MAX9938FEUK+T [MAXIM]

Operational Amplifier, 1 Func, 600uV Offset-Max, BICMOS, PDSO5, ROHS COMPLIANT, MO-178, SOT-23, 5 PIN;
MAX9938FEUK+T
型号: MAX9938FEUK+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Operational Amplifier, 1 Func, 600uV Offset-Max, BICMOS, PDSO5, ROHS COMPLIANT, MO-178, SOT-23, 5 PIN

放大器 信息通信管理 光电二极管
文件: 总14页 (文件大小:1371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX9938  
nanoPower, 4-Bump UCSP/SOT23,  
Precision Current-Sense Amplifier  
General Description  
The MAX9938 high-side current-sense amplifier offers  
precision accuracy specifications of V  
(max) and gain error less than 0.5% (max). Quiescent  
supply current is an ultra-low 1μA. The MAX9938 fits  
in a tiny, 1mm x 1mm UCSP™ package size or a 5-pin  
SOT23 package, making the part ideal for applications in  
notebook computers, cell phones, PDAs, and all battery-  
operated portable devices where accuracy, low quiescent  
current, and small size are critical.  
Features  
● Ultra-Low Supply Current of 1μA (max)  
● Low 500μV (max) Input Offset Voltage  
Low < 0.5% (max) Gain Error  
● Input Common Mode: +1.6V to +28V  
Voltage Output  
less than 500μV  
OS  
Four Gain Versions Available  
• +25V/V (MAX9938T)  
• 50V/V (MAX9938F)  
The MAX9938 features an input common-mode voltage  
range from 1.6V to 28V. These current-sense ampli-  
fiers have a voltage output and are offered in four gain  
versions: 25V/V (MAX9938T), 50V/V (MAX9938F),  
100V/V (MAX9938H), and 200V/V (MAX9938W).  
• 100V/V (MAX9938H)  
• 200V/V (MAX9938W)  
Tiny 1mm x 1mm x 0.6mm, 4-Bump UCSP, 5-Pin  
SOT23, or 2mm x 2mm x 0.8mm, 6-Pin μDFN  
Packages  
The four gain selections offer flexibility in the choice of  
the external current-sense resistor. The very low 500μV  
(max) input offset voltage allows small 25mV to 50mV  
Ordering Information  
PIN-  
PACKAGE  
GAIN  
(V/V)  
TOP  
MARK  
PART  
full-scale V  
voltage for very low voltage drop at  
SENSE  
full-current measurement.  
MAX9938TEBS+G45  
MAX9938FEBS+G45  
MAX9938HEBS+G45  
MAX9938WEBS+G45  
MAX9938TEUK+  
4 UCSP  
4 UCSP  
4 UCSP  
4 UCSP  
5 SOT23  
5 SOT23  
5 SOT23  
5 SOT23  
6 µDFN  
25  
50  
+AGD  
+AGE  
+AGF  
The MAX9938 is offered in tiny 4-bump, UCSP (1mm x  
1mm x 0.6mm footprint), 5-pin SOT23, and 6-pin μDFN  
(2mm x 2mm x 0.8mm) packages specified for operation  
over the -40°C to +85°C extended temperature range.  
100  
200  
25  
+AGI  
+AFFB  
+AFFC  
+AFFD  
+AFGZ  
+ACM  
Applications  
Cell Phones  
PDAs  
Power Management Systems  
Portable/Battery-Powered Systems  
Notebook Computers  
MAX9938FEUK+  
50  
MAX9938HEUK+  
MAX9938WEUK+  
MAX9938FELT+  
100  
200  
50  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
G45 indicates protective die coating.  
Note: All devices are specified over the -40°C to +85°C  
extended temperature range.  
UCSP is a trademark of Maxim Integrated Products, Inc.  
Pin Configurations  
TOP VIEW  
(BUMPS ON BOTTOM)  
TOP VIEW  
(PADS ON BOTTOM)  
RS+  
5
RS-  
4
RS+  
A1  
B1  
A2  
B2  
RS-  
RS-  
6
1
OUT  
N.C.  
GND  
MAX9938T  
MAX9938F  
MAX9938H  
MAX9938W  
MAX9938T  
MAX9938F  
MAX9938H  
MAX9938W  
MAX9938FELT  
5
4
N.C.  
RS+  
2
3
GND  
OUT  
1
2
3
UCSP  
GND  
GND  
OUT  
µDFN  
SOT23  
DRAWINGS NOT TO SCALE  
19-4110; Rev 7; 4/17  
MAX9938  
nanoPower, 4-Bump UCSP/SOT23,  
Precision Current-Sense Amplifier  
Absolute Maximum Ratings  
RS+, RS- to GND..................................................-0.3V to +30V  
OUT to GND............................................................-0.3V to +6V  
RS+ to RS-..........................................................................±30V  
Short-Circuit Duration: OUT to GND.........................Continuous  
Continuous Input Current (Any Pin).................................±20mA  
Operating Temperature Range........................... -40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (excluding UCSP, soldering, 10s) .....+300°C  
