHz, INABYP = MIC2BYP = 1  
V
= 2V , V = 0.9V, R = 10kI,  
IN  
P-P CM  
L
Off-Isolation  
f = 1kHz  
V
V
= (0V, V ),  
AVDD  
MIC1_  
Off-Leakage Current  
-2.5  
+2.5  
/V  
= (V , 0V)  
AVDD  
MIC2_ INA_  
LINE INPUT TO ADC PATH  
Dynamic Range (Note 4)  
f = 48kHz, MCLK = 12.288MHz, MODE = 1  
S
(FIR audio)  
DR  
91  
dB  
Total Harmonic Distortion +  
Noise  
THD+N  
V
= 1V , f = 1kHz  
-77  
1
dB  
%
IN  
P-P  
Gain Error  
DC accuracy  
5
8
Stereo Audio CODEC  
with FlexSound Technology  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
ADCGAIN  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1.  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
LINE INPUT PREAMP  
AV  
AV  
= 0dB  
1
PGAIN_  
Full-Scale Input  
V
V
P-P  
IN  
= -6dB  
1.4  
20  
PGAIN_  
PGAINA/PGAINB = 0x0  
PGAINA/PGAINB = 0x1  
19  
13  
21  
15  
14  
3
PGAINA/PGAINB = 0x2  
(Note 5)  
= +25NC  
2
4
Level Adjust Gain  
AV  
dB  
PGAIN_  
PGAINA/PGAINB = 0x3  
T
0
A
PGAINA/PGAINB = 0x4  
-4  
-3  
-6  
-2  
PGAINA/PGAINB = 0x5, 0x6, 0x7  
-7  
-5  
AV  
AV  
AV  
AV  
AV  
AV  
= +20dB  
= +14dB  
= +3dB  
= 0dB  
14.6  
21  
20  
20  
10  
20  
20  
20  
27.4  
PGAIN_  
PGAIN_  
PGAIN_  
PGAIN_  
PGAIN_  
PGAIN_  
Input Resistance  
R
kI  
kI  
IN  
7.3  
13.7  
= -3dB  
= -6dB  
T
T
= +25NC  
18.5  
17.5  
21.5  
23  
A
Feedback Resistance  
R
INAEXT/INBEXT = 1  
IN_FB  
= T  
to T  
MAX  
A
MIN  
ADC LEVEL CONTROL  
ADC Level Adjust Range  
ADC Level Adjust Step Size  
ADC Gain Adjust Range  
ADC Gain Adjust Step Size  
ADC DIGITAL FILTERS  
AV  
AVL/AVR = 0xF to 0x0 (Note 5)  
-12  
0
+3  
18  
dB  
dB  
dB  
dB  
ADCLVL  
1
6
AV  
AVLG/AVRG = 00 to 11 (Note 5)  
ADCGAIN  
VOICE MODE IIR LOWPASS FILTER (MODE1 = 0)  
0.441  
Ripple limit cutoff  
-3dB cutoff  
x f  
s
Passband Cutoff  
f
Hz  
PLP  
SLP  
0.449  
x f  
s
Passband Ripple  
f < f  
-0.1  
+0.1  
0.47  
dB  
Hz  
dB  
PLP  
Stopband Cutoff  
f
x f  
s
Stopband Attenuation (Note 6)  
f > f  
74  
SLP  
9
Stereo Audio CODEC  
with FlexSound Technology  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
ADCGAIN  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1.  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
MIN  
PARAMETER  
VOICE MODE IIR HIGHPASS FILTER (MODE1 = 0)  
AVFLT = 0x1 (elliptical tuned for  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
0.0161  
f = 16kHz + 217Hz notch)  
s
x f  
s
AVFLT = 0x2 (500Hz Butterworth tuned for  
f = 16kHz)  
s
0.0319  
x f  
s
Passband Cutoff  
(-3dB from Peak)  
AVFLT = 0x3 (elliptical tuned for  
f = 8kHz + 217Hz notch)  
s
0.0321  
x f  
f
Hz  
AHPPB  
s
AVFLT = 0x4 (500Hz Butterworth tuned for  
f = 8kHz)  
s
0.0632  
x f  
s
0.0043  
x f  
AVFLT = 0x5 (f /240 Butterworth)  
s
s
AVFLT = 0x1 (elliptical tuned for  
0.0139  
f = 16kHz + 217Hz notch)  
s
x f  
s
AVFLT = 0x2 (500Hz Butterworth tuned for  
f = 16kHz)  
s
0.0156  
x f  
s
Stopband Cutoff  
(-30dB from Peak)  
AVFLT = 0x3 (elliptical tuned for  
f = 8kHz + 217Hz notch)  
s
0.0279  
x f  
f
Hz  
AHPSB  
s
AVFLT = 0x4 (500Hz Butterworth tuned for f = 0.0312  
s
8kHz)  
x f  
s
0.002  
x f  
AVFLT = 0x5 (f /240 Butterworth)  
s
s
DC Attenuation  
DC  
AVFLT 000  
90  
dB  
Hz  
ATTEN  
STEREO AUDIO MODE FIR LOWPASS FILTER (MODE1 = 1, DHF1 = 0, LRCLK < 50kHz)  
0.43  
x f  
Ripple limit cutoff  
s
0.48  
x f  
Passband Cutoff  
f
-3dB cutoff  
PLP  
SLP  
s
0.5  
x f  
-6.02dB cutoff  
s
Passband Ripple  
f < f  
-0.1  
+0.1  
0.58  
dB  
Hz  
dB  
PLP  
Stopband Cutoff  
f
x f  
s
Stopband Attenuation (Note 6)  
f < f  
60  
SLP  
ADC STEREO AUDIO MODE FIR LOWPASS FILTER (MODE1 = 1, DHF1 = 1, LRCLK > 50kHz)  
0.208  
x f  
Ripple limit cutoff  
-3dB cutoff  
s
Passband Cutoff  
f
Hz  
PLP  
0.28  
x f  
s
10  
Stereo Audio CODEC  
with FlexSound Technology  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
ADCGAIN  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1.  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Passband Ripple  
f < f  
f < f  
-0.1  
+0.1  
dB  
Hz  
dB  
PLP  
0.417  
Stopband Cutoff  
f
SLP  
x f  
s
Stopband Attenuation  
60  
SLP  
ADC STEREO AUDIO MODE DC-BLOCKING HIGHPASS FILTER (MODE1 = 1)  
Passband Cutoff  
(-3dB from Peak)  
0.000125  
x fs  
f
AVFLT 000  
AVFLT 000  
Hz  
dB  
AHPPB  
DC Attenuation  
DC  
90  
Atten  
MICROPHONE AUTOMATIC GAIN CONTROL  
AGCHLD = 01  
50  
400  
2
AGC Hold Duration  
AGC Attack Time  
AGC Release Time  
ms  
ms  
s
AGCHLD = 11  
AGCATK = 00  
AGCATK = 11  
123  
0.078  
10  
AGCRLS = 000  
AGCRLS = 111  
AGCTH = 0x0 to 0xF  
AGC Threshold Level  
AGC Threshold Step Size  
AGC Gain  
-3  
0
+18  
20  
dB  
dB  
dB  
1
(Note 5)  
ADC NOISE GATE  
NG Threshold Level  
NG Attenuation  
ANTH = 0x3 to 0xF, referred to 0dBFS  
(Note 5)  
-64  
0
-16  
12  
dB  
dB  
ADC-TO-DAC DIGITAL SIDETONE (MODE = 0)  
DVST = 0x01  
DVST = 0x1F  
-0.5  
-60.5  
2
Sidetone Gain Adjust Range  
Sidetone Gain Adjust Step Size  
Sidetone Path Phase Delay  
AV  
dB  
dB  
ms  
STGA  
8kHz  
2.2  
1.1  
1kHz, 0dB input, highpass  
filter disabled  
16kHz  
ADC-TO-DAC DIGITAL LOOP-THROUGH PATH  
f = 48kHz, MCLK = 12.288MHz, MODE = 1  
S
(FIR audio)  
Dynamic Range (Note 4)  
Total Harmonic Distortion  
DR  
89  
dB  
dB  
f = 1kHz, f = 48kHz, MCLK = 12.288MHz,  
S
MODE = 1 (FIR audio)  
THD  
-71  
-66  
DAC LEVEL CONTROL  
DAC Attenuation Range  
DAC Attenuation Step Size  
DAC Gain Adjust Range  
DAC Gain Adjust Step Size  
AV  
AV  
DV1DV2 = 0xF to 0x0 (Note 5)  
DV1G = 00 to 11 (Note 5)  
-15  
0
0
dB  
dB  
dB  
dB  
DACATTN  
1
6
18  
DACGAIN  
11  
Stereo Audio CODEC  
with FlexSound Technology  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
ADCGAIN  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1.  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
MIN  
PARAMETER  
DAC DIGITAL FILTERS  
VOICE MODE IIR LOWPASS FILTER (MODE1 = 0)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
0.448  
Ripple limit cutoff  
-3dB cutoff  
x f  
s
Passband Cutoff  
f
Hz  
PLP  
0.451  
x f  
s
Passband Ripple  
f < f  
-0.1  
+0.1  
dB  
Hz  
dB  
PLP  
0.476  
Stopband Cutoff  
f
SLP  
x f  
s
Stopband Attenuation (Note 6)  
f > f  
75  
SLP  
VOICE MODE IIR HIGHPASS FILTER (MODE1 = 0)  
DVFLT = 0x1 (elliptical tuned for  
f = 16kHz + 217Hz notch)  
s
0.0161  
x f  
s
DVFLT = 0x2 (500Hz Butterworth tuned for  
f = 16kHz)  
s
0.0312  
x f  
s
Passband Cutoff  
(-3dB from Peak)  
DVFLT = 0x3 (elliptical tuned for  
f = 8kHz + 217Hz notch)  
s
0.0321  
x f  
f
Hz  
DHPPB  
s
DVFLT = 0x4 (500Hz Butterworth tuned for  
f = 8kHz)  
s
0.0625  
x f  
s
0.0042  
x f  
DVFLT = 0x5 (f /240 Butterworth)  
s
s
DVFLT = 0x1 (elliptical tuned for  
0.0139  
f = 16kHz + 217Hz notch)  
s
x f  
s
DVFLT = 0x2 (500Hz Butterworth tuned for  
f = 16kHz)  
s
0.0156  
x f  
s
Stopband Cutoff  
(-30dB from Peak)  
DVFLT = 0x3 (elliptical tuned for  
f = 8kHz + 217Hz notch)  
s
0.0279  
x f  
f
Hz  
dB  
DHPSB  
s
DVFLT = 0x4 (500Hz Butterworth tuned for  
f = 8kHz)  
s
0.0312  
x f  
s
0.002  
x f  
DVFLT = 0x5 (f /240 Butterworth)  
s
s
DC Attenuation  
DC  
DVFLT 000  
85  
ATTEN  
12  
Stereo Audio CODEC  
with FlexSound Technology  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
ADCGAIN  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1.  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
STEREO AUDIO MODE FIR LOWPASS FILTER (MODE1 = 1, DHF1/DHF2 = 0, LRCLK < 50kHz)  
0.43  
x f  
Ripple limit cutoff  
-3dB cutoff  
s
0.47  
x f  
Passband Cutoff  
f
Hz  
PLP  
SLP  
s
0.5  
x f  
-6.02dB cutoff  
s
Passband Ripple  
f < f  
-0.1  
+0.1  
0.58  
dB  
Hz  
dB  
PLP  
Stopband Cutoff  
f
x f  
s
Stopband Attenuation (Note 6)  
f > f  
60  
SLP  
STEREO AUDIO MODE FIR LOWPASS FILTER (MODE1 = 1, DHF1/DHF2 = 1 for LRCLK > 50kHz)  
0.24  
Ripple limit cutoff  
x f  
s
Passband Cutoff  
f
f
Hz  
PLP  
0.31  
x f  
-3dB cutoff  
s
Passband Ripple  
f < f  
-0.1  
+0.1  
dB  
Hz  
dB  
PLP  
0.477  
Stopband Cutoff  
SLP  
x f  
s
Stopband Attenuation (Note 6)  
f < f  
60  
SLP  
STEREO AUDIO MODE DC-BLOCKING HIGHPASS FILTER  
Passband Cutoff (-3dB from  
Peak)  
0.000104  
x f  
f
DVFLT 000 (DAI1), DCB2 = 1 (DAI2)  
DVFLT 000 (DAI1), DCB2 = 1 (DAI2)  
Hz  
dB  
DHPPB  
s
DC Attenuation  
DC  
90  
ATTEN  
AUTOMATIC LEVEL CONTROL  
Dual Band Lowpass Corner  
Frequency  
ALCMB = 1  
ALCMB = 1  
5
5
kHz  
kHz  
Dual Band Highpass Corner  
Frequency  
Gain Range  
0
12  
dB  
Low Signal Threshold  
ALCTH = 111 to 001  
ALCRLS = 101  
-48  
-12  
dBFS  
0.25  
8
Release Time  
s
ALCRLS = 000  
PARAMETRIC EQUALIZER  
Number of Bands  
5
1
Bands  
dB  
Per Band Gain Range  
Preattenuator Gain Range  
Preattenuator Step Size  
-12  
-15  
+12  
0
(Note 5)  
dB  
dB  
13  
Stereo Audio CODEC  
with FlexSound Technology  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
ADCGAIN  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1.  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
f = 48kHz, MCLK = 12.288MHz, f = 1kHz  
MIN  
TYP  
MAX UNITS  
DAC-TO-RECEIVER AMPLIFIER PATH  
Dynamic Range (Note 4)  
DR  
96  
dB  
S
Total Harmonic Distortion +  
Noise  
THD+N  
f = 1kHz, P  
= 25mW, R  
= 32I  
-70  
-63  
dB  
OUT  
REC  
Into shutdown  
-70  
-73  
Peak voltage, A-weighted, 32  
Click and Pop Level  
K
samples per second, AV  
= 0dB  
dBV  
CP  
REC  
Out of shutdown  
PREOUTPUT MIXERS  
PGAOUTA/PGAOUTB/  
PGAOUTC = 0x0  
PGAOUTA/PGAOUTB/  
PGAOUTC = 0xC  
0
Level Adjust Gain  
AV  
(Note 5)  
f = 1kHz  
dB  
PGAOUT_  
-25  
-23.4  
-22  
Level Adjust Step Size  
Mute Attenuation  
2
dB  
dB  
85  
LINE INPUT-TO-RECEIVER AMPLIFIER PATH  
Dynamic Range (Note 4)  
DR  
Referenced to full-scale output level  
92  
dB  
dB  
Total Harmonic Distortion +  
Noise  
THD+N  
-70  
V
= 2.8V to 5.5V  
54  
89  
SPKLVDD  
f = 217Hz, V  
= 100mV  
-63  
-63  
-65  
-57  
RIPPLE  
P-P  
Power-Supply Rejection Ratio  
PSRR  
dB  
f = 1kHz, V  
= 100mV  
RIPPLE  
P-P  
f = 10kHz, V  
= 100mV  
RIPPLE  
P-P  
Into shutdown  
Out of shutdown  
Peak voltage, A-weighted, 32  
samples per second, AV  
= 0dB  
Click-and-Pop Level  
K
CP  
dBV  
mW  
REC  
-55  
RECEIVER AMPLIFIER  
Output Power  
P
R
REC  
= 32I, f = 1kHz, THD = 1%  
100  
1
OUT  
Full-Scale Output  
(Note 7)  
V
RMS  
RECVOL = 0x00  
RECVOL = 0x1F  
-65  
-62  
+8  
0.5  
1
-58  
Volume Control  
AV  
REC  
(Note 5)  
dB  
+7.5  
+8.5  
+8dB to +6dB  
+6dB to +0dB  
0dB to -14dB  
-14dB to -38dB  
-38dB to -62dB  
f = 1kHz  
Volume Control Step Size  
2
dB  
3
4
Mute Attenuation  
95  
dB  
Output Offset Voltage  
V
AV  
= -62dB  
T = +25NC  
A
mV  
OS  
REC  
±0.13  
500  
±1  
R
REC  
R
REC  
= 32I  
= J  
Capacitive Drive Capability  
No sustained oscillations  
pF  
100  
14  
Stereo Audio CODEC  
with FlexSound Technology  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
ADCGAIN  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1.  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
DAC-TO-SPEAKER AMPLIFIER PATH  
Total Harmonic Distortion +  
Noise  
THD+N  
f = 1kHz, P  
= 250mW, Z  
= 8I+ 68FH  
-71  
-75  
dB  
dB  
OUT  
SPK  
SPKL to SPKR and SPKR to SPKL,  
= 640mW, f = 1kHz  
Crosstalk  
Output Noise  
P
OUT  
A-weighted  
43  
FV  
RMS  
Into shutdown  
-65  
Peak voltage, A-weighted,  
32 samples per second,  
Click-and-Pop Level  
K
dBV  
CP  
Out of shutdown  
-65  
AV  
= 0dB  
SPK_  
LINE INPUT-TO-SPEAKER AMPLIFIER PATH  
Total Harmonic Distortion +  
Noise  
THD+N  
PSRR  
f = 1kHz, P  
= 200mW, Z  
= 8I+ 68FH  
-66  
dB  
OUT  
SPK  
Output Noise  
A-weighted  
= V  
56  
60  
75  
73  
50  
-48  
FV  
RMS  
V
= 2.8V to 5.5V  
RIPPLE  
43  
SPKLVDD  
f = 217Hz, V  
= 100mV  
RIPPLE  
Power-Supply Rejection Ratio  
dB  
f = 1kHz, V  
= 100mV  
RIPPLE  
f = 10kHz, V  
= 100mV  
RIPPLE  
Into shutdown  
Peak voltage, A-weighted,  
32 samples per second,  
Click-and-Pop Level  
K
dBV  
mW  
CP  
Out of shutdown  
-50  
AV  
= 0dB  
SPK_  
SPEAKER AMPLIFIER  
V
V
=
SPKLVDD  
1370  
954  
733  
544  
= 5.0V  
SPKRVDD  
V
V
=
SPKLVDD  
= 4.2V  
SPKRVDD  
f = 1kHz, THD = 1%,  
= 8I+ 68FH  
Output Power  
P
OUT  
Z
SPK  
V
V
=
SPKLVDD  
= 3.7V  
SPKRVDD  
V
V
=
SPKLVDD  
= 3.2V  
SPKRVDD  
Full-Scale Output  
(Note 7)  
2
-64  
+8  
0.5  
1
V
RMS  
SPVOLL/SPVOLR = 0x00  
SPVOLL/SPVOLR = 0x1F  
+8dB to +6dB  
-69  
-59  
Volume Control (Note 5)  
AV  
SPK_  
dB  
+7.5  
+8.5  
+6dB to +0dB  
Volume Control Step Size  
0dB to -14dB  
2
dB  
-14dB to -38dB  
-38dB to -64dB  
3
4
15  
Stereo Audio CODEC  
with FlexSound Technology  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
ADCGAIN  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1.  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Mute Attenuation  
f = 1kHz  
AV = -64dB, T = +25NC  
86  
dB  
Output Offset Voltage  
EXCURSION LIMITER  
Upper-Corner Frequency Range  
Lower-Corner Frequency  
V
OS  
mV  
SPK_  
A
±0.25  
±1.25  
DHPUCF = 001 to 100  
DHPLCF = 01 to 10  
DHPUCF = 000 (fixed mode)  
DHPUCF = 001  
400  
1000  
Hz  
Hz  
400  
100  
200  
300  
400  
500  
Biquad Minimum Corner  
Frequency  
DHPUCF = 010  
Hz  
DHPUCF = 011  
DHPUCF = 100  
Z
V
= 8I+ 68FH,  
SPK  
DHPTH = 000  
DHPTH = 111  
0.34  
4.95  
Threshold Voltage  
Release Time  
= V  
=
=
V
P
SPKLVDD  
SPKRVDD  
5.5V, AV  
= +8dB  
SPK_  
ALCRLS = 101  
ALCRLS = 000  
0.25  
4
s
POWER LIMITER  
Attenuation  
-64  
dB  
W
Z
V
= 8I+ 68FH,  
SPK  
PWRTH = 0x1  
PWRTH = 0xF  
0.05  
Threshold  
= V  
SPKRVDD  
SPKLVDD  
1.80  
5.5V, AV  
= +8dB  
SPK_  
PWRT1 = 0x1  
PWRT1 = 0xF  
0.5  
8.7  
0.5  
8.7  
Time Constant 1  
Time Constant 2  
t
t
s
PWR1  
PWR2  
PWRT2 = 0x1 to 0xF  
PWRT2 = 0xF  
min  
%
Weighting Factor  
k
PWRK = 000 to 111  
12.5  
100  
PWR  
DISTORTION LIMITER  
THDCLP = 0x1  
THDCLP = 0xF  
THDT1 = 000  
THDT1 = 111  
< 1  
24  
Distortion Limit  
%
s
0.76  
6.2  
Release Time Constant  
DAC-TO-HEADPHONE AMPLIFIER PATH  
Master or slave mode  
Slave mode  
100  
f = 48kHz, MCLK =  
S
12.288MHz  
Dynamic Range (Note 4)  
DR  
dB  
dB  
94  
R
= 16I  
= 32I  
-71  
-75  
-64  
HP  
HP  
f = 48kHz, MCLK = 12.288MHz,  
S
f = 1kHz, P  
= 20mW  
OUT  
R
Total Harmonic Distortion +  
Noise  
THD+N  
f = 48kHz, MCLK = 12.288MHz,  
S
-79  
f = 1kHz, V  
= 1  
, R = 10kI  
VRMS HP  
OUT  
16  
Stereo Audio CODEC  
with FlexSound Technology  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
ADCGAIN  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1.  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
f = 1kHz, Input = -1dBFS, R = 10kI  
-82  
dB  
HP  
Crosstalk  
HPL to HPR and HPR to HPL,  
-82  
dB  
dB  
P
OUT  
= 5mW, f = 1kHz, R = 32I  
HP  
V
AVDD  
= V  
= 1.65V to 2.0V  
60  
84  
92  
91  
57  
HPVDD  
f = 217Hz, V  
= 100mV, AV  
= 0dB  
RIPPLE  
VOL  
Power-Supply Rejection Ratio  
PSRR  
f = 1kHz, V  
= 100mV, AV  
= 0dB  
RIPPLE  
VOL  
f = 10kHz, V  
= 100mV, AV  
= 0dB  
RIPPLE  
VOL  
MODE = 0 (voice) 8kHz  
2.2  
1.1  
1kHz, 0dB input,  
highpass filter  
MODE = 0 (voice)  
16kHz  
DAC Path Phase Delay  
disabled measured  
from digital input to  
analog output  
ms  
MODE = 1 (music)  
8kHz  
4.5  
MODE = 1 (music)  
48kHz  
0.76  
Gain Error  
1
%
%
Channel Gain Mismatch  
0.5  
-66  
Into shutdown  
Peak voltage, A-weighted,  
32 samples per second,  
Click-and-Pop Level  
K
CP  
dBV  
Out of  
shutdown  
-67  
AV  
= 0dB  
HP_  
LINE INPUT-TO-HEADPHONE AMPLIFIER PATH  
Total Harmonic Distortion +  
Noise  
THD+N  
DR  
V
= 1V , f =1kHz, R = 32I  
-70  
dB  
dB  
IN  
P-P  
HP  
Dynamic Range (Note 4)  
91  
66  
62  
57  
41  
-62  
V
= V  
= 1.65V to 2.0V  
42  
AVDD  
HPVDD  
f = 217Hz, V  
= 100mV  
RIPPLE  
P-P  
Power-Supply Rejection Ratio  
PSRR  
dB  
dBV  
mW  
f = 1kHz, V  
= 100mV  
RIPPLE  
P-P  
f = 10kHz, V  
= 100mV  
RIPPLE  
P-P  
Into shutdown  
Peak voltage, A-weighted,  
32 samples per second,  
AV  
Click and Pop Level  
K
CP  
Out of  
shutdown  
-60  
= 0dB  
HP_  
HEADPHONE AMPLIFIER  
Output Power  
R
= 32I  
= 16I  
32  
40  
1
HP  
HP  
P
f = 1kHz, THD = 1%  
(Note 7)  
OUT  
R
Full-Scale Output  
Volume Control  
V
RMS  
HPVOL_ = 0x00  
HPVOL_ = 0x1F  
-71  
2.4  
-67  
3
-66  
3.5  
AV  
T = +25NC (Note 5)  
A
dB  
HP_  
17  
Stereo Audio CODEC  
with FlexSound Technology  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
ADCGAIN  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1.  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.5  
1
MAX UNITS  
+3dB to +1dB  
+1dB to -5dB  
-5dB to -19dB  
-19dB to -43dB  
-43dB to -67dB  
f = 1kHz  
Volume Control Step Size  
2
dB  
3
4
Mute Attenuation  
82  
dB  
T
T
= +25NC  
A
±0.2  
±1  
Output Offset Voltage  
V
OS  
AV  
= -67dB  
mV  
HP_  
= T  
to T  
MAX  
A
MIN  
±2  
R
HP  
R
HP  
= 32I  
= J  
500  
100  
667  
74  
No sustained  
oscillations  
Capacitive Drive Capability  
pF  
300  
900  
kHz  
Charge Pump Oscillator  
Frequency  
f
CP  
Slow mode  
SPEAKER BYPASS SWITCH  
I
V
= 100mA, SPKBYP = 1,  
= [0V, V  
SPKLVDD]  
SPKL_  
On-Resistance  
R
2.8  
4.5  
I
ON  
RXIN_  
V
Z
= 2V , V  
= V  
/2,  
IN  
P-P CM  
SPKLVDD  
R = 10I  
-77  
-60  
S
Total Harmonic Distortion +  
Noise  
THD+N  
= 8I+ 68FH, f = 1kHz,  
dB  
SPK  
R = 0I  
S
SPKBYP = 1  
V
= 2V , V  
= V  
SPKLVDD  
/2,  
IN  
P-P CM  
Off-Isolation  
96  
dB  
Z = 8I+ 68FH, f = 1kHz  
L
V
V
= [0V, V  
],  
, 0V]  
RXIN_  
SPKL_  
SPKLVDD  
Off-Leakage Current  
RECEIVER BYPASS SWITCH  
On-Resistance  
-1  
+1  
2
FA  
= [V  
SPKLVDD  
I
= 100mA, RECBYP = 1,  
RECP  
R
1.2  
-66  
80  
I
%
ON  
V
= [0V, V  
]
RECN  
SPKLVDD  
Total Harmonic Distortion +  
Noise  
V
= 2V , V  
= V  
/2,  
IN  
P-P CM  
SPKLVDD  
THD+N  
R = 32I, f = 1kHz, RECBYP = 1  
L
V
= 2V , V  
= V  
/2,  
IN  
P-P CM  
SPKLVDD  
Off-Isolation  
dB  
FA  
R = 32I, f = 1kHz  
L
V
V
= [0V, V  
],  
, 0V]  
RECP  
SPKLVDD  
Off-Leakage Current  
-15  
+15  
= [V  
RECN  
SPKLVDD  
18  
Stereo Audio CODEC  
with FlexSound Technology  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
ADCGAIN  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS = 1.  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25NC.) (Note 1)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
JACK DETECTION  
0.92 x  
0.95 x  
0.98 x  
MICBIAS enabled  
V
V
V
MICBIAS MICBIAS MICBIAS  
JACKSNS High Threshold  
V
V
V
TH1  
TH2  
0.92 x  
SPKLVD  
0.95 x  
V V  
D SPKLVDD SPKLVDD  
0.98 x  
MICBIAS disabled  
MICBIAS enabled  
MICBIAS disabled  
V
0.06 x  
0.10 x  
0.17 x  
V
V
V
MICBIAS MICBIAS MICBIAS  
JACKSNS Low Threshold  
V
0.06 x  
SPKLVD  
0.10 x  
SPKLVDD SPKLVD  
0.17 x  
V
V
V
V
D
D
JACKSNS Sense Voltage  
V
R
MICBIAS disabled  
MICBIAS disabled, JDWK = 0  
MICBIAS disabled, JDWK = 1  
JDEB = 00  
V
SENSE  
SPKLVDD  
JACKSNS Sense Resistance  
JACKSNS Weak Pullup Current  
1.7  
2
2.4  
5
2.9  
9.5  
kI  
FA  
SENSE  
I
WPU  
25  
200  
JACKSNS Deglitch Period  
t
ms  
GLITCH  
JDEB = 11  
BATTERY ADC  
Input Voltage Range  
LSB Size  
2.8  
5.5  
V
V
0.1  
DIGITAL INPUT/OUTPUT CHARACTERISTICS  
(V  
AVDD  
= V  
= V  
= V  
= V  
= 1.65V to 2.0V, V  
= V  
= 3.7V, T = T  
to T , unless  
MAX  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
A
MIN  
otherwise noted. Typical values are at T = +25NC.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.2  
-1  
TYP  
MAX  
UNITS  
MCLK  
Input High Voltage  
Input Low Voltage  
Input Leakage Current  
Input Capacitance  
V
IH  
V
V
V
IL  
0.6  
+1  
I , I  
IH IL  
V
= 2.0V, V = 0V, 5.5V, T = +25°C  
FA  
pF  
DVDD  
IN  
A
10  
SDINS1, BCLKS1, LRCLKS1—INPUT  
0.7 x  
DVDDS1  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
0.29 x  
DVDDS1  
V
IL  
Input Hysteresis  
200  
10  
mV  
FA  
pF  
Input Leakage Current  
Input Capacitance  
I , I  
IH IL  
V
= 3.6V, V = 0V, 3.6V; T = +25°C  
-1  
+1  
DVDDS1  
IN  
A
19  
Stereo Audio CODEC  
with FlexSound Technology  
DIGITAL INPUT/OUTPUT CHARACTERISTICS (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= 1.65V to 2.0V, V  
= V  
= 3.7V, T = T  
to T , unless  
MAX  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
A
MIN  
otherwise noted. Typical values are at T = +25NC.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BCLKS1, LRCLKS1, SDOUTS1—OUTPUT  
Output Low Voltage  
Output High Voltage  
V
V
V
V
= 1.65V, I = 3mA  
0.4  
V
V
OL  
DVDDS1  
OL  
DVDDS1  
- 0.4  
V
OH  
= 1.65V, I  
= 3mA  
DVDDS1  
OH  
= 2.0V, V = 0V, 5.5V; T = +25°C,  
DVDD  
IN  
A
Input Leakage Current  
I
, I  
-1  
+1  
FA  
IH IL  
high-impedance state  
SDINS2, BCLKS2, LRCLKS2—INPUT  
0.7 x  
DVDDS2  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
0.29 x  
DVDDS2  
V
IL  
Input Hysteresis  
200  
10  
mV  
FA  
pF  
Input Leakage Current  
Input Capacitance  
I , I  
IH IL  
V
= 3.6V, V = 0V, 3.6V; T = +25°C  
-1  
+1  
DVDDS2  
IN  
A
BCLKS2, LRCLKS2, SDOUTS2—OUTPUT  
Output Low Voltage  
V
V
V
V
= 1.65V, I = 3mA  
0.4  
+1  
V
V
OL  
DVDDS2  
OL  
DVDDS2  
- 0.4  
Output High Voltage  
V
OH  
= 1.65V, I  
= 3mA  
DVDDS2  
OH  
= 2.0V, V = 0V, 5.5V; T = +25NC,  
DVDD  
IN  
A
Input Leakage Current  
SDA, SCL—INPUT  
Input High Voltage  
I
, I  
-1  
FA  
IH IL  
high-impedance state  
0.7 x  
DVDD  
V
V
V
IH  
0.3 x  
DVDD  
Input Low Voltage  
V
IL  
Input Hysteresis  
210  
10  
mV  
FA  
pF  
Input Leakage Current  
Input Capacitance  
SDA, IRQ—OUTPUT  
Output High Current  
I
, I  
V
= 2.0V, V = 0V, 5.5V, T = +25NC  
-1  
+1  
IH IL  
DVDD  
IN  
A
I
V
V
= 5.5V, T = +25°C  
1
mA  
V
OH  
OUT  
A
0.2 x  
DVDD  
Output Low Voltage  
DIGMICDATA—INPUT  
Input High Voltage  
V
= 1.65V, I = 3mA  
DVDD OL  
OL  
0.65 x  
DVDD  
V
IH  
V
V
0.35 x  
DVDD  
Input Low Voltage  
V
IL  
Input Hysteresis  
125  
10  
mV  
FA  
pF  
Input Leakage Current  
Input Capacitance  
I , I  
IH IL  
V
= 2.0V, V = 0V, 2.0V; T = +25°C  
-25  
+25  
DVDD  
IN  
A
20  
Stereo Audio CODEC  
with FlexSound Technology  
DIGITAL INPUT/OUTPUT CHARACTERISTICS (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= 1.65V to 2.0V, V  
= V  
= 3.7V, T = T  
to T , unless  
MAX  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
A
MIN  
otherwise noted. Typical values are at T = +25NC.) (Note 1)  
A
PARAMETER  
DIGMICCLK—OUTPUT  
Output Low Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OL  
V
V
= 1.65V, I = 1mA  
0.4  
V
V
DVDD  
OL  
DVDD -  
0.4  
Output High Voltage  
V
OH  
= 1.65V, I  
= 1mA  
DVDD  
OH  
INPUT CLOCK CHARACTERISTICS  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V, T = T  
A
to T , unless otherwise  
MAX  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
MIN  
noted. Typical values are at T = +25NC.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
10  
TYP  
50  
MAX  
60  
UNITS  
MCLK Input Frequency  
f
MHz  
MCLK  
