MAX9929F [MAXIM]

-0.1V to +28V Input Range, Micropower Uni-/Bidirectional, Current-Sense Amplifiers; -0.1V至+ 28V输入范围,微功耗单向/双向电流检测放大器
MAX9929F
型号: MAX9929F
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

-0.1V to +28V Input Range, Micropower Uni-/Bidirectional, Current-Sense Amplifiers
-0.1V至+ 28V输入范围,微功耗单向/双向电流检测放大器

放大器
文件: 总14页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4251; Rev 3; 4/12  
-0.1V to +28V Input Range, Micropower,  
Uni-/Bidirectional, Current-Sense Amplifiers  
8/MAX29  
General Description  
Features  
The MAX9928/MAX9929 low-cost, uni-/bidirectional,  
high-side, current-sense amplifiers are ideal for moni-  
toring battery charge and discharge currents in note-  
books, cell phones, and other portable equipment.  
These devices feature a wide -0.1V to +28V input com-  
mon-mode voltage range, low 20µA supply current with  
o Wide -0.1V to +28V Common-Mode Range,  
Independent of Supply Voltage  
o 2.5V to 5.5V Operating Supply Voltage  
o 20µA Quiescent Supply Current  
o 0.4mV (max) Input Offset Voltage  
o Gain Accuracy Better than 1% (max)  
o SIGN Output Indicates Current Polarity  
V
less than 0.4mV, and a gain accuracy better than  
OS  
1.0%. The input common-mode range is independent  
of the supply voltage, ensuring that the current-sense  
information remains accurate even when the measure-  
ment rail is shorted to ground.  
o Transconductance and Gain Versions Available  
5µA/mV (MAX9928F)  
The MAX9928F features a current output with a transcon-  
ductance ratio of 5µA/mV. An external resistor converts  
the output current to a voltage, allowing adjustable gain  
so that the input sense voltage can be matched to the  
maximum ADC input swing. The MAX9929F has a voltage  
output and integrates a 10koutput resistor for a fixed  
voltage gain of 50V/V.  
50V/V (MAX9929F)  
o Pin Compatible with the MAX4372 in UCSP  
o Available in Ultra-Small, 3x2 UCSP  
(1mm x 1.5mm) and 8-Pin µMAX Packages  
A digital SIGN output indicates direction of current flow,  
so the user can utilize the full ADC input range for mea-  
suring both charging and discharging currents.  
Applications  
Monitoring Charge/Discharge Currents in  
Portable/Battery-Powered Systems  
The MAX9928/MAX9929 are fully specified over the -40°C  
to +125°C automotive temperature range, and available  
in 6-bump UCSP™ (1mm x 1.5mm) and 8-pin µMAX®  
packages. The UCSP package is bump-to-bump com-  
patible with the MAX4372_EBT.  
Notebook Computers  
General-System/Board-Level Current Monitoring  
Smart-Battery Packs/Chargers  
Precision Current Sources  
UCSP is a trademark and µMAX is a registered trademark of  
Maxim Integrated Products, Inc.  
Smart Cell Phones  
Super Capacitor Charge/Discharge  
Pin Configurations and Typical Operating Circuit appear at  
end of data sheet.  
Ordering Information  
PART  
OUTPUT TYPE  
Current  
GAIN  
PIN-PACKAGE  
8 µMAX  
TOP MARK  
MAX9928FAUA+  
MAX9928FABT+T  
MAX9929FAUA+  
MAX9929FABT+T  
G
G
= 5µA/mV  
= 5µA/mV  
m
m
Current  
3x2 UCSP  
8 µMAX  
+AAF  
Voltage  
A = 50V/V  
V
Voltage  
A = 50V/V  
3x2 UCSP  
+ADI  
V
Note: All devices are specified over the -40°C to +125°C operating temperature range.  
+Denotes a lead-free/RoHS-compliant package.  