Soldering Temperature (reflow).......................................+260°C  
Continuous Power Dissipation (T = +70°C)  
A
4-Bump UCSP (derate 3.0mW/°C above +70°C)........238mW  
5-Pin SOT23 (derate 3.9mW/°C above +70°C) ..........312mW  
6-Pin μDFN (derate 4.5mW/°C above +70°C) ............358mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(V  
= V  
= 3.6V, V  
= (V  
- V ) = 0V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
RS+  
RS-  
SENSE  
RS+  
RS-  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 5V, T = +25°C  
MIN  
TYP  
MAX  
0.85  
1.1  
UNITS  
V
V
V
V
0.5  
RS+  
RS+  
RS+  
RS+  
A
= 5V, -40°C < T < +85°C  
A
Supply Current (Note 2)  
I
µA  
CC  
= 28V, T = +25°C  
1.1  
1.8  
A
= 28V, -40°C < T < +85°C  
2.5  
A
Common-Mode Input Range  
V
Guaranteed by CMRR , -40°C < T < +85°C  
1.6  
94  
28  
V
CM  
A
Common-Mode Rejection Ratio  
CMRR  
1.6V < V  
< 28V, -40°C < T < +85°C  
130  
dB  
RS+  
A
T
= +25°C  
±100  
±500  
±600  
A
Input Offset Voltage (Note 3)  
V
µV  
OS  
-40°C < T < +85°C  
A
MAX9938T  
MAX9938F  
MAX9938H  
MAX9938W  
25  
50  
Gain  
G
V/V  
100  
200  
±0.1  
T
= +25°C  
±0.5  
±0.6  
±0.7  
±0.8  
13.2  
26.4  
15  
MAX9938T/MAX9938F/  
MAX9938H  
A
-40°C < T < +85°C  
A
Gain Error (Note 4)  
Output Resistance  
GE  
%
T
= +25°C  
±0.1  
A
MAX9938W  
(Note 5)  
-40°C < T < +85°C  
A
MAX9938T/F/H  
MAX9938W  
7.0  
10  
20  
1.5  
3
R
kΩ  
mV  
OUT  
14.0  
Gain = 25  
Gain = 50  
Gain = 100  
Gain = 200  
30  
OUT Low Voltage  
OUT High Voltage  
V
OL  
6
60  
12  
0.1  
125  
60  
30  
15  
100  
120  
0.2  
V
V
V
V
V
V
= V  
- V (Note 6)  
OUT  
V
V
OH  
OH  
RS-  
= 50mV, gain = 25  
= 50mV, gain = 50  
SENSE  
SENSE  
SENSE  
SENSE  
Small-Signal Bandwidth  
(Note 5)  
BW  
= 50mV, gain = 100  
= 50mV, gain = 200  
kHz  
µs  
Output Settling Time  
t
1% final value, V  
= 50mV  
SENSE  
S
Maxim Integrated  
2  
www.maximintegrated.com  
MAX9938  
nanoPower, 4-Bump UCSP/SOT23,  
Precision Current-Sense Amplifier  
Electrical Characteristics (continued)  
(V  
= V  
= 3.6V, V  
= (V  
- V ) = 0V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
RS+  
RS-  
SENSE  
RS+  
RS-  
A
A
Note 1: All devices are 100% production tested at T = +25°C. All temperature limits are guaranteed by design.  
A
Note 2: V  
Note 3: V  
= 0. I  
is the total current into RS+ plus RS- pins.  
OUT  
CC  
is extrapolated from measurements for the gain-error test.  
OS  
Note 4: Gain error is calculated by applying two values of V  
and calculating the error of the slope vs. the ideal:  
SENSE  
Gain = 25, V  
Gain = 50, V  
is 20mV and 120mV.  
is 10mV and 60mV.  
SENSE  
SENSE  
Gain = 100, V  
Gain = 200, V  
is 5mV and 30mV.  
is 2.5mV and 15mV.  
SENSE  
SENSE  
Note 5: The device is stable for any external capacitance value.  
Note 6: V is the voltage from V to V with V = 3.6V/gain.  
OH  
RS-  
OUT  
SENSE  
Typical Operating Characteristics  
(V  
= V  
= 3.6V, T = +25°C, unless otherwise noted.)  
RS+  
RS- A  
SUPPLY CURRENT  
vs. TEMPERATURE  
GAIN ERROR HISTOGRAM  
INPUT OFFSET VOLTAGE HISTOGRAM  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
28V  
3.6V  
1.8V  
0
0
-0.4 -0.3 -0.2 -0.1  
0
0.1 0.2 0.3 0.4  
-0.4 -0.3 -0.2 -0.1  
0
0.1 0.2 0.3 0.4  
-40  
-15  
10  
35  
60  
85  
INPUT OFFSET VOLTAGE (mV)  
GAIN ERROR (%)  
TEMPERATURE (°C)  
INPUT OFFSET  
INPUT OFFSET  
SUPPLY CURRENT  
vs. COMMON-MODE VOLTAGE  
vs. TEMPERATURE  
vs. COMMON-MODE VOLTAGE  
-30  
-35  
-40  
-45  
-50  
-55  
60  
50  
40  
30  
20  
10  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
5
10  
15  
20  
25  
30  
-40  
-15  
10  
35  
60  
85  
0
5
10  
15  
20  
25  
30  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX9938  
nanoPower, 4-Bump UCSP/SOT23,  
Precision Current-Sense Amplifier  
Typical Operating Characteristics (continued)  
(V  
= V  
= 3.6V, T = +25°C, unless otherwise noted.)  
RS+  
RS- A  
V
OUT  
vs. V  
SENSE  
GAIN ERROR  
GAIN ERROR  
(SUPPLY = 3.6V)  
vs. COMMON-MODE VOLTAGE  