PSCLK = 01  
40  
60  
MCLK Input Duty Cycle  
%
PSCLK = 10 or 11  
30  
70  
Maximum MCLK Input Jitter  
LRCLK Sample Rate (Note 8)  
100  
ps  
RMS  
DHF_ = 0  
8
48  
48  
96  
kHz  
DHF_ = 1  
FREQ1 = 0x8 to 0xF  
FREQ1 = 0x0  
0
0
DAI1 LRCLK Average Frequency  
Error (Note 9)  
%
%
-0.025  
+0.025  
DAI2 LRCLK Average Frequency  
Error (Note 9)  
-0.025  
+0.025  
Rapid lock mode  
2
7
PLL Lock Time  
ms  
Nonrapid lock mode  
12  
25  
Maximum LRCLK Jitter to Maintain  
PLL Lock  
100  
ns  
Soft-Start/Stop Time  
10  
ms  
21  
Stereo Audio CODEC  
with FlexSound Technology  
AUDIO INTERFACE TIMING CHARACTERISTICS  
(V  
AVDD  
= V  
= V  
= V  
= V  
= 1.65V, V  
= V  
= 2.8V, T = T  
A
to T  
, unless otherwise  
MAX  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
MIN  
noted. Typical values are at T = +25NC.) (Note 1)  
A
PARAMETER  
BCLK Cycle Time  
SYMBOL  
CONDITIONS  
MIN  
90  
TYP  
MAX  
UNITS  
ns  
t
Slave mode  
Slave mode  
Slave mode  
BCLK  
BCLK High Time  
t
20  
ns  
BCLKH  
BCLK Low Time  
t
20  
ns  
BCLKL  
BCLK or LRCLK Rise and Fall Time  
SDIN to BCLK Setup Time  
LRCLK to BCLK Setup Time  
SDIN to BCLK Hold Time  
LRCLK to BCLK Hold Time  
t , t  
Master mode, C = 15pF  
L
ns  
R
F
t
20  
20  
20  
20  
ns  
SETUP  
t
Slave mode  
ns  
SYNCSET  
t
ns  
HOLD  
SYNCHOLD  
t
Slave mode  
ns  
Minimum Delay Time from LSB  
BCLK Falling Edge to  
t
Master mode, TDM_ = 1  
42  
ns  
HIZOUT  
High-Impedance State  
LRCLK Rising Edge to SDOUT  
MSB Delay  
t
C = 30pF, TDM_ = 1, FSW_ = 1  
50  
ns  
ns  
SYNCTX  
L
TDM_ = 1, BCLK rising edge  
50  
50  
BCLK to SDOUT Delay  
t
C = 30pF  
L
CLKTX  
TDM_ = 0  
TDM_ = 1  
-15  
20  
+15  
Master  
mode  
Delay Time from BCLK to LRCLK  
t
ns  
ns  
CLKSYNC  
ENDSYNC  
0.8 x  
BCLKL  
TDM_ = 0  
t
Delay Time from LRCLK to BCLK  
After LSB  
Master  
mode  
t
TDM_ = 1, FSW_ = 1  
t
BCLK  
t
F
t
R
t
t
BCLKL  
BCLKH  
BCLK  
BCLK  
(OUTPUT)  
(INPUT)  
t
t
CLKSYNC  
SYNCSET  
HI-Z  
LRCLK  
(OUTPUT)  
LRCLK  
(INPUT)  
t
t
CLKTX  
t
t
HIZOUT  
CLKTX  
HIZOUT  
SDOUT  
(OUTPUT)  
SDOUT  
LSB  
LSB  
LSB  
HI-Z  
MSB  
MSB  
t
HOLD  
(OUTPUT)  
t
t
t
SETUP  
HOLD  
SETUP  
SDIN  
(INPUT)  
SDIN  
LSB  
MSB  
MSB  
(INPUT)  
MASTER MODE  
SLAVE MODE  
Figure 1. Non-TDM Audio Interface Timing Diagrams (TDM_ = 0)  
22  
Stereo Audio CODEC  
with FlexSound Technology  
t
BCLK  
t
F
t
R
t
t
BCLKL  
BCLKH  
BCLK (OUTPUT)  
BCLK (INPUT)  
t
t
t
CLKSYNC  
SYNCSET  
CLKSYNC  
t
SYNCHOLD  
LRCLK (OUTPUT)  
t
LRCLK (INPUT)  
t
t
t
CLKTX  
CLKTX  
HIZOUT  
HIZOUT  
SDOUT (OUTPUT)  
SDOUT (OUTPUT)  
LSB  
LSB  
HI-Z  
MSB  
LSB  
HI-Z  
MSB  
MSB  
t
t
t
t
SETUP HOLD  
SETUP HOLD  
SDIN (INPUT)  
SDIN (INPUT)  
MSB  
MASTER MODE  
LSB  
SLAVE MODE  
Figure 2. TDM Audio Interface Timing Diagram (TDM_ = 1, FSW_ = 0)  
t
BCLK  
t
F
t
R
t
t
BCLKL  
BCLKH  
BCLK (OUTPUT)  
BCLK (INPUT)  
LRCLK (INPUT)  
t
t
CLKSYNC  
ENDSYNC  
LRCLK (OUTPUT)  
t
t
t
t
CLKTX  
CLKTX  
SYNCTX  
SYNCTX  
t
t
HIZOUT  
HIZOUT  
SDOUT (OUTPUT)  
LSB  
HI-Z  
MSB  
SDOUT (OUTPUT)  
SDIN (INPUT)  
LSB  
HI-Z  
MSB  
t
t
t
t
SETUP HOLD  
SETUP HOLD  
SDIN (INPUT)  
LSB  
MSB  
SLAVE MODE  
LSB  
MSB  
MASTER MODE  
Figure 3. TDM Audio Interface Timing Diagram (TDM_ = 1, FSW_ = 1)  
DIGITAL MICROPHONE TIMING CHARACTERSTICS  
(V  
AVDD  
= V  
= V  
= V  
= V  
= 2.0V, V  
= V  
= 2.8V, T = T  
to T , unless otherwise  
MAX  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
A
MIN  
noted. Typical values are at T = +25NC.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MICCLK = 00  
MICCLK = 01  
MCLK/8  
MCLK/6  
DIGMICCLK Frequency  
f
MHz  
MICCLK  
DIGMICDATA to DIGMICCLK  
Setup Time  
t
Either clock edge  
Either clock edge  
20  
0
ns  
ns  
SU,MIC  
HD,MIC  
DIGMICDATA to DIGMICCLK  
Hold Time  
t
23  
Stereo Audio CODEC  
with FlexSound Technology  
1/f  
MICCLK  
t
t
HD,MIC SU,MIC  
t
t
HD,MIC SU,MIC  
LEFT  
RIGHT  
LEFT  
RIGHT  
Figure 4. Digital Microphone Timing Diagram  
2
I C TIMING CHARACTERSTICS  
(V  
AVDD  
= V  
= V  
= V  
= V  
= 1.65V to 2.0V, V  
= V  
= 3.7V, T = T  
to T , unless  
MAX  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
A
MIN  
otherwise noted. Typical values are at T = +25NC.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Guaranteed by SCL pulse-width low and  
high  
Serial-Clock Frequency  
f
0
400  
kHz  
SCL  
Bus Free Time Between STOP and  
START Conditions  
t
1.3  
0.6  
Fs  
Fs  
BUF  
Hold Time (Repeated) START  
Condition  
t
t
HD,STA  
SCL Pulse-Width Low  
SCL Pulse-Width High  
t
1.3  
0.6  
Fs  
Fs  
LOW  
t
HIGH  
Setup Time for a Repeated START  
Condition  
0.6  
Fs  
SU,STA  
Data Hold Time  
Data Setup Time  
t
R
= 475I, CB = 100pF, 400pF  
0
900  
ns  
ns  
HD,DAT  
PU  
t
100  
SU,DAT  
20 +  
SDA and SCL Receiving Rise Time  
SDA and SCL Receiving Fall Time  
SDA Transmitting Fall Time  
t
(Note 10)  
(Note 10)  
300  
300  
250  
ns  
ns  
ns  
R
0.1C  
B
20 +  
0.1C  
t
F
F
B
20 +  
0.05C  
t
R
= 475I, C = 100pF, 400pF (Note 10)  
B
PU  
B
Setup Time for STOP Condition  
Bus Capacitance  
t
0.6  
0
Fs  
pF  
ns  
SU,STO  
C
B
Guaranteed by SDA transmitting fall time  
400  
50  
Pulse Width of Suppressed Spike  
t
SP  
24  
Stereo Audio CODEC  
with FlexSound Technology  
SDA  
SCL  
t
BUF  
t
SU,STA  
t
SU,DAT  
t
HD,STA  
t
SP  
t
LOW  
t
SU,STO  
t
HD,DAT  
t
HIGH  
t
HD,STA  
t
t
F
R
START CONDITION  
REPEATED START CONDITION  
STOP  
CONDITION  
START  
CONDITION  
2
Figure 5. I C Interface Timing Diagram  
Note 1: The IC is 100% production tested at T = +25NC. Specifications over temperature limits are guaranteed by design.  
A
Note 2: Analog supply current = I  
+ I  
. Speaker supply current = I  
+ I . Digital supply current = I  
SPKRVDD DVDD  
AVDD  
HPVDD  
SPKLVDD  
+ I  
+ I  
.
DVDDS1  
DVDDS2  
Note 3: Clocking all zeros into the DAC. Slave mode.  
Note 4: Dynamic range measured using the EIAJ method. -60dBFS, 1kHz output signal, A-weighted and normalized to 0dBFS.  
f = 20Hz to 20kHz.  
Note 5: Gain measured relative to the 0dB setting.  
Note 6: The filter specification is accurate only for synchronous clocking modes, where NI is a multiple of 0x1000.  
Note 7: 0dBFS for DAC input. 1V  
for INA/INB inputs.  
P-P  
Note 8: LRCLK may be any rate in the indicated range. Asynchronous or noninteger MCLK/LRCLK ratios may exhibit some full-  
scale performance degradation compared to synchronous integer related MCLK/LRCLK ratios.  
Note 9: In master-mode operation, the accuracy of the MCLK input proportionally determines the accuracy of the sample clock rate.  
Note 10: CB is in pF.  
Power Consumption  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V)  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
I
+
SPKLVDD  
I
I
I
I
+ I  
DVDDS2  
(mA)  
POWER  
(mW)  
AVDD  
HPVDD  
(mA)  
DVDD  
DVDDS1  
MODE  
I
SPKRVDD  
(mA)  
(mA)  
(mA)  
DAC Playback 48kHz Stereo HP  
DAC à HP  
24-bit, music filters  
1.35  
1.37  
1.65  
2.91  
0.02  
16.25  
21.55  
16.36  
DAC Playback 48kHz Stereo HP  
DAC à HP  
24-bit, music filters, 0.1mW/channel,  
1.35  
1.35  
4.19  
1.37  
1.65  
1.65  
3.02  
2.96  
0.02  
0.02  
R
HP  
= 32I  
DAC Playback 48kHz Stereo HP  
DAC à HP  
24-bit, music filters, ALC enabled  
25  
Stereo Audio CODEC  
with FlexSound Technology  
Power Consumption (continued)  
SPKRVDD  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V)  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
I
+
SPKLVDD  
I
I
I
I
+ I  
DVDDS2  
(mA)  
POWER  
(mW)  
AVDD  
HPVDD  
(mA)  
DVDD  
DVDDS1  
MODE  
I
SPKRVDD  
(mA)  
(mA)  
(mA)  
DAC Playback 48kHz Stereo HP  
DAC à HP  
24-bit, music filters, EQ enabled  
1.35  
1.36  
1.65  
3.27  
0.02  
16.90  
16.27  
16.29  
13.65  
9.27  
DAC Playback 48kHz Stereo HP  
DAC à HP  
24-bit, music filters, digital mixing  
1.34  
1.35  
1.35  
1.00  
1.83  
1.25  
9.91  
1.36  
1.37  
1.37  
0.71  
0.02  
0.02  
0.02  
1.65  
1.69  
1.65  
1.01  
8.22  
4.31  
0.39  
2.91  
2.85  
1.46  
1.36  
2.92  
2.82  
1.62  
0.02  
0.02  
0.01  
0.01  
0.02  
0.02  
0.11  
DAC Playback 44.1kHz Stereo HP  
DAC à HP  
24-bit, music filters  
DAC Playback 8kHz Stereo HP  
DAC à HP  
16-bit, voice filters  
DAC Playback 8kHz Mono HP  
DAC à HP  
16-bit, voice filters  
DAC Playback 48kHz Stereo SPK  
DAC à SPK  
24-bit, music filters  
39.09  
23.32  
22.48  
DAC Playback 48kHz Mono SPK  
DAC à SPK  
24-bit, music filters  
Line Stereo Record 48kHz  
INA à ADC  
16-bit, music filters  
Line Stereo Record 48kHz, Stereo HP  
INA à ADC  
INA à HP  
10.64  
10.97  
10.49  
2.65  
0.03  
0.02  
0.66  
7.15  
0.39  
1.63  
1.63  
1.63  
0.11  
0.12  
0.16  
29.51  
49.50  
23.58  
16-bit, music filters  
Line Stereo Record 48kHz, Stereo SPK  
INA à ADC  
INA à SPK  
16-bit, music filters  
Differential Line Record 48kHz  
INA à ADCL  
INB à ADCR  
Differential input  
Microphone Stereo Record 48kHz  
MIC1/2 à ADC  
16-bit, music filters  
10.88  
10.77  
0.03  
0.02  
0.69  
0.64  
1.62  
1.03  
0.17  
0.06  
25.43  
23.78  
Microphone Stereo Record 8kHz  
MIC1/2 à ADC  
16-bit, voice filters  
26  
Stereo Audio CODEC  
with FlexSound Technology  
Power Consumption (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V)  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
I
+
SPKLVDD  
I
I
I
I
+ I  
DVDDS2  
(mA)  
POWER  
(mW)  
AVDD  
HPVDD  
(mA)  
DVDD  
DVDDS1  
MODE  
I
SPKRVDD  
(mA)  
(mA)  
(mA)  
Microphone Mono Record 48kHz  
MIC1/2 à ADC  
16-bit, music filters  
6.01  
0.02  
0.66  
1.37  
0.10  
15.97  
14.94  
15.00  
14.98  
Microphone Mono Record 8kHz  
MIC1/2 à ADC  
16-bit, voice filters  
5.95  
5.95  
5.96  
0.02  
0.02  
0.02  
0.64  
0.64  
0.64  
0.98  
0.98  
0.98  
0.04  
0.04  
0.04  
Microphone Mono Record 8kHz  
MIC1/2 à ADC  
16-bit, voice filters, AGC  
Microphone Mono Record 8kHz  
MIC1/2 à ADC  
16-bit, voice filters, AGC, noise gate  
Full-Duplex 48kHz Stereo HP  
MIC1/2 à ADC  
DAC à HP  
11.38  
6.35  
1.37  
0.02  
0.71  
1.37  
1.70  
1.98  
1.01  
1.09  
3.56  
1.47  
1.46  
1.51  
0.19  
0.03  
0.03  
0.05  
36.06  
21.47  
18.72  
28.95  
24-bit, music filters  
Full-Duplex 8kHz Mono RCV  
MIC1 à ADC  
DAC à REC  
16-bit, voice filters  
Full-Duplex 8kHz Mono HP  
MIC1 à ADC  
DAC à HP  
6.09  
16-bit, voice filters  
Full-Duplex 8kHz Stereo HP  
MIC1/2 à ADC  
DAC à HP  
10.92  
16-bit, voice filters  
Line Playback Stereo HP  
INA à HP  
Single-ended inputs  
1.89  
2.21  
1.68  
2.65  
0.02  
0.02  
0.58  
7.05  
3.70  
0.03  
0.04  
0.03  
0.01  
0.02  
0.02  
10.41  
30.19  
16.90  
Line Playback Stereo SPK  
INA à SPK  
Single-ended inputs  
Line Playback Mono SPK  
INA à SPK  
Single-ended inputs  
Differential Line Playback Stereo HP  
INA à HPL  
INB à HPR  
2.46  
2.65  
0.58  
0.03  
0.01  
11.42  
Differential input  
27  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
Microphone to ADC  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (MIC TO ADC)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (MIC TO ADC)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (MIC TO ADC)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
MCLK = 13MHz  
LRCLK = 8kHz  
MCLK = 13MHz  
LRCLK = 44.1kHz  
PLL MODE  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
-10  
FREQ MODE  
= 1V  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
V
= 1V  
MICPRE_  
V
= 1V  
MICPRE_  
IN  
AV  
P-P  
MICPRE_  
IN  
AV  
P-P  
IN  
AV  
P-P  
= 0dB  
= 0dB  
= 0dB  
10  
100  
1000  
10,000  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (MIC TO ADC)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (MIC TO ADC)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (MIC TO ADC)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
MCLK = 12.288MHz  
LRCLK = 96kHz  
NI MODE  
MCLK = 13MHz  
LRCLK = 8kHz  
FREQ MODE  
MCLK = 13MHz  
LRCLK = 8kHz  
FREQ MODE  
V
= 1V  
MICPRE_  
V
= 0.1V  
MICPRE_  
V
IN  
AV  
= 0.032V  
IN  
AV  
P-P  
IN  
AV  
P-P  
= +20dB  
P-P  
= 0dB  
= +30dB  
MICPRE_  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
10  
100  
1000  
10,000  
10  
100  
1000  
10,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
28  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
COMMON-MODE REJECTION  
RATIO vs. FREQUENCY (MIC TO ADC)  
POWER-SUPPLY REJECTION  
RATIO vs. FREQUENCY (MIC TO ADC)  
GAIN vs. FREQUENCY (MIC TO ADC)  
5
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-20  
V
= 200mV  
P-P  
RIPPLE  
INPUTS AC GROUNDED  
-5  
MODE = 1  
AV  
MICPRE_  
= +30dB  
-15  
-25  
-35  
-40  
AV  
MICPRE_  
= +20dB  
-60  
RIPPLE ON AVDD,  
DVDD, HPVDD  
-45  
MODE = 0  
AV  
MICPRE_  
= 0dB  
MCLK = 13MHz  
-55  
-80  
LRCLK = 8kHz  
FREQ MODE  
= 1V  
-65  
-75  
-85  
-100  
-120  
V
IN  
AV  
P-P  
MICPRE_  
RIPPLE ON  
SPKLVDD, SPKRVDD  
= 0dB  
V
= 0dBFS  
OUT, DIFF  
100  
10  
100  
1000  
10,000  
10  
1000  
10,000  
100,000  
10  
100  
1000 10,000  
FREQUENCY (Hz)  
100,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FFT, 0dBFS (MIC TO ADC)  
FFT, -60dBFS (MIC TO ADC)  
FFT, 0dBFS (MIC TO ADC)  
0
0
0
MCLK = 13MHz  
LRCLK = 8kHz  
FREQ MODE  
MCLK = 13MHz  
LRCLK = 8kHz  
FREQ MODE  
MCLK = 13MHz  
LRCLK = 44.1kHz  
PLL MODE  
-20  
-40  
-20  
-40  
-20  
-40  
AV  
= 0dB  
AV  
MICPRE_  
= 0dB  
AV = 0dB  
MICPRE_  
MICPRE_  
-60  
-60  
-60  
-80  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
-100  
-120  
-140  
0
500 1000 1500 2000 2500 3000 3500 4000  
FREQUENCY (Hz)  
0
500 1000 1500 2000 2500 3000 3500 4000  
FREQUENCY (Hz)  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
29  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
1. T = +25NC, unless otherwise noted.)  
A
FFT, -60dBFS (MIC TO ADC)  
FFT, 0dBFS (MIC TO ADC)  
0
-20  
0
MCLK = 13MHz  
LRCLK = 44.1kHz  
PLL MODE  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
-20  
-40  
AV  
MICPRE_  
= 0dB  
AV = 0dB  
MICPRE_  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
FFT, -60dBFS (MIC TO ADC)  
FFT, 0dBFS (MIC TO ADC)  
0
-20  
0
-20  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz  
LRCLK = 96kHz  
NI MODE  
AV  
MICPRE_  
= 0dB  
AV = 0dB  
MICPRE_  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
30  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
1. T = +25NC, unless otherwise noted.)  
A
FFT, -60dBFS (MIC TO ADC)  
ADC ENABLE/DISABLE RESPONSE  
0
-20  
(MIC TO ADC)  
MAX9888 toc18  
MCLK = 12.288MHz  
LRCLK = 96kHz  
NI MODE  
SCL  
2V/div  
AV  
MICPRE_  
= 0dB  
-40  
-60  
ADC  
OUTPUT  
0.5V/div  
-80  
-100  
-120  
-140  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
10ms/div  
SOFTWARE TURN-ON/OFF RESPONSE  
(MIC TO ADC)  
MAX9888 toc19  
SCL  
2V/div  
ADC  
OUTPUT  
0.5V/div  
10ms/div  
31  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
Line to ADC  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (LINE TO ADC)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (LINE TO ADC)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (LINE TO ADC)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
V
IN  
= 1.4V  
V
IN  
= 1V  
V
IN  
= 0.1V  
P-P  
P-P  
P-P  
AV  
PGAIN_  
= -6dB  
C
= 1µF  
AV  
PGAIN_  
= +20dB  
IN  
C
IN  
= 1µF  
AV  
= 0dB  
PGAIN_  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (LINE TO ADC)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (LINE TO ADC)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-20  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
V
= 200mV  
P-P  
RIPPLE  
INPUTS AC GROUNDED  
V
= 1V  
IN  
EXTERNAL GAIN MODE  
RMS  
-40  
R
= 56kI, C = 1µF  
IN  
IN  
-60  
RIPPLE ON AVDD,  
DVDD, HPVDD  
-80  
-100  
-120  
RIPPLE ON  
SPKLVDD, SPKRVDD  
10  
100  
1000  
10,000  
100,000  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
FREQUENCY (Hz)  
32  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
1. T = +25NC, unless otherwise noted.)  
A
Digital Loopback  
FFT, 0dBFS  
(SDINS1 TO SDOUTS2 DIGITAL LOOPBACK)  
FFT, -60dBFS  
(SDINS1 TO SDOUTS2 DIGITAL LOOPBACK)  
0
-20  
0
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
5000  
10,000  
15,000  
20,000  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
FREQUENCY (Hz)  
33  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
Analog Loopback  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
(LINE TO ADC TO DAC TO HEADPHONE)  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
(LINE TO ADC TO DAC TO HEADPHONE )  
FFT, 0dBFS  
(LINE TO ADC TO DAC TO HEADPHONE)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-20  
MCLK = 13MHz  
LRCLK = 44.1kHz  
PLL MODE  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
MCLK = 13MHz  
LRCLK = 44.1kHz  
PLL MODE  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
R
= 32I, C = 1µF  
R
= 32I, C = 1µF  
R
= 32I  
HP  
IN  
HP  
IN  
HP  
-40  
-60  
P
= 0.025W  
P
= 0.025W  
OUT  
OUT  
-80  
-100  
-120  
-140  
P
= 0.01W  
100  
OUT  
P
= 0.01W  
100  
OUT  
10  
1000  
10,000  
100,000  
10  
1000  
10,000  
100,000  
0
5000  
10,000  
15,000  
20,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FFT, -60dBFS  
(LINE TO ADC TO DAC TO HEADPHONE)  
FFT, 0dBFS  
(LINE TO ADC TO DAC TO HEADPHONE)  
FFT, -60dBFS  
(LINE TO ADC TO DAC TO HEADPHONE)  
0
-20  
0
-20  
0
-20  
MCLK = 13MHz  
LRCLK = 44.1kHz  
PLL MODE  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
R
= 32I  
R
= 32I  
R = 32I  
HP  
HP  
HP  
-40  
-40  
-40  
-60  
-60  
-60  
-80  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
-100  
-120  
-140  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
34  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
DAC to Receiver  
TOTAL HARMONIC DISTORTION  
vs. OUTPUT POWER (DAC TO RECEIVER)  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY (DAC TO RECEIVER)  
OUTPUT POWER vs. SUPPLY VOLTAGE  
(DAC TO RECEIVER)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
140  
130  
120  
110  
100  
90  
MCLK = 13MHz  
LRCLK = 8kHz  
FREQ MODE  
MCLK = 13MHz  
LRCLK = 8kHz  
FREQ MODE  
-10  
THD+N = 10%  
THD+N = 1%  
-20  
R
= 32I  
R
= 32I  
REC  
REC  
AV  
REC  
= +8dB  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
P
= 0.05W  
OUT  
f = 3000Hz  
f = 1000Hz  
MCLK = 13MHz  
LRCLK = 8kHz  
FREQ MODE  
80  
R
REC  
= 32I  
70  
AV  
REC  
= +8dB  
f = 100Hz  
P
= 0.025W  
OUT  
60  
0
0.02 0.04 0.06 0.08 0.10 0.12  
OUTPUT POWER (W)  
10  
100  
1000  
10,000  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
GAIN vs. FREQUENCY  
(DAC TO RECEIVER)  
POWER CONSUMPTION vs. OUTPUT  
POWER (DAC TO RECEIVER)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (DAC TO RECEIVER)  
5
4
0.25  
0.20  
0.15  
0.10  
0.05  
0
0
-20  
V
= 200mV  
P-P  
MCLK = 13MHz  
LRCLK = 8kHz  
FREQ MODE  
RIPPLE  
ALL ZEROS AT INPUT  
MCLK = 13MHz  
LRCLK = 8kHz  
FREQ MODE  
3
R
= 32I  
REC  
R
= 32I  
REC  
AV  
2
= +8dB  
REC  
1
-40  
RIPPLE ON SPKLVDD,  
SPKRVDD  
0
-1  
-2  
-3  
-4  
-5  
-60  
-80  
RIPPLE ON AVDD,  
DVDD, HPVDD  
-100  
10  
100  
1000  
10,000  
0
0.02 0.04 0.06 0.08 0.10 0.12  
OUTPUT POWER (W)  
10  
100  
1000  
10,000  
100,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
35  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
SOFTWARE TURN-ON/OFF RESPONSE  
SOFTWARE TURN-ON/OFF RESPONSE  
(DAC TO RECEIVER, VSEN = 0)  
(DAC TO RECEIVER, VSEN = 1)  
FFT, 0dBFS (DAC TO RECEIVER)  
MAX9888 toc39  
MAX9888 toc40  
0
-20  
SCL  
2V/div  
SCL  
2V/div  
MCLK = 13MHz  
LRCLK = 8kHz  
FREQ MODE  
R
= 32I  
REC  
-40  
-60  
RECEIVER  
OUTPUT  
1V/div  
RECEIVER  
OUTPUT  
1V/div  
-80  
-100  
-120  
-140  
10ms/div  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
10ms/div  
WIDEBAND FFT, 0dBFS  
(DAC TO RECEIVER)  
WIDEBAND FFT, -60dBFS  
(DAC TO RECEIVER)  
FFT, -60dBFS (DAC TO RECEIVER)  
0
0
-20  
0
-20  
MCLK = 13MHz  
LRCLK = 8kHz  
FREQ MODE  
MCLK = 13MHz  
LRCLK = 8kHz  
PLL MODE  
MCLK = 13MHz  
LRCLK = 8kHz  
PLL MODE  
-20  
R
= 32I  
R
REC  
= 32I  
R
REC  
= 32I  
REC  
-40  
-60  
-40  
-40  
-60  
-60  
-80  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-100  
-120  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
0
1
10  
100  
1000 10,000  
0
1
10  
100  
1000 10,000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
36  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
1. T = +25NC, unless otherwise noted.)  
A
Line to Receiver  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
(LINE TO RECEIVER)  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
(LINE TO RECEIVER)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
R
= 32I  
REC  
= 1µF  
R
= 32I  
REC  
AV  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
C
= +8dB  
IN  
AV  
REC  
= +8dB  
REC  
f = 6000Hz  
P
= 0.05W  
OUT  
P
= 0.025W  
OUT  
f = 1000Hz  
0.06 0.08  
f = 100Hz  
0
0.02  
0.04  
0.10  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
OUTPUT POWER (W)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (LINE TO RECEIVER)  
GAIN vs. FREQUENCY (LINE TO RECEIVER)  
5
4
0
-20  
R
= 32I  
REC  
= 1µF  
V
= 200mV  
P-P  
RIPPLE  
C
IN  
INPUT AC GROUNDED  
3
2
1
-40  
RIPPLE ON SPKLVDD,  
SPKRVDD  
0
-1  
-2  
-3  
-4  
-5  
-60  
-80  
RIPPLE ON AVDD,  
DVDD, HPVDD  
-100  
10  
100  
1000  
10,000  
100,000  
10  
100  
1000  
10,000  
100,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
37  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
DAC to Speaker  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (DAC TO SPEAKER)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (DAC TO SPEAKER)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (DAC TO SPEAKER)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
= 4.2V  
V
= 3.7V  
V
= 3.V  
SPK_VDD  
SPK_VDD  
SPK_VDD  
MCLK = 12.288MHz, LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz, LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz, LRCLK = 48kHz  
NI MODE  
Z
= 8I+ 68µH  
= +8dB  
Z
= 8I+ 68µH  
= +8dB  
Z
= 8I+ 68µH  
= +8dB  
SPK_  
SPK  
SPK  
SPK  
AV  
AV  
AV  
SPK_  
SPK_  
f = 6000Hz  
-40  
-50  
f = 6000Hz  
f = 6000Hz  
f = 1000Hz  
f = 1000Hz  
f = 1000Hz  
-60  
-70  
-80  
f = 100Hz  
0.6  
f = 100Hz  
f = 100Hz  
0.1  
0
0.2  
0.4  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.3  
0.4  
0.5  
0.6  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (DAC TO SPEAKER)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (DAC TO SPEAKER)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (DAC TO SPEAKER)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
V
= 4.2V  
V
= 3.7V  
V
= 3V  
SPK_VDD  
SPK_VDD  
SPK_VDD  
MCLK = 12.288MHz, LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz, LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz,  
LRCLK = 48kHz  
NI MODE  
Z
SPK  
= 4I+ 33µH  