T = Tape and reel.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
-0.1V to +28V Input Range, Micropower,  
Uni-/Bidirectional, Current-Sense Amplifiers  
ABSOLUTE MAXIMUM RATINGS  
CC  
RS+, RS- to GND....................................................-0.3V to +30V  
OUT to GND ...............................................-0.3V to (V + 0.3V)  
V
, SIGN to GND ...................................................-0.3V to +6V  
Operating Temperature Range ........................-40°C to +125°C  
Storage Temperature Range ............................-65°C to +150°C  
Junction Temperature .....................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
CC  
Differential Input Voltage (V  
OUT, SIGN Short Circuit to V  
- V ) .............................. 30V  
or GND ...................Continuous  
RS+  
CC  
RS-  
Current into Any Pin.......................................................... 20mA  
Continuous Power Dissipation (T = +70°C)  
A
6-Bump 1mm x 1.5mm UCSP  
(derate 3.9mW/°C above +70°C)............................308.3mW  
8-Pin µMAX (derate 4.8mW/°C above +70°C).............388mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= -0.1V to +28V, V  
= 3.3V, V  
= (V  
- V ) = 0V, R  
= 10kΩ for MAX9928F, T = -40°C to +125°C, unless other-  
OUT A  
RS+  
CC  
SENSE  
RS+  
RS-  
wise noted. Typical values are at T = +25°C.) (Note 1)  
A
8/MAX29  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.1  
MAX  
UNITS  
AMPLIFIER DC ELECTRICAL CHARACTERISTICS  
T
A
T
A
T
A
T
A
= +25°C  
0.4  
0.8  
V
V
= 3.6V  
RS+  
RS+  
= -40°C to +125°C  
= +25°C  
Input Offset Voltage (Note 2)  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
V
mV  
V
OS  
0.6  
1.0  
= -0.1V  
= -40°C to +125°C  
3.0  
V
(Note 3)  
2V V  
-0.1  
93  
+28  
CMR  
T
A
T
A
T
A
T
A
= +25°C  
104  
72  
28V  
RS+  
= -40°C to +125°C  
= +25°C  
87  
CMRR  
dB  
60  
-0.1V V  
+2V  
RS+  
= -40°C to +125°C  
54  
Full-Scale Sense Voltage (Note 2)  
Gain (Note 2)  
V
MAX992_F  
MAX9929F  
50  
50  
mV  
V/V  
SENSE  
A
V
T
T
T
T
= +25°C  
0.3  
1.0  
2.5  
1.0  
2.8  
A
A
A
A
MAX9929F,  
V
= 3.6V  
RS+  
= -40°C to +125°C  
= +25°C  
Gain Accuracy (Notes 2, 6)  
Transconductance (Note 2)  
%
0.3  
MAX9929F,  
= -0.1V  
V
RS+  
= -40°C to +125°C  
G
MAX9928F  
MAX9928F,  
5
µA/mV  
%
M
T
A
T
A
T
A
T
A
= +25°C  
= -40°C to +125°C  
= +25°C  
0.3  
1.0  
2.5  
1.0  
2.8  
6
V
= 3.6V  
RS+  
Transconductance Accuracy  
(Note 2)  
0.3  
1.6  
MAX9928F,  
= -0.1V  
V
= -40°C to +125°C  
RS+  
2V V  
28V  
0
RS+  
Input Bias Current (Note 4)  
I
I
, I  
µA  
RS+ RS-  
-0.1V V  
+2V  
-80  
+6  
1
RS+  
2V V  
28V  
0.05  
0.2  
RS+  
Input Offset Bias Current (Note 4)  
Input Leakage Current  
I
µA  
µA  
OS  
-0.1V V  
+2V  
2
RS+  
, I  
V
= 0V, V  
= V  
= 28V (Note 5)  
0.05  
1.0  
RS+ RS-  
CC  
RS+  
RS-  
2
_______________________________________________________________________________________  
-0.1V to +28V Input Range, Micropower,  
Uni-/Bidirectional, Current-Sense Amplifiers  
8/MAX29  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= -0.1V to +28V, V  
= 3.3V, V  
= (V  
- V ) = 0V, R  
= 10kΩ for MAX9928F, T = -40°C to +125°C, unless other-  
RS+  
CC  