vs. TEMPERATURE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
G = 100  
G = 50  
G = 25  
0
50  
100  
(mV)  
150  
0
5
10  
15  
20  
25  
30  
-40  
-15  
10  
35  
60  
85  
V
VOLTAGE (V)  
TEMPERATURE (°C)  
SENSE  
V
vs. V  
SMALL SIGNAL GAIN  
vs. FREQUENCY  
CMRR  
vs. FREQUENCY  
OUT  
SENSE  
(SUPPLY = 1.6V)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
5
0
0
-20  
A
= 25V/V  
V
G = 25  
G = 50  
-40  
A
V
= 100V/V  
-5  
-60  
G = 100  
G = 50  
A
V
= 50V/V  
-10  
-15  
-20  
-25  
-30  
-80  
G = 100  
-100  
-120  
-140  
-160  
G = 25  
0
20  
40  
60  
80  
100  
1Hz 10Hz 100Hz 1kHz 10kHz 100kHz 1MHz  
FREQUENCY (kHz)  
1Hz 10Hz 100Hz 1kHz 10kHz 100kHz 1MHz  
FREQUENCY (kHz)  
V
(mV)  
SENSE  
SMALL-SIGNAL PULSE RESPONSE  
SMALL-SIGNAL PULSE RESPONSE  
(GAIN = 100)  
(GAIN = 50)  
MAX9938 toc13a  
MAX9938 toc13b  
15mV  
10mV  
30mV  
V
SENSE  
V
SENSE  
20mV  
1.5V  
1.5V  
1V  
V
OUT  
V
1V  
OUT  
20µs/div  
25µs/div  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX9938  
nanoPower, 4-Bump UCSP/SOT23,  
Precision Current-Sense Amplifier  
Typical Operating Characteristics (continued)  
(V  
= V  
= 3.6V, T = +25°C, unless otherwise noted.)  
RS+  
RS- A  
SMALL-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
(GAIN = 25)  
(GAIN = 100)  
MAX9938 toc13c  
MAX9938 toc14a  
30mV  
60mV  
V
SENSE  
V
SENSE  
10mV  
3V  
40mV  
1.5V  
V
OUT  
V
OUT  
1V  
1V  
25µs/div  
20µs/div  
LARGE-SIGNAL PULSE RESPONSE  
LARGE-SIGNAL PULSE RESPONSE  
(GAIN = 50)  
(GAIN = 25)  
MAX9938 toc14b  
MAX9938 toc14c  
120mV  
60mV  
V
SENSE  
V
SENSE  
10mV  
3V  
20mV  
3V  
V
V
OUT  
OUT  
0.5V  
0.5V  
25µs/div  
25µs/div  
Pin Description  
PIN  
NAME  
FUNCTION  
UCSP  
A1  
SOT23  
µDFN  
5
4
4
6
RS+  
RS-  
External Sense Resistor Power-Side Connection  
External Sense Resistor Load-Side Connection  
Ground  
A2  
B1  
1, 2  
3
3
GND  
OUT  
N.C.  
B2  
1
Output Voltage. V  
is proportional to V  
= V  
- V  
.
OUT  
SENSE  
RS+  
RS-  
2, 5  
No Connection. Not internally connected.  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX9938  
nanoPower, 4-Bump UCSP/SOT23,  
Precision Current-Sense Amplifier  
Typical Operating Circuit  
I
LOAD  
R
SENSE  
V
BATT  
= 1.6V TO 28V  
RS+  
RS-  
R
1
R
1
V
DD  
= 3.3V  
LOAD  
µC  
P
MAX9938  
OUT  
ADC  
R
OUT  
10k  
GND  
same value as R to minimize offset voltage. The cur-  
1
Detailed Description  
rent through R is sourced by a high-voltage p-channel  
1
The MAX9938 unidirectional high-side, current-sense  
amplifier features a 1.6V to 28V input common-mode  
range. This feature allows the monitoring of current out  
of a battery with a voltage as low as 1.6V. The MAX9938  
monitors current through a current-sense resistor and  
amplifies the voltage across that resistor.  
FET. Its source current is the same as its drain current,  
which flows through a second gain resistor, R  
. This  
OUT  
produces an output voltage, V  
, whose magnitude is  
OUT  
I
x R  
x R /R . The gain accuracy is based  
OUT 1  
LOAD  
SENSE  
on the matching of the two gain resistors R and R  
1
OUT  
(see Table 1). Total gain = 25V/V for the MAX9938T,  
50V/V for the MAX9938F, 100V/V for the MAX9938H, and  
200V/V for the MAX9938W. The output is protected from  
input overdrive by use of an output current limiting circuit  
of 7mA (typical) and a 6V clamp protection circuit.  
The MAX9938 is a unidirectional current-sense amplifier  
that has a well-established history. An op amp is used  
to force the current through an internal gain resistor at  
RS+, which has a value of R , such that its voltage drop  
equals the voltage drop across an external sense resis-  
1
tor, R  
. There is an internal resistor at RS- with the  
SENSE  
Table 1. Internal Gain Setting Resistors (Typical Values)  
GAIN (V/V)  
R (Ω)  
R
(kΩ)  
OUT  
1
200  
100  
50  
100  
100  
200  
400  
20  
10  
10  
10  
25  
Maxim Integrated  
6  
www.maximintegrated.com  
 