= +8dB  
Z
= 4I+ 33µH  
= +8dB  
SPK  
AV  
AV  
Z
= 4I + 33µH  
SPK_  
SPK_  
SPK  
AV  
= +8dB  
SPK_  
f = 6000Hz  
f = 6000Hz  
f = 6000Hz  
f = 1000Hz  
f = 1000Hz  
f = 1000Hz  
f = 100Hz  
0.5  
f = 100Hz  
f = 100Hz  
0
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
38  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (DAC TO SPEAKER)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (DAC TO SPEAKER)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (DAC TO SPEAKER)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
V
= 4.2V  
V
= 3.7V  
V
= 4.2V  
SPK_VDD  
SPK_VDD  
SPK_VDD  
MCLK = 12.288MHz,  
LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz,  
LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz,  
LRCLK = 48kHz  
NI MODE  
Z
SPK  
= 8I+ 68µH  
= +8dB  
Z
SPK  
= 8I+ 68µH  
= +8dB  
Z
SPK  
= 4I+ 33µH  
AV  
AV  
SPK_  
SPK_  
P
= 1.0W  
OUT  
P
= 0.25W  
P
= 0.25W  
OUT  
OUT  
OUT  
OUT  
P
= 0.5W  
OUT  
P
= 0.55W  
100  
P
= 0.55W  
100  
10  
1000  
10,000  
100,000  
10  
1000  
10,000  
100,000  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (DAC TO SPEAKER)  
OUTPUT POWER vs. SUPPLY VOLTAGE  
(DAC TO SPEAKER)  
OUTPUT POWER vs. SUPPLY VOLTAGE  
(DAC TO SPEAKER)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
3500  
3000  
2500  
2000  
1500  
1000  
500  
MCLK = 12.288MHz,  
LRCLK = 48kHz  
NI MODE  
V
= 3.7V  
SPK_VDD  
MCLK = 12.288MHz,  
LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz,  
LRCLK = 48kHz  
NI MODE  
Z
SPK  
= 8I+ 68µH  
Z
SPK  
= 4I+ 33µH  
Z
SPK  
= 4I+ 33µH  
THD+N = 10%  
P
= 1.0W  
OUT  
THD+N = 1%  
THD+N = 10%  
P
= 0.5W  
OUT  
THD+N = 1%  
600  
400  
0
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
39  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
GAIN vs. FREQUENCY  
(DAC TO SPEAKER)  
EFFICIENCY vs. OUTPUT POWER  
(DAC TO SPEAKER)  
EFFICIENCY vs. OUTPUT POWER  
(DAC TO SPEAKER)  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
MCLK = 12.288MHz,  
LRCLK = 48kHz  
NI MODE  
4
3
2
Z
= 8I+ 68µH  
SPK  
1
= 4I+ 33µH  
Z
SPK  
Z
SPK  
= 4I+ 33µH  
0
Z
= 8I+ 68µH  
Z
SPK  
= 8I+ 68µH  
SPK  
-1  
-2  
-3  
-4  
-5  
V
= 4.2V  
V
= 3.7V  
SPK_VDD  
SPK_VDD  
MCLK = 12.288MHz,  
LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz,  
LRCLK = 48kHz  
NI MODE  
AV  
SPK_  
= +8dB  
AV  
SPK_  
= +8dB  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
OUTPUT POWER PER CHANNEL (W)  
OUTPUT POWER PER CHANNEL (W)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(DAC TO SPEAKER)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (DAC TO SPEAKER)  
POWER-SUPPLY REJECTION RATIO  
vs. SUPPLY VOLTAGE (DAC TO SPEAKER)  
30  
0
-20  
0
-20  
RIPPLE ON SPKLVDD, SPKRVDD  
MCLK = 12.288MHz,  
LRCLK = 48kHz  
V
= 200mV  
P-P  
RIPPLE  
V
= 200mV  
RIPPLE  
P-P  
25  
20  
15  
10  
5
f = 1kHz  
Z
SPK  
= 8I+ 68µH  
NI MODE  
AV = +8dB  
SPK_  
-40  
RIPPLE ON SPKLVDD,  
SPKRVDD  
-40  
ALL ZEROS AT INPUT  
-60  
-60  
-80  
-80  
RIPPLE ON AVDD,  
DVDD, HPVDD  
0
-100  
-100  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
10  
100  
1000  
10,000  
100,000  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SPK_VDD SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
40  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
SOFTWARE TURN-ON/OFF RESPONSE  
SOFTWARE TURN-ON/OFF RESPONSE  
CROSSTALK vs. FREQUENCY  
(DAC TO SPEAKER)  
(DAC TO SPEAKER, VSEN = 0)  
(DAC TO SPEAKER, VSEN = 1)  
MAX9888 toc68  
MAX9888 toc69  
0
SCL  
2V/div  
SCL  
2V/div  
MCLK = 12.288MHz,  
LRCLK = 48kHz  
-10  
NI MODE  
-20  
Z
SPK  
= 8I+ 68µH  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
SPEAKER  
OUTPUT  
1V/div  
SPEAKER  
OUTPUT  
1V/div  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
10ms/div  
10ms/div  
WIDEBAND FFT  
(DAC TO SPEAKER)  
FFT, -60dBFS (DAC TO SPEAKER)  
FFT, -60dBFS (DAC TO SPEAKER)  
0
0
-20  
20  
10  
MCLK = 12.288MHz,  
LRCLK = 48kHz  
NI MODE  
MCLK = 13MHz,  
LRCLK = 44.1kHz  
PLL MODE  
MCLK = 13MHz,  
LRCLK = 44.1kHz  
PLL MODE  
-20  
-40  
0
Z
SPK  
= 8I+ 68µH  
Z
SPK  
= 8I+ 68µH  
Z
SPK  
= 8I+ 68µH  
-40  
-10  
-20  
-30  
-40  
-50  
-60  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
1
10  
FREQUENCY (MHz)  
100  
41  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
Line to Speaker  
GAIN vs. FREQUENCY  
(LINE TO SPEAKER)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (LINE TO SPEAKER)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (LINE TO SPEAKER)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
5
4
Z
AV  
= 8I+ 68µH  
Z
C
AV  
= 8I+ 68µH  
= 1µF  
Z = 8I+ 68µH  
SPK  
C = 1µF  
IN  
SPK  
SPK  
IN  
= +8dB  
SPK_  
3
= +8dB  
SPK_  
2
1
P
= 0.55W  
OUT  
0
f = 6000Hz  
-1  
-2  
-3  
-4  
-5  
P
= 0.25W  
OUT  
f = 100Hz  
0.6  
f = 1000Hz  
0.2  
0
0.4  
0.8  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
10  
100  
1000  
10,000  
100,000  
OUTPUT POWER (W)  
FREQUENCY (Hz)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (LINE TO SPEAKER)  
CROSSTALK vs. FREQUENCY  
(LINE TO SPEAKER)  
0
-20  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
Z
= 8I+ 68µH  
SPK  
V
= 200mV  
RMS  
RIPPLE  
INPUT AC GROUNDED  
RIPPLE ON AVDD,  
DVDD, HPVDD  
-40  
-60  
-80  
RIPPLE ON SPKLVDD,  
SPKRVDD  
-100  
10  
100  
1000  
10,000  
100,000  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
FREQUENCY (Hz)  
42  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
DAC to Headphone  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (DAC TO HEADPHONE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (DAC TO HEADPHONE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (DAC TO HEADPHONE)  
0
0
0
MCLK = 13MHz  
LRCLK = 8kHz  
FREQ MODE  
MCLK = 13MHz  
LRCLK = 44.1kHz  
PLL MODE  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
R
= 32I  
R
= 32I  
R
= 32I  
HP  
HP  
HP  
AV  
HP_  
= +3dB  
AV  
HP_  
= +3dB  
AV  
HP_  
= +3dB  
f = 6000Hz  
f = 1000Hz  
f = 3000Hz  
f = 1000Hz  
f = 6000Hz  
f = 1000Hz  
f = 100Hz  
0.03 0.04  
OUTPUT POWER (W)  
f = 100Hz  
0.03 0.04  
OUTPUT POWER (W)  
f = 100Hz  
0.03 0.04  
OUTPUT POWER (W)  
0
0.01  
0.02  
0.05  
0
0.01  
0.02  
0.05  
0
0.01  
0.02  
0.05  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (DAC TO HEADPHONE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (DAC TO HEADPHONE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (LINE TO SPEAKER)  
0
0
0
MCLK = 12.288MHz  
LRCLK = 96kHz  
NI MODE  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
MCLK = 13MHz  
LRCLK = 8kHz  
FREQ MODE  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
R
= 32I  
R
= 16I  
R
= 32I  
HP  
HP  
HP  
AV  
HP_  
= +3dB  
AV  
HP_  
= +3dB  
AV  
HP_  
= +3dB  
f = 6000Hz  
f = 1000Hz  
f = 6000Hz  
f = 1000Hz  
P
= 0.01W  
OUT  
f = 100Hz  
P
= 0.02W  
OUT  
f = 100Hz  
0.03 0.04  
OUTPUT POWER (W)  
0
0.01  
0.02  
0.05  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08  
OUTPUT POWER (W)  
10  
100  
1000  
10,000  
FREQUENCY (Hz)  
43  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (DAC TO HEADPHONE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (DAC TO HEADPHONE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (DAC TO HEADPHONE)  
0
0
0
MCLK = 13MHz  
LRCLK = 44.1kHz  
PLL MODE  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz  
LRCLK = 96kHz  
NI MODE  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
R
= 32I  
R
= 32I  
R
= 32I  
HP  
HP  
HP  
AV  
HP_  
= +3dB  
AV  
HP_  
= +3dB  
AV  
HP_  
= +3dB  
P
= 0.025W  
= 0.01W  
P
= 0.025W  
= 0.01W  
OUT  
OUT  
P
= 0.025W  
OUT  
P
P
OUT  
OUT  
P
= 0.1W  
OUT  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (DAC TO HEADPHONE)  
GAIN vs. FREQUENCY  
(DAC TO HEADPHONE)  
HPVDD INPUT CURRENT vs. OUTPUT  
POWER (DAC TO HEADPHONE)  
0
10  
0
120  
100  
80  
60  
40  
20  
0
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
MODE = 1  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
R
= 16I  
HP  
P
= 0.01W  
OUT  
P
MODE = 0  
R
= 16I  
HP  
MCLK = 13MHz  
LRCLK = 8kHz  
NI MODE  
R
= 32I  
HP  
= 0.0.25W  
R
= 32I  
OUT  
HP  
10  
100  
1000  
10,000  
100,000  
10  
100  
1000  
10,000  
100,000  
0.01  
0.1  
1
10  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
OUTPUT POWER PER CHANNEL (mW)  
44  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (DAC TO HEADPHONE)  
CROSSTALK vs. FREQUENCY  
(DAC TO HEADPHONE)  
SOFTWARE TURN-ON/OFF RESPONSE  
(DAC TO HEADPHONE, VSEN = 0)  
MAX9888 toc92  
0
-40  
-50  
SCL  
2V/div  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
V
= 200mV  
P-P  
RIPPLE  
INPUT ALL ZEROS  
-20  
-40  
R
= 32I  
HP  
-60  
HEADPHONE  
OUTPUT  
-70  
RIPPLE ON SPKLVDD,  
SPKRVDD  
0.5V/div  
-60  
-80  
-80  
-90  
RIPPLE ON AVDD,  
DVDD, HPVDD  
-100  
-100  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
10  
100  
1000  
10,000  
100,000  
10ms/div  
FREQUENCY (Hz)  
SOFTWARE TURN-ON/OFF RESPONSE  
(DAC TO HEADPHONE, VSEN = 1)  
FFT, 0dBFS (DAC TO HEADPHONE)  
FFT, -60dBFS (DAC TO HEADPHONE)  
MAX9888 toc93  
0
0
-20  
SCL  
2V/div  
MCLK = 13MHz,  
LRCLK = 8kHz  
FREQ MODE  
MCLK = 13MHz,  
LRCLK = 8kHz  
FREQ MODE  
-20  
-40  
-40  
R
= 32I  
R
= 32I  
HP  
HP  
-60  
-60  
HEADPHONE  
OUTPUT  
-80  
-80  
0.5V/div  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
10ms/div  
0
5000  
10,000  
15,000  
20,000  
0
5000  
10,000  
15,000  
20,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
45  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV = 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
SPK_  
PGAIN_  
PGAOUT_  
HP_  
REC  
1. T = +25NC, unless otherwise noted.)  
A
FFT, -60dBFS (DAC TO HEADPHONE)  
FFT, 0dBFS (DAC TO HEADPHONE)  
0
0
-20  
MCLK = 13MHz,  
LRCLK = 44.1kHz  
PLL MODE  
MCLK = 13MHz,  
LRCLK = 44.1kHz  
PLL MODE  
-20  
-40  
-60  
R = 32I  
HP  
R
= 32I  
HP  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
0
5000  
10,000  
15,000  
20,000  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
FREQUENCY (Hz)  
FFT, 0dBFS (DAC TO HEADPHONE)  
0
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
-20  
-40  
R
= 32I  
HP  
-60  
-80  
-100  
-120  
-140  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
46  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
FFT, -60dBFS (DAC TO HEADPHONE)  
FFT, 0dBFS (DAC TO HEADPHONE)  
FFT, -60dBFS (DAC TO HEADPHONE)  
0
0
-20  
0
-20  
MCLK = 12.288MHz  
LRCLK = 48kHz  
NI MODE  
MCLK = 12.288MHz  
LRCLK = 96kHz  
NI MODE  
MCLK = 2.288MHz  
LRCLK = 96kHz  
NI MODE  
-20  
-40  
-40  
R
= 32I  
R
= 32I  
R
= 32I  
HP  
HP  
HP  
-40  
-60  
-80  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
0
5000  
10,000  
15,000  
20,000  
0
5000  
10,000  
FREQUENCY (Hz)  
15,000  
20,000  
0
5000  
10,000  
15,000  
20,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
WIDEBAND FFT, -60dBFS  
(DAC TO HEADPHONE)  
WIDEBAND FFT, 0dBFS  
(DAC TO HEADPHONE)  
20  
0
20  
0
MCLK = 13MHz  
LRCLK = 44.1kHz  
PLL MODE  
MCLK = 13MHz  
LRCLK = 44.1kHz  
PLL MODE  
A
R
= -3dB  
= 32I  
A
R
= -3dB  
= 32I  
VHP_  
HP  
VHP_  
HP  
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
0
1
10  
100  
1000 10,000  
0
1
10  
100  
1000 10,000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
47  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
Line to Headphone  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER (LINE TO HEADPHONE)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY (LINE TO HEADPHONE)  
GAIN vs. FREQUENCY  
(LINE TO HEADPHONE)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
5
4
R
HP  
A
VHP_  
= 32I  
= +3dB  
R
C
= 32I  
= 1µF  
R
= 32I  
HP  
IN  
HP  
IN  
C = 1µF  
3
2
1
0
f = 6000Hz  
-1  
-2  
-3  
-4  
-5  
P
= 0.01W  
OUT  
f = 1000Hz  
f = 100Hz  
P
= 0.025W  
OUT  
0
0.01  
0.02  
0.03  
0.04  
0.05  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
10  
100  
1000  
10,000  
100,000  
OUTPUT POWER (W)  
FREQUENCY (Hz)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY (LINE TO HEADPHONE)  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY (LINE TO HEADPHONE)  
CROSSTALK vs. FREQUENCY  
(LINE TO HEADPHONE)  
0
-20  
70  
60  
50  
40  
30  
20  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
R
= 32I  
HP  
V
= 200mV  
V
C
R
= -6dBV  
OUT  
RIPPLE  
P-P  
= 1µF  
IN  
= 32I  
HP  
RIPPLE ON AVDD,  
DVDD, HPVDD  
AV  
= 0dB  
PGAIN_  
-40  
AV  
= 20dB  
PGAIN_  
-60  
RIPPLE ON SPKLVDD,  
SPKRVDD  
-80  
-100  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
10  
100  
1000  
FREQUENCY (Hz)  
10,000  
100,000  
10  
100  
1000  
10,000  
100,000  
FREQUENCY (Hz)  
48  
Stereo Audio CODEC  
with FlexSound Technology  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= V  
= V  
= V  
= +1.8V, V  
= V  
= 3.7V. Speaker loads (Z  
) connected  
SPK  
HPVDD  
DVDD  
DVDDS1  
DVDDS2  
SPKLVDD  
SPKRVDD  
between SPK_P and SPK_N. Receiver load (R  
) connected between RECP and RECN. Headphone loads (R ) connected from  
REC  
HP  
= 1FF, C  
C1N-C1P HPVSS  
HPL or HPR to GND. R  
= J, R  
= J, Z  
= J, C  
= 2.2FF, C  
= C  
= C  
= 1FF, C  
HP  
REC  
SPK  
REF  
MICBIAS  
PREG  
REG  
= 1FF. AV  
= +20dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB,  
ADCGAIN  
MICPRE_  
MICPGA_  
DACATTN  
DACGAIN  
ADCLVL  
AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, AV  
= 0dB, MCLK = 12.288MHz, LRCLK = 48kHz, MAS =  
PGAIN_  
PGAOUT_  
HP_  
REC  
SPK_  
1. T = +25NC, unless otherwise noted.)  
A
Speaker Bypass Switch  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
(SPEAKER BYPASS SWITCH)  
ON RESISTANCE vs. V  
(SPEAKER BYPASS SWITCH)  
COM  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
I
= 20mA  
SW  
RECEIVER AMPLIFIER DRIVING  
LOUDSPEAKER  
Z
= 8I+ 68µH  
SPK  
V
= 3.0V  
SPK_VDD  
V
= 3.7V  
SPK_VDD  
V
f = 6000Hz  
= 4.2V  
SPK_VDD  
V
= 5.0V  
5
SPK_VDD  
f = 1000Hz  
f = 100Hz  
0
1
2
3
4
6
0
0.05  
0.10  
0.15  
0.20  
V
(V)  
OUTPUT POWER (W)  
COM  
OFF-ISOLATION vs. FREQUENCY  
(SPEAKER BYPASS SWITCH)  
0
-20  
-40  
-60  
-80  
SPEAKER AMP DRIVING LOUDSPEAKER  
SPEAKER BYPASS SWITCH OPEN  
MEASURED AT RXIN_  
50I LOAD ON RXIN_  
RECEIVER AMP DRIVING RXIN_  
-100  
-120  
10  
100  
1000  
10,000  
100,000  
FREQUENCY (Hz)  
49  
Stereo Audio CODEC  
with FlexSound Technology  
Pin Configuration  
TOP VIEW  
(BUMP SIDE DOWN)  
1
2
3
4
5
6
7
8
9
RECP/  
RXINP  
SPKRN  
SPKRGND  
SPKLVDD  
SPKLP  
SPKLN  
HPVDD  
HPGND  
HPVSS  
A
B
C
D
E
RECN/  
RXINN  
SPKRN  
SPKRP  
SPKRGND  
SPKRP  
SPKLVDD  
SPKRVDD  
SPKLP  
SPKLN  
C1P  
N.C.  
C1N  
HPL  
HPR  
SPKLGND  
SPKLGND  
HPSNS  
INB2  
MAX9888  
INA2/  
EXTMICN  
BCLKS1  
LRCLKS1  
SPKRVDD  
SDINS1  
N.C.  
JACKSNS  
N.C.  
INB1  
INA1/  
EXTMICP  
MIC1P/  
DIGMICDATA  
DVDDS1  
DGND  
MCLK  
N.C.  
SDOUTS1  
IRQ  
SCL  
N.C.  
REG  
N.C.  
REF  
MIC1N/  
DIGMICCLK  
BCLKS2  
DVDDS2  
LRCLKS2  
SDINS2  
SDA  
MIC2P  
MIC2N  
F
SDOUTS2  
DVDD  
AVDD  
PREG  
AGND  
MICBIAS  
G
50  
Stereo Audio CODEC  
with FlexSound Technology  
Pin Description  
PIN  
NAME  
FUNCTION  
A1, B1  
A2, B2  
SPKRN  
Negative Right-Channel Class D Speaker Output  
SPKRGND Right-Speaker Ground  
Left-Speaker, REF, Receiver Amplifier Power Supply. Bypass to SPKLGND with a 1FF and a 10FF  
capacitor.  
A3, B3  
SPKLVDD  
A4, B4  
A5, B5  
SPKLP  
SPKLN  
Positive Left-Channel Class D Speaker Output  
Negative Left-Channel Class D Speaker Output  
Positive Receiver Amplifier Output. Can be positive bypass switch input when receiver amp is shut  
down.  
A6  
RECP/RXINP  
A7  
A8  
A9  
HPVDD  
HPGND  
HPVSS  
Headphone Power Supply. Bypass to HPGND with a 1FF capacitor.  
Headphone Ground  
Inverting Charge-Pump Output. Bypass to HPGND with a 1FF ceramic capacitor.  
Negative Receiver Amplifier Output. Can be negative bypass switch input when receiver amp is shut  
down.  
B6  
B7  
B8  
RECN/RXINN  
C1P  
Charge-Pump Flying Capacitor Positive Terminal. Connect a 1FF ceramic capacitor between C1N  
and C1P.  
Charge-Pump Flying Capacitor Negative Terminal. Connect a 1FF ceramic capacitor between C1N  
and C1P.  
C1N  
B9  
HPL  
Left-Channel Headphone Output  
C1, C2  
C3, D3  
C4, C5  
SPKRP  
Positive Right-Channel Class D Speaker Output  
SPKRVDD Right-Speaker Power Supply. Bypass to SPKRGND with a 1FF capacitor.  
SPKLGND Left-Speaker Ground  
Headphone Amplifier Ground Sense. Connect to the headphone jack ground terminal or connect to  
C6  
HPSNS  
ground.  
C7, D5, D7,  
E3, E6, E7  
N.C.  
No Connection  
C8  
C9  
INB2  
HPR  
Single-Ended Line Input B2. Also positive differential line input B.  
Right-Channel Headphone Output  
S1 Digital Audio Bit Clock Input/Output. BCLKS1 is an input when the MAX9888 is in slave mode and  
an output when in master mode. The input/output voltage is referenced to DVDDS1.  
D1  
BCLKS1  
S1 Digital Audio Left-Right Clock Input/Output. LRCLKS1 is the audio sample rate clock and  
determines whether S1 audio data is routed to the left or right channel. In TDM mode, LRCLKS1 is a  
frame sync pulse. LRCLKS1 is an input when the MAX9888 is in slave mode and an output when in  
master mode. The input/output voltage is referenced to DVDDS1.  
D2  
LRCLKS1  
SDINS1  
D4  
D6  
D8  
S1 Digital Audio Serial-Data DAC Input. The input voltage is referenced to DVDDS1.  
JACKSNS Jack Sense. Detects the insertion of a jack. See the Headset Detection section.  
INB1  
Single-Ended Line Input B1. Also negative differential line input B.  
INA2/  
Single-Ended Line Input A2. Also positive differential line input A or negative differential external  
D9  
EXTMICN microphone input.  
51  
Stereo Audio CODEC  
with FlexSound Technology  
Pin Description (continued)  
PIN  
E1  
NAME  
DVDDS1  
MCLK  
FUNCTION  
S1 Digital Audio Interface Power-Supply Input. Bypass to DGND with a 1FF capacitor.  
E2  
Master Clock Input. Acceptable input frequency range is 10MHz to 60MHz.  
E4  
SDOUTS1 S1 Digital Audio Serial-Data ADC Output. The output voltage is referenced to DVDDS1.  
Hardware Interrupt Output. IRQ can be programmed to pull low when bits in status register 0x00  
change state. Read status register 0x00 to clear IRQ once set. Repeat faults have no effect on IRQ  
E5  
E8  
IRQ  
until it is cleared by reading the I2C status register 0x00. Connect a 10kIpullup resistor to DVDD for  
full output swing.  
MIC1P/  
Positive Differential Microphone 1 Input. AC-couple a microphone with a series 1FF capacitor. Can  
DIGMICDATA be retasked as a digital microphone data input.  
INA1/ Single-Ended Line Input A1. Also negative differential line input A or positive differential external  
EXTMICP microphone input.  
E9  
F1  
F2  
DGND  
Digital Ground  
S2 Digital Audio Bit Clock Input/Output. BCLKS2 is an input when the IC is in slave mode and an  
output when in master mode. The input/output voltage is referenced to DVDDS2.  
BCLKS2  
S2 Digital Audio Left-Right Clock Input/Output. LRCLKS2 is the audio sample rate clock and  
determines whether audio data on S2 is routed to the left or right channel. In TDM mode, LRCLKS2 is  
a frame sync pulse. LRCLKS2 is an input when the IC is in slave mode and an output when in master  
mode. The input/output voltage is referenced to DVDDS2.  
F3  
LRCLKS2  
F4  
F5  
F6  
F7  
SDA  
SCL  
I2C Serial-Data Input/Output. Connect a pullup resistor to DVDD for full output swing.  
I2C Serial-Clock Input  
REG  
Common-Mode Voltage Reference. Bypass to AGND with a 1FF capacitor.  
Converter Reference. Bypass to AGND with a 2.2FF capacitor.  
Negative Differential Microphone 1 Input. AC-couple a microphone with a series 1FF capacitor. Can  
REF  
MIC1N/  
F8  
DIGMICCLK be retasked as a digital microphone clock output.  
MIC2P Positive Differential Microphone 2 Input. AC-couple a microphone with a series 1FF capacitor.  
SDOUTS2 S2 Digital Audio Serial-Data ADC Output. The output voltage is referenced to DVDDS2.  
F9  
G1  
G2  
G3  
DVDDS2  
SDINS2  
S2 Digital Audio Interface Power-Supply Input. Bypass to DGND with a 1FF capacitor.  
S2 Digital Audio Serial-Data DAC Input. The input voltage is referenced to DVDDS2.  
Digital Power Supply. Supply for the digital core and I2C interface. Bypass to DGND with a 1FF  
capacitor.  
G4  
DVDD  
G5  
G6  
G7  
AVDD  
PREG  
AGND  
Analog Power Supply. Bypass to AGND with a 1FF capacitor.  
Positive Internal Regulated Supply. Bypass to AGND with a 1FF capacitor.  
Analog Ground  
Low-Noise Bias Voltage. Outputs a 2.2V microphone bias. An external resistor in the 2.2kI to 1kI  
range should be used to set the microphone current.  
G8  
G9  
MICBIAS  
MIC2N  
Negative Differential Microphone 2 Input. AC-couple a microphone with a series 1FF capacitor.  
52  
Stereo Audio CODEC  
with FlexSound Technology  
When the receiver amplifier is disabled, analog switches  
Detailed Description  
The MAX9888 is a fully integrated stereo audio codec  
with FlexSound technology and integrated amplifiers.  
allow RECP/RXINP and RECN/RXINN to be reused for  
signal routing. In systems where a single transducer is  
used for both the loudspeaker and receiver, an exter-  
nal receiver amplifier can be routed to the left speaker  
through RECP/RXINP and RECN/RXINN, bypassing the  
Class D amplifier, to connect to the loudspeaker. If the  
internal receiver amplifier is used, then leave RECP/  
RXINP and RECN/RXINN unconnected. In systems  
where an external amplifier drives both the receiver and  
the MAX9888’s input, one of the differential signals can  
be disconnected from the receiver when not needed  
by passing it through the analog switch that connects  
RECP/RXINP to RECN/RXINN.  
Two differential microphone amplifiers can accept sig-  
nals from three analog inputs. One input can be retasked  
to support two digital microphones. Any combination of  
two microphones (analog or digital) can be recorded  
simultaneously. The analog signals are amplified up  
to 50dB and recorded by the stereo ADC. The digital  
record path supports voice filtering with selectable  
preset highpass filters and high stopband attenuation  
at f /2. An automatic gain control (AGC) circuit moni-  
S
tors the digitized signal and automatically adjusts the  
analog microphone gain to make best use of the ADC’s  
dynamic range. A noise gate attenuates signals below  
the user-defined threshold to minimize the noise output  
by the ADC.  
The stereo Class D amplifier provides efficient amplifi-  
cation for two speakers. The amplifier includes active  
emissions limiting to minimize the radiated emissions  
(EMI) traditionally associated with Class D. In most  
systems, no output filtering is required to meet standard  
EMI limits.  
The IC includes two analog line inputs. One of the line  
