MAX9927AEE/V+ [MAXIM]

Variable Reluctance Sensor Interfaces with Differential Input and Adaptive Peak Threshold; 可变磁阻传感器接口,提供差分输入和自适应峰值门限
MAX9927AEE/V+
型号: MAX9927AEE/V+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Variable Reluctance Sensor Interfaces with Differential Input and Adaptive Peak Threshold
可变磁阻传感器接口,提供差分输入和自适应峰值门限

传感器
文件: 总23页 (文件大小:340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4283; Rev 4; 3/12  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
4–MAX927  
General Description  
Features  
The MAX9924–MAX9927 variable reluctance (VR or mag-  
netic coil) sensor interface devices are ideal for position  
and speed sensing for automotive crankshafts,  
camshafts, transmission shafts, etc. These devices inte-  
grate a precision amplifier and comparator with selectable  
adaptive peak threshold and zero-crossing circuit blocks  
that generate robust output pulses even in the presence  
of substantial system noise or extremely weak VR signals.  
o Differential Input Stage Provides Enhanced Noise  
Immunity  
o Precision Amplifier and Comparator Allows  
Small-Signal Detection  
o User-Enabled Internal Adaptive Peak Threshold or  
Flexible External Threshold  
o Zero-Crossing Detection Provides Accurate  
The MAX9926/MAX9927 are dual versions of the  
MAX9924/MAX9925, respectively. The MAX9924/  
MAX9926 combine matched resistors with a CMOS input  
precision operational amplifier to give high CMRR over a  
wide range of input frequencies and temperatures. The  
MAX9924/MAX9926 differential amplifiers provide a fixed  
gain of 1V/V. The MAX9925/MAX9927 make all three ter-  
minals of the internal operational amplifier available,  
allowing greater flexibility for gain. The MAX9926 also  
provides a direction output that is useful for quadrature-  
connected VR sensors that are used in certain high-per-  
formance engines. These devices interface with both  
new-generation differential VR sensors as well as legacy  
single-ended VR sensors.  
Phase Information  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
MAX9924UAUB+  
MAX9924UAUB/V+  
MAX9925AUB+  
MAX9926UAEE+  
MAX9926UAEE/V+  
MAX9927AEE+  
MAX9927AEE/V+  
10 µMAX  
10 µMAX  
10 µMAX  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
-40°C to +125°C  
-40°C to +125°C  
The MAX9924/MAX9925 are available in the 10-pin  
µMAX® package, while the MAX9926/MAX9927 are  
available in the 16-pin QSOP package. All devices are  
specified over the -40°C to +125°C automotive temper-  
ature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
/V denotes an automotive qualified part.  
Applications  
Camshaft VRS Interfaces  
Crankshaft VRS Interfaces  
Vehicle Speed VRS Interfaces  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
Simplified Block Diagram  
ENGINE BLOCK  
MAX9924  
DIFFERENTIAL  
AMPLIFIER  
VR SENSOR  
μC  
ADAPTIVE/MINIMUM  
AND  
ZERO-CROSSING  
THRESHOLDS  
INTERNAL/EXTERNAL  
BIAS VOLTAGE  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
ABSOLUTE MAXIMUM RATINGS  
CC  
All Other Pins..............................................-0.3V to (V  
Current into IN+, IN-, IN_+, IN_-.......................................±±0mA  
Current into All Other Pins ................................................±20mA  
Output Short-Circuit (OUT_, OUT) to GND.............................10s  
V
to GND.............................................................-0.3V to + 6V  
Operating Temperature Range .........................-±0°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
+ 0.3V)  
CC  
Continuous Power Dissipation (T = +70°C) (Note 1)  
A
10-Pin µMAX (derate 8.8mW/°C above +70°C)........707.3mW  
16-Pin QSOP (derate 9.6mW/°C above +70°C)........771.5mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
µMAX  
QSOP  
Junction-to-Ambient Thermal Resistance (θ ) ......103.7°C/W  
Junction-to-Ambient Thermal Resistance (θ ) ......113.1°C/W  
JA  
JA  
Junction-to-Case Thermal Resistance (θ )................±2°C/W  
Junction-to-Case Thermal Resistance (θ )................37°C/W  
JC  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
4–MAX927  
ELECTRICAL CHARACTERISTICS  
(V  
= 5V, V  
= 0V, MAX9925/MAX9927 gain setting = 1V/V, Mode A1, V  
= 2.5V, V  
= 5V, R  
= 1kΩ, C  
=
CC  
GND  
BIAS  
PULLUP  
PULLUP  
COUT  
50pF. T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
MAX A  
A
MIN  
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Range  
V
(Note 3)  
±.5  
5.5  
5
V
CC  
MAX992±/MAX9925  
MAX9926/MAX9927  
2.6  
±.7  
Supply Current  
I
mA  
CC  
10  
V
> V  
= ±.1V, step time for V  
UVLO CC  
CC  
Power-On Time  
P
30  
150  
µs  
ON  
~ 1µs  