SENSE  
RS+  
RS-  
OUT A  
wise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
Output Resistance  
SYMBOL  
CONDITIONS  
MIN  
TYP  
5
MAX  
UNITS  
MΩ  
MAX9928F  
MAX9929F  
R
OUT  
6.4  
10  
13.6  
kΩ  
(V  
0.1)  
-
-
(V  
0.45)  
-
CC  
CC  
MAX9928F, R  
= 10kΩ  
OUT  
Output High Voltage (Note 6)  
V
V
OH  
(V  
CC  
(V  
CC  
-
MAX9929F  
MAX9929F  
MAX9928F  
0.1)  
0.45)  
T
A
T
A
T
A
T
A
= +25°C  
= -40°C to +125°C  
= +25°C  
0.25  
2.0  
15  
Minimum Output Voltage (Note 7)  
Minimum Output Current (Note 7)  
V
mV  
µA  
OL  
0.025  
0.2  
1.5  
I
OL  
= -40°C to +125°C  
SIGN COMPARATOR DC ELECTRICAL CHARACTERISTICS  
T
T
T
T
T
T
= +25°C  
-1.6  
-2.15  
-2.5  
-1.2  
-1.2  
-0.5  
-0.15  
+0.25  
+2.3  
A
A
A
A
V
V
= 3.6V  
RS+  
RS+  
= -40°C to +125°C  
= +25°C  
Discharge to Charge Trip Point  
(Note 8)  
V
mV  
TDC  
= -0.1V  
= -40°C to +125°C  
= +25°C  
= +25°C  
-4.6  
V
V
V
= 3.6V  
= -0.1V  
= 3.6V,  
-1.8  
-1.8  
Charge to Discharge Trip Point  
(Note 8)  
RS+  
RS+  
RS+  
A
A
V
V
mV  
mV  
V
TCD  
HYS  
Hysteresis Width  
T
A
= +25°C  
0.6  
-0.1V  
Common-Mode Input Range  
(Note 9)  
V
-0.1  
+28  
0.1  
CMR  
2V V  
28V  
102  
74  
RS+  
Common-Mode Rejection Ratio  
(Note 9)  
CMRR  
dB  
V
-0.1V V  
+2V  
RS+  
Output Low Voltage  
V
I
= 100µA  
0.03  
OL  
SINK  
(V  
0.01)  
-
(V  
0.04)  
-
CC  
CC  
Output High Voltage  
V
V
OH  
Internal Pullup Resistor  
R
1
MΩ  
PULL-UP  
POWER SUPPLY  
T
T
= +25°C  
2.5  
2.8  
72  
5.5  
5.5  
A
Supply Voltage Range (Note 10)  
V
V
CC  
= -40°C to +125°C  
A
V
V
V
V
= 3.6V  
= -0.1V  
= 3.6V  
= -0.1V  
90  
86  
RS+  
RS+  
RS+  
RS+  
Amplifier Power-Supply Rejection  
Ratio (Note 10)  
PSRR  
PSRR  
dB  
dB  
µA  
A
C
66  
90  
Comparator Power-Supply  
Rejection Ratio  
86  
2V V  
28V  
20  
30  
RS+  
Quiescent Supply Current  
I
CC  
-0.1V V  
< +2V  
115  
200  
RS+  
_______________________________________________________________________________________  
3
-0.1V to +28V Input Range, Micropower,  
Uni-/Bidirectional, Current-Sense Amplifiers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= -0.1V to +28V, V  
= 3.3V, V  
= (V  
- V ) = 0V, R  
= 10kΩ for MAX9928F, T = -40°C to +125°C, unless other-  
RS+  
CC  
SENSE  
RS+  
RS-  
OUT A  
wise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC ELECTRICAL CHARACTERISTICS  
-3dB Bandwidth  
BW  
MAX992_F, V  
= 50mV  
150  
6
kHz  
SENSE  
MAX992_F, V  
5mV to 50mV step  
=
=
SENSE  
V
= 3.6V,  
RS+  
C
= 10pF,  
LOAD  
OUT Settling to 1% of Final Value  
t
µs  
SET  
R
OUT  
= 10kΩ for  
MAX992_F, V  
50mV to 5mV step  
SENSE  
15  
MAX9928F  
Overdrive = 1mV  
Overdrive = 5mV  
Overdrive = 1mV  
Overdrive = 5mV  
80  
30  
50  
13  
SIGN Comparator Propagation  
Delay (Low to High)  
t
t
µs  
µs  
µs  
ms  
PROP_LH  
SIGN Comparator Propagation  
Delay (High to Low)  
PROP_HL  
Power-Up Time to 1% of Final  
Value  
V
= 50mV for MAX992_F,  
SENSE  
50  
4
8/MAX29  
V
= 3.6V, C  
= 10pF  
RS+  
LOAD  
100mV V  
50mV for MAX992_F,  
SENSE  
Saturation Recovery Time  
V
= 3.6V, C  
= 10pF  
RS+  
LOAD  
Note 1: All devices are 100% production tested at T = +25°C. All temperature limits are guaranteed by design.  