inputs can be optionally retasked as a third analog micro-  
phone input. Both line inputs support either stereo single-  
ended input signals or mono differential signals. The line  
inputs are preamplified and then routed either to the ADC  
for recording or to the output amplifiers for playback.  
To optimize speaker sound quality, the IC includes an  
excursion limiter, a distortion limiter, and a power limiter.  
The excursion limiter is a dynamic highpass filter with  
variable corner frequency that increases in response  
to high signal levels. Low-frequency energy typically  
causes more distortion than useful sound at high sig-  
nal levels, so attenuating low frequencies allows the  
speaker to play louder without distortion or damage. At  
lower signal levels, the filter corner frequency reduces  
to pass more low frequency energy when the speaker  
can handle it. The distortion limiter reduces the volume  
when the output signal exceeds a preset distortion level.  
This ensures that regardless of input signal and battery  
voltage, excessive distortion is never heard by the user.  
The power limiter monitors the continuous power into the  
loudspeaker and lowers the signal level if the speaker is  
at risk of overheating.  
Integrated analog switches allow two differential micro-  
phone signals to be routed out the third microphone  
input to an external device. This eliminates the need  
for an external analog switch in systems that have two  
devices recording signals from the same microphone.  
Through two digital audio interfaces, the device can  
transmit one stereo audio signal and receive two stereo  
audio signals in a wide range of formats including I2S,  
PCM, and up to four mono slots in TDM. Each interface  
can be connected to either of two audio ports (S1 and  
S2) for communication with external devices. Both audio  
interfaces support 8kHz to 96kHz sample rates. Each  
input signal is independently equalized using 5-band  
parametric equalizers. A multiband automatic level  
control (ALC) boosts signals by up to 12dB. One signal  
path additionally supports the same voiceband filtering  
as the ADC path.  
The stereo DirectDrive headphone amplifier uses an  
inverting charge pump to generate a ground-referenced  
output signal. This eliminates the need for DC-blocking  
capacitors or a midrail bias for the headphone jack  
ground return. Ground sense reduces output noise  
caused by ground return current.  
The IC includes a differential receiver amplifier, stereo  
Class D speaker amplifiers, and DirectDrive true ground  
stereo headphone amplifiers.  
The IC integrates jack detection allowing the detection  
of insertion and removal of accessories as well as button  
presses.  
53  
Stereo Audio CODEC  
with FlexSound Technology  
2
I C Slave Address  
Registers  
Configure the MAX9888 using the I2C control bus. The  
IC uses a slave address of 0x20 or 00100000 for write  
operations and 0x21 or 00100001 for read operations.  
See the I2C Serial Interface section for a complete inter-  
face description.  
Table 1 lists all of the registers, their addresses, and  
power-on-reset states. Registers 0x00 to 0x03 and 0xFF  
are read-only while all of the other registers are read/  
write. Write zeros to all unused bits in the register table  
when updating the register, unless otherwise noted.  
Table 1. Register Map  
REGISTER  
STATUS  
Status  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ADDRESS DEFAULT R/W PAGE  
CLD  
SLD  
NG  
ULK  
AGC  
JDET  
0x00  
0x01  
0x02  
0x03  
R
R
R
103  
65  
Microphone  
AGC/NG  
Jack Status  
JKSNS  
0
101  
Battery  
Voltage  
VBAT  
R/W 102  
R/W 103  
Interrupt  
Enable  
ICLD  
ISLD  
IULK  
0
0
0
0
IJDET  
0
0
0
0x0F  
0x10  
0x00  
0x00  
MASTER CLOCK CONTROL  
Master Clock  
0
0
PSCLK  
R/W  
76  
DAI1 CLOCK CONTROL  
Clock Mode  
SR1  
FREQ1  
0x11  
0x12  
0x13  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
76  
77  
77  
PLL1  
NI1[14:8]  
Any Clock  
Control  
NI1[7:1]  
NI1[0]  
WS1  
DAI1 CONFIGURATION  
Format  
Clock  
MAS1  
WCI1  
BCI1  
0
DLY1  
0
0
0
TDM1  
FSW1  
0x14  
0x15  
0x00  
0x00  
R/W  
R/W  
71  
72  
OSR1  
BSEL1  
I/O  
SEL1  
LTEN1  
LBEN1 DMONO1 HIZOFF1 SDOEN1 SDIEN1  
SLOTDLY1  
DVFLT1  
0x16  
0x00  
R/W  
72  
Configuration  
Time-Division  
Multiplex  
SLOTL1  
SLOTR1  
0x17  
0x18  
0x00  
0x00  
R/W  
R/W  
73  
79  
Filters  
MODE1  
AVFLT1  
DHF1  
DAI2 CLOCK CONTROL  
Clock Mode  
SR2  
0
0
0
0
0x19  
0x1A  
0x1B  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
76  
77  
77  
PLL2  
NI2[14:8]  
Any Clock  
Control  
NI2[7:1]  
NI2[0]  
DAI2 CONFIGURATION  
Format  
Clock  
MAS2  
0
WCI2  
0
BCI2  
DLY2  
0
0
0
TDM2  
FSW2  
WS2  
0x1C  
0x1D  
0x1E  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
71  
72  
72  
0
0
BSEL2  
I/O  
SEL2  
LBEN2 DMONO2 HIZOFF2 SDOEN2 SDIEN2  
Configuration  
54  
Stereo Audio CODEC  
with FlexSound Technology  
Table 1. Register Map (continued)  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ADDRESS DEFAULT R/W PAGE  
Time-Division  
Multiplex  
SLOTL2  
SLOTR2  
SLOTDLY2  
0x1F  
0x20  
0x00  
0x00  
R/W  
R/W  
73  
79  
Filters  
0
0
0
0
DHF2  
0
0
DCB2  
MIXERS  
DAC Mixer  
MIXDAL  
MIXDAR  
0x21  
0x22  
0x00  
0x00  
R/W  
R/W  
85  
64  
Left ADC  
Mixer  
MIXADL  
MIXADR  
Right ADC  
Mixer  
0x23  
0x24  
0x25  
0x26  
0x00  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
64  
86  
86  
86  
Preoutput 1  
Mixer  
0
0
0
0
0
0
0
0
0
0
0
0
MIXOUT1  
MIXOUT2  
MIXOUT3  
Preoutput 2  
Mixer  
Preoutput 3  
Mixer  
Headphone  
Amplifier  
Mixer  
MIXHPL  
MIXHPR  
MIXREC  
MIXSPR  
0x27  
0x28  
0x29  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
97  
88  
90  
Receiver  
Amplifier  
Mixer  
0
0
0
0
0
Speaker  
Amplifier  
Mixer  
MIXSPL  
LEVEL CONTROL  
Sidetone  
DSTS  
DVST  
0x2A  
0x2B  
0x00  
0x00  
R/W  
R/W  
69  
84  
DAI1  
Playback  
Level  
DV1M  
0
0
0
0
DV1G  
DV1  
DVEQ1  
DV2  
DAI1  
Playback  
Level  
0
0
0
0
0x2C  
0x2D  
0x2E  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
83  
84  
83  
EQCLP1  
DAI2  
Playback  
Level  
DV2M  
0
0
DAI2  
Playback  
Level  
DVEQ2  
EQCLP2  
Left ADC  
Level  
0
0
0
0
0
AVLG  
AVRG  
AVL  
AVR  
0x2F  
0x30  
0x31  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
68  
68  
61  
Right ADC  
Level  
Microphone  
1 Input Level  
PA1EN  
PGAM1  
55  
Stereo Audio CODEC  
with FlexSound Technology  
Table 1. Register Map (continued)  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ADDRESS DEFAULT R/W PAGE  
Microphone  
2 Input Level  
0
PA2EN  
PGAM2  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
61  
63  
63  
87  
87  
87  
INA Input  
Level  
0
0
0
0
0
INAEXT  
0
0
0
0
0
0
0
0
0
0
0
0
PGAINA  
PGAINB  
INB Input  
Level  
INBEXT  
Preoutput 1  
Level  
0
0
0
PGAOUT1  
Preoutput 2  
Level  
PGAOUT2  
PGAOUT3  
Preoutput 3  
Level  
Left  
Headphone  
Amplifier  
Volume  
Control  
HPLM  
HPRM  
0
0
0
0
HPVOLL  
0x38  
0x39  
0x00  
0x00  
R/W  
R/W  
97  
97  
Right  
Headphone  
Amplifier  
Volume  
Control  
HPVOLR  
Receiver  
Amplifier  
Volume  
Control  
RECM  
SPLM  
0
0
0
0
RECVOL  
SPVOLL  
0x3A  
0x3B  
0x00  
0x00  
R/W  
R/W  
88  
90  
Left Speaker  
Amplifier  
Volume  
Control  
Right  
Speaker  
Amplifier  
Volume  
Control  
SPRM  
0
0
SPVOLR  
0x3C  
0x00  
R/W  
90  
MICROPHONE AGC  
Configuration AGCSRC  
Threshold  
AGCRLS  
AGCATK  
AGCHLD  
0x3D  
0x3E  
0x00  
0x00  
R/W  
R/W  
65  
66  
ANTH  
AGCTH  
SPEAKER SIGNAL PROCESSING  
Excursion  
Limiter Filter  
0
DHPUCF  
0
0
DHPLCF  
0x3F  
0x00  
R/W  
92  
Excursion  
Limiter  
Threshold  
0
0
0
0
0
DHPTH  
ALCTH  
0x40  
0x41  
0x00  
0x00  
R/W  
R/W  
92  
82  
ALC  
ALCEN  
ALCRLS  
ALCMB  
56  
Stereo Audio CODEC  
with FlexSound Technology  
Table 1. Register Map (continued)  
REGISTER  
Power Limiter  
Power Limiter  
B7  
B6  
PWRTH  
PWRT2  
B5  
B4  
B3  
B2  
B1  
B0  
ADDRESS DEFAULT R/W PAGE  
0
PWRK  
0x42  
0x43  
0x00  
0x00  
R/W  
R/W  
93  
94  
PWRT1  
Distortion  
Limiter  
THDCLP  
0
THDT1  
0x44  
0x00  
R/W  
95  
CONFIGURATION  
Audio Input INADIFF INBDIFF  
0
0
0
0
0
0
0
0
0
0
0x45  
0x46  
0x47  
0x00  
0x00  
0x00  
R/W  
R/W  
63  
61  
Microphone  
MICCLK  
DIGMICL DIGMICR  
EXTMIC  
Level Control  
0
EQ2EN EQ1EN  
R/W 99, 83  
VS2EN  
VSEN  
ZDEN  
Bypass  
Switches  
INABYP  
JDETEN  
0
0
MIC2BYP  
0
0
0
0
RECBYP SPKBYP  
0x48  
0x49  
0x00  
0x00  
R/W 62, 98  
Jack  
Detection  
0
0
0
0
0
JDEB  
R/W 101  
POWER MANAGEMENT  
Input Enable INAEN INBEN  
MBEN  
0
0
ADLEN ADREN  
DALEN DAREN  
0x4A  
0x4B  
0x00  
0x00  
R/W  
R/W  
59  
59  
Output Enable HPLEN HPREN SPLEN SPREN RECEN  
System  
Enable  
VBATEN  
0
0
0
0
JDWK  
0
0x4C  
0x00  
R/W  
59  
SHDN  
DSP COEFFICIENTS  
K_1[15:8]  
K_1[7:0]  
0x50/0x82  
0x51/0x83  
0x52/0x84  
0x53/0x85  
0x54/0x86  
0x55/0x87  
0x56/0x88  
0x57/0x89  
0x58/0x8A  
0x59/0x8B  
0x5A/0x8C  
0x5B/0x8D  
0x5C/0x8E  
0x5D/0x8F  
0x5E/0x90  
0x5F/0x91  
0x60/0x92  
0x61/0x93  
0x62/0x94  
0x63/0x95  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
K1_1[15:8]  
K1_1[7:0]  
K2_1[15:8]  
K2_1[7:0]  
c1_1[15:8]  
c1_1[7:0]  
c2_1[15:8]  
c2_1[7:0]  
K_2[15:8]  
K_2[7:0]  
EQ Band 1  
(DAI1/DAI2)  
K1_2[15:8]  
K1_2[7:0]  
K2_2[15:8]  
K2_2[7:0]  
c1_2[15:8]  
c1_2[7:0]  
c2_2[15:8]  
c2_2[7:0]  
EQ Band 2  
(DAI1/DAI2)  
57  
Stereo Audio CODEC  
with FlexSound Technology  
Table 1. Register Map (continued)  
REGISTER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ADDRESS DEFAULT R/W PAGE  
K_3[15:8]  
0x64/0x96  
0x65/0x97  
0x66/0x98  
0x67/0x99  
0x68/0x9A  
0x69/0x9B  
0x6A/0x9C  
0x6B/0x9D  
0x6C/0x9E  
0x6D/0x9F  
0x6E/0xA0  
0x6F/0xA1  
0x70/0xA2  
0x71/0xA3  
0x72/0xA4  
0x73/0xA5  
0x74/0xA6  
0x75/0xA7  
0x76/0xA8  
0x77/0xA9  
0x78/0xAA  
0x79/0xAB  
0x7A/0xAC  
0x7B/0xAD  
0x7C/0xAE  
0x7D/0xAF  
0x7E/0xB0  
0x7F/0xB1  
0x80/0xB2  
0x81/0xB3  
0xB4/0xBE  
0xB5/0xBF  
0xB6/0xC0  
0xB7/0xC1  
0xB8/0xC2  
0xB9/0xC3  
0xBA/0xC4  
0xBB/0xC5  
0xBC/0xC6  
0xBD/0xC7  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
0xXX  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
82  
91  
91  
91  
91  
91  
91  
91  
91  
91  
91  
K_3[7:0]  
K1_3[15:8]  
K1_3[7:0]  
K2_3[15:8]  
K2_3[7:0]  
c1_3[15:8]  
c1_3[7:0]  
c2_3[15:8]  
c2_3[7:0]  
K_4[15:8]  
K_4[7:0]  
EQ Band 3  
(DAI1/DAI2)  
K1_4[15:8]  
K1_4[7:0]  
K2_4[15:8]  
K2_4[7:0]  
c1_4[15:8]  
c1_4[7:0]  
c2_4[15:8]  
c2_4[7:0]  
K_5[15:8]  
K_5[7:0]  
EQ Band 4  
(DAI1/DAI2)  
K1_5[15:8]  
K1_5[7:0]  
K2_5[15:8]  
K2_5[7:0]  
c1_5[15:8]  
c1_5[7:0]  
c2_5[15:8]  
c2_5[7:0]  
a1[15:8]  
EQ Band 5  
(DAI1/DAI2)  
a1[7:0]  
a2[15:8]  
a2[7:0]  
Excursion  
Limiter  
Biquad  
b0[15:8]  
b0[7:0]  
(DAI1/DAI2)  
b1[15:8]  
b1[7:0]  
b2[15:8]  
b2[7:0]  
REVISION ID  
Rev ID  
REV  
0xFF  
0x43  
R
104  
58  
Stereo Audio CODEC  
with FlexSound Technology  
Power Management  
The IC includes comprehensive power management to allow the disabling of all unused circuits, minimizing supply  
current.  
Table 2. Power Management Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Global Shutdown  
Disables everything except the headset detection circuitry, which is controlled  
7
separately.  
SHDN  
0 = Device shutdown  
1 = Device enabled  
0x4C  
6
1
VBATEN  
JDWK  
See the Battery Measurement section.  
See the Headset Detection section.  
Line Input A Enable  
0 = Disabled  
1 = Enabled  
Line Input B Enable  
0 = Disabled  
1 = Enabled  
Microphone Bias Enable  
0 = Disabled  
1 = Enabled  
Left ADC Enable  
0 = Disabled  
1 = Enabled  
Right ADC Enable  
0 = Disabled  
1 = Enabled  
Left Headphone Enable  
0 = Disabled  
1 = Enabled  
Right Headphone Enable  
0 = Disabled  
1 = Enabled  
Left Speaker Enable  
0 = Disabled  
1 = Enabled  
Right Speaker Enable  
0 = Disabled  
1 = Enabled  
Receiver Enable  
0 = Disabled  
1 = Enabled  
Left DAC Enable  
0 = Disabled  
1 = Enabled  
Right DAC Enable  
0 = Disabled  
7
6
3
1
0
7
6
5
4
3
1
0
INAEN  
INBEN  
MBEN  
0x4A  
ADLEN  
ADREN  
HPLEN  
HPREN  
SPLEN  
SPREN  
RECEN  
DALEN  
DAREN  
0x4B  
1 = Enabled  
59  
Stereo Audio CODEC  
with FlexSound Technology  
MIC2P/MIC2N and EXTMICP/EXTMICN. MIC1P/MIC1N  
Microphone Inputs  
The device includes three differential microphone inputs  
and a low-noise microphone bias for powering the micro-  
phones (Figure 6). One microphone input can also be con-  
figured as a digital microphone input accepting signals  
from up to two digital microphones. Two microphones,  
analog or digital, can be recorded simultaneously.  
then become outputs that route the microphone signals  
to an external device as needed. Two devices can then  
record microphone signals without needing external  
analog switches.  
Analog microphone signals are amplified by two stages  
of gain and then routed to the ADCs. The first stage offers  
selectable 0dB, 20dB, or 30dB settings. The second  
stage is a programmable-gain amplifier (PGA) adjustable  
from 0dB to 20dB in 1dB steps. To maximize the signal-  
to-noise ratio, use the gain in the first stage whenever  
possible. Zero-crossing detection is included on the PGA  
to minimize zipper noise while making gain changes.  
In the typical application, one microphone input is used  
for the handset microphone and the other is used as an  
accessory microphone. In systems using a background  
noise microphone, INA can be retasked as another  
microphone input.  
In systems where the codec is not the only device  
recording microphone signals, connect microphones to  
MCLK  
MICBIAS  
PSCLK  
REG  
CLOCK  
MBEN  
CONTROL  
MIC1P/  
PGAM1:  
+20dB TO 0dB  
DIGMICDATA  
MIC1N/  
DIGMICCLK  
EXTMIC  
PA1EN:  
0/20/30dB  
MIC2BYP  
ADLEN  
MIC2P  
MIX  
ADCL  
MIC2N  
PGAM1:  
+20dB TO 0dB  
MIXADL  
EXTMIC  
PA2EN:  
0/20/30dB  
PGAINA:  
+20dB TO -6dB  
INABYP  
MIX  
ADCR  
ADREN  
INA1/EXTMICP  
INA2/EXTMICN  
INADIFF  
MIXADR  
PGAINA:  
+20dB TO -6dB  
Figure 6. Microphone Input Block Diagram  
60  
Stereo Audio CODEC  
with FlexSound Technology  
Table 3. Microphone Input Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
MIC1/MIC2 Preamplifier Gain  
6
Course microphone gain adjustment.  
00 = Preamplifier disabled  
01 = 0dB  
PA1EN/PA2EN  
10 = 20dB  
11 = 30dB  
5
4
MIC1/MIC2 PGA  
Fine microphone gain adjustment.  
VALUE  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
GAIN (dB)  
+20  
VALUE  
0x0B  
GAIN (dB)  
3
2
1
0
7
6
+9  
+8  
+7  
+6  
+5  
+4  
+3  
+2  
+1  
0
0x31/0x32  
+19  
0x0C  
+18  
0x0D  
+17  
0x0E  
PGAM1/PGAM2  
+16  
0x0F  
+15  
0x10  
+14  
0x11  
+13  
0x12  
+12  
0x13  
+11  
0x14 to 0x1F  
+10  
Digital Microphone Clock Frequency  
Select a frequency that is within the digital microphone’s clock frequency range.  
Set OSR1 = 1 when using a digital microphone.  
00 = PCLK/8  
01 = PCLK/6  
MICCLK  
10 = 64 x LRCLK  
11 = Reserved  
Left Digital Microphone Enable  
Set PAL1EN = 00 for proper operation.  
0 = Disabled  
5
4
DIGMICL  
DIGMICR  
1 = Enabled  
0x46  
Right Digital Microphone Enable  
Set PAR1EN = 00 for proper operation.  
0 = Disabled  
1 = Enabled  
External Microphone Connection  
Routes INA_/EXTMIC_ to the microphone preamplifiers. Set INAEN = 0 when using  
INA_/EXTMIC_ as a microphone input.  
00 = Disabled  
01 = MIC1 input  
10 = MIC2 input  
1
0
EXTMIC  
11 = Reserved  
61  
Stereo Audio CODEC  
with FlexSound Technology  
Table 3. Microphone Input Registers (continued)  
REGISTER  
BIT  
NAME  
DESCRIPTION  
INA_/EXTMIC_ to MIC1_ Bypass Switch  
7
INABYP  
0 = Disabled  
1 = Enabled  
MIC1_ to MIC2_ Bypass Switch  
0 = Disabled  
1 = Enabled  
4
1
0
MIC2BYP  
RECBYP  
SPKBYP  
0x48  
See the Output Bypass Switches section.  
by choosing the appropriate input resistor and using the  
following formula:  
AV  
Line Inputs  
The device includes two sets of line inputs (Figure 7).  
Each set can be configured as a stereo single-ended  
input or as a mono differential input. Each input includes  
adjustable gain to match a wide range of input signal  
levels. If a custom gain is needed, the external gain  
mode provides a trimmed feedback resistor. Set the gain  
= 20 x log (20K/RIN)  
PGAIN  
The external gain mode also allows summing multiple  
signals into a single input, by connecting multiple input  
resistors as show in Figure 8, and inputting signals larger  
than 1V  
.
P-P  
INABYP  
PGAINA:  
+20dB TO -6dB  
INA1/  
EXTMICP  
INADIFF  
LEFT  
INPUT 1  
PGAINA:  
+20dB TO -6dB  
20kI  
20kI  
MIX  
INA2/  
EXTMICN  
LEFT  
INPUT 2  
INA1/EXTMICP  
INA2/EXTMICN  
MIXOUT1  
VCM  
VCM  
RIGHT  
INPUT 1  
PGAINB:  
+20dB TO -6dB  
MIX  
RIGHT  
INPUT 2  
INB1  
INB2  
INBDIFF  
MIXOUT2  
PGAINB:  
+20dB TO -6dB  
MIX  
MIXOUT3  
Figure 7. Line Input Block Diagram  
Figure 8. Summing Multiple Input Signals into INA/INB  
62  
Stereo Audio CODEC  
with FlexSound Technology  
Table 4. Line Input Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Line Input A/B External Gain  
Switches out the internal input resistor and selects a trimmed 20kIfeedback resistor.  
6
INAEXT/INBEXT  
Use an external input resistor to set the gain of the line input.  
0 = Disabled  
1 = Enabled  
Line Input A/B Internal Gain Settings  
000 = +20dB  
001 = +14dB  
2
1
0
0x33/0x34  
010 = +3dB  
PGAINA/PGAINB 011 = 0dB  
100 = -3dB  
101 = -6dB  
110 = -6dB  
111 = -6dB  
Line Input A Differential Enable  
7
6
INADIFF  
INBDIFF  
0 = Stereo single-ended input  
1 = Mono differential input  
0x45  
Line Input B Differential Enable  
0 = Stereo single-ended input  
1 = Mono differential input  
ADC Input Mixers  
PGAM1:  
+20dB TO 0dB  
The device’s stereo ADC accepts input from the micro-  
phone amplifiers and line inputs. The ADC mixer routes  
any combination of the six audio inputs to the left and  
right ADCs (Figure 9).  
PA1EN:  
0/20/30dB  
ADLEN  
ADCL  
MIX  
PGAM2:  
+20dB TO 0dB  
MIXADL  
PA2EN:  
0/20/30dB  
ADCR  
ADREN  
MIX  
PGAINA:  
+20dB TO -6dB  
MIXADR  
INADIFF  
PGAINA:  
+20dB TO -6dB  
+
+
PGAINB:  
+20dB TO -6dB  
INBDIFF  
PGAINB:  
+20dB TO -6dB  
Figure 9. ADC Input Mixer Block Diagram  
63  
Stereo Audio CODEC  
with FlexSound Technology  
Table 5. ADC Input Mixer Register  
REGISTER  
BIT  
7
NAME  
DESCRIPTION  
Left/Right ADC Input Mixer  
Selects which analog inputs are recorded by the left/right ADC.  
1xxxxxxx = MIC1  
x1xxxxxx = MIC2  
xx1xxxxx = Reserved  
xxx1xxxx = Reserved  
xxxx1xxx = INA1  
xxxxx1xx = INA2 (INADIFF = 0) or INA2 - INA1 (INADIFF = 1)  
xxxxxx1x = INB1  
6
5
4
0x22/0x23  
MIXADL/MIXADR  
3
2
1
xxxxxxx1 = INB2 (INBDIFF = 0) or INB2 - INB1 (INBDIFF = 1)  
0
Noise Gate  
Since the AGC increases the levels of all signals below  
a user-defined threshold, the noise floor is effectively  
increased by 20dB. To counteract this, the noise gate  
reduces the gain at low signal levels. Unlike typical noise  
gates that completely silence the output below a defined  
level, the noise gate in the IC applies downward expan-  
sion. The noise gate attenuates the output at a rate of  
1dB for each 2dB the signal is below the threshold.  
Record Path Signal Processing  
The device’s record signal path includes both automatic  
gain control (AGC) for the microphone inputs and a digi-  
tal noise gate at the output of the ADC (Figure 10).  
Microphone AGC  
The IC’s AGC monitors the signal level at the output of  
the ADC and then adjusts the MIC1 and MIC2 analog  
PGA settings automatically. When the signal level is  
below the predefined threshold, the gain is increased up  
to its maximum (20dB). If the signal exceeds the thresh-  
old, the gain is reduced to prevent the output signal level  
exceeding the threshold. When AGC is enabled, the  
microphone PGA is not user programmable. The AGC  
provides a more constant signal level and improves the  
available ADC dynamic range.  
The noise gate can be used in conjunction with the AGC  
or on its own. When the AGC is enabled, the noise gate  
reduces the output level only when the AGC has set the  
gain to the maximum setting. Figure 11 shows the gain  
response resulting from using the AGC and noise gate.  
AGC AND NOISE GATE  
AMPLITUDE RESPONSE  
PGAM1:  
+20dB TO -6dB  
0
NOISE GATE  
AGC ONLY  
AUTOMATIC  
AUDIO/  
-20  
GAIN  
VOICE  
PA1EN:  
CONTROL  
FILTERS  
MODE1  
AVFLT  
AGC AND NOISE GATE  
-40  
0/20/30dB  
ADLEN  
ADCL  
PGAM2:  
+20dB TO 0dB  
MIX  
AVLG: 0/6/12/18dB  
AVL: 3dB TO -12dB  
-60  
MIXADL  
AGC AND NOISE  
GATE DISABLED  
PA2EN:  
0/20/30dB  
-80  
NOISE GATE ONLY  
ADCR  
ADREN  
MIX  
-100  
AVRG: 0/6/12/18dB  
AVR: 3dB TO -2dB  
MIXADR  
-120  
-120  
-100  
-80  
-60  
-40  
-20  
0
INPUT AMPLITUDE (dBFS)  
Figure 10. Record Path Signal Processing Block Diagram  
Figure 11. AGC and Noise Gate Input vs. Output Gain  
64  
Stereo Audio CODEC  
with FlexSound Technology  
Table 6. Record Path Signal Processing Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Noise Gate Attenuation  
Reports the current noise gate attenuation.  
000 = 0dB  
7
001 = 1dB  
010 = 2dB  
6
5
4
NG  
011 = 3dB to 5dB  
100 = 6dB to 7dB  
101 = 8dB to 9dB  
110 = 10dB to 11dB  
111 = 12dB  
AGC Gain  
Reports the current AGC gain setting.  
VALUE  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
GAIN (dB)  
+20  
VALUE  
0x0B  
GAIN (dB)  
0x01  
+9  
+8  
+7  
+6  
+5  
+4  
+3  
+2  
+1  
0
3
2
+19  
0x0C  
+18  
0x0D  
+17  
0x0E  
AGC  
+16  
0x0F  
+15  
0x10  
+14  
0x11  
1
0
+13  
0x12  
+12  
0x13  
+11  
0x14 to 0x1F  
+10  
AGC/Noise Gate Signal Source  
Determines which ADC channel the AGC and noise gates analyze. Gain is adjusted on  
both channels regardless of the AGCSRC setting.  
0 = Left ADC output  
7
AGCSRC  
1 = Maximum of either the left or right ADC output  
AGC Release Time  
Defined as the duration from start to finish of gain increase in the region shown in Figure  
12. Release times are longer for low AGC threshold levels.  
6
5
4
0x3D  
000 = 78ms  
001 = 156ms  
010 = 312ms  
011 = 625ms  
100 = 1.25s  
101 = 2.5s  
110 = 5s  
AGCRLS  
111 = 10s  
65  
Stereo Audio CODEC  
with FlexSound Technology  
Table 6. Record Path Signal Processing Registers (continued)  
REGISTER  
BIT  
NAME  
DESCRIPTION  
AGC Attack Time  
Defined as the time required to reduce gain by 63% of the total gain reduction (one time  
constant of the exponential response). Attack times are longer for low AGC threshold  
3
levels. See Figure 12 for details.  
00 = 2ms  
AGCATK  
01 = 7.2ms  
10 = 31ms  
11 = 123ms  
2
1
0x3D  
AGC Hold Time  
The delay before the AGC release begins. The hold time counter starts whenever the  
signal drops below the AGC threshold and is reset by any signal that exceeds the  