INPUT OPERATIONAL AMPLIFIER (MAX9925/MAX9927)  
Input Voltage Range  
IN+, IN-  
Guaranteed by CMRR  
Temperature drift  
0
V
V
µV/°C  
mV  
nA  
CC  
5
Input Offset Voltage  
V
OS-OA  
0.5  
0.1  
3
6
2
Input Bias Current  
I
(Note ±)  
(Note ±)  
BIAS  
Input Offset Current  
I
0.05  
102  
105  
nA  
OFFSET  
Common-Mode Rejection Ratio  
CMRR  
From V  
= 0 to V  
75  
88  
77  
dB  
CM  
CC  
MAX9925  
MAX9927  
Power-Supply Rejection Ratio  
PSRR  
dB  
9±  
Output Voltage Low  
Output Voltage High  
V
I
= 1mA  
0.050  
V
V
OL  
OL  
V
-
CC  
V
I
= -1mA  
OH  
OH  
0.050  
To 1% of the actual V  
saturates  
after output  
OUT  
Recovery Time from Saturation  
t
1.2  
µs  
SAT  
Gain-Bandwidth Product  
Slew Rate  
GBW  
SR  
1.±  
2.3  
1.3  
MHz  
V/µs  
MHz  
Charge-Pump Frequency  
f
CP  
2
_______________________________________________________________________________________  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
4–MAX927  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 5V, V  
= 0V, MAX9925/MAX9927 gain setting = 1V/V, Mode A1, V  
= 2.5V, V  
= 5V, R  
= 1kΩ, C  
=
COUT  
CC  
GND  
BIAS  
PULLUP  
PULLUP  
50pF. T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INPUT DIFFERENTIAL AMPLIFIER (MAX9924/MAX9926)  
V
+
CC  
0.3  
Input Voltage Range  
IN+, IN-  
CMRR  
Guaranteed by CMRR  
-0.3  
V
MAX9924 (Note 5)  
MAX9926 (Note 5)  
(Note 5)  
60  
55  
65  
87  
78  
Differential Amplifier  
Common-Mode Rejection Ratio  
dB  
Input Resistance  
R
100  
135  
kΩ  
IN  
ADAPTIVE PEAK DETECTION  
MAX9924/MAX9925  
MAX9926/MAX9927  
-6.5  
-6.5  
0
+6.5  
+10  
Mode B  
operation  
(Notes 5, 6)  
Zero-Crossing Threshold  
V
mV  
ZERO_THRESH  
0
V
Adaptive peak threshold  
33  
%PK  
ADAPTIVE  
Minimum threshold of hysteresis  
comparator MAX9924/MAX9926  
(Notes 5, 6)  
4
15  
30  
30  
50  
Minimum threshold of hysteresis  
comparator MAX9925/MAX9927  
(Notes 5, 6)  
20  
Fixed and Adaptive Peak  
Threshold  
V
mV  
MIN-THRESH  
V
- V  
for  
for  
for  
MIN-THRESH  
ZERO-THRESH  
7
2
15  
15  
30  
26  
30  
50  
MAX9924 (Notes 5, 6)  
V
- V  
MIN-THRESH  
ZERO-THRESH  
MAX9926 (Notes 5, 6)  
V
- V  
MIN-THRESH  
ZERO-THRESH  
19  
MAX9925/MAX9927 (Notes 5, 6)  
Timing window to reset the adaptive  
peak threshold if not triggered (input  
level below threshold)  
Watchdog Timeout for Adaptive  
Peak Threshold  
t
45  
85  
140  
0.2  
ms  
WD  
ENTIRE SYSTEM  
Comparator Output Low Voltage  
V
V
COUT_OL  
Overdrive = 2V to 3V, zero-crossing  
Overdrive = 2V to 3V, adaptive peak  
t
50  
150  
2
PDZ  
Propagation Delay  
ns  
ns  
t
PDA  
COUT Transition Time  
t
HL-LH  
Includes noise of differential amplifier  
and comparator, f = 10kHz,  
Propagation Delay Jitter  
t
20  
ns  
PD-JITTER  
V
= 1V  
sine wave  
IN  
P-P  
_______________________________________________________________________________________  
3
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 5V, V  
= 0V, MAX9925/MAX9927 gain setting = 1V/V, Mode A1, V  
= 2.5V, V  
= 5V, R  
= 1kΩ, C  
=
COUT  
CC  
GND  
BIAS  
PULLUP  
PULLUP  
50pF. T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
EXT  
V
- 1.1  
CC  
Mode B, T = +125°C  
1.5  
A
EXT Voltage Range  
V
V
EXT  
V
- 1.1  
CC  
Mode C, T = +125°C  
0.14  
A
Input Current to EXT  
DIRN (MAX9926 Only)  
Output Low Voltage  
INT_THRS, ZERO_EN  
I
Mode B, V  
> V  
; and Mode C  
BIAS  
10  
µA  
V
EXT  
EXT  
0.2  
0.3 x  
Low Input  
V
V
IL  
V
CC  
0.7 x  
4–MAX927  
High Input  
V
V
IH  
V
CC  
Input Leakage  
I
1
µA  
LEAK  
Pullup resistor = 10kΩ,  
= V  
Input Current ZERO_EN  
I
500  
3
800  
µA  
SINK  
V
ZERO_EN  
GND  
With INT_THRS = GND, auto peak-  
detect is disabled, and EXT_THRS is  
active  
Switching Time Between Modes  
A1, A2, and Modes B, C  
t
µs  
SW  
BIAS  
Input Current to BIAS  
I
Modes A1, A2, B, C  
1
µA  
V
BIAS  
V
CC  
- 1.1  
Modes A1, B, T = +125°C  
1.5  
0.2  
A
BIAS Voltage Range  
V
BIAS  
V
CC  
- 1.1  
Mode C, T = +125°C  
A
Internal BIAS Reference Voltage  
V
Mode A2 (MAX9924/MAX9926)  
2.46  
V
INT_BIAS  
Note 2: Specifications are 100% tested at T = +125°C, unless otherwise noted. All temperature limits are guaranteed by design.  
A
Note 3: Inferred from functional PSRR.  
Note 4: CMOS inputs.  
Note 5: Guaranteed by design.  
Note 6: Includes effect of V of internal op amp and comparator.  
OS  
4
_______________________________________________________________________________________  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
4–MAX927  
Typical Operating Characteristics  
(V  
= 5V, V  
= 0V, MAX9925/MAX9927 gain setting = 1V/V. All values are at T = +25°C, unless otherwise noted.)  