MAX9938  
nanoPower, 4-Bump UCSP/SOT23,  
Precision Current-Sense Amplifier  
Efficiency and Power Dissipation  
Applications Information  
2
At high current levels, the I R losses in R  
can be  
SENSE  
Choosing the Sense Resistor  
significant. Take this into consideration when choosing the  
resistor value and its power dissipation (wattage) rating.  
Also, the sense resistor’s value might drift if it is allowed to  
Choose R  
based on the following criteria:  
SENSE  
Voltage Loss  
A high R  
heat up excessively. The precision V  
of the MAX9938  
OS  
value causes the power-source voltage  
SENSE  
allows the use of small sense resistors to reduce power  
dissipation and reduce hot spots.  
to drop due to IR loss. For minimal voltage loss, use the  
lowest R value.  
SENSE  
Kelvin Connections  
OUT Swing vs. V  
and V  
SENSE  
RS+  
Because of the high currents that flow through R  
,
SENSE  
The MAX9938 is unique since the supply voltage is the  
input common-mode voltage (the average voltage at RS+  
and RS-). There is no separate V  
Therefore, the OUT voltage swing is limited by the mini-  
mum voltage at RS+.  
take care to eliminate parasitic trace resistance from  
causing errors in the sense voltage. Either use a four-  
terminal current-sense resistor or use Kelvin (force and  
sense) PCB layout techniques.  
supply voltage pin.  
CC  
Optional Output Filter Capacitor  
V
OUT  
(max) = V  
(min) - V (max) - V  
SENSE OH  
RS+  
When designing a system that uses a sample-and-hold  
stage in the ADC, the sampling capacitor momentarily  
loads OUT and causes a drop in the output voltage. If  
sampling time is very short (less than a microsecond),  
consider using a ceramic capacitor across OUT and  
and  
V
(max)  
OUT  
R
=
SENSE  
G×I  
(max)  
LOAD  
V
full scale should be less than V  
/gain at the  
OUT  
GND to hold V  
constant during sampling. This also  
SENSE  
OUT  
minimum RS+ voltage. For best performance with a 3.6V  
supply voltage, select R to provide approximately  
decreases the small-signal bandwidth of the current-  
sense amplifier and reduces noise at OUT.  
SENSE  
120mV (gain of 25V/V), 60mV (gain of 50V/V), 30mV (gain  
of 100V/V), or 15mV (gain of 200V/V) of sense voltage for  
the full-scale current in each application. These can be  
increased by use of a higher minimum input voltage.  
Input Filters  
Some applications of current-sense amplifiers need to  
measure currents accurately even in the presence of both  
differential and common-mode ripple, as well as a wide  
variety of input transient conditions. For example, high-  
frequency ripple at the output of a switching buck or boost  
regulator results in a common-mode voltage at the inputs  
of the MAX9938. Alternatively, fast load-current tran-  
sients, when measuring at the input of a switching buck  
or boost regulator, can cause high-frequency differential  
sense voltages to occur at the inputs of the MAX9938,  
although the signal of interest is the average DC value.  
Such high-frequency differential sense voltages may  
result in a voltage offset at the MAX9938 output.  
Accuracy  
In the linear region (V  
< V (max)), there are two  
OUT  
OUT  
components to accuracy: input offset voltage (V ) and  
OS  
gain error (GE). For the MAX9938, V  
= 500μV (max)  
OS  
and gain error is 0.5% (max). Use the linear equation:  
V
OUT  
= (gain ± GE) x V ± (gain x V  
)
OS  
SENSE  
to calculate total error. A high R  
value allows lower  
SENSE  
currents to be measured more accurately because offsets  
are less significant when the sense voltage is larger.  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX9938  
nanoPower, 4-Bump UCSP/SOT23,  
Precision Current-Sense Amplifier  
The MAX9938 allows two methods of filtering to help  
improve performance in the presence of input common-  
mode voltage and input differential voltage transients.  
Figure 1 shows a differential input filter.  
Placing R at the RS- input does not affect the gain  
error of the device because the gain is given by the ratio  
IN  
between R  
and R at RS+.  
OUT  
1
Figure 2 shows the input common-mode filter.  
The capacitor C between RS+ and RS- along with the  
IN  
Again, the corner frequency of the filter is determined by  
resistor R between the sense resistor and RS- helps  
IN  
the choice of R , C and is affected by R .  
IN IN  
1
filter against input differential voltages and prevents them  
from reaching the MAX9938.  
In this case R affects both gain error and input offset  
IN  
voltage. R should be smaller than R so that it has neg-  
IN  
1
The corner frequency of this filter is determined by the  
ligible effect on the device gain. If, for example, a filter with  
choice of R , C , and the value of the input resistance  
IN  
IN  
R
IN  
= 10Ω and C = 1μF is built, then depending upon the  
IN  
at RS- (R ). See Table 1 for R values at the different  
1
1
gain selection, the gain error is affected by either 2.5% (G =  
gain options.  
25V/V, R = 400Ω) or 5% (G = 50V/V, R = 200Ω) or 10%  
1
1
The value of R should be chosen to minimize its effect  
(G = 100V/V, R = 100Ω) or 10% (G = 200V/V, R = 100Ω).  
IN  
1 1  
on the input offset voltage due to the bias current at RS-.  
R
x I contributes to the input voltage offset. I  
BIAS BIAS  
IN  
is typically 0.2μA.  
R
SENSE  
R
SENSE  
R
IN  
R
IN  
R
IN  
LOAD  
LOAD  
C
IN  
C
IN  
C
IN  
RS+  
RS-  
RS+  
RS-  
OUT  
OUT  
MAX9938  
MAX9938  
GND  
GND  
Figure 1. Differential Input Filter  
Figure 2. Input Common-Mode Filter  
Maxim Integrated  
8  
www.maximintegrated.com  
 