AGCHLD  
threshold. Set AGCHLD to enable the AGC circuit. See Figure 12 for details.  
00 = AGC disabled  
01 = 50ms  
10 = 100ms  
0
7
11 = 400ms  
Noise Gate Threshold  
Gain is reduced for signals below the threshold to quiet noise. The thresholds are relative  
to the ADC’s full-scale output voltage.  
THRESHOLD  
(dBFS)  
THRESHOLD  
(dBFS)  
VALUE  
VALUE  
6
5
0x0  
Noise gate disabled  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
-45  
-41  
-38  
-34  
-30  
-27  
-22  
-16  
0x1  
Reserved  
Reserved  
-64  
ANTH  
0x2  
0x3  
0x4  
-62  
0x5  
0x6  
-58  
4
3
-53  
0x7  
-50  
0x3E  
AGC Threshold  
Gain is reduced when signals exceed the threshold to prevent clipping. The thresholds  
are relative to the ADC’s full-scale voltage.  
THRESHOLD  
(dBFS)  
THRESHOLD  
(dBFS)  
VALUE  
VALUE  
2
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
-3  
-4  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
-11  
-12  
-13  
-14  
-15  
-16  
-17  
-18  
AGCTH  
-5  
1
0
-6  
-7  
-8  
-9  
-10  
66  
Stereo Audio CODEC  
with FlexSound Technology  
ATTACK TIME  
HOLD TIME  
RELEASE TIME  
Figure 12. AGC Timing  
range, use analog gain to adjust the signal level and set  
the digital level control to 0dB whenever possible. Digital  
level control is primarily used when adjusting the record  
level for digital microphones.  
ADC Record Level Control  
The IC includes separate digital level control for the left  
and right ADC outputs (Figure 13). To optimize dynamic  
NOISE GATE  
AUDIO/  
VOICE  
FILTERS  
AUTOMATIC  
GAIN CONTROL  
MODE1  
AVFLT1  
ADLEN  
ADCL  
AVLG: 0/6/12/18dB  
AVL: 3dB TO -12dB  
ADCR  
ADREN  
AVRG: 0/6/12/18dB  
AVR: 3dB TO -2dB  
Figure 13. ADC Record Level Control Block Diagram  
67  
Stereo Audio CODEC  
with FlexSound Technology  
Table 7. ADC Record Level Control Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Left/Right ADC Gain  
00 = 0dB  
5
AVLG/AVRG  
01 = 6dB  
10 = 12dB  
11 = 18dB  
4
Left/Right ADC Level  
3
2
VALUE  
0x0  
GAIN (dB)  
VALUE  
0x8  
GAIN (dB)  
+3  
+2  
+1  
0
-5  
-6  
0x2F/0x30  
0x1  
0x9  
0x2  
0xA  
0xB  
0xC  
0xD  
0xE  
-7  
AVL/AVR  
1
0
0x3  
-8  
0x4  
-1  
-2  
-3  
-4  
-9  
0x5  
-10  
-11  
-12  
0x6  
0x7  
0xF  
used in telephony to allow the speaker to hear himself  
speak, providing a more natural user experience. The  
IC implements sidetone digitally. Doing so helps prevent  
unwanted feedback into the playback signal path and  
better matches the playback audio signal.  
Sidetone  
Enable sidetone during full-duplex operation to add a  
low-level copy of the recorded audio signal to the play-  
back audio signal (Figure 14). Sidetone is commonly  
DV1G:  
0/6/12/18dB  
DVST:  
0dB TO -60dB  
SIDETONE  
DSTS  
MIX  
+
MULTIBAND ALC  
NOISE GATE  
DVEQ1:  
DVEQ2:  
0dB TO -15dB  
0dB TO -15dB  
AUTOMATIC  
GAIN  
CONTROL  
AUDIO/  
VOICE  
FILTERS  
5-BAND  
5-BAND  
PARAMETRIC  
EQ  
PARAMETRIC  
EQ  
MODE1  
AVFLT  
ADLEN  
ADCL  
EQ1EN  
EQ2EN  
MIXDAL  
MIX  
EXCURSION LIMITER  
AVLG: 0/6/12/18dB  
AVL: 3dB TO -12dB  
DACL  
DALEN  
AUDIO/  
FILTERS  
DV2:  
0dB TO -15dB  
DCB2  
AUDIO/  
VOICE  
FILTERS  
MIXDAR  
MIX  
ADCR  
ADREN  
DV1:  
0dB TO -15dB  
DACR  
MODE1  
DVFLT  
AVRG: 0/6/12/18dB  
AVR: 3dB TO -2dB  
DAREN  
Figure 14. Sidetone Block Diagram  
68  
Stereo Audio CODEC  
with FlexSound Technology  
Table 8. Sidetone Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Sidetone Source  
Selects which ADC output is fed back as sidetone. When mixing the left and right ADC  
outputs, each is attenuated by 6dB to prevent full-scale signals from clipping.  
7
DSTS  
00 = Sidetone disabled  
01 = Left ADC  
6
4
10 = Right ADC  
11 = Left + Right ADC  
Sidetone Level  
Adjusts the sidetone signal level. All levels are referenced to the ADC’s full-scale output.  
VALUE  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
LEVEL (dB)  
Sidetone disabled  
-0.5  
VALUE  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
LEVEL (dB)  
-30.5  
-32.5  
-34.5  
-36.5  
-38.5  
-40.5  
-42.5  
-44.5  
-46.5  
-48.5  
-50.5  
-52.5  
-54.5  
-56.6  
-58.5  
-60.5  
3
2
1
0
-2.5  
0x2A  
-4.5  
-6.5  
-8.5  
DVST  
-10.5  
-12.5  
-14.5  
-16.5  
-18.5  
-20.5  
-22.5  
-24.5  
-26.5  
-28.5  
2 mono slots per interface, leaving the remaining two  
slots available for another device. Table 9 shows how to  
configure the device for common digital audio formats.  
Figures 16 and 17 show examples of common audio  
formats. By default, SDOUTS1 and SDOUTS2 are set  
high impedance when the IC is not outputting data to  
facilitate sharing the bus. Configure the interface in TDM  
mode using only slot 1 to transmit and receive mono  
PCM voice data.  
Digital Audio Interfaces  
The IC includes two separate playback signal paths and  
one record signal path. Digital audio interface 1 (DAI1)  
is used to transmit the recorded stereo audio signal and  
receive a stereo audio signal for playback. Digital audio  
interface 2 (DAI2) is used to receive a second stereo  
audio signal. Use DAI1 for all full-duplex operations and  
for all voice signals. Use DAI2 for music and to mix two  
playback audio signals. The digital audio interfaces are  
separate from the audio ports to enable either interface  
to communicate with any external device connected to  
the audio ports.  
The IC’s digital audio interfaces support both ADC to  
DAC loop-through and digital loopback. Loop-through  
allows the signal converted by the ADC to be routed  
to the DAC for playback. The signal is routed from the  
record path to the playback path in the digital audio  
interface to allow the IC’s full complement of digital  
signal processing to be used. Loopback allows digital  
Each audio interface can be configured in a variety of  
formats including left justified, I2S, PCM, and time divi-  
sion multiplexed (TDM). TDM mode supports up to 4  
mono audio slots in each frame. The IC can use up to  
69  
Stereo Audio CODEC  
with FlexSound Technology  
data input to either SDINS1 or SDINS2 to be routed  
from one interface to the other for output on SDOUTS2  
or SDOUTS1. Both interfaces must be configured for  
the same sample rate, but the interface format need  
not be the same. This allows the IC to route audio data  
from one device to another, converting the data format  
as needed. Figure 15 shows the available digital signal  
routing options.  
BCLKS1  
LRCLKS1  
SDOUTS1  
PORT S1  
SDINS1 DVDDS1 BCLKS2  
LRCLKS2  
SDOUTS2  
PORT S1  
SDINS2 DVDDS2  
SEL1  
DAI1  
SEL2  
DAI2  
HIZOFF1  
HIZOFF2  
MAS1  
MAS1  
DATA  
MAS2  
MAS2  
BIT  
CLOCK  
FRAME  
CLOCK  
DATA  
INPUT  
BIT  
CLOCK  
FRAME  
CLOCK  
DATA  
OUTPUT  
DATA  
INPUT  
OUTPUT  
LBEN1  
MUX  
LBEN2  
+
LTEN1  
DAI1  
DAI1  
DAI2  
RECORD PATH  
PLAYBACK PATH  
PLAYBACK PATH  
Figure 15. Digital Audio Signal Routing  
Table 9. Common Digital Audio Formats  
MODE  
Left Justified  
I2S  
WCI1/WCI2  
BCI1/BCI2  
DLY1/DLY2  
TDM1/TDM2  
SLOTL1/SLOTL2 SLOTR1/SLOTR2  
Set as desired  
Set as desired  
0
1
X
X
0
0
1
1
X
X
0
X
X
0
1
X
X
0
1
1
PCM  
TDM  
Set as desired  
X = Don’t care.  
70  
Stereo Audio CODEC  
with FlexSound Technology  
Table 10. Digital Audio Interface Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
DAI1/DAI2 Master Mode  
In master mode, DAI1/DAI2 outputs LRCLK and BCLK. In slave mode, DAI1/DAI2  
7
MAS1/MAS2  
accept LRCLK and BCLK as inputs.  
0 = Slave mode  
1 = Master mode  
DAI1/DAI2 Word Clock Invert  
TDM1/TDM2 = 0:  
0 = Left-channel data is transmitted while LRCLK is low.  
1 = Right-channel data is transmitted while LRCLK is low.  
TDM1/TDM2 = 1:  
6
5
4
WCI1/WCI2  
BCI1/BCI2  
DLY1/DLY2  
Always set WCI = 0.  
DAI1/DAI2 Bit Clock Invert  
BCI1/BCI2 must be set to 1 when TDM1/TDM2 = 1.  
0 = SDIN is accepted on the rising edge of BCLK.  
SDOUT is valid on the rising edge of BCLK.  
1 = SDIN is accepted on the falling edge of BCLK.  
SDOUT is valid on the falling edge of BCLK.  
Master Mode:  
0 = LRCLK transitions on the falling edge of BCLK.  
1 = LRCLK transitions on the rising edge of BCLK.  
0x14/0x1C  
DAI1/DAI2 Data Delay  
DLY1/DLY2 has no effect when TDM1/TDM2 = 1.  
0 = The most significant data bit is clocked on the first active BCLK edge after an  
LRCLK transition.  
1 = The most significant data bit is clocked on the second active BCLK edge after an  
LRCLK transition.  
DAI1/DAI2 Time-Division Multiplex Mode (TDM Mode)  
Set TDM1/TDM2 when communicating with devices that use a frame synchronization  
pulse on LRCLK instead of a square wave.  
0 = Disabled  
1 = Enabled (BCI1/BCI2 must be set to 1)  
2
1
0
TDM1/TDM2  
FSW1/FSW2  
WS1/WS2  
DAI1/DAI2 Wide Frame Sync Pulse  
Increases the width of the frame sync pulse to the full data width when TDM1/TDM2 =  
1. FSW1/FSW2 has no effect when TDM1/TDM2 = 0.  
0 = Disabled  
1 = Enabled  
DAI1/DAI2 Audio Data Bit Depth  
Determines the maximum bit depth of audio being transmitted and received. Data is  
always 16 bit when TDM1/TMD2 = 0.  
0 = 16 bits  
1 = 24 bits  
71  
Stereo Audio CODEC  
with FlexSound Technology  
Table 10. Digital Audio Interface Registers (continued)  
REGISTER  
BIT  
NAME  
DESCRIPTION  
ADC Oversampling Ratio  
Use the higher setting for maximum performance. Use the lower setting for reduced  
power consumption at the expense of performance.  
7
OSR1  
00 = 96x  
01 = 64x  
10 = Reserved  
11 = Reserved  
6
2
DAI1/DAI2 BCLK Output Frequency  
When operating in master mode, BSEL1/BSEL2 set the frequency of BCLK. When  
operating in slave mode, BSEL1/BSEL2 have no effect. Select the lowest BCLK  
0x15/0x1D  
frequency that clocks all data input to the DAC and output by the ADC.  
000 = BCLK disabled  
001 = 64 x LRCLK  
010 = 48 x LRCLK  
011 = 128 x LRCLK (invalid for DHF1/DHF2 = 1)  
100 = PCLK/2  
101 = PCLK/4  
BSEL1/  
BSEL2  
1
0
110 = PCLK/8  
111 = PCLK/16  
DAI1/DAI2 Audio Port Selector  
Selects which port is used by DAI1/DAI2.  
00 = None  
01 = Port S1  
10 = Port S2  
7
6
SEL1/SEL2  
LTEN1  
11 = Reserved  
DAI1 Digital Loopthrough  
Connects the output of the record signal path to the input of the playback path. Data  
input to DAI1 from an external device is mixed with the recorded audio signal.  
0 = Disabled  
1 = Enabled  
5
4
0x16/0x1E  
DAI1/DAI2 Digital Audio Interface Loopback  
LBEN1 routes the digital audio input to DAI1 back out on DAI2. LBEN2 routes the  
digital audio input to DAI2 back out on DAI1. Selecting LBEN2 disables the ADC  
output data.  
0 = Disabled  
1 = Enabled  
LBEN1/  
LBEN2  
DAI1/DAI2 DAC Mono Mix  
Mixes the left and right digital input to mono and routes the combined signal to the left  
DMONO1/  
DMONO2  
and right playback paths. The left and right input data is attenuated by 6dB prior to the  
mono mix.  
3
0 = Disabled  
1 = Enabled  
72  
Stereo Audio CODEC  
with FlexSound Technology  
Table 10. Digital Audio Interface Registers (continued)  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Disable DA1/DAI2 Output High-Impedance Mode  
Normally SDOUT is set high impedance between data words. Set HIZOFF1/HIZOFF2 to  
force a level on SDOUT at all times.  
0 = Disabled  
HIZOFF1/  
HIZOFF2  
2
1 = Enabled  
DAI1/DAI2 Record Path Output Enable  
DAI2 outputs data only if LBEN1 = 1.  
0 = Disabled  
0x16/0x1E  
SDOEN1/  
SDOEN2  
1
1 = Enabled  
DAI1/DAI2 Playback Path Input Enable  
0 = Disabled  
1 = Enabled  
SDIEN1/  
SDIEN2  
0
7
TDM Left Time Slot  
Selects which of the four slots is used for left data on DAI1/DAI2. If the same slot is  
selected for left and right audio, left audio is placed in the slot.  
00 = Slot 1  
01 = Slot 2  
SLOTL1/  
SLOTL2  
6
5
4
10 = Slot 3  
11 = Slot 4  
TDM Right Time Slot  
Selects which of the four slots is used for right data on DAI1/DAI2. If the same slot is  
selected for left and right audio, left audio is placed in the slot.  
00 = Slot 1  
01 = Slot 2  
10 = Slot 3  
0x17/0x1F  
SLOTR1/  
SLOTR2  
11 = Slot 4  
TDM Slot Delay  
Adds 1 BCLK cycle delay to the data in the specified TDM slot.  
1xxx = Slot 4 delayed  
x1xx = Slot 3 delayed  
xx1x = Slot 2 delayed  
3
2
SLOTDLY1/  
SLOTDLY2  
1
0
xxx1 = Slot 1 delayed  
73  
Stereo Audio CODEC  
with FlexSound Technology  
WCI_ = 0, BCI_ = 0, DLY_ = 0, TDM_ = 0, FSW_ = 0, WS_ = 0, HIZOFF_ = 1, SLOTL_ = 0, SLOTR_ = 0  
LRCLK  
SDOUT  
BCLK  
RIGHT  
LEFT  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
SDIN  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
WCI_ = 1, BCI_ = 0, DLY_ = 0, TDM_ = 0, FSW_ = 0, WS_ = 0, HIZOFF_ = 1, SLOTL_ = 0, SLOTR_ = 0  
LEFT  
LRCLK  
SDOUT  
BCLK  
RIGHT  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
SDIN  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
WCI_ = 0, BCI_ = 1, DLY_ = 0, TDM_ = 0, FSW_ = 0, WS_ = 0, HIZOFF_ = 1, SLOTL_ = 0, SLOTR_ = 0  
LEFT  
RIGHT  
LRCLK  
SDOUT  
BCLK  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
SDIN  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
WCI_ = 0, BCI_ = 0, DLY_ = 1, TDM_ = 0, FSW_ = 0, WS_ = 0, HIZOFF_ = 1, SLOTL_ = 0, SLOTR_ = 0  
LEFT  
LRCLK  
SDOUT  
BCLK  
RIGHT  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
SDIN  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Figure 16. Non-TDM Data Format Examples  
74  
Stereo Audio CODEC  
with FlexSound Technology  
WCI_ = 0, BCI_ = 1, DLY_ = 0, TDM_ = 1, FSW_ = 0, WS_ = 0, HIZOFF_ = 0, SLOTL_ = 0, SLOTR_ = 1  
LRCLK  
SDOUT  
BCLK  
HI-Z  
HI-Z  
L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0  
SDIN  
L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0  
WCI_ = 0, BCI_ = 1, DLY_ = 0, TDM_ = 1, FSW_ = 1, WS_ = 0, HIZOFF_ = 0, SLOTL_ = 0, SLOTR_ = 1  
LRCLK  
SDOUT  
BCLK  
HI-Z  
HI-Z  
L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0  
SDIN  
L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0  
WCI_ = 0, BCI_ = 1, DLY_ = 0, TDM_ = 1, FSW_ = 0, WS_ = 0, HIZOFF_ = 1, SLOTL_ = 0, SLOTR_ = 1  
LRCLK  
SDOUT  
L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0  
BCLK  
SDIN  
L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0  
WCI_ = 0, BCI_ = 1, DLY_ = 0, TDM_ = 1, FSW_ = 0, WS_ = 0, HIZOFF_ = 0, SLOTL_ = 2, SLOTR_ = 3  
LRCLK  
SDOUT  
HI-Z  
HI-Z  
L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0  
32 CYCLES  
BCLK  
SDIN  
L15 L14 L13 L12 L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0  
WCI_ = 0, BCI_ = 1, DLY_ = 0, TDM_ = 1, FSW_ = 0, WS_ = 0, HIZOFF_ = 0, SLOTL_ = 0, SLOTR_ = 1  
LRCLK  
SDOUT  
16 CYCLES  
16 CYCLES  
16 CYCLES  
16 CYCLES  
HI-Z  
HI-Z  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
R
1
R
1
R
1
R
R
R
R
R
R
R
R
BCLK  
SDIN  
HI-Z  
L
L
1
R
Figure 17. TDM Mode Data Format Examples  
75  
Stereo Audio CODEC  
with FlexSound Technology  
requires the least configuration, but provides the  
Clock Control  
The digital signal paths in the IC require a master  
clock (MCLK) between 10MHz and 60MHz to func-  
tion. Internally, the MAX9888 requires a clock between  
10MHz and 20MHz. A prescaler divides MCLK by 1, 2,  
or 4 to create the internal clock (PCLK). PCLK is used to  
clock all portions of the IC.  
lowest performance. Use this mode to simplify initial  
setup or when normal mode and exact integer mode  
cannot be used.  
U Normal Mode: This mode uses a 15-bit clock divider  
to set the sample rate relative to PCLK. This allows  
high flexibility in both the PCLK and LRCLK frequen-  
cies and can be used in either master or slave mode.  
The MAX9888 includes two digital audio signal paths,  
both capable of supporting any sample rate from 8kHz  
to 96kHz. Each path is independently configured to allow  
different sample rates. To accommodate a wide range  
of system architectures, three main clocking modes are  
supported:  
U Exact Integer Mode (DAI1 only): In both master and  
slave modes, common MCLK frequencies (12MHz,  
13MHz, 16MHz, and 19.2MHz) can be programmed  
to operate in exact integer mode for both 8kHz and  
16kHz sample rates. In these modes, the MCLK and  
LRCLK rates are selected by using the FREQ1 bits  
instead of the NI, and PLL control bits.  
U PLL Mode: When operating in slave mode, enable  
the PLL to lock onto any LRCLK input. This mode  
Table 11. Clock Control Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
MCLK Prescaler  
5
Generates PCLK, which is used by all internal circuitry.  
00 = PCLK disabled  
01 = 10MHz PMCLK P20MHz (PCLK = MCLK)  
10 = 20MHz PMCLK P40MHz (PCLK = MCLK/2)  
11 = 40MHz PMCLK P60MHz (PCLK = MCLK/4)  
0x10  
PSCLK  
4
7
DAI1/DAI2 Sample Rate  
Used by the ALC to correctly set the dual-band crossover frequency and the excursion  
limiter to set the predefined corner frequencies.  
SAMPLE RATE  
(kHz)  
SAMPLE RATE  
(kHz)  
VALUE  
VALUE  
6
5
4
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Reserved  
8
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
48  
88.2  
0x11/0x19  
SR1/SR2  
11.025  
16  
96  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
22.05  
24  
32  
44.1  
76  
Stereo Audio CODEC  
with FlexSound Technology  
Table 11. Clock Control Registers (continued)  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Exact Integer Mode  
Overrides PLL1 and NI1 and configures a specific PCLK to LRCLK ratio.  
3
VALUE  
SAMPLE RATE  
VALUE  
SAMPLE RATE  
PCLK = 12MHz,  
LRCLK = 8kHz  
0x0  
Disabled  
0x8  
PCLK = 12MHz,  
LRCLK = 16kHz  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
PCLK = 13MHz,  
LRCLK = 8kHz  
2
0x11  
FREQ1  
PCLK = 13MHz,  
LRCLK = 16kHz  
PCLK = 16MHz,  
LRCLK = 8kHz  
PCLK = 16MHz,  
LRCLK = 16kHz  
PCLK = 19.2MHz,  
LRCLK = 8kHz  
1
7
PCLK = 19.2MHz,  
LRCLK = 16kHz  
PLL Mode Enable (Slave Mode Only)  
PLL1/PLL2 enables a digital PLL that locks on to the externally supplied LRCLK  
frequency and automatically sets the LRCLK divider (NI1/NI2).  
PLL1/PLL2  
0 = Disabled  
1 = Enabled  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
Normal Mode LRCLK Divider  
When PLL1/PLL2 = 0, the frequency of LRCLK is determined by NI1/NI2. See Table 12  
for common NI values.  
0x12/0x1A  
SAMPLE RATE  
DHF1/DHF2  
NI1/NI2 FORMULA  
65536× 96× f  
LRCLK  
NI =  
8kHz PLRCLK P48kHz  
0
f
PCLK  
NI1/  
NI2  
65536× 48× f  
LRCLK  
NI =  
48kHz <LRCLK P96kHz  
1
f
PCLK  
f
f
= LRCLK frequency  
= Prescaled MCLK frequency (PCLK)  
LRCLK  
PCLK  
0x13/0x1B  
Rapid Lock Mode  
Program NI1/NI2 to the nearest valid ratio and set NI1[0]/NI2[0] when PLL1/PLL2 = 1  
to enable rapid lock mode. Normally, the PLL automatically calculates and dynamically  
adjusts NI1/NI2. When rapid lock mode is properly configured, the PLL starting point is  
much closer to the correct value, thus speeding up lock time. Wait one LRCLK period  
after programming NI1/NI2 before setting PLL1/PLL2 = 1.  
0
NI1[0]/NI2[0]  
77  
Stereo Audio CODEC  
with FlexSound Technology  
Table 12. Common NI1/NI2 Values  
LRCLK (kHz)  
PCLK (MHz)  
DHF1/2 = 0  
22.05  
3631  
DHF1/2 = 1  
88.2  
8
11.025  
1B18  
18A2  
1800  
1694  
160D  
14D8  
10EF  
1000  
0EB3  
0D8C  
12  
16  
24  
32  
44.1  
6C61  
6287  
6000  
5A51  
5833  
535F  
43BD  
4000  
3ACD  
3631  
48  
64  
96  
10  
11  
13A9  
11E0  
116A  
1062  
1000  
0F20  
0C4A  
0B9C  
0AAB  
09D5  
1D7E  
1ACF  
1A1F  
1893  
1800  
16AF  
126F  
116A  
1000  
0EBF  
2752  
23BF  
22D4  
20C5  
2000  
1E3F  
1893  
1738  
1555  
13A9  
3AFB  
359F  
343F  
3127  
3000  
2D5F  
24DD  
22D4  
2000  
1D7E  
4EA5  
477E  
45A9  
4189  
4000  
3C7F  
3127  
2E71  
2AAB  
2752  
75F7  
6B3E  
687D  
624E  
6000  
5ABE  
49BA  
45A9  
4000  
3AFB  
4EA5  
477E  
45A9  
4189  
4000  
3C7F  
3127  
2E71  
2AAB  
2752  
6C61  
6287  
75F7  
6B3E  
687D  
624E  
6000  
5ABE  
49BA  
45A9  
4000  
3AFB  
3144  
11.2896  
12  
3000  
6000  
2D29  
2C1A  
29AF  
5A51  
5833  
12.288  
13  
535F  
16  
21DE  
2000  
43BD  
4000  
16.9344  
18.432  
20  
1D66  
1B18  
3ACD  
3631  
Note: Values in bold are exact integers that provide maximum full-scale performance.  
Use music mode when processing high-fidelity audio  
content. The music FIR filters reduce power consump-  
tion and are linear phase to maintain stereo imaging.  
An optional DC-blocking filter is available to eliminate  
unwanted DC offset.  
Passband Filtering  
Each digital signal path in the IC includes options for  
defining the path bandwidth (Figure 18). The playback  
and record paths connected to DAI1 support both voice  
and music filtering while the playback path connected to  
DAI2 supports music filtering only.  
In music mode, a second set of FIR filters are available  
to support sample rates greater than 50kHz. The filters  
can be independently selected for DAI1 and DAI2 and  
support both the playback and record audio paths.  
The voice IIR filters provide greater than 70dB stopband  
attenuation at frequencies above f /2 to reduce aliasing.  
S
Three selectable highpass filters eliminate unwanted  
low-frequency signals.  
DV1G:  
0/6/12/18dB  
DVST:  
0dB TO -60dB  
SIDETONE  
DSTS  
MIX  
+
MULTIBAND ALC  
NOISE GATE  
DVEQ1:  
DVEQ2:  
AUTOMATIC  
GAIN  
CONTROL  
0dB TO -15dB  
0dB TO -15dB  
AUDIO/  
VOICE  
FILTERS  
5-BAND  
5-BAND  
PARAMETRIC  
EQ  
PARAMETRIC  
EQ  
MODE1  
AVFLT  
ADLEN  
ADCL  
MIXDAL  
MIX  
EQ1EN  
EQ2EN  
EXCURSION LIMITER  
DACL  
AVLG: 0/6/12/18dB  
DALEN  
AVL: 3dB TO -12dB  
AUDIO/  
FILTERS  
DV2:  
0dB TO -15dB  
DCB2  
AUDIO/  
VOICE  
FILTERS  
MIXDAR  
MIX  
ADCR  
ADREN  
DV1:  
0dB TO -15dB  
DACR  
AVRG: 0/6/12/18dB  
AVR: 3dB TO -2dB  
MODE1  
DVFLT  
DAREN  
Figure 18. Digital Passband Filtering Block Diagram  
78  
Stereo Audio CODEC  
with FlexSound Technology  
Table 13. Passband Filtering Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
DAI1 Passband Filtering Mode  
7
MODE1  
0 = Voice filters  
1 = Music filters (recommended for f > 24kHz)  
S
6
5
DAI1 ADC Highpass Filter Mode  
MODE1  
AVFLT1  
AVFLT1  
DHF1  
0
1
See Table 14  
Select a nonzero value to enable the DC-blocking filter  
4
DAI1 High Sample Rate Mode  
Selects the sample rate range.  
0 = 8kHz P LRCLK P 48kHz  
1 = 48kHz P LRCLK <96kHz  
0x18  
3
2
1
DAI1 DAC Highpass Filter Mode  
MODE1  
DVFLT1  
DVFLT1  
0
1
See Table 14  
Select a nonzero value to enable the DC-blocking filter  
0
DAI2 High Sample Rate Mode  
Selects the sample rate range.  
0 = 8kHz P LRCLK P 48kHz  
1 = 48kHz <LRCLK P 96kHz  
3
DHF2  
DCB2  
0x20  
DAI2 DC Blocking Filter  
Enables a DC-blocking filter on the DAI2 playback audio path.  
0 = Disabled  
1 = Enabled  
0
79  
Stereo Audio CODEC  
with FlexSound Technology  
Table 14. Voice Highpass Filters  
AVFTL/DVFLT VALUE  
INTENDED SAMPLE RATE  
FILTER RESPONSE  
000  
N/A  
Disabled  
0
-10  
-20  
-30  
-40  
-50  