A
Note 2:  
V
OS  
is extrapolated from two point transconductance and gain accuracy tests. Measurements are made at V  
=
SENSE  
+5mV and V  
= +50mV for MAX992_F. These measurements are also used to test the full-scale sense voltage,  
SENSE  
transconductance, and gain. These V specifications are for the trimmed direction only (V  
> V ). For current flowing  
OS  
RS+  
RS-  
in the opposite direction (V  
> V  
), V is 1mV (max) at +25°C and 1.8mV (max) over temperature, when V  
is at  
RS-  
RS+  
OS  
RS+  
3.6V. See the Detailed Description for more information.  
Note 3: Guaranteed by common-mode rejection ratio. Extrapolated V as described in Note 2 is used to calculate common-mode  
OS  
rejection ratio.  
Note 4: Includes input bias current of SIGN comparator.  
Note 5: Leakage in to RS+ or RS- when V  
= 0V. Includes input leakage current of SIGN comparator. This specification does not  
CC  
add to the bias current.  
Note 6: Output voltage should be 650mV below V  
to achieve full accuracy.  
CC  
Note 7:  
I
is the minimum output current in the V  
- I  
transfer characteristics. V is the minimum output voltage in the  
OL  
SENSE OUT OL  
V
V
- V  
transfer characteristic.  
SENSE  
SENSE  
OUT  
Note 8:  
voltage required to switch comparator.  
Note 9: Discharge to charge trip point is functionally tested at V  
= -0.1V, +3.6V, and +28V.  
CM  
Note 10: Guaranteed by PSRR test. Extrapolated V as described in Note 2 is used to calculate the power-supply rejection ratio.  
OS  
V
has to be such that the output voltage is 650mV below V  
to achieve full accuracy.  
SENSE  
CC  
4
_______________________________________________________________________________________  
-0.1V to +28V Input Range, Micropower,  
Uni-/Bidirectional, Current-Sense Amplifiers  
8/MAX29  
Typical Operating Characteristics  
(V  
= 3.3V, V  
= 12V, T = +25°C, unless otherwise noted.)  
RS+ A  
CC  
OFFSET VOLTAGE  
vs. COMMON-MODE VOLTAGE  
GAIN ACCURACY  
HISTOGRAM  
V
HISTOGRAM  
OS  
2.0  
1.5  
1.0  
0.5  
0
45  
40  
30  
25  
20  
15  
10  
A
= 50V/V  
A
= 50V/V  
V
V
35  
30  
25  
20  
15  
10  
5
-0.5  
-1.0  
-1.5  
-2.0  
5
0
0
-0.40 -0.30-0.20 -0.10  
0.10 0.20 0.30 0.40  
-1  
0
1
2
3
28  
0
-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0  
GAIN ACCURACY (%)  
COMMON-MODE VOLTAGE (V)  
V
(mV)  
OS  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. COMMON-MODE VOLTAGE  
OFFSET VOLTAGE vs. TEMPERATURE  
1.0  
0.8  
150  
125  
100  
75  
150  
120  
90  
60  
30  
0
V
= 0V  
V
= 3.6V  
SENSE  
CM  
0.6  
V
= 0V  
RS+  
0.4  
0.2  
V
= 5.5V  
CC  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
50  
V
= 2.5V  
CC  
0
V
= 3.6V  
RS+  
3.5  
25  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.5  
3.0  
4.0  
4.5  
5.0  
5.5  
-0.5  
0.5  
1.0  
1.5  
2.0  
28  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
COMMON-MODE VOLTAGE (V)  
INPUT BIAS CURRENT  
vs. COMMON-MODE VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
10  
0
150  
125  
100  
75  
V
= 0V  
SENSE  
V
= 0V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
RS+  
50  
V
= 3.6V  
RS+  
25  
0
28  
-0.1  
-2  
0
2
4
6
8
10  
-50 -25  
0
25  
50  
75 100 125  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
-0.1V to +28V Input Range, Micropower,  
Uni-/Bidirectional, Current-Sense Amplifiers  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, V  
= 12V, T = +25°C, unless otherwise noted.)  