GND A  
CC  
INPUT OFFSET VOLTAGE  
vs. INPUT COMMON-MODE VOLTAGE  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
INPUT OFFSET VOLTAGE DISTRIBUTION  
20  
15  
10  
5
0.5  
0.4  
0.3  
0.2  
0.1  
0
120  
100  
80  
60  
40  
20  
0
V
= 0  
CM  
BIN SIZE = 250  
V
V
= V  
= 2V  
= 2.5V  
OUT  
P-P  
BIAS  
CM  
V
= 2.5V  
OUT  
MAX9925  
CMRR = 20log(A /A  
)
DM CM  
0
0
2000  
2500  
-2000 -1000  
1000  
3000  
-0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
1
10  
100  
1k  
10k  
100k  
-500  
500  
1500  
-1500  
INPUT COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
INPUT OFFSET VOLTAGE (μV)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
OPEN LOOP FREQUENCY  
RESPONSE  
V
OL  
AND V vs. TEMPERATURE  
OH  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
40  
35  
125  
100  
75  
50  
25  
0
V
V
= 100mV  
P-P  
RIPPLE  
BIAS  
V
V
V
= 5V  
CC  
= V  
= 2.5V  
OUT  
= 2.5V  
BIAS  
INPUTS COUPLED TO GND  
= 2V  
OUT  
P-P  
30  
25  
MAX9925  
V
- V  
OH  
CC  
20  
15  
10  
5
V
OL  
-100  
-110  
-120  
0
1
10  
100  
1k  
10k  
100k  
-50 -25  
0
25  
50  
75 100 125  
0.001  
0.1  
FREQUENCY (kHz)  
10  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
ADAPTIVE THRESHOLD  
vs. TEMPERATURE  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
ADAPTIVE THRESHOLD AND RATIO  
vs. SIGNAL LEVEL  
400  
350  
900  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 2.5V  
OUT  
800  
700  
600  
500  
400  
300  
200  
100  
0
MAX9925  
300  
250  
V
= 0  
CM  
200  
150  
100  
V
= 2.5V  
CM  
V
= 2V  
P-P  
IN  
f
= 1kHz  
IN  
50  
0
f
= 1kHz  
IN  
MAX9924  
MAX9924  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
0
0.5  
1.0  
1.5  
2.0  
2.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SIGNAL LEVEL (V )  
P
_______________________________________________________________________________________  
5
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
Typical Operating Characteristics (continued)  
(V  
= 5V, V  
= 0V, MAX9925/MAX9927 gain setting = 1V/V. All values are at T = +25°C, unless otherwise noted.)  
GND A  
CC  
MINIMUM AND ZERO-CROSSING  
THRESHOLD vs. TEMPERATURE  
INPUT SIGNAL vs. COUT WITH  
WATCHDOG TIMER EXPIRED  
CMRR vs. TEMPERATURE  
MAX9924 toc12  
30  
25  
20  
15  
10  
5
100  
75  
50  
25  
0
COUT  
V
= 2.5V  
= 5Hz  
CM  
INPUT SIGNAL  
MINIMUM THRESHOLD  
f
IN  
5V  
V
BIAS  
ZERO CROSSING  
AT 5Hz  
ZERO CROSSING  
AT 1Hz  
0
MAX9924  
V
= 0 TO 5V  
f
= 5Hz  
CM  
IN  
-5  
4–MAX927  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
20ms/div  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT SIGNAL vs. COUT WITH  
WATCHDOG TIMER EXPIRED  
OVERDRIVEN INPUT VOLTAGES  
(MAX9924)  
MAX9924 toc13  
MAX9924 toc14  
COUT  
INPUT SIGNAL  
5V  
833mV  
V
BIAS  
f
= 1kHz  
IN  
100μs/div  
100μs/div  
DIRN OPERATION  
(MAX9924)  
INPUT REFERRED NOISE DENSITY  
vs. FREQUENCY  
MAX9924 toc15  
MAX9924 toc16  
100  
80  
60  
40  
20  
10  
200μs/div  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
6
_______________________________________________________________________________________  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
4–MAX927  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX9924 MAX9925 MAX9926 MAX9927  
1
2
1
2
IN+  
IN-  
Noninverting Input  
Inverting Input  
3
3
OUT  
N.C.  
Amplifier Output  
No Connection. Not internally connected.  
Input Bias. Connect to an external resistor-divider and bypass  
to ground with a 0.1µF and 10µF capacitor.  
4
5
6
4
5
6
11  
13  
11  
BIAS  
GND  
Ground  
Zero-Crossing Enable. Mode configuration pin, internally  
ZERO_EN  
pulled up to V  
with 10kΩ resistor.  
CC  
Comparator Output. Open-drain output, connect a 10kΩ pullup  
resistor from COUT to V  
7
8
7
8
COUT  
.
PULLUP  
External Reference Input. Leave EXT unconnected in Modes  
A1, A2. Apply an external voltage in Modes B, C.  
EXT  
9
9
14  
1
14  
1
INT_THRS  
Internal Adaptive Threshold. Mode configuration pin.  
Power Supply  
10  
10  
V
CC  
INT_THRS1  
Internal Adaptive Threshold 1. Mode configuration pin.  
External Reference Input 1. Leave EXT unconnected in Modes  
A1, A2. Apply an external voltage in Modes B, C.  
2
3
4
5
6
7
2
3
4
5
6
7
EXT1  
Input Bias 1. Connect to an external resistor-divider and  
bypass to ground with a 0.1µF and 10µF capacitor.  
BIAS1  
COUT1  
COUT2  
BIAS2  
EXT2  
Comparator Output 1. Open-drain output, connect a 10kΩ  
pullup resistor from COUT1 to V  
.
PULLUP  
Comparator Output 2. Open-drain output, connect a 10kΩ  
pullup resistor from COUT2 to V  
.
PULLUP  
Input Bias 2. Connect to an external resistor-divider and  