-60  
001/011  
16kHz/8kHz  
0
0
0
200  
200  
200  
400  
600  
800  
1000  
1000  
1000  
FREQUENCY (Hz)  
0
-10  
-20  
-30  
-40  
-50  
-60  
010/100  
16kHz/8kHz  
400  
600  
800  
FREQUENCY (Hz)  
0
-10  
-20  
-30  
-40  
-50  
-60  
101  
8kHz to 48kHz  
LRCLK = 48kHz  
600 800  
400  
FREQUENCY (Hz)  
110/111  
N/A  
Reserved  
80  
Stereo Audio CODEC  
with FlexSound Technology  
The ALC can optionally be configured in dual-band  
mode. In this mode, the input signal is filtered into two  
bands with a 5kHz center frequency. Each band is  
routed through independent ALCs and then summed  
together. In multiband mode, both bands use the same  
parameters.  
Playback Path Signal Processing  
The IC playback signal path includes automatic level  
control (ALC) and a 5-band parametric equalizer (EQ)  
(Figure 19). The DAI1 and DAI2 playback paths include  
separate ALCs controlled by a single set of registers.  
Two completely separate parametric EQs are included  
for the DAI1 and DAI2 playback paths.  
OUTPUT SIGNAL  
(dBFS)  
Automatic Level Control  
The automatic level control (ALC) circuit ensures maxi-  
mum signal amplitude without producing audible clip-  
ping. This is accomplished by a variable gain stage that  
works on a sample by sample basis to increase the gain  
up to 12dB. A look-ahead circuit determines if the next  
sample exceeds full scale and reduces the gain so that  
the sample is exactly full scale.  
0
A programmable low signal threshold determines the  
minimum signal amplitude that is amplified. Select a  
threshold that prevents the amplification of background  
noise. When the signal level drops below the low signal  
threshold, the ALC reduces the gain to 0dB until the sig-  
nal increases above the threshold. Figure 20 shows an  
example of ALC input vs. output curves.  
INPUT  
SIGNAL  
(dBFS)  
LOW-LEVEL  
THRESHOLD  
-12  
0
0
0
ALC WITH ALCTH 000  
OUTPUT SIGNAL  
(dBFS)  
0
DV1G:  
0/6/12/18dB  
+
INPUT  
SIGNAL  
(dBFS)  
MULTIBAND ALC  
LOW-LEVEL  
THRESHOLD  
ALC WITH ALCTH = 000  
-12  
DVEQ1:  
DVEQ2:  
0dB TO -15dB  
0dB TO -15dB  
OUTPUT SIGNAL  
(dBFS)  
5-BAND  
5-BAND  
PARAMETRIC  
EQ  
PARAMETRIC  
EQ  
0
EQ1EN  
EQ2EN  
MIXDAL  
MIX  
EXCURSION LIMITER  
DACL  
DALEN  
AUDIO/  
FILTERS  
DV2:  
0dB TO -15dB  
DCB2  
AUDIO/  
VOICE  
FILTERS  
MIXDAR  
MIX  
INPUT  
SIGNAL  
(dBFS)  
DV1:  
DACR  
0dB TO -15dB  
MODE1  
DVFLT  
LOW-LEVEL  
THRESHOLD  
ALC DISABLED  
-12  
DAREN  
Figure 19. Playback Path Signal Processing Block Diagram  
Figure 20. ALC Input vs. Output Examples  
81  
Stereo Audio CODEC  
with FlexSound Technology  
Table 15. Automatic Level Control Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
ALC Enable  
Enables ALC on both the DAI1 and DAI2 playback paths.  
0 = Disabled  
1 = Enabled  
7
ALCEN  
ALC and Excursion Limiter Release Time  
Sets the release time for both the ALC and Excursion Limiter. See the Excursion  
Limiter section for Excursion Limiter release times. ALC release time is defined as the  
6
time required to adjust the gain from 12dB to 0dB.  
VALUE  
000  
ALC RELEASE TIME (s)  
8
001  
4
ALCRLS  
5
4
010  
2
1
011  
100  
0.5  
101  
0.25  
0x41  
110  
Reserved  
Reserved  
111  
Multiband Enable  
Enables dual-band processing with a 5kHz center frequency. SR1 and SR2 must be  
configured properly to achieve the correct center frequency for each playback path.  
0 = Single-band ALC  
3
ALCMB  
ALCTH  
1 = Dual-band ALC  
Low Signal Threshold  
Selects the minimum signal level to be boosted by the ALC.  
000 = -JdB (low-signal threshold disabled)  
001 = -12dB  
010 = -18dB  
011 = -24dB  
100 = -30dB  
101 = -36dB  
110 = -42dB  
2
1
0
111 = -48dB  
Parametric Equalizer  
1000  
The parametric EQ contains five independent biquad  
filters with programmable gain, center frequency, and  
bandwidth. Each biquad filter has a gain range of Q12dB  
and a center frequency range from 20Hz to 20kHz. Use a  
filter Q less than that shown in Figure 21 to achieve ideal  
frequency responses. Setting a higher Q results in non-  
ideal frequency response. The biquad filters are series  
connected, allowing a total gain of Q60dB.  
f = 8kHz  
s
100  
10  
1
f = 48kHz  
s
f = 96kHz  
s
0.1  
100  
1000  
10,000  
100,000  
CENTER FREQUENCY (Hz)  
Figure 21. Maximum Recommended Filter Q vs. Frequency  
82  
Stereo Audio CODEC  
with FlexSound Technology  
Use the attenuator at the EQ’s input to avoid clipping  
The MAX9888 EV kit software includes a graphic inter-  
face for generating the EQ coefficients. The coefficients  
are sample rate dependent and stored in registers 0x50  
through 0xB3.  
the signal. The attenuator can be programmed for fixed  
attenuation or dynamic attenuation based on signal level.  
If the dynamic EQ clip detection is enabled, the signal  
level from the EQ is fed back to the attenuator circuit to  
determine the amount of gain reduction necessary to  
avoid clipping.  
Table 16. EQ Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
DAI1/DAI2 EQ Clip Detection  
Automatically controls the EQ attenuator to prevent clipping in the EQ.  
0 = Enabled  
1 = Disabled  
EQCLP1/  
EQCLP2  
4
DAI1/DAI2 EQ Attenuator  
Provides attenuation to prevent clipping in the EQ when full-scale signals are boost-  
ed. DVEQ1/DVEQ2 operates only when EQ1EN/EQ2EN = 1 and EQCLP1/EQCLP2  
3
= 1.  
VALUE  
0x0  
GAIN (dB)  
VALUE  
0x8  
GAIN (dB)  
0x2C/0x2E  
2
1
0
0
-8  
0x1  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
0x9  
-9  
DVEQ1/DVEQ2  
0x2  
0xA  
0xB  
0xC  
0xD  
0xE  
-10  
-11  
-12  
-13  
-14  
-15  
0x3  
0x4  
0x5  
0x6  
0x7  
0xF  
7
6
VS2EN  
VSEN  
See the Click-and-Pop Reduction section.  
5
1
0
ZDEN  
EQ2EN  
EQ1EN  
0x47  
DAI2 EQ Enable  
0 = Disabled  
1 = Enabled  
DAI1 EQ Enable  
0 = Disabled  
1 = Enabled  
83  
Stereo Audio CODEC  
with FlexSound Technology  
allows boost when MODE1 = 0 and attenuation in any  
mode. The DAI2 signal path allows attenuation only.  
Playback Level Control  
The IC includes separate digital level control for the DAI1  
and DAI2 playback audio paths. The DAI1 signal path  
DV1G:  
0/6/12/18dB  
+
MULTIBAND ALC  
DVEQ1:  
DVEQ2:  
0dB TO -15dB  
0dB TO -15dB  
5-BAND  
5-BAND  
PARAMETRIC  
EQ  
PARAMETRIC  
EQ  
MIXDAL  
EQ1EN  
EQ2EN  
EXCURSION LIMITER  
DACL  
MIX  
DALEN  
AUDIO/  
FILTERS  
DV2:  
0dB TO -15dB  
DCB2  
AUDIO/  
VOICE  
FILTERS  
MIXDAR  
MIX  
DV1:  
DACR  
0dB TO -15dB  
MODE1  
DVFLT  
DAREN  
Figure 22. Playback Level Control Block Diagram  
Table 17. DAC Playback Level Control Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
DAI1/DAI2 Mute  
0 = Disabled  
1 = Enabled  
7
DV1M/DV2M  
DAI1 Voice Mode Gain  
DV1G only applies when MODE1 = 0.  
5
00 = 0dB  
01 = 6dB  
10 = 12dB  
11 = 18dB  
DV1G  
4
3
2
DAI1/DAI2 Attenuation  
0x2B/0x2D  
VALUE  
0x0  
GAIN (dB)  
VALUE  
0x8  
GAIN (dB)  
0
-8  
0x1  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
0x9  
-9  
0x2  
0xA  
0xB  
0xC  
0xD  
0xE  
-10  
-11  
-12  
-13  
-14  
-15  
DV1/DV2  
0x3  
1
0
0x4  
0x5  
0x6  
0x7  
0xF  
84  
Stereo Audio CODEC  
with FlexSound Technology  
DAC Input Mixers  
The IC’s stereo DAC accepts input from two digital audio paths. The DAC mixer routes any audio path to the left and  
right DACs (Figure 23).  
DV1G:  
0/6/12/18dB  
+
MULTIBAND ALC  
DVEQ1:  
DVEQ2:  
0dB TO -15dB  
0dB TO -15dB  
5-BAND  
5-BAND  
PARAMETRIC  
EQ  
PARAMETRIC  
EQ  
EQ1EN  
EXCURSION LIMITER  
EQ2EN  
MIXDAL  
MIX  
DACL  
DALEN  
AUDIO/  
FILTERS  
DV2:  
0dB TO -15dB  
DCB2  
AUDIO/  
VOICE  
FILTERS  
MIXDAR  
MIX  
DV1:  
DACR  
0dB TO -15dB  
MODE1  
DVFLT  
DAREN  
Figure 23. DAC Input Mixer Block Diagram  
Table 18. DAC Input Mixer Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
7
Left DAC Input Mixer  
1xxx = DAI1 left channel  
x1xx = DAI1 right channel  
xx1x = DAI2 left channel  
xxx1 = DAI2 right channel  
6
5
4
3
2
1
0
MIXDAL  
0x21  
Right DAC Input Mixer  
1xxx = DAI1 left channel  
x1xx = DAI1 right channel  
xx1x = DAI2 left channel  
xxx1 = DAI2 right channel  
MIXDAR  
85  
Stereo Audio CODEC  
with FlexSound Technology  
Preoutput Signal Path  
The IC’s preoutput mixer stage provides mixing and level adjustment for line input signals routed to the output ampli-  
fiers. Figure 24 shows a block diagram of the preoutput signal path. 9dB is added between the line input amplifiers  
and the output amplifiers to boost the 1V  
maximum line input signal level to the 1V  
maximum DAC signal level.  
P-P  
RMS  
RECP/  
RXINP  
RECVOL:  
+8dB TO -62dB  
0dB  
MIX  
RECN/  
RXINN  
MIXREC  
RECBYP  
SPKBYP  
RECEN  
SPKLVDD  
SPKLP  
BATTERY ADC  
SPVOLL:  
+8dB TO -62dB  
MIX  
+6dB  
SPKLN  
MIXSPL  
SPLEN  
SPKLGND  
SPKRVDD  
SPKRP  
POWER/  
DISTORTION LIMITER  
+6dB  
MIX  
SPKRN  
MIXSPR  
SPVOLR:  
+8dB TO -62dB  
SPREN  
HPVOLL:  
+3dB TO -67dB  
SPKRPGND  
PGAINA:  
+20dB TO -6dB  
HPL  
PGAOUT1:  
0dB TO -23dB  
INADIFF  
MIX  
HPLEN  
PREOUT1  
MIXHPL  
MIX  
+9dB  
PGAINA:  
+20dB TO -6dB  
HPSNS  
HPR  
MIXOUT1  
+
HPVOLR:  
+3dB TO -67dB  
PGAOUT2:  
0dB TO -23dB  
MIX  
PREOUT2  
MIX  
+9dB  
+9dB  
HPREN  
MIXHPR  
PGAINB:  
+20dB TO -6dB  
MIXOUT2  
PGAOUT3:  
0dB TO -23dB  
INBDIFF  
PREOUT3  
MIX  
PGAINB:  
+20dB TO -6dB  
MIXOUT3  
+
Figure 24. Preoutput Signal Path Block Diagram  
Preoutput Mixer  
The IC’s output amplifiers each accept input from one of the three preoutput mixers. Configure each pre-  
output mixer to mix any combination of the four line input signals.  
Table 19. Preoutput Mixer Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
3
Preoutput Mixer 1  
MIXOUT1/  
MIXOUT2/  
MIXOUT3  
1xxx = INA1  
2
1
0
0x24/0x25/  
0x26  
x1xx = INA2 (INADIFF = 0) or INA2 - INA1 (INADIFF = 1)  
xx1x = INB1  
xxx1 = INB2 (INBDIFF = 0) or INB2 - INB1 (INBDIFF = 1)  
86  
Stereo Audio CODEC  
with FlexSound Technology  
Preoutput PGA  
The IC’s preoutput PGAs allow line input signals to be attenuated to match DAC output signal levels. Use the 0dB  
setting for maximum performance.  
Table 20. Preoutput PGA Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
GAIN (dB)  
Preoutput PGA Level  
3
VALUE  
0x0  
VALUE  
0x8  
GAIN (dB)  
-15  
0
-1  
2
1
0x1  
0x9  
-17  
PGAOUT1/  
PGAOUT2/  
PGAOUT3  
0x2  
-3  
0xA  
0xB  
0xC  
0xD  
0xE  
-19  
0x35/0x36/  
0x37  
0x3  
-5  
-21  
0x4  
-7  
-23  
0x5  
-9  
Mute  
Mute  
Mute  
0
0x6  
-11  
-13  
0x7  
0xF  
Receiver Amplifier  
The IC includes a single differential receiver amplifier. The receiver amplifier is designed to drive 32I receivers. In  
cases where a single transducer is used for the loudspeaker and receiver, use the SPKBYP switch to route the receiver  
amplifier output to the left speaker outputs.  
RECP/  
RXINP  
RECVOL:  
+8dB TO -62dB  
0dB  
MIX  
RECN/  
RXINN  
MIXREC  
RECBYP  
SPKBYP  
RECEN  
DACL  
DALEN  
DACR  
DAREN  
PGAOUT1:  
0dB TO -23dB  
PREOUT1  
+9dB  
+9dB  
PGAOUT2:  
0dB TO -23dB  
PREOUT2  
Figure 25. Receiver Amplifier Block Diagram  
87  
Stereo Audio CODEC  
with FlexSound Technology  
Receiver Output Mixer  
The IC’s receiver amplifier accepts input from the stereo DAC and the line inputs. Configure the mixer to mix any combina-  
tion of the available sources. When more than one signal is selected, the mixed signal is attenuated by 6dB for 2 signals,  
9.5dB for 3 signals, or 12dB for 4 signals.  
Table 21. Receiver Output Mixer Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
3
Receiver Output Mixer  
1xxx = Left DAC  
x1xx = Right DAC  
xx1x = Preoutput mixer 1  
xxx1 = Preoutput mixer 2  
2
1
0
0x28  
MIXREC  
Receiver Output Volume  
Table 22. Receiver Output Level Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Receiver Output Mute  
0 = Disabled  
7
RECM  
1 = Enabled  
Receiver Output Volume Level  
4
3
VALUE  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
VOLUME (dB)  
VALUE  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
VOLUME (dB)  
-62  
-58  
-54  
-50  
-46  
-42  
-38  
-35  
-32  
-29  
-26  
-23  
-20  
-17  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
0x3A  
2
1
0
+1  
+2  
+3  
+4  
+5  
+6  
+6.5  
+7  
+7.5  
+8  
RECVOL  
88  
Stereo Audio CODEC  
with FlexSound Technology  
The theoretical best efficiency of a linear amplifier is  
78%, however, that efficiency is only exhibited at peak  
output power. Under normal operating levels (typical  
music reproduction levels), efficiency falls below 30%,  
whereas the IC’s Class D amplifier still exhibits 80% effi-  
ciency under the same conditions.  
Speaker Amplifiers  
The IC integrates a stereo filterless Class D amplifier that  
offers much higher efficiency than Class AB without the  
typical disadvantages.  
The high efficiency of a Class D amplifier is due to the  
switching operation of the output stage transistors. In a  
Class D amplifier, the output transistors act as current  
steering switches and consume negligible additional  
power. Any power loss associated with the Class D out-  
put stage is mostly due to the I2R loss of the MOSFET  
on-resistance, and quiescent current overhead.  
Traditional Class D amplifiers require the use of exter-  
nal LC filters or shielding to meet EN55022B and FCC  
electromagnetic-interference (EMI) regulation standards.  
Maxim’s patented active emissions limiting edge-rate  
control circuitry reduces EMI emissions (Figure 26).  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
-10  
-10  
30  
60 80 100 120 140 160 180 200 220 240 260 280 300  
FREQUENCY (MHz)  
300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000  
FREQUENCY (MHz)  
Figure 26. EMI with 15cm of Speaker Cable  
SPKLVDD  
BATTERY ADC  
SPVOLL:  
+8dB TO -62dB  
SPKLP  
MIX  
+6dB  
SPKLN  
MIXSPL  
SPLEN  
SPKLGND  
DACL  
POWER/DISTORTION LIMITER  
SPKRVDD  
SPKRP  
DALEN  
MIX  
+6dB  
SPKRN  
DACR  
MIXSPR  
SPVOLR:  
+8dB TO -62dB  
SPREN  
SPKRPGND  
DAREN  
PGAOUT2:  
0dB TO -23dB  
PREOUT2  
+9dB  
+9dB  
PGAOUT3:  
0dB TO -23dB  
PREOUT3  
Figure 27. Speaker Amplifier Path Block Diagram  
89  
Stereo Audio CODEC  
with FlexSound Technology  
Speaker Output Mixers  
The IC’s speaker amplifiers accept input from the stereo DAC and the line inputs. Configure the mixer to mix any combina-  
tion of the available sources. When more than one signal is selected, the mixed signal is attenuated by 6dB for 2 signals,  
9.5dB for 3 signals, or 12dB for four signals.  
Table 23. Speaker Output Mixer Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
7
Left Speaker Output Mixer  
1xxx = Left DAC  
x1xx = Right DAC  
xx1x = Reserved  
xxx1 = Preoutput mixer 3  
6
5
4
3
2
1
0
MIXSPL  
0x29  
Right Speaker Output Mixer  
1xxx = Left DAC  
x1xx = Right DAC  
xx1x = Reserved  
xxx1 = Preoutput mixer 2  
MIXSPR  
Speaker Output Volume  
Table 24. Speaker Output Mixer Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Left/Right Speaker Output Mute  
7
SPLM/SPRM  
0 = Disabled  
1 = Enabled  
Left/Right Speaker Output Volume Level  
VALUE  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
VOLUME (dB)  
VALUE  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
VOLUME (dB)  
4
-64  
-59  
-55  
-50  
-46  
-42  
-38  
-35  
-32  
-29  
-26  
-23  
-20  
-17  
-14  
-12  
-10  
-8  
-6  
3
2
-4  
-2  
0
0x3B/0x3C  
+1  
+2  
+3  
+4  
+5  
+6  
+6.5  
+7  
+7.5  
+8  
SPVOLL/SPVOLR  
1
0
90  
Stereo Audio CODEC  
with FlexSound Technology  
U Preset Dynamic Mode. The highpass filter automati-  
cally slides between a preset upper and lower corner  
frequency based on output signal level.  
Speaker Amplifier Signal Processing  
The IC includes signal processing to improve the sound  
quality of the speaker output and protect transducers  
from damage. An excursion limiter dynamically adjusts  
the highpass corner frequency, while a power limiter and  
distortion limiter prevent the amplifier from outputting too  
much distortion or power. The excursion limiter is located  
in the DSP while the distortion limiter and power limiter  
control the analog volume control (Figure 28). All three  
limiters analyze the speaker amplifier’s output signal to  
determine when to take action.  
U User Programmable Dynamic Mode. The highpass  
filter slides between a user-programmed biquad filter  
on the low side to a predefined corner frequency on  
the high side.  
The transfer function for the user-programmable biquad is:  
-1  
-2  
b
+ b z + b z  
1 2  
0
H(z) =  
-1  
-2  
1+ a z + a z  
1
2
Excursion Limiter  
The excursion limiter is a dynamic highpass filter that  
monitors the speaker outputs and increases the high-  
pass corner frequency when the speaker amplifier’s out-  
put exceeds a predefined threshold. The filter smoothly  
transitions between the high and low corner frequency to  
prevent unwanted artifacts. The filter can operate in four  
different modes:  
The coefficients b , b , b , a , and a are sample rate  
0
1
2
1
2
dependent and stored in registers 0xB4 through 0xC7.  
Store b , b , and b as positive numbers. Store a and  
0
1
2
1
a as negated two’s complement numbers. Separate fil-  
2
ters can be stored for the DAI1 and DAI2 playback paths.  
The MAX9888 EV kit software includes a graphic interface  
for generating the user-programmable biquad coefficients.  
Note: Only change the excursion limiter settings when  
the signal path is disabled to prevent undesired artifacts.  
U Fixed Frequency Preset Mode. The highpass corner  
frequency is fixed at the upper corner frequency and  
does not change with signal level.  
U Fixed Frequency Programmable Mode. The high-  
pass corner frequency is fixed to that specified by the  
programmable biquad filter.  
DV1G:  
0/6/12/18dB  
+
MULTIBAND ALC  
SPKLVDD  
BATTERY ADC  
DVEQ1:  
DVEQ2:  
SPVOLL:  
+8dB TO -62dB  
0dB TO -15dB  
0dB TO -15dB  
SPKLP  
5-BAND  
5-BAND  
PARAMETRIC  
EQ  
PARAMETRIC  
EQ  
MIX  
+6dB  
SPKLN  
MIXSPL  
EQ1EN  
EQ2EN  
SPLEN  
SPKLGND  
SPKRVDD  
SPKRP  
EXCURSION LIMITER  
DACL  
POWER/  
DISTORTION LIMITER  
MIX  
DALEN  
AUDIO/  
FILTERS  
MIXDAL  
DV2:  
0dB TO -15dB  
DCB2  
MIX  
+6dB  
AUDIO/  
VOICE  
FILTERS  
SPKRN  
MIXSPR  
SPVOLR:  
+8dB TO -62dB  
DV1:  
0dB TO -15dB  
SPREN  
SPKRPGND  
MIX  
DACR  
MODE1  
DVFLT  
DAREN  
MIXDAR  
Figure 28. Speaker Amplifier Signal Processing Block Diagram  
91  
Stereo Audio CODEC  
with FlexSound Technology  
Table 25. Excursion Limiter Registers  
REGISTER BIT  
NAME  
DESCRIPTION  
Excursion Limiter Corner Frequency  
6
The excursion limiter has limited sliding range and minimum corner frequencies. Listed below  
are all the valid filter combinations.  
LOWER CORNER  
FREQUENCY  
UPPER CORNER  
FREQUENCY  
MINIMUM BIQUAD  
CORNER FREQUENCY  
DHPUCF DHPLCF  
5
4
DHPUCF  
Excursion limiter disabled  
000  
001  
010  
011  
100  
000  
001  
010  
011  
00  
00  
00  
00  
00  
11  
01  
10  
10  
400Hz  
600Hz  
800Hz  
1kHz  
Programmable using biquad  
100Hz  
0x3F  
200Hz  
400Hz  
400Hz  
400Hz  
600Hz  
800Hz  
1
Programmable  
using biquad  
Programmable  
using biquad  
Programmable  
using biquad  
Programmable  
using biquad  
400Hz  
600Hz  
800Hz  
1kHz  
200Hz  
300Hz  
400Hz  
500Hz  
001  
010  
011  
100  
11  
11  
11  
11  
DHPLCF  
0
6
ALC and Excursion Limiter Release Time  
Sets the release time for both the ALC and Excursion Limiter. See the Automatic Level Control  
section for ALC release times. Excursion limiter release time is defined as the time required to  
slide from the high corner frequency to the low corner frequency.  
VALUE  
000  
EXCURSION LIMITER RELEASE TIME (s)  
4
2
001  
0x41  
5
ALCRLS  
010  
1
011  
0.5  
100  
0.25  
101  
0.25  
4
110  
Reserved  
Reserved  
111  
Excursion Limiter Threshold  
Measured at the Class D speaker amplifier outputs. Signals above the threshold use the upper  
3
2
corner frequency. Signals below the threshold use the lower corner frequency. V  
must  
BAT  
correctly reflect the voltage of SPKLVDD to achieve accurate thresholds.  
000 = 0.34V  
001 = 0.71V  
010 = 1.30V  
011 = 1.77V  
100 = 2.33V  
101 = 3.25V  
110 = 4.25V  
111 = 4.95V  
P
P
P
P
P
P
P
P
0x40  
DHPTH  
1
0
92  
Stereo Audio CODEC  
with FlexSound Technology  
Power Limiter  
The IC’s power limiter includes user-programmable time  
constants and power thresholds to match a wide range  
of loudspeakers. Program the power limiter’s threshold to  
match the loudspeaker’s rated power handling. This can  
be determined through measurement or the loudspeak-  
er’s specification. Program time constant 1 to match the  
voice coil’s thermal time constant. Program time constant  
2 to match the magnet’s thermal time constant. The time  
constants can be determined by plotting the voice coil’s  
resistance vs. time as power is applied to the speaker.  
The IC’s power limiter tracks the RMS power delivered to  
the loudspeaker and briefly mutes the speaker amplifier  
output if the speaker is at risk of sustaining permanent  
damage.  
Loudspeakers are typically damaged when the voice coil  
overheats due to extended operation above the rated  
power. During normal operation, heat generated in the  
voice coil is transferred to the speaker’s magnet, which  
transfers heat to the surrounding air. For the voice coil to  
overheat, both the voice coil and the magnet must over-  
heat. The result is that a loudspeaker can operate above  
its rated power for a significant time before it heats suf-  
ficiently to cause damage.  
Table 26. Power Limiter Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Power Limiter Threshold  
If the RMS output power from the speaker amplifiers exceeds this threshold, the out-  
put is briefly muted to protect the speaker. The threshold is measured in watts assum-  
ing an 8I load. VBAT must correctly reflect the voltage of SPKLVDD/SPKRVDD to  
achieve accurate thresholds.  
7
THRESHOLD  
(W)  
THRESHOLD  
(W)  
VALUE  
VALUE  
6
5
Power limiter  
disabled  
0x0  
0x8  
0.27  
PWRTH  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0.05  
0.06  
0.09  
0.11  
0.13  
0.18  
0.22  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
0.35  
0.48  
0.72  
1.00  
1.43  
1.57  
1.80  
0x42  
4
2
Power Limiter Weighting Factor  
Determines the balance between time constant 1 and 2 to match the dominance of  
each time constant in the loudspeaker.  
VALUE  
000  
T1 (%)  
T2 (%)  
50  
50  
1
001  
62.5  
37.5  
25  
PWRK  
010  
75  
011  
87.5  
12.5  
0
100  
100  
101  
12.5  
25  
87.5  
75  
0
110  
111  
37.5  
62.5  
REGISTER  
BIT  
NAME  
DESCRIPTION  
93  
Stereo Audio CODEC  
with FlexSound Technology  
Table 26. Power Limiter Registers (continued)  
Power Limiter Time Constant 2  