 
MAX9938  
nanoPower, 4-Bump UCSP/SOT23,  
Precision Current-Sense Amplifier  
Bidirectional Application  
UCSP Applications Information  
Battery-powered systems may require a precise bidi-  
rectional current-sense amplifier to accurately monitor the  
battery’s charge and discharge currents. Measurements  
of the two separate outputs with respect to GND yields an  
accurate measure of the charge and discharge currents  
respectively (Figure 3).  
For the latest application details on UCSP construction,  
dimensions, tape carrier information, PCB techniques,  
bump-pad layout, and recommended reflow tempera-  
ture profile, as well as the latest information on reliabil-  
ity testing results, refer to the Application Note 1891:  
Wafer-Level Packaging (WLP) and Its Applications  
available on Maxim’s website at www.maximintegrated.  
com/ucsp.  
I
LOAD  
R
SENSE  
TO WALL-CUBE/  
CHARGER  
V
BATT  
= 1.6V TO 28V  
RS+  
RS-  
RS+  
RS-  
LOAD  
R
1
R
1
R
1
R
1
P
P
V = 3.3V  
DD  
MAX9938  
MAX9938  
OUT  
OUT  
R
OUT  
R
OUT  
10k  
10kΩ  
C
GND  
GND  
ADC  
ADC  
Figure 3. Bidirectional Application  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
9  
www.maximintegrated.com  
 
MAX9938  
nanoPower, 4-Bump UCSP/SOT23,  
Precision Current-Sense Amplifier  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
LAND  
PATTERN NO.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
2 x 2 UCSP  
5 SOT23  
6 μDFN  
B4+1  
U5-2  
21-0117  
21-0057  
21-0164  
90-0174  
90-0004  
L622+1  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX9938  
nanoPower, 4-Bump UCSP/SOT23,  
Precision Current-Sense Amplifier  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX9938  
nanoPower, 4-Bump UCSP/SOT23,  
Precision Current-Sense Amplifier  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX9938  
nanoPower, 4-Bump UCSP/SOT23,  
Precision Current-Sense Amplifier  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX9938  
nanoPower, 4-Bump UCSP/SOT23,  
Precision Current-Sense Amplifier  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2
3
4
5
6
7
4/08  
9/08  
2/09  
10/09  
2/10  
8/10  
1/11  
4/17  
Initial release  
Added μDFN package information  
1, 2, 4, 5, 9  
Added G45 designation to part number  
Added Input Filters section and MAX9938W to the data sheet  
Updated EC table and Input Filters section  
Removed Power-Up Time parameter  
Corrected error on Figure 2  
1
1, 2, 6–9  
2, 8  
2
8
Updated title of data sheet to include “nanoPower”  
1–14  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2017 Maxim Integrated Products, Inc.  
14  

相关型号:

MAX9938HEBS

1レA, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier
MAXIM

MAX9938HEBS+G45

1μA, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier
MAXIM

MAX9938HEBS+TG45

Operational Amplifier, 1 Func, 600uV Offset-Max, BICMOS, PBGA4, ROHS COMPLIANT, UCSP-4
MAXIM

MAX9938HEUK

1レA, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier
MAXIM

MAX9938HEUK+

1μA, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier
MAXIM

MAX9938HEUK+T

Operational Amplifier, 1 Func, 600uV Offset-Max, BICMOS, PDSO5,
MAXIM

MAX9938TEBS

1レA, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier
MAXIM

MAX9938TEBS+G45

1μA, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier
MAXIM

MAX9938TEBS+TG45

Operational Amplifier, 1 Func, 600uV Offset-Max, BICMOS, PBGA4, ROHS COMPLIANT, UCSP-4
MAXIM

MAX9938TEUK

1レA, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier
MAXIM

MAX9938TEUK+

1μA, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier
MAXIM

MAX9938TEUK+T

暂无描述
MAXIM