A
CC  
RS+  
MAX9928F  
MAX9929F  
vs. V  
MAX9929F  
V vs. V  
OUT  
I
vs. V  
V
OUT  
SENSE  
OUT  
SENSE  
SENSE  
2500  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
6
5
4
3
2
1
0
V
= 0V  
OUT  
T
= -40°C  
T
= -40°C  
A
A
2000  
V
= 5.5V  
CC  
T
= +25°C  
A
T
= +25°C  
A
1500  
1000  
500  
0
T
= +125°C  
A
T
= +125°C  
A
V
= 3.3V  
CC  
V
= 2.7V  
CC  
V
= 2.5V  
CC  
0
0.1  
0.2  
0.3  
(V)  
0.4  
0.5  
30  
40  
50  
60  
70  
80  
90  
0
20  
40  
60  
V
80 100 120 140  
(mV)  
8/MAX29  
V
V
(mV)  
SENSE  
SENSE  
SENSE  
MINIMUM OUTPUT VOLTAGE  
vs. TEMPERATURE  
GAIN ACCURACY  
vs. SUPPLY VOLTAGE  
GAIN ACCURACY vs. TEMPERATURE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
CMRR vs. FREQUENCY  
120  
90  
60  
30  
0
35  
V
= 3.6V  
CM  
MAX992_F  
32  
29  
26  
23  
20  
10  
100  
1k  
10k  
100k  
1M  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
6
_______________________________________________________________________________________  
-0.1V to +28V Input Range, Micropower,  
Uni-/Bidirectional, Current-Sense Amplifiers  
8/MAX29  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, V  
= 12V, T = +25°C, unless otherwise noted.)  
RS+ A  
CC  
MAX9929F LARGE-SIGNAL  
TRANSIENT RESPONSE  
PSRR vs. FREQUENCY  
MAX9928 toc18  
20  
0
V
SENSE  
50mV/div  
-20  
-40  
-60  
-80  
-100  
-120  
V
1V/div  
OUT  
0.1  
1
10  
100  
1k  
10k  
100k  
100μs/div  
FREQUENCY (Hz)  
V
AND V  
OUT  
SIGN  
vs. V  
OVERDRIVE RECOVERY  
SENSE  
MAX9928 toc20  
4
3
2
V
SENSE  
100mV/div  
1
0
150  
100  
50  
0
V
OUT  
500mV/div  
-3  
-2  
-1  
0
1
2
3
400μs/div  
V
(mV)  
SENSE  
COMPARATOR PROPAGATION DELAY  
(RS+ = 3.6V, 5mV OVERDRIVE)  
POWER-UP DELAY  
MAX9928 toc21  
MAX9928 toc22  
V
CC  
1V/div  
V
SENSE  
2mV/div  
V
OUT  
1V/div  
V
OUT  
1V/div  
40μs/div  
40μs/div  
_______________________________________________________________________________________  
7
-0.1V to +28V Input Range, Micropower,  
Uni-/Bidirectional, Current-Sense Amplifiers  
Pin/Bump Description  
PIN  
µMAX  
1
BUMP  
UCSP  
B3  
NAME  
FUNCTION  
RS-  
Negative Current-Sense Input. Load-side connection for the external sense resistor.  
SIGN Output. Indicates polarity of V  
.
SENSE  
2
B2  
SIGN  
SIGN = H indicates V  
SIGN = L indicates V  
> V  
< V  
RS+  
RS+  
RS-  
RS-  
3
4, 5  
6
B1  
RS+  
N.C.  
Positive Current-Sense Input. Power-side connection to the external sense resistor.  
No Connection. Not internally connected.  