Select a value that matches the thermal time constant of the loudspeaker’s magnet.  
7
TIME CONSTANT  
TIME CONSTANT  
(min)  
VALUE  
VALUE  
(min)  
Disabled  
0.50  
6
5
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
3.75  
5.00  
PWRT2  
0.67  
6.66  
0.89  
8.88  
1.19  
Reserved  
Reserved  
Reserved  
Reserved  
1.58  
4
3
2.11  
2.81  
0x43  
Power Limiter Time Constant 1  
Select a value that matches the thermal time constant of the loudspeaker’s voice coil.  
TIME CONSTANT  
(s)  
TIME CONSTANT  
(s)  
VALUE  
VALUE  
2
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Disabled  
0.50  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
3.75  
5.00  
PWRT1  
0.67  
6.66  
1
0
0.89  
8.88  
1.19  
Reserved  
Reserved  
Reserved  
Reserved  
1.58  
2.11  
2.81  
Distortion Limiter  
The IC’s distortion limiter ensures that the speaker amplifier’s output does not exceed the programmed THD+N limit.  
The distortion limiter analyzes the Class D output duty cycle to determine the percentage of the waveform that is  
clipped. If the distortion exceeds the programmed threshold, the output gain is reduced.  
94  
Stereo Audio CODEC  
with FlexSound Technology  
Table 27. Distortion Limiter Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Distortion Limit  
Measured in % THD+N.  
7
VALUE  
THD+N LIMIT (%)  
VALUE  
THD+N LIMIT (%)  
6
5
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Limiter disabled  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
12  
14  
16  
18  
20  
21  
22  
24  
< 1  
1
THDCLP  
2
4
6
4
8
0x44  
10  
Distortion Limiter Release Time Constant  
Duration of time required for the speaker amplifier’s output gain to adjust back to the  
nominal level after a large signal has passed.  
000 = 6.2s  
001 = 3.1s  
2
1
0
THDT1  
010 = 1.6s  
011 = 815ms  
100 = 419ms  
101 = 223ms  
110 = 116ms  
111 = 76ms  
improving the frequency response of the headphone  
amplifier. There is a low DC voltage on the amplifier out-  
puts due to amplifier offset. However, the offset of the IC  
is typically Q0.2mV, which, when combined with a 32I  
load, results in less than 6FA of DC current flow to the  
headphones.  
Headphone Amplifier  
The IC’s headphone amplifier integrates Maxim’s  
DirectDrive architecture to eliminate the need for large  
DC-blocking capacitors. Traditional single-supply head-  
phone amplifiers have outputs biased at a nominal  
DC voltage (typically half the supply). Large coupling  
capacitors are needed to block this DC bias from the  
headphone. Without these capacitors, a significant  
amount of DC current flows to the headphone, resulting  
in unnecessary power dissipation and possible damage  
to both the headphone and headphone amplifier.  
In addition to the cost and size disadvantages of  
the DC-blocking capacitors required by conventional  
headphone amplifiers, these capacitors limit the ampli-  
fier’s low-frequency response and can distort the audio  
signal. The DC-blocking capacitor not only blocks DC,  
but also low-frequency audio. Improving the low-fre-  
quency response of a conventional headphone amplifier  
requires increasing the capacitor size, further adding  
to the cost and size of the solution. Due to the voltage  
coefficient of the capacitors used for DC blocking, they  
introduce significant distortion near the corner frequency  
of the highpass filter they create. This distortion further  
degrades the low-frequency audio quality.  
The DirectDrive architecture uses a charge pump to  
create an internal negative supply voltage. This allows  
the IC’s headphone outputs to be biased at GND while  
operating from a single supply (Figure 29). Without a DC  
component, there is no need for the large DC-blocking  
capacitors. Instead of two large (220FF, typ) capaci-  
tors, the IC charge pump requires two small ceramic  
capacitors, conserving board space, reducing cost, and  
95  
Stereo Audio CODEC  
with FlexSound Technology  
Alternative approaches to eliminating the output-cou-  
pling capacitors involve biasing the headphone return  
(sleeve) to the DC bias voltage of the headphone ampli-  
fiers. This method raises some issues:  
The switch drivers feature a controlled switching speed  
that minimizes noise generated by turn-on and turn-off  
transients. By limiting the switching speed of the charge  
pump, the di/dt noise caused by the parasitic trace  
inductance is minimized. The charge pump is active only  
in headphone modes.  
U The sleeve is typically grounded to the chassis. Using  
the midrail biasing approach, the sleeve must be  
isolated from system ground, complicating product  
design.  
To reduce audible noise at the outputs, the IC’s head-  
phone amplifier includes headphone ground sensing.  
Connect the sense line (HPSNS) to the ground terminal  
of the device’s headphone jack. Any noise present at  
the headphone ground is then added to the headphone  
output. The result is elimination of this noise from the  
audible output. If ground sensing is not required, con-  
nect HPSNS directly to ground. Figure 30 shows a block  
diagram of the headphone output section including the  
headphone sense function.  
U During an ESD strike, the amplifier’s ESD structures  
are the only path to system ground. Thus, the ampli-  
fier must be able to withstand the full energy from an  
ESD strike.  
U When using the headphone jack as a line out to other  
equipment, the bias voltage on the sleeve may con-  
flict with the ground potential from other equipment,  
resulting in possible damage to the amplifiers.  
Headphone Output Mixers  
The IC’s headphone amplifier accepts input from the  
stereo DAC and the line inputs. The output of the left and  
right DAC cannot be mixed at the headphone mixer. Use  
MIXDAL/MIXDAR to mix the left and right audio channels  
before conversion.  
The IC features a low-noise charge pump to generate  
a negative supply for the headphone amplifier. The  
nominal switching frequency is well beyond the audio  
range, and thus does not interfere with audio signals.  
V
DD  
V
/2  
DD  
DACL  
DALEN  
GND  
CONVENTIONAL AMPLIFIER BIASING SCHEME  
+V  
DD  
DACR  
HPVOLL:  
+3dB TO -67dB  
DAREN  
PGAOUT1:  
0dB TO -23dB  
HPL  
MIX  
PREOUT1  
HPLEN  
HPSNS  
+9dB  
MIXHPL  
GND  
HPVOLR:  
+3dB TO -67dB  
MIX  
HPR  
PREOUT2  
+9dB  
MIXHPR  
-V  
DD  
)
HPREN  
PGAOUT2:  
0dB TO -23dB  
(V  
SS  
DirectDrive AMPLIFIER BIASING SCHEME  
Figure 30. Headphone Amplifier Block Diagram  
Figure 29. Traditional Amplifier Output vs. DirectDrive Output  
96  
Stereo Audio CODEC  
with FlexSound Technology  
Table 28. Headphone Output Mixer Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Left Headphone Output Mixer  
10xx = Left DAC  
7
6
5
4
3
2
1
0
01xx = Right DAC (requires DALEN = 0 for proper operation)  
11xx = Left DAC  
xx1x = Reserved  
MIXHPL  
xxx1 = Preoutput mixer 1  
0x27  
Right Headphone Output Mixer  
10xx = Left DAC (requires DAREN = 0 for proper operation)  
01xx = Right DAC  
11xx = Right DAC  
xx1x = Reserved  
MIXHPR  
xxx1 = Preoutput mixer 2  
Headphone Output Volume  
Table 29. Headphone Output Level Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Headphone Output Mute  
0 = Disabled  
7
HPLM/HPRM  
1 = Enabled  
Left/Right Headphone Output Volume Level  
VALUE  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
VOLUME (dB)  
VALUE  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
VOLUME (dB)  
4
3
-67  
-63  
-59  
-55  
-51  
-47  
-43  
-40  
-37  
-34  
-31  
-28  
-25  
-22  
-19  
-17  
-15  
-13  
-11  
-9  
-7  
-5  
0x38/0x39  
-4  
HPVOLL/HPVOLR  
-3  
2
1
0
-2  
-1  
0
+1  
+1.5  
+2  
+2.5  
+3  
97  
Stereo Audio CODEC  
with FlexSound Technology  
an external receiver amplifier is used, route its output to  
Output Bypass Switches  
The IC includes two output bypass switches that solve  
common applications problems. When a single trans-  
ducer is used for the loudspeaker and receiver, the need  
exists for two amplifiers to power the same transducer.  
Bypass switches connect the IC’s receiver amplifier  
output to the speaker amplifier’s output, allowing either  
amplifier to power the same transducer. In systems where  
the left speaker through RECP/RXINP and RECN/RXINN,  
bypassing the Class D amplifier. In systems where an  
external amplifier drives both the receiver and the IC’s  
line input, one of the differential signals can be discon-  
nected from the receiver when not needed by passing it  
through the analog switch that connects RECP/RXINP to  
RECN/RXINN.  
EXTERNAL  
RECEIVER AMP  
10I*  
RECP/RXINP  
RECP/RXINP  
RECN/RXINN  
RECN/RXINN  
EXTERNAL  
RECEIVER  
AMP  
0dB  
0dB  
10I*  
0dB  
RECN/RXINN  
RECN/RXINN  
RECEN  
RECEN  
RECBYP  
SPKBYP  
RECBYP  
SPKBYP  
RECEN  
RECBYP  
SPKBYP  
SPKLVDD  
SPKLP  
SPKLVDD  
SPKLP  
SPKLVDD  
SPKLP  
+6dB  
SPKLN  
+6dB  
SPKLN  
+6dB  
SPKLGND  
SPKLN  
SPLEN  
SPKLGND  
SPLEN  
POWER/DISTORTION  
LIMITER  
SPKLGND  
SPLEN  
POWER/DISTORTION  
LIMITER  
POWER/DISTORTION  
LIMITER  
*OPTIONAL 10I RESISTORS IMPROVE DISTORTION  
THROUGH THE ANALOG SWITCH.  
SPEAKER AMPLIFIER BYPASS USING AN  
EXTERNAL RECEIVER AMPLIFIER  
SPEAKER AMPLIFIER BYPASS USING THE  
INTERNAL RECEIVER AMPLIFIER  
CONTROLLING AN EXTERNAL RECEIVE  
AMPLIFIER AND SPEAKER  
Figure 31. Output Bypass Switch Block Diagrams  
Table 30. Output Bypass Switches Register  
REGISTER  
BIT  
7
NAME  
INABYP  
MIC2BYP  
DESCRIPTION  
See the Microphone Inputs section.  
4
RXINP to RXINN Bypass Switch  
Shorts RXINP to RXINN allowing a signal to pass through the MAX9888. Disable the  
1
0
RECBYP  
SPKBYP  
receiver amplifier when RECBYP = 1.  
0 = Disabled  
1 = Enabled  
0x48  
RXIN to SPKL Bypass Switch  
Shorts RXINP/RXINN to SPKLP/SPKLN allowing either the internal or an external  
receiver amplifier to power the left speaker. Disable the left speaker amplifier when  
SPKBYP = 1.  
0 = Disabled  
1 = Enabled  
98  
Stereo Audio CODEC  
with FlexSound Technology  
enabled, volume slewing also occurs at device turn-on  
and turn-off. During turn-on the volume is set to mute  
before the output is enabled. Once the output is on, the  
volume ramps to the desired level. At turn-off the volume  
is ramped to mute before the outputs are disabled.  
Click-and-Pop Reduction  
The IC includes extensive click-and-pop reduction cir-  
cuitry. The circuitry minimizes clicks and pops at turn-on,  
turn-off, and during volume changes.  
Zero-crossing detection is implemented on all analog  
PGAs and volume controls to prevent large glitches  
when volume changes are made. Instead of making a  
volume change immediately, the change is made when  
the audio signal crosses the midpoint. If no zero-crossing  
occurs within the timeout window, the change is forced.  
When there is no audio signal zero-crossing detection  
can prevent volume slewing from occurring. Enable  
enhanced volume slewing to prevent the volume control-  
ler from requesting another volume level until the previ-  
ous one has been set. Each step in the volume ramp  
then occurs after a zero crossing has occurred in the  
audio signal or the timeout window has expired. During  
turn-off, enhance volume slewing is always disabled.  
Volume slewing breaks up large volume changes into the  
smallest available step size and the steps through each  
step between the initial and final volume setting. When  
Table 31. Click-and-Pop Reduction Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Enhanced Volume Smoothing  
During volume slewing, the controller waits for each step in the ramp to be applied  
before sending the next step. When zero-crossing detection is enabled this prevents  
large steps in the output volume when no zero crossings are detected.  
0 = Enabled  
7
VS2EN  
1 = Disabled  
Applies to volume changes in HPVOLL, HPVOLR, RECVOL, SPVOLL, and SPVOLR.  
Volume Adjustment Smoothing  
Volume changes are smoothed by stepping through intermediate steps. Also ramps  
the volume from minimum to the programmed value at turn-on and back to minimum at  
6
5
VSEN  
ZDEN  
turn-off.  
0 = Enabled  
1 = Disabled  
0x49  
Applies to volume changes in HPVOLL, HPVOLR, RECVOL, SPVOLL, and SPVOLR.  
Zero-Crossing Detection  
Holds volume changes until there is a zero crossing in the audio signal. This reduces  
click and pop during volume changes (zipper noise). If no zero crossing is detected  
within 100ms, the volume change is forced.  
0 = Enabled  
1 = Disabled  
Applies to volume changes in PGAM1, PGAM2, PGAOUTA, PGAOUTB, PGAOUTC,  
HPVOLL, HPVOLR, RECVOL, SPVOLL, and SPVOLR.  
1
0
EQ2EN  
EQ1EN  
See the 5-Band Parametric EQ section.  
99  
Stereo Audio CODEC  
with FlexSound Technology  
load is applied to JACKSNS. Table 32 shows the change  
in JKSNS that occurs when a jack is inserted.  
Jack Detection  
The IC features jack detection that can detect the inser-  
tion and removal of a jack as well as the load type. When  
a jack is detected, an interrupt on IRQ can be triggered  
to alert the microcontroller of the event. Figure 32 shows  
the typical configuration for jack detection.  
Accessory Button Detection  
After jack insertion, the MAX9888 can detect button  
presses on accessories that include a microphone and  
a switch that shorts the microphone signal to ground.  
Set JDETEN to enable jack detection circuitry. A pullup  
current is automatically applied to JACKSNS if MICBIAS  
is disabled. Clear JDWK to allow differentiation between  
the microphone load and a short to ground. Button  
presses can be detected both when MICBIAS is enabled  
and disabled. Table 33 shows the change in JKSNS that  
occurs when the accessory button is pressed.  
Jack Insertion  
To detect a jack insertion, the IC must have a power  
supply and MICBIAS should be disabled. Set JDETEN  
to enable jack detection circuitry and apply a pullup cur-  
rent to JACKSNS. Set JDWK to minimize supply current.  
Clear JDWK to differentiate between headsets with a  
microphone and headphones without a microphone. The  
voltage on JACKSNS is equal to SPKLVDD as long as no  
HPL  
MICBIAS  
JACKSNS  
HPR  
MIC1P  
Figure 32. Typical Configuration for Jack Detection  
Table 32. Change in JKSNS Upon Jack Insertion  
JACK TYPE  
JDWK = 1  
JDWK = 0  
GND  
GND  
R
L
JKSNS: 11 è 00  
JKSNS: 11 è 00  
MIC  
GND  
R
L
JKSNS: 11 è 00  
JKSNS: 11 è 01  
Table 33. Change in JKSNS Upon Button Press  
JACK TYPE  
MICBIAS ENABLED OR DISABLED  
MIC  
GND  
R
L
JKSNS: 01 è 00  
100  
Stereo Audio CODEC  
with FlexSound Technology  
Jack Removal  
applied to JACKSNS if MICBIAS is disabled. Set JDWK  
to minimize supply current if button detection is not  
required. Table 34 shows the change in JKSNS that  
occurs when a jack is removed.  
The IC detects jack removal by monitoring JACKSNS  
for transitions to the 11 state. Set JDETEN to enable  
jack detection circuitry. A pullup current is automatically  
Table 34. Change in JKSNS Upon Jack Removal  
JACK TYPE  
JDWK = 1 AND MICBIAS DISABLED  
JDWK = 0 OR MICBIAS ENABLED  
GND  
GND  
R
L
JKSNS: 00 è 11  
JKSNS: 00 è 11  
JKSNS: 00 è 11  
MIC  
GND  
R
L
JKSNS: 01 è 11  
Table 35. Jack Detection Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
JACKSNS State  
Reports the status of JACKSNS when JDETEN = 1.  
VALUE  
MODE  
DESCRIPTION  
7
MBEN = 1  
MBEN = 0  
MBEN = 1  
MBEN = 0  
MBEN = 1  
MBEN = 0  
MBEN = 1  
MBEN = 0  
V
V
< 0.1 x V  
JACKSNS  
JACKSNS  
MICBIAS  
SPKLVDD  
< 0.95 x V  
JACKSNS MICBIAS  
00  
< 0.1 x V  
0x02  
(Read Only)  
JKSNS  
0.1 x V  
0.1 x V  
< V  
MICBIAS  
01  
10  
11  
< V  
< 0.95 x V  
SPKLVDD  
SPKLVDD  
JACKSNS  
Reserved  
Reserved  
6
0.95 x V  
0.95 x V  
< V  
JACKSNS  
MICBIAS  
< V  
SPKLVDD  
JACKSNS  
Jack Detection Enable  
0 = Disabled  
1 = Enabled  
7
1
0
JDETEN  
JDEB  
Jack Detection Debounce  
Configures the debounce time for setting JDET.  
00 = 25ms  
01 = 50ms  
10 = 100ms  
11 = 200ms  
0x49  
7
6
See the Power Management section.  
See the Battery Measurement section.  
JACKSNS Pullup  
SHDN  
VBATEN  
When JDWK = 1 JACKSNS is slow to increase in voltage. Set JDWK = 0 before setting  
JDETEN = 1 to prevent false detection.  
Valid when MBIAS = 0 or SHDN = 0.  
0x4C  
1
JDWK  
0 = 2.4kIto SPKLVDD (allows microphone detection)  
1 = 5FA to SPKLVDD (minimizes supply current)  
101  
Stereo Audio CODEC  
with FlexSound Technology  
circuitry to set accurate thresholds. When the battery  
measurement function is disabled, the battery voltage is  
user programmable.  
Battery Measurement  
The IC measures the voltage applied to SPKLVDD (typi-  
cally the battery voltage) and reports the value in regis-  
ter 0x03. This value is also used by the speaker limiter  
Table 36. Battery Measurement Registers  
REGISTER  
BIT  
4
NAME  
DESCRIPTION  
Battery Voltage  
Read VBAT when V  
3
= 1 to determine V  
. Program VBAT when V  
BATEN  
SPKLVDD BATEN  
0x03  
2
VBAT  
= 0 to allow proper speaker amplifier signal processing. Calculate the battery voltage  
using the following formula:  
1
V
= 2.55V + [VBAT/10]  
BATTERY  
0
7
SHDN  
VBATEN  
JDWK  
See the Power Management section.  
Battery Measurement Enable  
Enables an internal ADC to measure V  
0 = Disabled (register 0x03 readable and writeable)  
1 = Enabled (register 0x03 read only)  
.
SPKLVDD  
0x4C  
6
1
See the Headset Detection section.  
102  
Stereo Audio CODEC  
with FlexSound Technology  
either by poling register 0x00 or configuring the IRQ to  
pull low when specific events occur. IRQ is an open-  
drain output that requires a pullup resistor for proper  
operation. Register 0x0F determines which bits in the  
status register trigger IRQ to pull low.  
Device Status  
The IC uses register 0x00 and IRQ to report the status of  
various device functions. The status register bits are set  
when their respective events occur, and cleared upon  
reading the register. Device status can be determined  
Table 37. Status and Interrupt Registers  
REGISTER  
BIT  
NAME  
DESCRIPTION  
Full Scale  
0 = All digital signals are less than full scale.  
1 = The DAC or ADC signal path has reached or exceeded full scale. This typically  
indicates clipping.  
7
CLD  
Volume Slew Complete  
SLD reports that any of the programmable-gain arrays or volume controllers has  
completed slewing from a previous setting to a new programmed setting. If multiple  
gain arrays or volume controllers are changed at the same time, the SLD flag is set  
after the last volume slew completes. SLD also reports when the digital audio interface  
soft-start or soft-stop process has completed. MCLK is required for proper SLD  
operation.  
6
SLD  
0 = No volume slewing sequences have completed since the status register was last  
read.  
1 = Volume slewing complete.  
0x00  
(Read Only)  
Digital Audio Interface Unlocked  
5
1
ULK  
0 = Both digital audio interfaces are operating normally.  
1 = Either digital audio interface is configured incorrectly or receiving invalid data.  
Jack Configuration Change  
JDET reports changes to any bit in the Jack Status register (0x02). Changes to the Jack  
Status bits are debounced before setting JDET. The debounce period is programmable  
using the JDEB bits. JDET is always set the first time JDETEN or SHDN is set the first  
time power is applied to the IC. Read the status register following such an event to clear  
JDET and allow for proper jack detection.  
JDET  
0 = No change in jack configuration.  
1 = Jack configuration has changed.  
Full-Scale Interrupt Enable  
0 = Disabled  
1 = Enabled  
7
6
5
1
ICLD  
ISLD  
IULK  
IJDET  
Volume Slew Complete Interrupt Enable  
0 = Disabled  
1 = Enabled  
0x0F  
Digital Audio Interface Unlocked Interrupt Enable  
0 = Disabled  
1 = Enabled  
Jack Configuration Change Interrupt Enable  
0 = Disabled  
1 = Enabled  
103  
Stereo Audio CODEC  
with FlexSound Technology  
Device Revision  
Table 38. Device Revision Register  
REGISTER  
BIT  
NAME  
DESCRIPTION  
7
6
5
4
0xFF  
(Read Only)  
Device Revision Code  
REV is always set to 0x43.  
REV  
3
2
1
0
I2C Serial Interface  
resistors protect the digital inputs of the IC from high  
voltage spikes on the bus lines, and minimize crosstalk  
and undershoot of the bus signals.  
The IC features an I2C/SMBusK-compatible, 2-wire  
serial interface comprising a serial-data line (SDA) and  
a serial-clock line (SCL). SDA and SCL facilitate com-  
munication between the IC and the master at clock rates  
up to 400kHz. Figure 5 shows the 2-wire interface timing  
diagram. The master generates SCL and initiates data  
transfer on the bus. The master device writes data to the  
IC by transmitting the proper slave address followed by  
the register address and then the data word. Each trans-  
mit sequence is framed by a START (S) or REPEATED  
START (Sr) condition and a STOP (P) condition. Each  
word transmitted to the IC is 8 bits long and is followed  
by an acknowledge clock pulse. A master reading data  
from the IC transmits the proper slave address followed  
by a series of nine SCL pulses. The IC transmits data on  
SDA in sync with the master-generated SCL pulses. The  
master acknowledges receipt of each byte of data. Each  
read sequence is framed by a START or REPEATED  
START condition, a not acknowledge, and a STOP condi-  
tion. SDA operates as both an input and an open-drain  
output. A pullup resistor, typically greater than 500I,  
is required on SDA. SCL operates only as an input. A  
pullup resistor, typically greater than 500I, is required  
on SCL if there are multiple masters on the bus, or if  
the single master has an open-drain SCL output. Series  
resistors in line with SDA and SCL are optional. Series  
Bit Transfer  
One data bit is transferred during each SCL cycle. The  
data on SDA must remain stable during the high period of  
the SCL pulse. Changes in SDA while SCL is high are con-  
trol signals (see the START and STOP Conditions section).  
START and STOP Conditions  
SDA and SCL idle high when the bus is not in use. A  
master initiates communication by issuing a START  
condition. A START condition is a high-to-low transition  
on SDA with SCL high. A STOP condition is a low-to-  
high transition on SDA while SCL is high (Figure 33). A  
START condition from the master signals the beginning  
of a transmission to the IC. The master terminates trans-  
mission, and frees the bus, by issuing a STOP condition.  
The bus remains active if a REPEATED START condition  
is generated instead of a STOP condition.  
Early STOP Conditions  
The IC recognizes a STOP condition at any point during  
data transmission except if the STOP condition occurs in  
the same high pulse as a START condition. For proper  
operation, do not send a STOP condition during the  
same SCL high pulse as the START condition.  
S
Sr  
P
SCL  
SDA  
Figure 33. START, STOP, and REPEATED START Conditions  
SMBus is a trademark of Intel Corp.  
104  
Stereo Audio CODEC  
with FlexSound Technology  
Slave Address  
is busy or if a system fault has occurred. In the event  
of an unsuccessful data transfer, the bus master retries  
communication. The master pulls down SDA during the  
9th clock cycle to acknowledge receipt of data when  
the IC is in read mode. An acknowledge is sent by the  
master after each read byte to allow data transfer to  
continue. A not acknowledge is sent when the master  
reads the final byte of data from the IC, followed by a  
STOP condition.  
The slave address is defined as the seven most signifi-  
cant bits (MSBs) followed by the read/write bit. For the  
IC, the seven most significant bits are 0010000. Setting  
the read/write bit to 1 (slave address = 0x21) configures  
the IC for read mode. Setting the read/write bit to 0 (slave  
address = 0x20) configures the IC for write mode. The  
address is the first byte of information sent to the IC after  
the START condition.  
Acknowledge  
The acknowledge bit (ACK) is a clocked 9th bit that the  
IC uses to handshake receipt each byte of data when  
in write mode (Figure 34). The IC pulls down SDA dur-  
ing the entire master-generated 9th clock pulse if the  
previous byte is successfully received. Monitoring ACK  
allows for detection of unsuccessful data transfers. An  
unsuccessful data transfer occurs if a receiving device  
Write Data Format  
A write to the IC includes transmission of a START condi-  
tion, the slave address with the R/W bit set to 0, one byte  
of data to configure the internal register address pointer,  
one or more bytes of data, and a STOP condition. Figure  
35 illustrates the proper frame format for writing one byte  
of data to the IC. Figure 35 illustrates the frame format for  
writing n-bytes of data to the IC.  
CLOCK PULSE FOR  
ACKNOWLEDGMENT  
START  
CONDITION  
SCL  
1
2
8
9
NOT ACKNOWLEDGE  
SDA  
ACKNOWLEDGE  
Figure 34. Acknowledge  
ACKNOWLEDGE FROM MAX9888  
B7 B6 B5 B4 B3 B2 B1 B0  
ACKNOWLEDGE FROM MAX9888  
REGISTER ADDRESS  
ACKNOWLEDGE FROM MAX9888  
A
A
DATA BYTE  
1 BYTE  
A
P
S
SLAVE ADDRESS  
O
R/W  
AUTOINCREMENT INTERNAL REGISTER ADDRESS POINTER  
Figure 35. Writing One Byte of Data to the IC  
ACKNOWLEDGE FROM MAX9888  
ACKNOWLEDGE FROM MAX9888  
B5 B4 B3 B2 B1 B0  
B6 B5 B4 B3 B2 B1 B0  
B7  
B6  
B7  
ACKNOWLEDGE FROM MAX9888  
SLAVE ADDRESS  
R/W  
ACKNOWLEDGE FROM MAX9888  
REGISTER ADDRESS  
A
O
S
A
A
P
A
DATA BYTE n  
1 BYTE  
DATA BYTE 1  
1 BYTE  
AUTOINCREMENT INTERNAL REGISTER ADDRESS POINTER  
Figure 36. Writing n-Bytes of Data to the IC  
105  
Stereo Audio CODEC  
with FlexSound Technology  
The slave address with the R/W bit set to 0 indicates  
that the master intends to write data to the IC. The IC  
acknowledges receipt of the address byte during the  
master-generated 9th SCL pulse.  
The first byte transmitted from the IC is the content of  
register 0x00. Transmitted data is valid on the rising  
edge of SCL. The address pointer autoincrements after  
each read data byte. This autoincrement feature allows  
all registers to be read sequentially within one continu-  
ous frame. A STOP condition can be issued after any  
number of read data bytes. If a STOP condition is issued  
followed by another read operation, the first data byte to  
be read is from register 0x00.  
The second byte transmitted from the master configures  
the IC’s internal register address pointer. The pointer  
tells the IC where to write the next byte of data. An  
acknowledge pulse is sent by the IC upon receipt of the  
address pointer data.  
The address pointer can be preset to a specific register  
before a read command is issued. The master presets  
the address pointer by first sending the IC’s slave  
address with the R/W bit set to 0 followed by the register  
address. A REPEATED START condition is then sent fol-  
lowed by the slave address with the R/W bit set to 1. The  
IC then transmits the contents of the specified register.  
The address pointer autoincrements after transmitting  
the first byte.  
The third byte sent to the IC contains the data that is  
written to the chosen register. An acknowledge pulse  
from the IC signals receipt of the data byte. The address  
pointer autoincrements to the next register address after  
each received data byte. This autoincrement feature  
allows a master to write to sequential registers within  
one continuous frame. The master signals the end of  
transmission by issuing a STOP condition. Register  
addresses greater than 0xC7 are reserved. Do not write  
to these addresses.  
The master acknowledges receipt of each read byte  
during the acknowledge clock pulse. The master must  
acknowledge all correctly received bytes except the last  
byte. The final byte must be followed by a not acknowl-  
edge from the master and then a STOP condition. Figure  
37 illustrates the frame format for reading one byte from  
the IC. Figure 38 illustrates the frame format for reading  
multiple bytes from the IC.  
Read Data Format  
Send the slave address with the R/W bit set to 1 to initi-  
ate a read operation. The IC acknowledges receipt of  
its slave address by pulling SDA low during the 9th SCL  
clock pulse. A START command followed by a read com-  
mand resets the address pointer to register 0x00.  
ACKNOWLEDGE FROM MAX9888  
ACKNOWLEDGE FROM MAX9888  
REGISTER ADDRESS  
ACKNOWLEDGE FROM MAX9888  
NOT ACKNOWLEDGE FROM MASTER  
S
SLAVE ADDRESS  
R/W  
O
A
A
Sr  
SLAVE ADDRESS  
1
A
DATA BYTE  
1 BYTE  
A
P
REPEATED START  
R/W  
AUTOINCREMENT INTERNAL REGISTER ADDRESS POINTER  
Figure 37. Reading One Byte of Data from the IC  
ACKNOWLEDGE FROM MAX9888  
ACKNOWLEDGE FROM MAX9888  
ACKNOWLEDGE FROM MAX9888  
S
O
A
A
SLAVE ADDRESS  
R/W  
REGISTER ADDRESS  
SLAVE ADDRESS  
DATA BYTE  
1 BYTE  
Sr  
1
A
A
REPEATED START  
R/W  
AUTOINCREMENT INTERNAL REGISTER ADDRESS POINTER  
Figure 38. Reading n Bytes of Data from the IC  
106  
Stereo Audio CODEC  
with FlexSound Technology  
required for the IC to operate. Additional components  
Applications Information  
may be required by the application.  
Typical Operating Circuits  
Figures 39 and 40 provide example operating circuits for  
the IC. The external components shown are the minimum  
Analog Microphones and Bypass Switch  
2.8V TO 5.5V  
1.8V  
10FF  
1.8V TO 3.6V  
1.8V TO 3.6V  
1FF  
1FF  
1FF  
1FF  
1FF  
1FF  
1FF  
1.8V TO  
5.5V  
DVDD  
HPVDD  
AVDD  
SPKLVDD SPKRVDD DVDDS2  
DVDDS1  
10kI  
BCLKS2  
TO MICROCONTROLLER  
IRQ  
DIGITAL  
AUDIO  
PORT 2  
MCLK  
BCLKS1  
LRCLKS1  
SDINS1  
SDOUTS1  
SDA  
LRCLKS2  
SDINS2  
10MHz TO 60MHz CLOCK INPUT  
SDOUTS2  
DIGITAL AUDIO  
PORT 1  
JACKSNS  
JACKSNS  
BYPASS  
SWITCH  
INPUT  
RECP/RXINP  
RECN/RXINN  
2
I C CONTROL  
PORT  
SCL  
SPKLP  
SPKLN  
8I  
8I  
MICROPHONE  
OUTPUT TO  
BASEBAND  
MIC1P/DIGMICDATA  
MIC1N/DIGMICCLK  
MAX9888  
SPKRP  
SPKRN  
MICBIAS  
MIC2P  
JACKSNS  
1kI  
2.2kI  
1FF  
1FF  
1FF  
1FF  
1FF  
HPR  
HPL  
HEADSET  
MICROPHONE  
MIC2N  
HPSNS  
REF  
INA1/EXTMICP  
INA2/EXTMICN  
INB1  
HANDSET  
MICROPHONE  
PREG  
REG  
1kI  
1FF  
1FF  
LINE INPUT  
INB2  
1FF  
1FF  
2.2FF  
DGND  
AGND  
HPGND SPKRGND SPKLGND HPVSS  
C1N  
C1P  
1FF  
1FF  
Figure 39. Typical Application Circuit Using Analog Microphone Inputs and the Bypass Switch  
107  
Stereo Audio CODEC  
with FlexSound Technology  
Digital Microphones and Receiver Amplifier  
2.8V TO 5.5V  
1.8V  
10FF  
1.8V TO 3.6V  
1.8V TO 3.6V  
1FF  
1FF  
1FF  
1FF  
1FF  
1FF  
1FF  
1.8V TO  
5.5V  
DVDD  
HPVDD  
AVDD  
SPKLVDD SPKRVDD DVDDS2  
DVDDS1  
10kI  
BCLKS2  
TO MICROCONTROLLER  
IRQ  
10MHz TO 60MHz  
CLOCK INPUT  
MCLK  
BCLKS1  
LRCLKS1  
SDINS1  
SDOUTS1  
SDA  
LRCLKS2  
SDINS2  
DIGITAL  
AUDIO  
PORT 2  
SDOUTS2  
JACKSNS  
DIGITAL AUDIO  
PORT 1  
JACKSNS  
RECP/RXINP  
RECN/RXINN  
32I  
2
I C CONTROL  
PORT  
SCL  
DATA  
SPKLP  
SPKLN  
DIGITAL  
MIC 1  
8I  
8I  
MIC1P/DIGMICDATA  
MIC1N/DIGMICCLK  
CLOCK  
DATA  
MAX9888  
SPKRP  
SPKRN  
DIGITAL  
MIC 2  
CLOCK  
MICBIAS  
MIC2P  
2.2kI  
JACKSNS  
1FF  
1FF  
1FF  
1FF  
1FF  
HPR  
HPL  
HEADSET  
MICROPHONE  
MIC2N  
HPSNS  
REF  
INA1/EXTMICP  
INA2/EXTMICN  
INB1  
LINE INPUT  
LINE INPUT  
PREG  
REG  
1FF  
1FF  
1FF  
1FF  
2.2FF  
INB2  
DGND  
AGND  
HPGND SPKRGND SPKLGND HPVSS  
C1N  
C1P  
1FF  
1FF  
Figure 40. Typical Application Circuit Using the Digital Microphone Input and Receiver Amplifier  
108  
Stereo Audio CODEC  
with FlexSound Technology  
In RF applications, improvements to both layout and com-  
ponent selection decrease the IC’s susceptibility to RF  
noise and prevent RF signals from being demodulated into  
audible noise. Trace lengths should be kept below 1/4 of  
the wavelength of the RF frequency of interest. Minimizing  
the trace lengths prevents them from functioning as anten-  
nas and coupling RF signals into the IC. The wavelength  
(l) in meters is given by: l = c/f where c = 3 x 108 m/s, and  
f = the RF frequency of interest.  
Filterless Class D Operation  
Traditional Class D amplifiers require an output filter  
to recover the audio signal from the amplifier’s output.  
The filters add cost, increase the solution size of the  
amplifier, and can decrease efficiency and THD+N  
performance. The traditional PWM scheme uses large  
differential output swings (2 x V  
peak to peak) and  
DD  
causes large ripple currents. Any parasitic resistance in  
the filter components results in a loss of power, lowering  
the efficiency.  
Route audio signals on middle layers of the PCB to allow  
ground planes above and below to shield them from RF  
interference. Ideally, the top and bottom layers of the  
PCB should primarily be ground planes to create effec-  
tive shielding.  
The IC does not require an output filter. The device relies  
on the inherent inductance of the speaker coil and the  
natural filtering of both the speaker and the human ear  
to recover the audio component of the square-wave out-  
put. Eliminating the output filter results in a smaller, less  
costly, more efficient solution.  
Additional RF immunity can also be obtained by rely-  
ing on the self-resonant frequency of capacitors as it  
exhibits a frequency response similar to a notch filter.  
Depending on the manufacturer, 10pF to 20pF capaci-  
tors typically exhibit self resonance at the RF frequencies  
of interest. These capacitors, when placed at the input  
pins, can effectively shunt the RF noise to ground. For  
these capacitors to be effective, they must have a low-  
impedance, low-inductance path to the ground plane.  
Avoid using microvias to connect to the ground plane  
whenever possible as these vias do not conduct well at  
RF frequencies.  
Because the frequency of the IC output is well beyond  
the bandwidth of most speakers, voice coil move-  
ment due to the square-wave frequency is very small.  
Although this movement is small, a speaker not designed  
to handle the additional power can be damaged. For  
optimum results, use a speaker with a series inductance  
> 10FH. Typical 8I speakers exhibit series inductances  
in the 20FH to 100FH range.  
RF Susceptibility  
GSM radios transmit using time-division multiple access  
(TDMA) with 217Hz intervals. The result is an RF signal  
with strong amplitude modulation at 217Hz and its har-  
monics that is easily demodulated by audio amplifiers.  
The IC is designed specifically to reject RF signals; how-  
ever, PCB layout has a large impact on the susceptibility  
of the end product.  
Startup/Shutdown Sequencing  
To ensure proper device initialization and minimal click-  
and-pop, program the IC’s SHDN = 1 after configuring all  
registers. Table 39 lists an example startup sequence for  
the device. To shut down the IC, simply set SHDN = 0.  
Table 39. Example Startup Sequence  
SEQUENCE  
DESCRIPTION  
REGISTERS  
0x4C  
1
2
Ensure SHDN = 0  
Configure clocks  
0x10 to 0x13, 0x19 to 0x1B  
0x14 to 0x17, 0x1C to 0x1F  
0x18, 0x20, 0x3D to 0x44  
0x50 to 0xC7  
3
Configure digital audio interface  
Configure digital signal processing  
Load coefficients  
4
5
6
Configure mixers  
0x21 to 0x29  
7
Configure gain and volume controls  
Configure miscellaneous functions  
Enable desired functions  
Set SHDN = 1  
0x2A to 0x3C  
8
0x45 to 0x49  
9
0x4A, 0x4B  
10  
0x4C  
109  
Stereo Audio CODEC  
with FlexSound Technology  
While many configuration options in the IC can be made  
while the device is operating, some registers should  
only be adjusted when the corresponding audio path is  
disabled. Table 40 lists the registers that are sensitive  
during operation. Either disable the corresponding audio  
path or set SHDN = 0 while changing these registers.  
signal. The AC coupling capacitor allows the amplifier  
to automatically bias the signal to an optimum DC level.  
Assuming zero-source impedance, the -3dB point of the  
highpass filter is given by:  
1
f
=
-3dB  
2πR C  
IN IN  
Component Selection  
Choose C so that f  
is well below the lowest fre-  
IN  
-3dB  
Optional Ferrite Bead Filter  
In applications where speaker leads exceed 20mm,  
additional EMI suppression can be achieved by using a  
filter constructed from a ferrite bead and a capacitor to  
ground (Figure 41). Use a ferrite bead with low DC resis-  
tance, high-frequency (> 600MHz) impedance between  
100Iand 600I, and rated for at least 1A. The capacitor  
value varies based on the ferrite bead chosen and the  
actual speaker lead length. Select a capacitor less than  
1nF based on EMI performance.  
quency of interest. For best audio quality use capacitors  
whose dielectrics have low-voltage coefficients, such as  
tantalum or aluminum electrolytic. Capacitors with high-  
voltage coefficients, such as ceramics, may result in  
increased distortion at low frequencies.  
Charge-Pump Capacitor Selection  
Use capacitors with an ESR less than 100mIfor optimum  
performance. Low-ESR ceramic capacitors minimize the  
output resistance of the charge pump. Most surface-  
mount ceramic capacitors satisfy the ESR requirement.  
For best performance over the extended temperature  
range, select capacitors with an X7R dielectric.  
Input Capacitor  
An input capacitor, C , in conjunction with the input  
IN  
impedance of the IC line inputs forms a highpass filter  
that removes the DC bias from an incoming analog  
Table 40. Registers That Are Sensitive to Changes During Operation  
REGISTER  
0x10 to 0x13, 0x19 to 0x1B  
0x14 to 0x17, 0x1C to 0x1F  
0x18, 0x20  
DESCRIPTION  
Clock Control Registers  
Digital Audio Interface Configuration  
Digital Passband Filters  
0x24 to 0x29  
Analog Mixers  
0x50 to 0xC7  
Digital Signal Processing Coefficients  
SPK_P  
SPK_N  
MAX9888  
Figure 41. Optional Class D Ferrite Bead Filter  
110  
Stereo Audio CODEC  
with FlexSound Technology  
Charge-Pump Flying Capacitor  
Charge-Pump Holding Capacitor  
The holding capacitor (bypassing HPVSS) value and  
ESR directly affect the ripple at HPVSS. Increasing  
the capacitor’s value reduces output ripple. Likewise,  
decreasing the ESR reduces both ripple and output  
resistance. Lower capacitance values can be used in  
systems with low maximum output power levels. See the  
Output Power vs. Load Resistance graph in the Typical  
Operating Characteristics section for more information  
The value of the flying capacitor (connected between  
C1N and C1P) affects the output resistance of the  
charge pump. A value that is too small degrades the  
device’s ability to provide sufficient current drive, which  
leads to a loss of output voltage. Increasing the value  
of the flying capacitor reduces the charge-pump output  
resistance to an extent. Above 1FF, the on-resistance  
of the internal switches and the ESR of external charge-  
pump capacitors dominate.  
Unused Pins  
Table 41 shows how to connect the IC’s pins when  
unused.  
Table 41. Unused Pins  
NAME  
CONNECTION  
Unconnected  
Always connected  
Always connect  
Unconnected  
Unconnected  
Always connect  
Unconnected  
AGND  
NAME  
INB1  
CONNECTION  
Unconnected  
Unconnected  
Unconnected  
Always connect  
AGND  
SPKRP  
SPKRVDD  
SPKLVDD  
SPKLP  
INA2/MICEXTN  
LRCLKS2  
MCLK  
RECN/RXINN  
HPVDD  
C1P  
SDINS2  
Unconnected  
Unconnected  
Unconnected  
Always connect  
Unconnected  
Always connect  
Always connect  
Always connect  
Always connect  
Unconnected  
Unconnected  
Unconnected  
DVDD  
IRQ  
MIC1P/DIGMICDATA  
INA1/MICEXTP  
DGND  
HPGND  
SPKRN  
Unconnected  
Always connect  
Always connect  
Unconnected  
Unconnected  
Unconnected  
Unconnected  
Unconnected  
AGND  
SPKRGND  
SPKLGND  
SPKLN  
BCLKS2  
SDA  
SCL  
RECP/RXINP  
C1N  
REG  
REF  
HPL  
MIC1N/DIGMICCLK  
MIC2P  
HPVSS  
SDINS1  
LRCLKS1  
HPSNS  
SDOUTS2  
DVDDS2  
DVDD  
Unconnected  
AGND  
Always connect  
Always connect  
Always connect  
Always connect  
Unconnected  
Unconnected  
INB2  
Unconnected  
Unconnected  
DVDD  
AVDD  
HPR  
PREG  
DVDDS1  
SDOUTS1  
BCLKS1  
JACKSNS  
AGND  
Unconnected  
Unconnected  
Unconnected  
MICBIAS  
MIC2N  
111  
Stereo Audio CODEC  
with FlexSound Technology  
Recommended PCB Routing  
The IC uses a 63-bump WLP package. Figure 42  
provides an example of how to connect to all active  
bumps using 3 layers of the PCB. To ensure uninter-  
rupted ground returns, use layer 2 as a connecting layer  
between layer 1 and layer 2 and flood the remaining area  
with ground.  
Supply Bypassing, Layout, and Grounding  
Proper layout and grounding are essential for optimum  
performance. When designing a PCB for the IC, parti-  
tion the circuitry so that the analog sections of the IC are  
separated from the digital sections. This ensures that the  
analog audio traces are not routed near digital traces.  
Use a large continuous ground plane on a dedicated  
layer of the PCB to minimize loop areas. Connect AGND,  
DGND, HPGND, SPKLGND, and SPKRGND directly to  
the ground plane using the shortest trace length pos-  
sible. Proper grounding improves audio performance,  
minimizes crosstalk between channels, and prevents  
any digital noise from coupling into the analog audio  
signals.  
Ground the bypass capacitors on MICBIAS, REG, PREG,  
and REF directly to the ground plane with minimum  
trace length. Also be sure to minimize the path length to  
AGND. Bypass AVDD directly to AGND.  
Connect all digital I/O termination to the ground plane  
with minimum path length to DGND. Bypass DVDD,  
DVDDS1, and DVDDS2 directly to DGND.  
LAYER 1  
Place the capacitor between C1P and C1N as close as  
possible to the IC to minimize trace length from C1P to  
C1N. Inductance and resistance added between C1P  
and C1N reduce the output power of the headphone  
amplifier. Bypass HPVSS with a capacitor located close  
to HPVSS with a short trace length to HPGND. Close  
decoupling of HPVSS minimizes supply ripple and maxi-  
mizes output power from the headphone amplifier.  
HPSNS senses ground noise on the headphone jack and  
adds the same noise to the output audio signal, thereby  
making the output (headphone output minus ground)  
noise free. Connect HPSNS to the headphone jack shield  
to ensure accurate pickup of headphone ground noise.  
LAYER 2  
Bypass SPKLVDD and SPKRVDD to SPKLGND and  
SPKRGND, respectively, with as little trace length as  
possible. Connect SPKLP, SPKLN, SPKRP, and SPKRN  
to the stereo speakers using the shortest traces pos-  
sible. Reducing trace length minimizes radiated EMI.  
Route SPKLP/SPKLN and SPKRP/SPKRN as differential  
pairs on the PCB to minimize loop area, thereby the  
inductance of the circuit. If filter components are used  
on the speaker outputs, be sure to locate them as close  
as possible to the IC to ensure maximum effectiveness.  
Minimize the trace length from any ground-connected  
passive components to SPKLGND and SPKRGND to  
further minimize radiated EMI.  
LAYER 3  
Figure 42. Suggested Routing  
112  
Stereo Audio CODEC  
with FlexSound Technology  
Route microphone signals from the microphone to the IC  
as a differential pair, ensuring that the positive and nega-  
tive signals follow the same path as closely as possible  
with equal trace length. When using single-ended micro-  
phones or other single-ended audio sources, ground the  
negative microphone input as close as possible to the  
audio source and then treat the positive and negative  
traces as differential pairs.  
0.24mm  
An evaluation kit (EV kit) is available to provide an exam-  
ple layout for the IC. The EV kit allows quick setup of the  
IC and includes easy-to-use software allowing all internal  
registers to be controlled.  
WLP Applications Information  
For the latest application details on WLP construction,  
dimensions, tape carrier information, PCB techniques,  
bump-pad layout, and recommended reflow tempera-  
ture profile, as well as the latest information on reliability  
testing results, refer to the Application Note 1891: Wafer-  
Level Packaging (WLP) and Its Applications. Figure 43  
shows the dimensions of the WLP balls used on the IC.  
0.21mm  
Figure 43. WLP Ball Dimensions  
113  
Stereo Audio CODEC  
with FlexSound Technology  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
21-0462  
LAND PATTERN NO.  
Refer to  
Application Note 1891  
63 WLP  
W633A3+1  
114  
Stereo Audio CODEC  
with FlexSound Technology  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
6/10  
Initial release  
Updated DAC playback 48kHz stereo, speaker outputs, speaker maximum value  
2/11  
6
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
115  
©
2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX988ESA

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
MAXIM

MAX988ESA

COMPARATOR, 7000uV OFFSET-MAX, 210ns RESPONSE TIME, PDSO8, 0.150 INCH, SOIC-8
ROCHESTER

MAX988ESA-T

Comparator, 1 Func, 7000uV Offset-Max, 210ns Response Time, CMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX988EUK

Comparator
MAXIM

MAX988EUK+

Comparator,
MAXIM

MAX988EUK-T

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
MAXIM

MAX988EXK

Comparator
MAXIM

MAX988EXK+

Comparator,
MAXIM

MAX988EXK-T

High-Speed, Micropower, Low-Voltage
MAXIM

MAX989

Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
MAXIM

MAX9890

Audio Click-Pop Suppressor
MAXIM

MAX9890AEBL+T

Consumer Circuit, BICMOS, UCSP-9
MAXIM