bypass to ground with a 0.1µF and 10µF capacitor.  
External Reference Input 2. Leave EXT unconnected in Modes  
A1, A2. Apply an external voltage in Modes B, C.  
8
9
8
9
INT_THRS2  
IN2+  
Internal Adaptive Threshold 2. Mode configuration pin.  
Noninverting Input 2  
10  
10  
IN2-  
Inverting Input 2  
Rotational Direction Output. Open-drain output, connect a  
12  
DIRN  
pullup resistor from DIRN to V  
.
PULLUP  
15  
16  
12  
13  
15  
16  
OUT2  
OUT1  
IN1-  
Amplifier Output 2  
Amplifier Output 1  
Noninverting Input 1  
Inverting Input 1  
IN1+  
_______________________________________________________________________________________  
7
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
Functional Diagrams  
100kΩ  
V
CC  
V
CC  
100kΩ  
100kΩ  
IN-  
IN+  
V
CC  
MAX9924  
OP AMP  
GND  
100kΩ  
65ms  
WATCHDOG  
COMPARATOR  
COUT  
INTERNAL  
REFERENCE  
2.5V  
4–MAX927  
BUFFER  
30%  
V
CC  
BIAS  
PEAK  
DETECTOR  
10kΩ  
MODE  
LOGIC  
V
MIN  
ZERO_EN  
INT_THRS  
THRESHOLD  
MODE  
LOGIC  
INT_THRS  
EXT  
8
_______________________________________________________________________________________  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
4–MAX927  
Functional Diagrams (continued)  
OUT  
V
CC  
V
CC  
IN-  
IN+  
V
CC  
MAX9925  
OP AMP  
GND  
85ms  
WATCHDOG  
COMPARATOR  
COUT  
BIAS  
BUFFER  
30%  
V
CC  
PEAK  
DETECTOR  
10kΩ  
V
MIN  
MODE  
LOGIC  
ZERO_EN  
INT_THRS  
THRESHOLD  
EXT  
_______________________________________________________________________________________  
9
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
Functional Diagrams (continued)  
100kΩ  
V
CC  
V
CC  
100kΩ  
100kΩ  
IN1-  
IN1+  
V
CC  
MAX9926  
OP AMP  
GND  
100kΩ  
85ms  
WATCHDOG  
COMPARATOR  
COUT1  
INTERNAL  
REFERENCE  
2.5V  
BUFFER  
4–MAX927  
30%  
BIAS1  
PEAK  
DETECTOR  
CLK  
V
MIN  
DIRN  
DIRN  
FLIP-FLOP  
THRESHOLD  
EXT1  
100kΩ  
V
CC  
100kΩ  
100kΩ  
IN2-  
IN2+  
V
CC  
OP AMP  
100kΩ  
85ms  
WATCHDOG  
COMPARATOR  
COUT2  
BUFFER  
30%  
V
CC  
BIAS2  
PEAK  
DETECTOR  
10kΩ  
V
MIN  
ZERO_EN  
MODE  
LOGIC  
THRESHOLD  
INT_THRS1  
INT_THRS2  
EXT2  
10 ______________________________________________________________________________________  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
4–MAX927  
Functional Diagrams (continued)  
OUT1  
V
CC  
V
CC  
IN1-  
IN1+  
V
CC  
MAX9927  
OP AMP  
GND  
85ms  
WATCHDOG  
COMPARATOR  
COUT1  
BIAS1  
BUFFER  
30%  
PEAK  
DETECTOR  
V
MIN  
THRESHOLD  
EXT1  
V
CC  
IN2-  
IN2+  
V
CC  
OP AMP  
OUT1  
85ms  
WATCHDOG  
COMPARATOR  
COUT2  
BIAS2  
BUFFER  
30%  
INT_THRS1  
INT_THRS2  
MODE  
LOGIC  
PEAK  
DETECTOR  
V
MIN  
THRESHOLD  
EXT2  
______________________________________________________________________________________ 11  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
ing the output of the input differential amplifier with a  
Detailed Description  
threshold voltage that is set depending on the mode  
The MAX9924–MAX9927 interface with variable reluc-  
that the device is in (see the Mode Selection section).  
tance (VR) or magnetic coil sensors. These devices  
produce accurate pulses aligned with flywheel gear-  
teeth even when the pickup signal is small and in the  
presence of large amounts of system noise. They inter-  
face with new-generation differential VR sensors as well  
as legacy single-ended VR sensors.  
Mode Selection  
The MAX9924/MAX9926 provide four modes of opera-  
tion: Mode A1, Mode A2, Mode B, and Mode C as deter-  
mined by voltages applied to inputs ZERO_EN and  
INT_THRS (see Tables 1, 2, and 3). In Modes A1 and  
A2, the internal adaptive peak threshold and the zero-  
crossing features are enabled. In Mode A2, an internally  
generated reference voltage is used to bias the differen-  
tial amplifier and all internal circuitry instead of an exter-  
nal voltage connected to the BIAS input—this helps  
reduce external components and design variables lead-  
ing to a more robust application. In Mode B, the adap-  
tive peak threshold functionality is disabled, but  
zero-crossing functionality is enabled. In this mode, an  
external threshold voltage is applied at EXT allowing  
application-specific adaptive algorithms to be imple-  
mented in firmware. In Mode C, both the adaptive peak  
threshold and zero-crossing features are disabled and  
the device acts as a high-performance differential ampli-  
fier connected to a precision comparator (add external  
hysteresis to the comparator for glitch-free operation).  
The MAX9924/MAX9925 integrate a precision op amp,  
a precision comparator, an adaptive peak threshold  
block, a zero-crossing detection circuit, and precision  
matched resistors (MAX9924). The MAX9926 and  
MAX9927 are dual versions of the MAX9924 and  
MAX9925, respectively. The MAX9926 also provides a  
rotational output that is useful for quadrature-connected  
VR sensors used in certain high-performance engines.  
The input op amp in the MAX9925/MAX9927 are typical-  
ly configured as a differential amplifier by using four  
external resistors (the MAX9924/MAX9926 integrate  
precision-matched resistors to give superior CMRR per-  
formance). This input differential amplifier rejects input  
common-mode noise and converts the input differential  
signal from a VR sensor into a single-ended signal. The  
internal comparator produces output pulses by compar-  
4–MAX927  
Table 1. MAX9924/MAX9926 Operating Modes  
SETTING  
DEVICE FUNCTIONALITY  
OPERATING MODE  
ADAPTIVE PEAK  
THRESHOLD  
BIAS VOLTAGE  
SOURCE  
ZERO_EN  
INT_THRS  
ZERO CROSSING  
A1  
A2  
B
V
V
Enabled  
Enabled  
Enabled  
Disabled  
Enabled  
Enabled  
Disabled  
Disabled  
External  
Internal Ref  
External  
CC  
CC  
GND  
GND  
GND  
V
CC  
C
GND  
V
External  
CC  
Table 2. MAX9925 Operating Modes  
SETTING  
DEVICE FUNCTIONALITY  
OPERATING MODE  
ZERO_EN  
INT_THRS  
ZERO CROSSING  
ADAPTIVE PEAK THRESHOLD  
A1  
B
V
V
V
Enabled  
Enabled  
Disabled  
Enabled  
Disabled  
Disabled  
CC  
CC  
CC  
GND  
C
GND  
V
CC  
Table 3. MAX9927 Operating Modes  
SETTING  
DEVICE FUNCTIONALITY  
OPERATING MODE  
INT_THRS  
ZERO CROSSING  
Enabled  
ADAPTIVE PEAK THRESHOLD  
A1  
B
V
Enabled  
Disabled  
CC  
GND  
Enabled  
12 ______________________________________________________________________________________  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
4–MAX927  
Differential Amplifier  
The input operational amplifier is a rail-to-rail input and  
output precision amplifier with CMOS input bias cur-  
Adaptive Peak Threshold  
Modes A1 and A2 in the MAX9924–MAX9927 use an  
internal adaptive peak threshold voltage to trigger the  
output comparator. This adaptive peak threshold volt-  
age scheme provides robust noise immunity to the input  
VR signal, preventing false triggers from occurring due  
to broken tooth or off-centered gear-tooth wheel. See  
Figure 1.  
rents, low offset voltage (V ) and drift. A novel input  
OS  
architecture eliminates crossover distortion at the oper-  
ational amplifier inputs normally found in rail-to-rail input  
structures. These features enable reliable small-signal  
detection for VR sensors.  
The MAX9924/MAX9926 include on-chip precision-  
matched low-ppm resistors configured as a differential  
amplifier. High-quality matching and layout of these  
resistors produce extremely high DC and AC CMRR  
that is important to maintain noise immunity. The  
matched ppm-drift of the resistors guarantees perfor-  
mance across the entire -40°C to +125°C automotive  
temperature range.  
The sensor signal at the output of the differential gain  
stage is used to generate a cycle-by-cycle adaptive  
peak threshold voltage. This threshold voltage is 1/3 of  
the peak of the previous cycle of the input VR signal. As  
the sensor signal peak voltage rises, the adaptive peak  
threshold voltage also increases by the same ratio.  
Conversely, decreasing peak voltage levels of the input  
VR signal causes the adaptive peak threshold voltage  
used to trigger the next cycle also to decrease to a new  
lower level. This threshold voltage then provides an  
arming level for the zero-crossing circuit of the com-  
parator (see the Zero Crossing section).  
Bias Reference  
In Modes A1, B, and C, a well-decoupled external  
resistor-divider generates a V /2 signal for the BIAS  
CC  
input that is used to reference all internal electronics in  
the device. BIAS should be bypassed with a 0.1µF and  
10µF capacitor in parallel with the lower half of the  
resistor-divider forming a lowpass filter to provide a sta-  
ble external BIAS reference.  
If the input signal voltage remains lower than the adap-  
tive peak threshold for more than 85ms, an internal  
watchdog timer drops the threshold level to a default  
minimum threshold (V ). This ensures pulse  
MIN_THRESH  
recognition recovers even in the presence of intermit-  
tent sensor connection.  
The minimum threshold, adaptive peak threshold, zero-  
crossing threshold signals are all referenced to this  
voltage. An input buffer eliminates loading of resistor-  
dividers due to differential amplifier operation. Connect  
BIAS to ground when operating in Mode A2. An internal  
(2.5V typical) reference is used in Mode A2, eliminating  
external components.  
The internal adaptive peak threshold can be disabled  
and directly fed from the EXT input. This mode of opera-  
tion is called Mode B, and allows implementations of cus-  
tom threshold algorithms in firmware. This EXT voltage is  
typically generated by filtering a PWM-modulated output  
from an onboard microcontroller (µC). An external opera-  
tional amplifier can also be used to construct an active  
lowpass filter to filter the PWM-modulated EXT signal.  
ADAPTIVE  
THRESHOLD  
SET BY V2  
ADAPTIVE  
THRESHOLD  
SET BY V1  
MIN  
THRESHOLD  
1
3
V2  
V1  
VR  
SIGNAL  
V1  
1/3 V2  
85ms  
COUT  
20ms  
40ms  
60ms  
80ms  
100ms  
120ms  
140ms  
160ms  
180ms  
200ms  
Figure 1. Adaptive Peak Threshold Operation  
______________________________________________________________________________________ 13  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
Zero Crossing  
The zero-crossing signal provides true timing informa-  
tion for engine-control applications. The zero-voltage  
level in the VR sensor signal corresponds to the center  
of the gear-tooth and is the most reliable marker for  
position/angle-sensing applications. Since the output of  
the differential amplifier is level-shifted to the BIAS volt-  
age, the zero of the input VR signal is simply BIAS. The  
comparator output state controls the status of the input  
switch that changes the voltage at its noninverting input  
from the adaptive/external threshold level to the BIAS  
level. The difference in these two voltages then effec-  
tively acts as hysteresis for the comparator, thus pro-  
viding noise immunity.  
Rotational Direction Output  
(MAX9926 Only)  
For quadrature-connected VR sensors, the open-drain  
output DIRN indicates the rotational direction of inputs  
IN1 and IN2 based on the output state of COUT1 and  
COUT2. DIRN goes high when COUT1 is leading  
COUT2, and low when COUT1 is following COUT2.  
Applications Information  
Bypassing and Layout Considerations  
Good power-supply decoupling with high-quality  
bypass capacitors is always important for precision  
analog circuits. The use of an internal charge pump for  
the front-end amplifier makes this more important.  
Bypass capacitors create a low-impedance path to  
ground for noise present on the power supply.  
Comparator  
The internal comparator is a fast open-drain output  
comparator with low input offset voltage and drift. The  
comparator precision affects the ability of the signal  
chain to resolve small VR sensor signals. An open-drain  
output allows the comparator to easily interface to a  
variety of µC I/O voltages.  
The minimum impedance of a capacitor is limited to the  
effective series resistance (ESR) at the self-resonance  
frequency, where the effective series inductance (ESL)  
cancels out the capacitance. The ESL of the capacitor  
dominates past the self-resonance frequency resulting  
in a rise in impedance at high frequencies.  
4–MAX927  
When operating the MAX9924/MAX9925/MAX9926 in  
Mode C, external hysteresis can be provided by adding  
external resistors (see Figures 5 and 8). The high and  
low hysteresis thresholds in Mode C can be calculated  
using the following equations,  
Bypass the power supply of the MAX9924–MAX9927  
with multiple capacitor values in parallel to ground. The  
use of multiple values ensures that there will be multiple  
self-resonance frequencies in the bypass network, low-  
ering the combined impedance over frequency. It is  
recommended to use low-ESR and low-ESL ceramic  
surface-mount capacitors in a parallel combination of  
10nF, 0.1µF and 1µF, with the 10nF placed closest  
R1(V  
R1+R2+R  
V  
)
PULLUP  
BIAS  
V
=
+ V  
BIAS  
TH  
PULLUP  
between the V  
and GND pins. The connection  
CC  
and  
between these capacitor terminals and the power-sup-  
ply pins of the part (both V and GND) should be  
R2  
R1+R2  
CC  
V
=
× V  
TL  
BIAS  
through wide traces (preferably planes), and without  
vias in the high-frequency current path.  
14 ______________________________________________________________________________________  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
4–MAX927  
Application Circuits  
10kΩ  
10kΩ  
V
PULLUP  
IN+  
R
PULLUP  
μC  
VR  
1nF  
SENSOR  
COUT  
TPU  
IN-  
MAX9924  
MAX9926  
BIAS  
1kΩ  
1kΩ  
10μF || 0.1μF  
EXT  
V
CC  
+5V  
ZERO_EN  
INT_THRS  
GND  
Figure 2. MAX9924/MAX9926 Operating Mode A1  
10kΩ  
V
PULLUP  
IN+  
R
PULLUP  
μC  
VR  
SENSOR  
1nF  
COUT  
TPU  
10kΩ  
IN-  
MAX9924  
MAX9926  
BIAS  
EXT  
V
CC  
+5V  
ZERO_EN  
INT_THRS  
GND  
Figure 3. MAX9924/MAX9926 Operating Mode A2  
______________________________________________________________________________________ 15  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
Application Circuits (continued)  
10kΩ  
10kΩ  
V
PULLUP  
IN+  
R
PULLUP  
μC  
VR  
1nF  
SENSOR  
COUT  
TPU  
IN-  
PWM  
MAX9924  
MAX9926  
BIAS  
1kΩ  
1kΩ  
10μF || 0.1μF  
EXT  
FILTER  
V
+5V  
CC  
ZERO_EN  
INT_THRS  
GND  
4–MAX927  
Figure 4. MAX9924/MAX9926 Operating Mode B  
10kΩ  
V
PULLUP  
IN+  
R
PULLUP  
μC  
VR  
SENSOR  
1nF  
COUT  
TPU  
10kΩ  
IN-  
MAX9924  
MAX9926  
R2  
BIAS  
1kΩ  
1kΩ  
10μF || 0.1μF  
EXT  
V
+5V  
CC  
INT_THRS  
ZERO_EN  
R1  
GND  
Figure 5. MAX9924/MAX9926 Operating Mode C  
16 ______________________________________________________________________________________  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
4–MAX927  
Application Circuits (continued)  
10kΩ  
10kΩ  
V
PULLUP  
OUT  
IN-  
IN+  
R
PULLUP  
VR  
SENSOR  
1nF  
μC  
COUT  
TPU  
MAX9925  
MAX9927  
BIAS  
EXT  
1kΩ  
1kΩ  
10μF || 0.1μF  
V
+5V  
CC  
ZERO_EN  
INT_THRS  
GND  
Figure 6. MAX9925/MAX9927 Operating Mode A  
10kΩ  
V
PULLUP  
OUT  
IN-  
IN+  
R
PULLUP  
VR  
SENSOR  
1nF  
μC  
10kΩ  
COUT  
TPU  
PWM  
MAX9925  
MAX9927  
BIAS  
EXT  
FILTER  
1kΩ  
1kΩ  
10μF || 0.1μF  
V
+5V  
CC  
ZERO_EN  
INT_THRS  
GND  
Figure 7. MAX9925/MAX9927 Operating Mode B  
______________________________________________________________________________________ 17  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
Application Circuits (continued)  
10kΩ  
10kΩ  
V
PULLUP  
OUT  
IN-  
R
PULLUP  
VR  
SENSOR  
1nF  
μC  
COUT  
TPU  
IN+  
MAX9925  
R2  
BIAS  
EXT  
1kΩ  
1kΩ  
10μF || 0.1μF  
V
+5V  
CC  
4–MAX927  
INT_THRS  
ZERO_EN  
R1  
GND  
Figure 8. MAX9925 Operating Mode C  
18 ______________________________________________________________________________________  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
4–MAX927  
Typical Operating Circuit  
4.5V TO 5.5V  
V
CC  
100kΩ  
V
CC  
100kΩ  
100kΩ  
IN-  
IN+  
V
CC  
MAX9924  
V
PULLUP  
VR SENSOR  
OP AMP  
μC  
R
PULLUP  
COUT  
100kΩ  
85ms  
WATCHDOG  
COMPARATOR  
TPU  
BANDGAP  
REFERENCE  
VOLTAGE = 2 x V  
BG  
BUFFER  
30%  
BIAS  
V
CC  
PEAK  
DETECTOR  
10kΩ  
ZERO_EN  
V
MODE  
LOGIC  
MIN  
THRESHOLD  
MODE  
LOGIC  
*THE MAX9924 IS  
CONFIGURED IN MODE A2.  
INT_THRS  
GND  
EXT  
______________________________________________________________________________________ 19  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
Pin Configurations  
TOP VIEW  
+
+
IN_THRS1  
IN_THRS1  
1
2
3
4
5
6
7
8
16 IN1+  
15 IN1-  
1
2
3
4
5
6
7
8
16 IN1+  
15 IN1-  
EXT1  
BIAS1  
EXT1  
BIAS1  
14  
V
CC  
14 V  
CC  
COUT1  
COUT2  
BIAS2  
MAX9926  
13 ZERO_EN  
12 DIRN  
11 GND  
COUT1  
COUT2  
BIAS2  
MAX9927  
13 OUT1  
12 OUT2  
11 GND  
10 IN2-  
EXT2  
10 IN2-  
EXT2  
INT_THRS2  
9
IN2+  
INT_THRS2  
9
IN2+  
QSOP  
QSOP  
4–MAX927  
TOP VIEW  
+
IN+  
IN-  
1
2
3
4
5
10  
9
V
+
IN+  
IN-  
1
2
3
4
5
10  
9
V
CC  
CC  
INT_THRS  
EXT  
INT_THRS  
EXT  
N.C.  
BIAS  
GND  
8
OUT  
BIAS  
GND  
8
MAX9924  
MAX9925  
7
COUT  
7
COUT  
6
ZERO_EN  
6
ZERO_EN  
μMAX  
μMAX  
Chip Information  
Selector Guide  
PROCESS: BiCMOS  
PART  
AMPLIFIER  
GAIN  
1V/V  
MAX9924UAUB  
MAX9925AUB  
MAX9926UAEE  
MAX9927AEE  
1 x Differential  
1 x Operational  
2 x Differential  
2 x Operational  
Externally Set  
1V/V  
Externally Set  
20 ______________________________________________________________________________________  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
4–MAX927  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or  
“-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
PACKAGE TYPE  
10 µMAX  
PACKAGE CODE  
U10+2  
OUTLINE NO.  
21-0061  
LAND PATTERN NO.  
90-0330  
16 QSOP  
E16+1  
21-0055  
90-0167  
α
α
______________________________________________________________________________________ 21  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or  
“-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
4–MAX927  
22 ______________________________________________________________________________________  
Variable Reluctance Sensor Interfaces with  
Differential Input and Adaptive Peak Threshold  
4–MAX927  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
10/08  
2/09  
Initial release  
Removed future product references for the MAX9926 and MAX9927, updated EC  
table  
1–4  
2
3
3/09  
3/11  
3/12  
Corrected various errors  
2, 3, 4, 6, 13  
17, 18  
Updated Figures 6, 7, and 8  
Added automotive qualifies parts  
4
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 23  
© 2012 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9928

-0.1V to +28V Input Range, Micropower, Uni-/Bidirectional, Current-Sense Amplifiers
MAXIM

MAX9928EVKIT

Fully Assembled and Tested
MAXIM

MAX9928EVKIT+

Fully Assembled and Tested
MAXIM

MAX9928F

-0.1V to +28V Input Range, Micropower Uni-/Bidirectional, Current-Sense Amplifiers
MAXIM

MAX9928FABT T

-0.1V to +28V Input Range, Micropower Uni-/Bidirectional, Current-Sense Amplifiers
MAXIM

MAX9928FABT+T

-0.1V to 28V Input Range, Micropower Uni-/Bidirectional, Current-Sense Amplifiers
MAXIM

MAX9928FABTT

-0.1V to +28V Input Range, Micropower, Uni-/Bidirectional, Current-Sense Amplifiers
MAXIM

MAX9928FAUA

-0.1V to +28V Input Range, Micropower Uni-/Bidirectional, Current-Sense Amplifiers
MAXIM

MAX9928FAUA+

-0.1V to 28V Input Range, Micropower Uni-/Bidirectional, Current-Sense Amplifiers
MAXIM

MAX9928FAUA+T

Operational Amplifier, 1 Func, 3000uV Offset-Max, BICMOS, PDSO8, ROHS COMPLIANT, MO-187, USOP-8
MAXIM

MAX9928F_12

-0.1V to +28V Input Range, Micropower Uni-/Bidirectional, Current-Sense Amplifiers
MAXIM

MAX9928_11

-0.1V to +28V Input Range, Micropower, Uni-/Bidirectional, Current-Sense Amplifiers
MAXIM