A1  
A2  
V
Supply Voltage Input. Bypass to GND with a 0.1µF capacitor.  
Circuit Ground  
CC  
7
GND  
Current-Sense Output. MAX9928: Current output (I  
is proportional to |V |). MAX9929:  
SENSE  
OUT  
8
A3  
OUT  
Voltage output (V  
is proportional to |V |).  
SENSE  
OUT  
8/MAX29  
+V  
vs. -V  
SENSE  
SENSE  
or  
Detailed Description  
The amplifier is configured for either positive V  
SENSE  
The MAX9928F/MAX9929F micropower uni-/bidirectional,  
current-sense amplifiers feature -0.1V to +28V input  
common-mode range that is independent of the supply  
voltage. This wide input voltage range feature allows the  
monitoring of the current flow out of a power supply dur-  
ing short-circuit/fault conditions, and also enables high-  
side current sensing at voltages far in excess of the  
negative V  
by the SIGN comparator. The com-  
SENSE  
parator has a built-in offset skew of -1.2mV so that ran-  
dom offsets in the comparator do not affect the  
precision of I  
(V  
) with positive V  
. The  
SENSE  
OUT  
OUT  
comparator has a small amount of hysteresis (typically  
0.6mV) to prevent its output from oscillating at the  
crossover sense voltage. The ideal transfer characteris-  
supply voltage (V ). The MAX9928F/MAX9929F oper-  
CC  
ate from a 2.5V to 5.5V single supply and draw a low  
20µA quiescent supply current.  
tic of I  
(V  
) and the output of the comparator  
OUT  
(SIGN) is shown in Figure 2.  
OUT  
The amplifier V is only trimmed for the positive V  
OS  
RS+  
SENSE  
Current flows through the sense resistor, generating a  
voltages (V  
> V ). The SIGN comparator reconfig-  
RS-  
sense voltage V  
(Figure 1). The comparator sens-  
SENSE  
ures the internal structure of the amplifier to work with  
negative V voltages (V > V ) and the preci-  
es the direction of the sense voltage and configures the  
amplifier for either positive or negative sense voltages  
by controlling the S1 and S2 switches.  
SENSE  
RS-  
RS+  
sion V trim is no longer effective and the resulting V  
OS  
OS  
is slightly impacted. See details in the Electrical  
Characteristics Note 2. The user can choose the direc-  
tion that needs the best precision to be the direction  
For positive V  
voltage, the amplifier’s inverting  
SENSE  
input is high impedance and equals V - V  
The  
SENSE.  
IN  
amplifier’s output drives the base of Q1, forcing its non-  
inverting input terminal to (V - V ); this causes a  
where V  
> V . For example, when monitoring Li+  
RS-  
RS+  
IN  
G1  
SENSE  
equal to |V  
battery currents, the discharge current should be V  
>
RS+  
current to flow through R  
|/R  
.
SENSE G1  
V
RS-  
to give the best accuracy over the largest dynamic  
Transistor Q2 and the current mirror amplify the current  
by a factor of M.  
range. When the battery charger is plugged in, the  
charge current flows in the opposite direction and is  
usually much larger, and a higher V  
tolerated. See the Typical Operating Circuit.  
error can be  
OS  
For negative V  
voltage, the amplifier’s noninvert-  
SENSE  
ing input is high impedance and the voltage on RS- ter-  
minal equals V + V The amplifier’s output  
IN  
SENSE.  
For applications with unidirectional currents (e.g., bat-  
tery discharge only), the SIGN output can be ignored.  
drives the base of Q1 forcing its inverting input terminal  
to match the voltage at the noninverting input terminal;  
Note that as V  
increases, the output current (I  
OUT  
SENSE  
for the MAX9928 or V  
this causes a current to flow through R  
equal to  
G2  
/10kΩ for the MAX9929) also  
OUT  
|V  
|/R . Again, transistor Q2 and the current mir-  
SENSE G2  
increases. This additional current is supplied from V  
.
CC  
ror amplify the current by a factor of M.  
8
_______________________________________________________________________________________  
-0.1V to +28V Input Range, Micropower,  
Uni-/Bidirectional, Current-Sense Amplifiers  
8/MAX29  
V
CC  
V
CC  
R
C1  
2.5V TO 5.5V  
80kΩ  
MAX9928F  
MAX9929F  
1MΩ  
SIGN  
R
C
C2  
TO μC  
80kΩ  
CURRENT  
MIRROR  
V
IN  
-0.1V TO +28V  
(V  
S2  
OUT  
R
G1  
)
BATT  
TO ADC  
80kΩ  
RS+  
RS-  
+
-
R
10kΩ*  
G2  
A
S1  
Q2  
80kΩ  
Q1  
TO  
LOAD/CHARGER  
GND  
*INTERNAL 10kΩ RESISTOR FOR MAX9929_ ONLY.  
Figure 1. Functional Diagram  
For both positive and negative V  
voltages, the  
SENSE  
current flowing out of the current mirror is equal to:  
I
= M x |V |/R  
OUT  
SENSE G1  
For the MAX9928F, the transconductance of the device  
is trimmed so that I /|V | = 5µA/mV. For the  
OUT SENSE  
MAX9929F, the voltage gain of the device is trimmed  
so that V /|V | = 50V/V. The SIGN output from  
OUT SENSE  
the comparator indicates the polarity of V  
.
SENSE  
Current Output (MAX9928F)  
The output voltage equation for the MAX9928_ is given  
below:  
-3.0  
-1.8  
-1.2  
0
1.0  
2.0  
3.0  
V
(mV)  
SENSE  
V
OUT  
= (R  
x I  
) x (G  
LOAD  
R
)
SENSE  
m X OUT  
where V  
LOAD  
the current-sense resistor, R  
resistor, and G = MAX9928F transconductance  
(5µA/mV).  
= the desired full-scale output voltage,  
OUT  
I
= the full-scale current being sensed, R  
=
SENSE  
= the voltage-setting  
OUT  
m
The full-scale output voltage range can be set by  
changing the R  
can be modified to determine the R  
particular full-scale range:  
resistor value. The above equation  
OUT  
required for a  
OUT  
-3.0  
-1.8  
-1.2  
0
1.0  
2.0  
3.0  
V
(mV)  
SENSE  
( ) FOR THE MAX9929F.  
R
= (V  
)/(I  
x R  
x G )  
SENSE m  
OUT  
OUT LOAD  
OUT is a high-impedance current source and can drive  
an unlimited amount of capacitance.  
Figure 2. Ideal Transfer Characteristics with 0mV Amplifier Input  
Offset Voltage and -1mV Comparator Input Offset Voltage  
_______________________________________________________________________________________  
9
-0.1V to +28V Input Range, Micropower,  
Uni-/Bidirectional, Current-Sense Amplifiers  
tor value and power dissipation (wattage) rating.  
Also, if the sense resistor is allowed to heat up exces-  
sively, its value could drift.  
Voltage Output (MAX9929F)  
The output voltage equation for the MAX9929_ is given  
below:  
Inductance: If there is a large high-frequency com-  
V
= (R  
x I  
) x (A )  
LOAD V  
OUT  
SENSE  
ponent to I  
, keep inductance low. Wire-wound  
SENSE  
where V  
LOAD  
= the desired full-scale output voltage,  
OUT  
resistors have the highest inductance, while metal  
film is somewhat better. Low-inductance metal-film  
resistors are available. Instead of being spiral  
wrapped around a core, as in metal film or wire-  
wound resistors, these are a straight band of metal.  
They are made in values under 1Ω.  
I
= the full-scale current being sensed, R  
=
SENSE  
the current-sense resistor, A = MAX9929F voltage  
V
gain (50V/V).  
SIGN Output  
The current/voltage at OUT indicates magnitude. The  
SIGN output indicates the current’s direction. The SIGN  
comparator compares RS+ to RS-. The sign output is  
high when RS+ is greater than RS- indicating positive  
current flow. The sign output is low when RS- is greater  
than RS+ indicating negative current flow. In battery-  
operated systems, this is useful for determining  
whether the battery is charging or discharging. The  
SIGN output might not correctly indicate the direction of  
Use in Systems with Super Capacitors  
Since the input common-mode voltage range of the  
MAX9928/MAX9929 extends all the way from -0.1V to  
28V, they are ideal to use in applications that require  
use of super capacitors for temporary or emergency  
energy storage systems. Some modern industrial and  
automotive systems use multifarad (1F–50F) capacitor  
banks to supply enough energy to keep critical sys-  
tems alive even if the primary power source is removed  
or temporarily disabled. Unlike batteries, these capaci-  
tors can discharge all the way down to 0V. The  
MAX9928/MAX9929 can continuously help monitor their  
health and state of charge/discharge.  
8/MAX29  
load current when V  
is between -1.8mV to -1.2mV  
SENSE  
(see Figure 2). Comparator hysteresis of 0.6mV pre-  
vents oscillation of SIGN output. If current direction is  
not needed, leave SIGN unconnected.  
Applications Information  
UCSP Applications Information  
Choosing R  
SENSE  
The MAX9928F/MAX9929F operate over a wide variety  
of current ranges with different sense resistors. Adjust  
For the latest application details on UCSP construction,  
dimensions, tape carrier information, PCB techniques,  
bump-pad layout, and recommended reflow tempera-  
ture profile, as well as the latest information on reliability  
testing results, go to Maxim’s website at www.maxim-  
ic.com/ucsp to find Application Note 1891:  
Understanding the Basics of the Wafer-Level Chip-  
Scale Package (WL-CSP).  
the R  
value to monitor higher or lower current lev-  
SENSE  
els. Select R  
using these guidelines:  
SENSE  
Voltage Loss: A high R  
value causes the  
SENSE  
power-source voltage to drop due to IR loss. For  
least voltage loss, use the lowest R value.  
SENSE  
Accuracy: A high R  
value allows lower cur-  
SENSE  
rents to be measured more accurately. This is  
because offsets become less significant when the  
sense voltage is larger.  
Chip Information  
PROCESS: BiCMOS  
Efficiency and Power Dissipation: At high current  
levels, the I2R losses in R  
might be significant.  
SENSE  
Take this into consideration when choosing the resis-  
10 ______________________________________________________________________________________  
-0.1V to +28V Input Range, Micropower,  
Uni-/Bidirectional, Current-Sense Amplifiers  
8/MAX29  
Pin Configurations  
TOP VIEW  
(BUMPS ON THE BOTTOM)  
TOP VIEW  
1
2
3
+
RS-  
SIGN  
RS+  
1
2
3
4
8
7
6
5
OUT  
GND  
V
GND  
OUT  
A
B
CC  
MAX9928F  
MAX9929F  
V
CC  
MAX9928F  
MAX9929F  
N.C.  
N.C.  
μMAX  
RS+  
SIGN  
RS-  
UCSP  
(1mm x 1.5mm)  
Typical Operating Circuit  
WALL-CUBE  
CHARGER  
R
SENSE  
V
IN  
-0.1V TO  
+28V  
LOAD  
RS+  
RS-  
μC  
2.5V TO  
5.5V  
DIGITAL  
INPUT  
MAX9928F  
MAX9929F  
V
CC  
SIGN  
OUT  
0.1μF  
ADC  
R
OUT  
*
GND  
GND  
*FOR THE MAX9928F ONLY  
______________________________________________________________________________________ 11  
-0.1V to +28V Input Range, Micropower,  
Uni-/Bidirectional, Current-Sense Amplifiers  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or  
"-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
PACKAGE TYPE  
8 µMAX  
PACKAGE CODE  
U8+1  
OUTLINE NO.  
21-0036  
LAND PATTERN NO.  
90-0092  
6 UCSP  
B6+1  
21-0097  
8/MAX29  
α
α
12 ______________________________________________________________________________________  
-0.1V to +28V Input Range, Micropower,  
Uni-/Bidirectional, Current-Sense Amplifiers  
8/MAX29  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or  
"-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
______________________________________________________________________________________ 13  
-0.1V to +28V Input Range, Micropower,  
Uni-/Bidirectional, Current-Sense Amplifiers  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
2
3
12/08  
8/09  
4/11  
4/12  
Initial release  
Removed MAX9928T and MAX9929T from data sheet  
Updated top marks  
1–5, 7–12  
1
1
Removed the R61A1+1 package code note and references  
8/MAX29  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in  
the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2012 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY