MAX9965BGCCQ-TD [MAXIM]

Comparator, 4 Func, 100000uV Offset-Max, 1.2ns Response Time, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, 0.50 MM PITCH, TQFP-100;
MAX9965BGCCQ-TD
型号: MAX9965BGCCQ-TD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Comparator, 4 Func, 100000uV Offset-Max, 1.2ns Response Time, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, 0.50 MM PITCH, TQFP-100

放大器
文件: 总26页 (文件大小:628K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3016; Rev 2; 5/06  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
General Description  
Features  
The MAX9965/MAX9966 four-channel, low-power, high-  
speed pin electronics driver and comparator ICs  
include for each channel a three-level pin driver, com-  
parator, and variable clamps. The MAX9965/MAX9966  
are similar to the MAX9963/MAX9964, but with even  
lower window comparator dispersion for enhanced  
accuracy. The driver features a wide voltage range and  
high-speed operation, includes high-Z and active termi-  
nation (3rd-level drive) modes, and is highly linear even  
at low-voltage swings. The dual bipolar-input compara-  
tor provides very low dispersion (timing variation) over a  
wide variety of input conditions. The clamps provide  
damping of high-speed DUT waveforms when the  
device is configured as a high-impedance receiver.  
High-speed, differential control inputs compatible with  
ECL, LVPECL, LVDS, and GTL levels are provided for  
each channel. ECL/LVPECL or flexible open-collector  
outputs are available for the comparators.  
Small Footprint: Four Channels in 0.4in2  
Low Power Dissipation: 975mW/Channel (typ)  
High Speed: 500Mbps at 3V  
P-P  
Very Low Timing Dispersion  
Wide Operating Range: -1.5V to +6.5V  
Active Termination (3rd-Level Drive)  
Low-Leakage Mode: 15nA Maximum  
Integrated Clamps  
Interface Easily with Most Logic Families  
Digitally Programmable Slew Rate  
Internal Logic Termination Resistors  
Low Gain and Offset Error  
The A-grade version provides tight matching of gain  
and offset for the driver and comparator, allowing refer-  
ence levels to be shared across multiple channels in  
cost-sensitive systems. For system designs that incor-  
porate independent reference levels for each channel,  
the B-grade version is available at reduced cost.  
Ordering Information  
PART  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
100 TQFP-EPR***  
100 TQFP-EPR***  
100 TQFP-EPR***  
100 TQFP-EPR***  
100 TQFP-EPR***  
100 TQFP-EPR***  
100 TQFP-EPR***  
100 TQFP-EPR***  
100 TQFP-EPR***  
100 TQFP-EPR***  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
MAX9965ADCCQ*  
MAX9965AKCCQ*  
MAX9965AGCCQ*  
MAX9965AHCCQ*  
MAX9965AJCCQ*  
MAX9965BDCCQ*  
MAX9965BKCCQ*  
MAX9965BGCCQ  
MAX9965BHCCQ*  
MAX9965BJCCQ  
MAX9966ADCCQ*  
MAX9966AKCCQ*  
MAX9966AGCCQ*  
MAX9966AHCCQ*  
MAX9966AJCCQ*  
MAX9966BDCCQ*  
MAX9966BKCCQ*  
MAX9966BGCCQ  
MAX9966BHCCQ*  
MAX9966BJCCQ*  
Optional internal resistors at the high-speed inputs pro-  
vide differential termination of LVDS inputs, while  
optional internal resistors provide the pullup voltage  
and source termination for open-collector comparator  
outputs. These features significantly reduce the dis-  
crete component count on the circuit board.  
The MAX9965/MAX9966 operating range is -1.5V to  
+6.5V, with powerdissipation of only 975mW per channel.  
These devices are available in a 100-pin, 14mm x  
14mm body, 0.5mm pitch TQFP with an exposed 8mm  
x 8mm die pad on the top (MAX9965) or bottom  
(MAX9966) of the package for efficient heat removal.  
The MAX9965/MAX9966 are specified to operate with  
an internal die temperature of +60°C to +100°C, and  
feature a die temperature monitor output.  
Applications  
Memory Testers  
Low-Cost Mixed-Signal/System-on-Chip Testers  
Structural Testers  
Pattern/Data Generators  
*Future product—contact factory for availability.  
**EP = Exposed pad.  
***EPR = Exposed pad reversed.  
Pin Configurations and Selector Guide appear at end of data  
sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
ABSOLUTE MAXIMUM RATINGS  
V
V
to GND.........................................................-0.3V to +11.5V  
to GND............................................................-7.0V to +0.3V  
DLV_ to DTV_ ........................................................………… 10V  
CHV_ or CLV_ to DUT_..........................................………… 10V  
CH_, NCH_, CL_, NCL_ to GND...............................-2.5V to +5V  
Current into DHV_, DLV_, DTV_,  
CC  
EE  
All Other Pins ...................................(V - 0.3V) to (V  
+ 0.3V)  
EE  
CC  
V
- V ................................................................-0.3V to +18V  
CC  
EE  
DUT_ to GND.........................................................-2.5V to +7.5V  
DATA_, NDATA_, RCV_, NRCV_ to GND ................-2.5 to +5.0V  
DATA_ to NDATA_ ................................................….…….. 1.5V  
RCV_ to NRCV_....................................................………… 1.5V  
CHV_, CLV_, CPHV_, CPLV_........................................ 10mA  
Current into TEMP............................................-0.5mA to +20mA  
DUT_ Short Circuit to -1.5V to +6.5V.....................….Continuous  
Power Dissipation (T = +70°C)  
A
V
to GND....................................................…-0.3V to +5V  
MAX9965__CCQ (derate 167mW/°C  
CCO_ _  
SCLK, DIN, CS, RST to GND ...............................…-1.0V to +5V  
DHV_, DLV_, DTV_, CHV_, CLV_ to GND .............-2.5V to +7.5V  
CPHV_ to GND ......................................................-2.5V to +8.5V  
CPLV_ to GND.......................................................-3.5V to +7.5V  
DHV_ to DLV_........................................................………… 10V  
DHV_ to DTV_........................................................………… 10V  
above +70°C) ...............................................................13.3W*  
MAX9966__CCQ (derate 47.6mW/°C  
above +70°C) .................................................................3.8W*  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature .........................................….……+125°C  
Lead Temperature (soldering, 10s) .....................……….+300°C  
*Dissipation wattage values are based on still air with no heat sink for the MAX9965 and slug soldered to board copper for the MAX9966.  
Actual maximum power dissipation is a function of users’ heat extraction technique and may be substantially higher.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +9.75V, V = -5.25V, V  
= 2.5V, SC1 = SC0 = 0, V  
= 7.2V, V  
= -2.2V, T = +85°C, unless otherwise noted.  
CPLV_ J  
CC  
EE  
CCO_ _  
CPHV_  
All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
POWER SUPPLIES  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Positive Supply  
V
9.5  
9.75  
-5.25  
200  
10.5  
-4.5  
225  
-425  
4.5  
V
V
CC  
Negative Supply  
V
-6.5  
EE  
Positive Supply  
I
(Note 2)  
mA  
mA  
W
CC  
Negative Supply  
I
(Note 2)  
-370  
3.9  
EE  
Power Dissipation  
P
(Notes 2, 3)  
D
DUT_ CHARACTERISTICS  
Operating Voltage Range Max  
V
(Note 4)  
-1.5  
+6.5  
2
V
DUT  
LLEAK = 0, 0 V  
3V  
DUT_  
Leakage Current in High-Z Mode  
I
µA  
DUT  
LLEAK = 0, V  
= -1.5V, 6.5V  
5
DUT_  
LLEAK = 1, 0 V  
3V, T < +90°C  
15  
30  
30  
DUT_  
J
Leakage Current in Low-Leakage  
Mode  
I
nA  
LLEAK = 1, V  
DUT_  
= -1.5V,T < +90°C  
J
DUT  
LLEAK = 1, V  
= 6.5V, T < +90°C  
J
DUT_  
Driver in term mode (DUT_ = DTV_)  
Driver in high-Z mode  
(Notes 5, 7)  
3
5
Combined Capacitance  
C
DUT  
pF  
Low-Leakage Enable Time  
Low-Leakage Disable Time  
20  
20  
µs  
µs  
(Notes 6, 7)  
Time to return to the specified maximum  
leakage after a 3V, 4V/ns step at DUT_  
(Note 7)  
Low-Leakage Recovery  
10  
µs  
2
_______________________________________________________________________________________  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +9.75V, V = -5.25V, V  
= 2.5V, SC1 = SC0 = 0, V  
= 7.2V, V  
= -2.2V, T = +85°C, unless otherwise noted.  
CPLV_ J  
CC  
EE  
CCO_ _  
CPHV_  
All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LEVEL PROGRAMMING INPUTS (DHV_, DLV_, DTV_, CHV_, CLV_, CPHV_, CPLV_)  
Input Bias Current  
Settling Time  
I
25  
µA  
µs  
BIAS  
To 5mV  
1
DIFFERENTIAL CONTROL INPUTS (DATA_, NDATA_, RCV_, NRCV_)  
Input High Voltage  
Input Low Voltage  
V
-1.6  
-2.0  
0.15  
+3.5  
+3.1  
1.0  
V
V
V
IH  
V
IL  
Differential Input Voltage  
V
DIFF  
MAX996_ _GCCQ, MAX996_ _JCCQ,  
between signal and complement  
Input Resistor  
96  
104  
Ω
SINGLE-ENDED CONTROL INPUTS (CS, RST, SCLK, DIN)  
Input High Voltage  
Input Low Voltage  
V
1.6  
3.5  
V
V
IH  
V
-0.1  
+0.9  
IL  
SERIAL INTERFACE TIMING (Figure 5)  
SCLK Frequency  
f
50  
MHz  
ns  
SCLK  
SCLK Pulse Width High  
SCLK Pulse Width Low  
CS Low to SCLK High Setup  
CS High to SCLK High Setup  
SCLK High to CS High Hold  
DIN to SCLK High Setup  
DIN to SCLK High Hold  
CS Pulse Width High  
t
8
CH  
t
8
ns  
CL  
t
t
3.5  
3.5  
3.5  
3.5  
3.5  
20  
ns  
CSS0  
CSS1  
CSH1  
ns  
t
ns  
t
ns  
DS  
DH  
t
ns  
t
ns  
CSWH  
TEMPERATURE MONITOR (TEMP)  
Nominal Voltage  
T = +70°C, R 10MΩ  
3.43  
+10  
15  
V
J
L
Temperature Coefficient  
Output Resistance  
mV/°C  
kΩ  
DRIVERS (Note 8)  
DC OUTPUT CHARACTERISTICS (R 10MΩ )  
L
DHV_, DLV_, DTV_, Output Offset  
Voltage  
At DUT_ with V  
= 3V,  
= 0  
DHV_  
V
MAX996_B  
MAX996_B  
100  
mV  
V/V  
OS  
V
= 1.5V, V  
DLV_  
DTV_  
Measured with V  
, V  
,
DHV_ DLV_  
DHV_, DLV_, DTV_, Gain  
A
0.96  
1.001  
V
V
at 0 and 4.5V  
DTV_  
DHV_, DLV_, DTV_, Output  
Voltage Temperature Coefficient  
Includes both gain and offset temperature  
effects  
75  
µV/°C  
mV  
0V V  
3V (Note 9)  
5
DUT_  
Linearity Error  
Full range (Notes 9, 10)  
15  
_______________________________________________________________________________________  
3
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +9.75V, V = -5.25V, V  
= 2.5V, SC1 = SC0 = 0, V  
= 7.2V, V  
= -2.2V, T = +85°C, unless otherwise noted.  
CPLV_ J  
CC  
EE  
CCO_ _  
CPHV_  
All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
DHV_ to DLV_ Crosstalk  
DLV_ to DHV_ Crosstalk  
SYMBOL  
CONDITIONS  
= 200mV, 6.5V  
DHV_  
MIN  
TYP  
MAX  
UNITS  
mV  
V
V
= 0, V  
2
2
DLV_  
DHV_  
= 5V, V  
= -1.5V, 4.8V  
mV  
DLV_  
DTV_ to DLV_ and DHV_  
Crosstalk  
V
V
= 3V, V  
= -1.5V, +6.5V  
= 0,  
DHV_  
DTV_  
DLV_  
2
mV  
DHV_ to DTV_ Crosstalk  
DLV_ to DTV_ Crosstalk  
V
V
V
= 1.5V, V  
= 1.5V, V  
= 0, V =1.6V, 3V  
DHV_  
3
3
mV  
mV  
DTV_  
DTV_  
DLV_  
DHV_  
= 3V, V  
= 0, 1.4V  
DLV_  
DHV_, DLV_, DTV_  
DC Power-Supply Rejection Ratio  
and V independently set to their  
EE  
CC  
PSRR  
40  
dB  
min/max values  
Maximum DC Drive Current  
DC Output Resistance  
I
60  
49  
120  
51  
mA  
Ω
DUT_  
R
I
I
=
=
30mA (Note 11)  
1.0mA to 40mA  
50  
1
DUT_  
DUT_  
DC Output Resistance Variation  
ΔR  
2.5  
Ω
DUT_  
DUT_  
DYNAMIC OUTPUT CHARACTERISTICS (Z = 50Ω)  
L
V
V
V
= 0, V  
= 0.1V  
= 1V  
30  
40  
50  
0
DLV_  
DLV_  
DLV_  
DHV_  
DHV_  
DHV_  
Drive Mode Overshoot  
mV  
= 0, V  
= 0, V  
= 3V  
Term Mode Overshoot  
(Note 12)  
mV  
ns  
Settling Time to Within 25mV  
Settling Time to Within 5mV  
3V step (Note 13)  
3V step (Note 13)  
10  
20  
ns  
TIMING CHARACTERISTICS (Z = 50Ω) (Note 14)  
L
Prop Delay, Data to Output  
Prop Delay Match, T vs. T  
t
2
2.75  
ns  
ps  
PDD  
3V  
P-P  
50  
LH  
HL  
Prop Delay Match, Drivers Within  
Package  
(Note 15)  
40  
+3  
60  
ps  
ps/°C  
ps  
Prop Delay Temperature  
Coefficient  
Prop Delay Change vs.  
Pulse Width  
3V , 40MHz, 2.5ns to 22.5ns pulse width,  
P-P  
relative to 12.5ns pulse width  
Prop Delay Change vs.  
Common-Mode Voltage  
V
V
V
- V  
= 1V, V = 0 to 6V  
DHV_  
85  
2.9  
2.9  
ps  
ns  
ns  
DHV_  
DHV_  
DHV_  
DLV_  
Prop Delay, Drive to High-Z  
t
t
= 1.0V, V  
= 1.0V, V  
= -1.0V, V  
= -1.0V, V  
= 0  
= 0  
PDDZ  
PDZD  
DLV_  
DLV_  
DTV_  
DTV_  
Prop Delay, High-Z to Drive  
Prop Delay, Drive to Term  
Prop Delay, Term to Drive  
t
t
V
V
= 3V, V  
= 3V, V  
= 0, V  
= 1.5V  
= 1.5V  
2.3  
2.0  
ns  
ns  
PDDT  
PDTD  
DHV_  
DHV_  
DLV_  
DLV_  
DTV_  
= 0, V  
DTV_  
DYNAMIC PERFORMANCE (Z = 50Ω)  
L
0.2 V , 20% to 80%  
330  
670  
1.2  
2.0  
P-P  
ps  
ns  
1 V , 10% to 90%  
450  
1.1  
750  
1.4  
P-P  
Rise and Fall Time  
t , t  
R F  
3 V , 10% to 90%  
P-P  
5 V , 10% to 90%  
P-P  
4
_______________________________________________________________________________________  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +9.75V, V = -5.25V, V  
= 2.5V, SC1 = SC0 = 0, V  
= 7.2V, V  
= -2.2V, T = +85°C, unless otherwise noted.  
CPLV_ J  
CC  
EE  
CCO_ _  
CPHV_  
All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Percent of full speed (SC0 = SC1 = 0),  
3V , 20% to 80%  
P-P  
SC1 = 0, SC0 = 1 Slew Rate  
75  
%
Percent of full speed (SC0 = SC1 = 0),  
3V , 20% to 80%  
P-P  
SC1 = 1, SC0 = 0 Slew Rate  
SC1 = 1, SC0 = 1 Slew Rate  
50  
25  
%
%
Percent of full speed (SC0 = SC1 = 0),  
3V , 20% to 80%  
P-P  
0.2V , V  
= 0.2V, V  
_ = 0  
DLV  
0.65  
1.0  
P-P DHV_  
1V , V  
P-P DHV_  
= 1V, V  
_ = 0  
_ = 0  
_ = 0  
DLV  
DLV  
DLV  
Minimum Pulse Width (Note 16)  
Data Rate (Note 17)  
ns  
3V , V  
P-P DHV_  
= 3V, V  
= 5V, V  
2.0  
5V , V  
P-P DHV_  
2.9  
0.2V , V  
= 0.2V, V  
_ = 0  
1700  
1000  
500  
350  
20  
P-P DHV_  
DLV  
1V , V  
P-P DHV_  
= 1V, V  
_ = 0  
_ = 0  
_ = 0  
DLV  
DLV  
DLV  
Mbps  
3V , V  
P-P DHV_  
= 3V, V  
= 5V, V  
5V , V  
P-P DHV_  
Dynamic Crosstalk  
(Note 18)  
mV  
P-P  
V
= 3V, V  
= 0, V  
= 1.5V,  
= 1.5V,  
DHV_  
DLV_  
DTV_  
Rise and Fall Time, Drive to Term  
t
t
, t  
1.6  
0.7  
ns  
DTR DTF  
10% to 90% (Note 19)  
V
= 3V, V = 0, V  
DHV_  
DLV_  
DTV_  
Rise and Fall Time, Term to Drive  
, t  
ns  
TDR TDF  
10% to 90% (Note 19)  
(Note 4)  
COMPARATORS  
DC CHARACTERISTICS  
Input Voltage Range  
Differential Input Voltage  
Hysteresis  
V
-1.5  
8
+6.5  
100  
V
IN  
V
V
DIFF  
V
0
mV  
mV  
HYST  
Input Offset Voltage  
V
V
= 1.5V  
MAX996_B  
OS  
DUT_  
Input Offset Voltage Temperature  
Coefficient  
50  
µV/°C  
dB  
Common-Mode Rejection Ratio  
CMRR  
PSRR  
V
V
V
= -1.5V, 6.5V (Note 20)  
= 1.5V (Note 9)  
50  
50  
55  
1
DUT_  
DUT_  
DUT_  
5
Linearity Error  
mV  
= -1.5V and 6.5V (Note 9)  
1
10  
Power-Supply Rejection Ratio  
V
= -1.5V, 6.5V (Note 21)  
66  
dB  
DUT_  
AC CHARACTERISTICS (Note 22)  
MAX996_ _GCCQ  
0.6  
0.9  
1.2  
2.6  
Minimum Pulse Width  
t
(Note 23)  
ns  
PW(MIN)  
MAX996_ _HCCQ,  
MAX996_ _JCCQ  
Prop Delay  
t
2.0  
ns  
PDL  
Prop Delay Temperature  
Coefficient  
ps/°C  
_______________________________________________________________________________________  
5
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +9.75V, V = -5.25V, V  
= 2.5V, SC1 = SC0 = 0, V  
= 7.2V, V  
= -2.2V, T = +85°C, unless otherwise noted.  
CPLV_ J  
CC  
EE  
CCO_ _  
CPHV_  
All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Prop Delay Match, High/Low vs.  
Low/High  
40  
ps  
Prop Delay Match, Comparators  
Within Package  
(Note 15)  
40  
20  
ps  
ps  
ps  
Prop Delay Dispersion vs.  
Common-Mode Input  
V
V
= -1.4, 6.4V (Note 24)  
CHV_ = CLV_  
Prop Delay Dispersion vs.  
Overdrive  
50mV to 500mV  
60  
25  
45  
MAX996_ _GCCQ  
2.0ns to 23ns pulse  
width, relative to 12.5ns  
pulse width  
Prop Delay Dispersion vs. Pulse  
Width  
ps  
ps  
MAX996_ _HCCQ,  
MAX996_ _JCCQ  
Prop Delay Dispersion vs. Slew  
Rate  
0.5V/ns to 6.5V/ns slew rate, peak-to-peak  
variation  
50  
50  
V
= 1.0V , t = t  
P-P R F  
DUT_  
Term mode  
= 1.0ns 10% to 90%,  
relative to timing at 50%  
point  
Waveform Tracking 10% to 90%  
ps  
High-Z mode  
250  
OPEN-COLLECTOR LOGIC OUTPUTS (CH_, NCH_, CL_, NCL_: MAX996_ _GCCQ)  
Voltage Range  
V
V
0
3.5  
V
V
CCO_ _  
VCCO_ _  
Output Low Voltage Compliance  
Output High Voltage  
Set by I  
, R  
, and V  
-0.5  
OUT TERM  
CCO_ _  
V
V
CCO_ _ CCO_ _  
- 0.1  
V
I
I
= I  
= I  
= I  
= I  
= I  
= I  
= 0  
= 0  
V
OH  
CH_  
NCH_  
CL_  
NCL_  
- 0.02  
V
CCO_ _  
- 0.4  
Output Low Voltage  
Output Voltage Swing  
Termination Resistor  
V
V
V
OL  
CH_  
NCH_  
CL_  
NCL_  
0.350  
48  
0.380  
0.442  
52  
Single-ended measurement from V  
CH_, NCH_, CL_, NCL_  
to  
CCO_ _  
R
TERM  
Ω
Differential Rise Time  
Differential Fall Time  
t
20% to 80%  
20% to- 80%  
200  
200  
ps  
ps  
R
t
F
OPEN-EMITTER LOGIC OUTPUTS (CH_, NCH_, CL_, NCL_: MAX996_ _JCCQ)  
V
Voltage Range  
V
-0.1  
3.5  
V
CCO_ _  
CCO_ _  
All outputs 50Ω to  
V
Supply Current  
I
330  
mA  
CCO_ _  
VCCO_ _  
(V  
VCCO_ _  
- 2V)  
V
V
CCO_ _ CCO_ _  
- 1  
Output High Voltage  
V
50Ω to (V  
- 2V)  
V
OH  
VCCO_ _  
- 0.88  
V
V
CCO_ _ CCO_ _  
Output Low Voltage  
V
50Ω to (V  
50Ω to (V  
- 2V)  
- 2V)  
V
OL  
VCCO_ _  
VCCO_ _  
- 1.73  
- 1.5  
Output Voltage Swing  
800  
850  
950  
mV  
6
_______________________________________________________________________________________  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +9.75V, V = -5.25V, V  
= 2.5V, SC1 = SC0 = 0, V  
= 7.2V, V  
= -2.2V, T = +85°C, unless otherwise noted.  
CPLV_ J  
CC  
EE  
CCO_ _  
CPHV_  
All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
Differential Rise Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
500  
500  
MAX  
UNITS  
ps  
t
R
20% to 80%  
20% to 80%  
Differential Fall Time  
t
F
ps  
CLAMPS  
High Clamp Input Voltage Range  
Low Clamp Input Voltage Range  
V
-0.3  
-2.5  
+7.5  
+5.3  
100  
V
V
CPH_  
V
CPL_  
At DUT_ with I  
At DUT_ with I  
= 1mA, V  
= 1.5V  
= 1.5V  
DUT_  
CPHV_  
Clamp Offset Voltage  
V
mV  
OS  
= -1mA, V  
100  
DUT_  
CPLV_  
Offset Voltage Temperature  
Coefficient  
0.5  
mV/°C  
V
and V independently set to their min  
EE  
CC  
40  
and max values, I  
= 1mA, V  
= 0  
CPHV_  
DUT_  
Clamp Power-Supply Rejection  
Voltage Gain  
PSRR  
dB  
V
and V independently set to their min  
EE  
CC  
40  
and max values, I  
= -1mA, V  
= 0  
DUT_  
CPLV_  
A
0.96  
1.00  
V/V  
V
Voltage Gain Temperature  
Coefficient  
-100  
10  
ppm/°C  
I
V
= 1mA, V  
= -1.5V,  
CPLV_  
DUT_  
= -0.3V to 6.5V  
CPHV_  
Clamp Linearity  
mV  
mA  
Ω
I
= -1mA, V  
= 6.5V,  
DUT_  
CPHV_  
10  
V
= -1.5V to 5.3V  
CPLV_  
V
V
= 0, V  
= -1.5V, V = 6.5V  
DUT_  
50  
95  
CPHV_  
CPLV_  
CPLV_  
Short-Circuit Output Current  
Clamp DC Impedance  
I
DUT  
= 5V, V  
= 6.5V, V  
= -1.5V  
DUT_  
-95  
-50  
CPHV_  
V
= 3V, V  
= 0,  
CPHV_  
CPLV_  
50  
50  
55  
55  
I
= -5mA and -15mA  
DUT  
R
OUT  
V
= 3V, V  
= 0,  
CPLV_  
CPHV_  
I
= 5mA and 15mA  
DUT  
Note 1: All min and max limits are 100% tested in production. Tests are performed at worst-case supply voltages where applicable.  
Note 2: Total for quad device at worst-case setting. R 10MΩ. The applicable supply currents are measured with typical supply  
L
voltages.  
Note 3: Does not include internal dissipation of the comparator outputs. With output loads of 50Ω to (V  
- 2V), this adds  
VCCO_ _  
240mW typical to the total chip power (MAX996_ _HCCQ, MAX996_ _JCCQ).  
Note 4: Provided that the Absolute Maximum Ratings are not exceeded, externally forced voltages may exceed this range.  
Note 5: Transition time from LLEAK being asserted to leakage current dropping below specified limits.  
Note 6: Transition time from LLEAK being deasserted to output returning to normal operating mode.  
Note 7: Based on simulation results only.  
Note 8: With the exception of Offset and Gain/CMRR tests, reference input values are calibrated for offset and gain.  
Note 9: Relative to straight line between 0 and 3V.  
Note 10: Full ranges are -1.3V V  
6.5V, -1.5V V  
6.5V, -1.5V V  
6.3V.  
DHV_  
DTV_  
DLV_  
Note 11: Nominal target value is 50Ω. Contact factory for alternate trim selections within the 40Ω to 50Ω range.  
Note 12: V = 1.5V, R = 50Ω. External signal driven into T-line is a 0 to 3V edge with 1.2ns rise time (10% to 90%).  
DTV_  
S
Measurement is made using the comparator.  
Note 13: Measured from the crossing point of DATA_ inputs to the settling of the driver output.  
_______________________________________________________________________________________  
7
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
Note 14: Prop delays are measured from the crossing point of the differential input signals to the 50% point of expected output  
swing. Rise time of the differential inputs DATA_ and RCV_ is 250ps (10% to 90%).  
Note 15: Rising edge to rising edge or falling edge to falling edge.  
Note 16: Specified amplitude is programmed. At this pulse width, the output reaches at least 95% of its nominal (DC) amplitude.  
The pulse width is measured at DATA_.  
Note 17: Specified amplitude is programmed. Maximum data rate specified in transitions per second. A square wave that reaches  
at least 95% of its programmed amplitude may be generated at one-half of this frequency.  
Note 18: Crosstalk from any driver to the other three channels. Aggressor channel is driving 3V  
into a 50Ω load. Victim channels  
P-P  
are in term mode with V  
= 1.5V.  
DTV_  
Note 19: Indicative of switching speed from DHV_ or DLV_ to DTV_ and DTV_ to DHV_ or DLV_ when V  
< V  
< V  
. If  
DHV_  
DLV_  
DTV_  
V
< V  
or V  
> V  
, switching speed is degraded by approximately a factor of 3.  
DTV_  
DLV_  
DTV_  
DHV_  
Note 20: Change in Offset Voltage over input range.  
Note 21: Change in Offset Voltage with power supplies independently set to their minimum and maximum values.  
Note 22: Unless otherwise noted, all Prop Delays are measured at 40MHz, V = 0 to 2V, V = V = 1V, slew rate = 2V/ns,  
DUT_  
CHV_  
CLV_  
Z = 50Ω, driver in Term Mode with V  
= 0V. Comparator outputs are terminated with 50Ω to GND at scope input with  
S
DTV_  
V
= 2V. Open-collector outputs are also terminated (internally or externally) with R  
= 50Ω to V  
. Measured  
CCO_ _  
CCO_ _  
TERM  
from V  
crossing calibrated CHV_/CLV_ threshold to crossing point of differential outputs.  
DUT_  
Note 23: V  
= 0 to 1V, V  
= V  
= 0.5V. At this pulse width, the output reaches at least 90% of its DC Voltage swing. The  
DUT_  
CHV_  
CLV_  
pulse width is measured at the crossing points of the differential outputs.  
Note 24: Relative to propagation delay at V = V = 1.5V. V = 200mV . Overdrive = 100mV.  
CHV_  
CLV_  
DUT_  
P-P  
8
_______________________________________________________________________________________  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
Typical Operating Characteristics  
DRIVER SMALL-SIGNAL RESPONSE  
DRIVE TO TERM TRANSITION  
DRIVER LARGE-SIGNAL RESPONSE  
DLV_ = 0V  
R = 50Ω  
L
DLV_ = 0V  
R = 50Ω  
L
DHV_ = 5V  
DHV_ = 500mV  
DHV_ = 200mV  
DHV_ TO DTV_  
DHV_ = 3V  
DLV_ TO DTV_  
0
0
0
DHV_ = 100mV  
t = 2.5ns/div  
DHV_ = 1V  
R = 50Ω  
L
t = 5.0ns/div  
t = 2.5ns/div  
DRIVER TIME DELAY  
vs. COMMON-MODE VOLTAGE  
DRIVER TRAILING-EDGE TIMING ERROR  
vs. PULSE WIDTH  
HIGH-Z TO DRIVE TRANSITION  
40  
20  
65  
55  
45  
35  
25  
15  
5
NORMALIZED TO V = 1.5V  
CM  
HIGH-Z TO DHV_  
0
-20  
-40  
-60  
-80  
-100  
RISING EDGE  
0
LOW PULSE  
HIGH PULSE  
FALLING EDGE  
-5  
HIGH-Z TO DLV_  
-15  
-25  
-35  
NORMALIZED TO PW = 12.5ns  
PERIOD = 25ns, DHV_ = 3V, DLV_ = 0V  
R = 50Ω  
L
0
5
10  
15  
20  
25  
0
1
2
3
4
5
6
t = 5.0ns/div  
PULSE WIDTH (ns)  
COMMON-MODE VOLTAGE (V)  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
6
5
6
5
6
5
DUT_ = DHV_  
DUT_ = DLV_  
DUT_ = DTV_  
4
4
4
3
3
3
2
2
2
1
1
1
0
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
V
V
DUT_  
V
DUT_  
DUT_  
_______________________________________________________________________________________  
9
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
Typical Operating Characteristics (continued)  
CROSSTALK TO DUT_ FROM DLV_  
WITH DUT_ = DHV_  
CROSSTALK TO DUT_ FROM DTV_  
WITH DUT_ = DHV_  
CROSSTALK TO DUT_ FROM DHV_  
WITH DUT_ = DLV_  
2.0  
1.6  
0.5  
0.4  
2.0  
1.6  
DHV_ = 5V  
DTV_ = 1.5V  
DHV_ = 3V  
DLV_ = 0  
DLV_ = 0  
DTV_ = 1.5V  
1.2  
0.3  
1.2  
0.8  
0.2  
0.8  
0.4  
0.1  
0.4  
0
0
0
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
NORMALIZED AT DLV_ = 0V  
NORMALIZED AT DTV_ = 1.5V  
NORMALIZED AT DHV_ = 5V  
-1.5  
0
1.5  
3.0  
4.5  
6.0  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
DTV_ VOLTAGE (V)  
-0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
DHV_ VOLTAGE (V)  
DLV_ VOLTAGE (V)  
CROSSTALK TO DUT_ FROM DTV_  
WITH DUT_ = DLV_  
CROSSTALK TO DUT_ FROM DLV_  
WITH DUT_ = DTV_  
CROSSTALK TO DUT_ FROM DHV_  
WITH DUT_ = DTV_  
0.5  
0.4  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.5  
DLV_ = 0  
DHV_ = 3V  
DTV_ = 1.5V  
DHV_ = 6.5V  
DTV_ = 1.5V  
DLV_ = -1.5V  
0.3  
0.2  
0
0.1  
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.5  
-1.0  
NORMALIZED AT DTV_ = 1.5V  
NORMALIZED AT DLV_ = 0  
NORMALIZED AT DHV_ = 3V  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
DTV_ VOLTAGE (V)  
-1.5  
0
1.5  
3.0  
4.5  
6.0  
-0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
DHV_ VOLTAGE (V)  
DLV_ VOLTAGE (V)  
COMPARATOR OFFSET  
vs. COMMON-MODE VOLTAGE  
DRIVER GAIN vs. TEMPERATURE  
DRIVER OFFSET vs. TEMPERATURE  
1.0008  
1.0006  
1.0004  
1.0002  
1.0000  
0.9998  
0.9996  
0.9994  
0.25  
0.20  
0.15  
0.10  
0.05  
0
2.0  
1.5  
NORMALIZED AT T = +85°C  
J
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.05  
-0.10  
NORMALIZED AT T = +85°C  
J
NORMALIZED AT V = 1.5V  
CM  
60  
70  
80  
90  
100  
60  
70  
80  
90  
100  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
10 ______________________________________________________________________________________  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
Typical Operating Characteristics (continued)  
COMPARATOR FALLING EDGE TIMING  
VARIATION vs. COMMON-MODE VOLTAGE  
COMPARATOR RISING EDGE TIMING  
VARIATION vs. COMMON-MODE VOLTAGE  
COMPARATOR TIMING VARIATION  
vs. OVERDRIVE  
100  
75  
100  
75  
150  
130  
110  
90  
50  
50  
FALLING EDGE  
25  
25  
70  
0
0
50  
30  
-25  
-50  
-75  
-100  
-25  
-50  
-75  
-100  
10  
-10  
-30  
-50  
RISING EDGE  
NORMALIZED TO ZERO AT V = 1.5V  
CM  
NORMALIZED TO ZERO AT V = 1.5V  
CM  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
COMMON-MODE VOLTAGE (V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
COMMON-MODE VOLTAGE (V)  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
OVERDRIVE (V)  
COMPARATOR TRAILING EDGE TIMING  
ERROR vs. PULSE WIDTH, MAX996_ _JCCQ  
COMPARATOR TIMING VARIATION  
vs. INPUT SLEW RATE, DUT_ RISING  
COMPARATOR TRAILING EDGE TIMING  
ERROR vs. PULSE WIDTH, MAX996_ _GCCQ  
40  
60  
50  
40  
30  
20  
10  
0
30  
NORMALIZED TO PW = 12.5ns  
PERIOD = 25ns  
20  
0
20  
10  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
HIGH PULSE  
LOW PULSE  
0
-10  
-20  
-30  
-40  
HIGH PULSE  
LOW PULSE  
NORMALIZED TO PW = 12.5ns  
PERIOD = 25ns  
NORMALIZED TO SR = 2V/ns  
-10  
0
5
10  
15  
20  
25  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
6.5  
0
5
10  
15  
20  
25  
PULSE WIDTH (ns)  
SLEW RATE (V/ns)  
PULSE WIDTH (ns)  
COMPARATOR DIFFERENTIAL  
OUTPUT RESPONSE (MAX996_ _GCCQ)  
COMPARATOR TIMING VARIATION  
vs. INPUT SLEW RATE, DUT_ FALLING  
COMPARATOR DIFFERENTIAL  
OUTPUT RESPONSE (MAX996_ _JCCQ)  
60  
50  
40  
30  
20  
10  
0
0
0
NORMALIZED TO SR = 2V/ns  
-10  
t = 2.50ns/div  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
6.5  
t = 2.50ns/div  
V
= 0 TO 3V PULSE, CHV_ = CLV_ = 1.5V,  
DUT  
SLEW RATE (V/ns)  
V
= 0 TO 3V PULSE, CHV_ = CLV_ = 1.5V,  
DUT  
EXTERNAL LOAD = 50Ω  
EXTERNAL LOAD = 50Ω  
______________________________________________________________________________________ 11  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
Typical Operating Characteristics (continued)  
COMPARATOR RESPONSE  
vs. HIGH SLEW-RATE OVERDRIVE  
COMPARATOR OFFSET  
vs. TEMPERATURE  
CLAMP RESPONSE  
0.6  
0.4  
TERM MODE  
RISING  
0.2  
0
DIGITIZED  
OUTPUT  
INPUT  
-0.2  
-0.4  
-0.6  
-0.8  
FALLING  
0
0
INPUT SLEW-RATE = 17V/ns  
t = 2.50ns/div  
NORMALIZED TO T = +85°C  
J
t = 5.0ns/div  
= 0V TO 3V SQUARE WAVE, R = 25Ω  
CPLV_ = -0.1V, CPHV_ = +3.1V  
75  
79  
83  
87  
91  
95  
V
DUT  
S
TEMPERATURE (°C)  
CLAMP CURRENT  
vs. DIFFERENCE VOLTAGE  
HIGH-Z LEAKAGE CURRENT  
vs. DUT_ VOLTAGE  
CLAMP CURRENT  
vs. DIFFERENCE VOLTAGE  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1.2  
1.0  
100  
0
V
= 3V  
DUT_  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
-1100  
-1200  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
V
= 0  
DUT_  
-100  
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0  
CPHV_ VOLTAGE (V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
DUT_ VOLTAGE (V)  
-1.50 -1.25 -1.00 -0.75 -0.50 -0.25  
CPLV_VOLTAGE (V)  
0
COMPARATOR REFERENCE  
INPUT CURRENT vs. INPUT VOLTAGE  
LOW-LEAKAGE CURRENT  
vs. DUT_ VOLTAGE  
DRIVER REFERENCE CURRENT  
vs. INPUT VOLTAGE  
1.00  
0.75  
0.50  
0.25  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
DHV_  
DTV_  
CHV_  
-0.25  
-0.50  
-0.75  
-1.00  
DLV_  
CLV_  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
INPUT VOLTAGE (V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
DUT_ VOLTAGE (V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
INPUT VOLTAGE (V)  
12 ______________________________________________________________________________________  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
Typical Operating Characteristics (continued)  
INPUT CURRENT  
vs. INPUT VOLTAGE, CPHV_  
INPUT CURRENT  
vs. INPUT VOLTAGE, CPLV_  
SUPPLY CURRENT I vs. V  
CC  
CC  
185  
170  
155  
140  
125  
110  
95  
600  
500  
400  
300  
200  
-500  
-600  
-700  
-800  
-900  
-1000  
CPLV_ = -2.2V  
A
B
C
80  
65  
50  
35  
CPHV_ = 7.2V  
20  
9.50  
9.75  
10.00  
(V)  
10.25  
10.50  
-0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5  
CPHV_ VOLTAGE (V)  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
CPLV_ VOLTAGE (V)  
V
CC  
A: DUT_ = DTV_ = 1.5V, DHV_ = 3V, DLV_ = 0,  
CHV_ = CLV_ = 0, CPHV_ = 7.2V, CPLV_ = -2.2V  
B: SAME AS A EXCEPT DUT_ = HIGH-Z  
C: SAME AS B EXCEPT DUT_ = LOW LEAK  
SUPPLY CURRENT I vs. V  
EE  
I
CC  
vs. TEMPERATURE  
EE  
I
EE  
vs. TEMPERATURE  
-220  
168.0  
167.5  
167.0  
166.5  
166.0  
165.5  
165.0  
164.5  
164.0  
163.5  
-329.0  
-329.2  
-329.4  
-329.6  
-329.8  
-330.0  
-330.2  
-330.4  
-240  
-260  
-280  
-300  
-320  
-340  
-360  
-380  
-400  
C
B
A
-6.50 -6.25 -6.00 -5.75 -5.50 -5.25 -5.00 -4.75 -4.50  
(V)  
60  
70  
80  
90  
100  
110  
60  
70  
80  
TEMPERATURE (°C)  
DUT_ = DTV_ = 1.5V, DHV_ = 3V, DLV_ = 0,  
CHV_ = CLV_ = 0, CPHV_ = 7.2V, CPLV = -2.2V,  
= 9.75V, V = -5.25V  
90  
100  
110  
V
TEMPERATURE (°C)  
EE  
A: DUT_ = DTV_ = 1.5V, DHV_ = 3V, DLV_ = 0,  
CHV_ = CLV_ = 0, CPHV_ = 7.2V, CPLV_ = -2.2V  
B: SAME AS A EXCEPT DUT_ = HIGH-Z  
DUT_ = DTV_ = 1.5V, DHV_ = 3V, DLV_ = 0,  
CHV_ = CLV_ = 0, CPHV_ = 7.2V, CPLV = -2.2V,  
V
= 9.75V, V = -5.25V  
CC  
EE  
V
CC  
EE  
C: SAME AS B EXCEPT DUT_ = LOW LEAK  
______________________________________________________________________________________ 13  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX9965  
MAX9966  
Channel 3/4 Collector Voltage Input. For open-collector outputs, this is the pullup  
voltage for the internal termination resistors. For open-emitter outputs, this is the  
34 collector voltage of the output transistors. Not internally connected on open-collector  
1
25  
V
CCO  
versions without internal termination resistors. V  
channel 4.  
34 services both channel 3 and  
CCO  
Channel 4 Multiplexer Control Inputs. Differential controls DATA4 and NDATA4 select  
driver 4’s input from DHV4 or DLV4. Drive DATA4 above NDATA4 to select DHV4. Drive  
NDATA4 above DATA4 to select DLV4.  
2
3
24  
23  
DATA4  
NDATA4  
Channel 4 Multiplexer Control Inputs. Differential controls RCV4 and NRCV4 place  
channel 4 into receive mode. Drive RCV4 above NRCV4 to place channel 4 into  
receive mode. Drive NRCV4 above RCV4 to place channel 4 into drive mode.  
Channel 3 Multiplexer Control Inputs. Differential controls DATA3 and NDATA3 select  
driver 3’s input from DHV3 or DLV3. Drive DATA3 above NDATA3 to select DHV3.  
Drive NDATA3 above DATA3 to select DLV3.  
Channel 3 Multiplexer Control Inputs. Differential controls RCV3 and NRCV3 place  
channel 3 into receive mode. Drive RCV3 above NRCV3 to place channel 3 into  
receive mode. Drive NRCV3 above RCV3 to place channel 3 into drive mode.  
4
5
6
7
8
9
22  
21  
20  
19  
18  
17  
RCV4  
NRCV4  
DATA3  
NDATA3  
RCV3  
NRCV3  
10, 27, 54, 55, 16, 27, 54, 55,  
60, 61, 65, 66, 60, 61, 65, 66,  
V
Negative Power-Supply Input  
EE  
71, 72, 99  
71, 72, 99  
11, 28, 51, 56, 15, 28, 51, 56,  
62, 64, 70, 75, 62, 64, 70, 75,  
GND  
Ground Connection  
98  
98  
Reset Input. Asynchronous reset input for the serial register. RST is active low  
12  
14  
RST  
and asserts low-leakage mode. At power-up, hold RST low until V and V  
CC  
EE  
have stabilized.  
13  
14  
15  
13  
12  
11  
CS  
SCLK  
DIN  
Chip Select Input. Serial port activation input. CS is active low.  
Serial Clock Input. Clock for serial port.  
Data Input. Serial port data input.  
16, 26, 52, 58, 10, 26, 52, 58,  
V
Positive Power-Supply Input  
CC  
68, 74, 100  
68, 74, 100  
Channel 2 Multiplexer Control Inputs. Differential controls RCV2 and NRCV2 place  
channel 2 into receive mode. Drive RCV2 above NRCV2 to place channel 2 into  
receive mode. Drive NRCV2 above RCV2 to place channel 2 into drive mode.  
Channel 2 Multiplexer Control Inputs. Differential controls DATA2 and NDATA2 select  
driver 2’s input from DHV2 or DLV2. Drive DATA2 above NDATA2 to select DHV2.  
Drive NDATA2 above DATA2 to select DLV2.  
Channel 1 Multiplexer Control Inputs. Differential controls RCV1 and NRCV1 place  
channel 1 into receive mode. Drive RCV1 above NRCV1 to place channel 1 into  
receive mode. Drive NRCV1 above RCV1 to place channel 1 into drive mode.  
17  
18  
19  
20  
21  
22  
9
8
7
6
5
4
NRCV2  
RCV2  
NDATA2  
DATA2  
NRCV1  
RCV1  
Channel 1 Multiplexer Control Inputs. Differential controls DATA1 and NDATA1 select  
driver 1’s input from DHV1 or DLV1. Drive DATA1 above NDATA1 to select DHV1.  
Drive NDATA1 above DATA1 to select DLV1.  
23  
24  
3
2
NDATA1  
DATA1  
14 ______________________________________________________________________________________  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX9965  
MAX9966  
Channel 1/2 Collector Voltage Input. For open-collector outputs, this is the pullup  
voltage for the internal termination resistors. For open-emitter outputs, this is the  
25  
1
V
12 collector voltage of the output transistors. Not internally connected on open-collector  
CCO  
versions without internal termination resistors. V  
channel 2.  
12 services both channel 1 and  
CCO  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
NCL2  
CL2  
Channel 2 Low Comparator Output. Differential output of channel 2 low comparator.  
Channel 2 High Comparator Output. Differential output of channel 2 high comparator.  
Channel 1 Low Comparator Output. Differential output of channel 1 low comparator.  
Channel 1 High Comparator Output. Differential output of channel 1 high comparator.  
NCH2  
CH2  
NCL1  
CL1  
NCH1  
CH1  
CPHV2 Channel 2 High Clamp Reference Input  
CPLV2 Channel 2 Low Clamp Reference Input  
DHV2  
DLV2  
DTV2  
CHV2  
CLV2  
Channel 2 Driver High Reference Input  
Channel 2 Driver Low Reference Input  
Channel 2 Driver Termination Reference Input  
Channel 2 High Comparator Reference Input  
Channel 2 Low Comparator Reference Input  
CPHV1 Channel 1 High Clamp Reference Input  
CPLV1 Channel 1 Low Clamp Reference Input  
DHV1  
DLV1  
DTV1  
CHV1  
CLV1  
Channel 1 Driver High Reference Input  
Channel 1 Driver Low Reference Input  
Channel 1 Driver Termination Reference Input  
Channel 1 High Comparator Reference Input  
Channel 1 Low Comparator Reference Input  
Channel 1 Device Under Test Input/Output. Combined I/O for driver, comparator, and  
clamp.  
53  
57, 69  
59  
73  
57, 69  
67  
DUT1  
N.C.  
No Connect. Leave open.  
Channel 2 Device Under Test Input/Output. Combined I/O for driver, comparator, and  
clamp.  
DUT2  
TEMP  
63  
63  
Temperature Monitor Output  
______________________________________________________________________________________ 15  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX9965  
MAX9966  
Channel 3 Device Under Test Input/Output. Combined I/O for driver, comparator, and  
clamp.  
67  
59  
DUT3  
DUT4  
Channel 4 Device Under Test Input/Output. Combined I/O for driver, comparator, and  
clamp.  
73  
53  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
CLV4  
CHV4  
DTV4  
DLV4  
DHV4  
Channel 4 Low Comparator Reference Input  
Channel 4 High Comparator Reference Input  
Channel 4 Driver Termination Reference Input  
Channel 4 Driver Low Reference Input  
Channel 4 Driver High Reference Input  
CPLV4 Channel 4 Low Clamp Reference Input  
CPHV4 Channel 4 High Clamp Reference Input  
CLV3  
CHV3  
DTV3  
DLV3  
DHV3  
Channel 3 Low Comparator Reference Input  
Channel 3 High Comparator Reference Input  
Channel 3 Driver Termination Reference Input  
Channel 3 Driver Low Reference Input  
Channel 3 Driver High Reference Input  
CPLV3 Channel 3 Low Clamp Reference Input  
CPHV3 Channel 3 High Clamp Reference Input  
CH4  
Channel 4 High Comparator Output. Differential outputs of channel 4 high comparator.  
NCH4  
CL4  
Channel 4 Low Comparator Output. Differential outputs of channel 4 low comparator.  
NCL4  
CH3  
Channel 3 High Comparator Output. Differential outputs of channel 3 high comparator.  
NCH3  
CL3  
Channel 3 Low Comparator Output. Differential outputs of channel 3 low comparator.  
NCL3  
16 ______________________________________________________________________________________  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
ONE OF FOUR IDENTICAL CHANNELS SHOWN  
MULTIPLEXER  
DLV_  
DHV_  
DTV_  
SLEW-  
RATE  
CONTROL  
BUFFER  
50Ω  
DUT_  
SC0  
SC1  
LLEAK  
OPTIONAL  
100Ω  
MAX9965  
MAX9966  
DATA_  
NDATA_  
RCV_  
HIGH-Z  
NRCV_  
OPTIONAL  
100Ω  
TMSEL  
CLAMPS  
CPHV_  
CPLV_  
CHV_  
CH_  
NCH_  
2Ω  
2Ω  
COMPARATORS  
4 x 48Ω  
OPTIONAL  
V
CCO_ _  
CL_  
NCL_  
CLV_  
TEMP  
CS  
SERIAL INTERFACE IS COMMON TO ALL FOUR CHANNELS.  
MODE BITS ARE INDEPENTENTLY  
CH_ MODE BITS  
V
CC  
EE  
LLEAK  
LATCHED FOR EACH CHANNEL.  
SCLK  
DIN  
SC0  
V
SERIAL  
INTERFACE  
SC1  
GND  
RST  
TMSEL  
Figure 1. MAX9965/MAX9966 Block Diagram  
______________________________________________________________________________________ 17  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
The MAX9965/MAX9966 modal operation is pro-  
grammed through a 3-wire, low-voltage, CMOS-com-  
patible serial interface.  
Detailed Description  
The MAX9965/MAX9966 four-channel, high-speed pin  
electronics driver and comparator ICs for automatic test  
equipment include, for each channel, a three-level pin  
driver, a dual comparator, and variable clamps (Figure  
1). The driver features a -1.5V to +6.5V operating range  
and high-speed operation, including high-Z and active  
termination (3rd-level drive) modes, which is highly lin-  
ear even at low-voltage swings. The devices are similar  
to the MAX9963/MAX9964 but with a comparator that  
provides even lower timing dispersion, due to changes  
in input slew rate and pulse width. The clamps provide  
damping of high-speed DUT_ waveforms when the  
device is configured as a high-impedance receiver.  
Output Driver  
The driver input is a high-speed multiplexer that selects  
one of three voltage inputs: DHV_, DLV_, or DTV_. This  
switching is controlled by high-speed inputs DATA_  
and RCV_, and mode control bit TMSEL. A slew-rate  
circuit controls the slew rate of the buffer input. One of  
four possible slew rates can be selected (Table 1); the  
speed of the internal multiplexer sets the 100% driver  
slew rate (see the Driver Large-Signal Response in the  
Typical Operating Characteristics).  
DUT_ can be toggled at high speed between the buffer  
output and high-impedance mode, or it can be placed  
in low-leakage mode (Figure 2, Table 2). In high-imped-  
ance mode, the clamps are connected. This switching  
is controlled by the high-speed input RCV_ and the  
mode control bits TMSEL and LLEAK. In high-imped-  
ance mode, the bias current at DUT_ is less than 2µA  
over the 0 to 3V range, while the node maintains its  
ability to track high-speed signals. In low-leakage  
mode, the bias current at DUT_ is further reduced to  
less than 15nA. See the Low-Leakage Mode section for  
more detailed information.  
Each of the four channels has high-speed, differential  
inputs compatible with ECL, LVPECL, LVDS, and GTL  
signal levels, with optional 100Ω differential input termi-  
nations. Optional internal resistors at DATA_ and RCV_  
provide differential termination of LVDS inputs. Optional  
internal resistors at CH_ and CL_ provide the pullup  
voltage and source termination for open-collector com-  
parator outputs. These options significantly reduce the  
discrete component count on the circuit board.  
The MAX9965/MAX9966 are available in two grade  
options. An A-grade version provides tighter matching of  
gain and offset of the drivers, and tighter offset matching  
of the comparators. This allows reference levels to be  
shared across multiple channels in cost-sensitive sys-  
tems. A B-grade version provides lower cost for system  
designs that incorporate independent reference levels for  
each channel.  
The nominal driver output resistance is 50Ω. Contact the  
factory for different values within the 40Ω to 50Ω range.  
REFERENCE  
INPUTS  
HIGH-  
SPEED  
INPUTS  
0
1
DLV_  
0
1
0
DHV_  
DTV_  
SLEW RATE  
BUFFER  
0
50Ω  
DUT_  
1
DATA_  
RCV_  
HIGH-Z  
CPHV_  
CPLV_  
CLAMPS  
COMPARATORS  
4
MODE  
Figure 2. Simplified Driver Channel  
18 ______________________________________________________________________________________  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
Table 1. Slew Rate Logic  
Table 3. Comparator Logic  
SC1  
SC0  
DRIVER SLEW RATE (%)  
DUT_ > CHV_  
DUT_ > CLV_  
CH_  
CL_  
0
0
0
1
1
0
1
0
1
100  
75  
0
0
1
1
0
1
0
1
0
0
1
1
1
50  
0
25  
1
Table 2. Driver Logic  
CH_  
DUT_  
CHV_  
EXTERNAL  
CONNECTIONS  
INTERNAL CONTROL  
REGISTER  
8mA  
DRIVER OUTPUT  
DATA_ RCV_  
TMSEL  
LLEAK  
V
EE  
NCH_  
1
0
0
0
X
X
0
0
Drive to DHV_  
Drive to DLV_  
Drive to DTV_  
(term mode)  
High-impedance  
mode (high-z)  
2Ω  
2Ω  
X
1
1
0
4 x 48Ω  
OPTIONAL  
V
CCO_ _  
X
X
1
X
0
X
0
1
Low-leakage mode  
Clamps  
CL_  
8mA  
A pair of voltage clamps (high and low) can be config-  
ured to limit the voltage at DUT_, and to suppress  
reflections when the channel is configured as a high-  
impedance receiver. The clamps behave as diodes  
connected to the outputs of high-current buffers.  
Internal circuitry compensates for the diode drop at  
1mA clamp current. Set the clamp voltages using exter-  
nal connections CPHV_ and CPLV_. The clamps are  
enabled only when the driver is in the high-impedance  
mode (Figure 2). For transient suppression, set the  
clamp voltages to approximately the minimum and  
maximum expected DUT_ voltage range and must be  
empirically determined. The optimal clamp voltages are  
application specific. If clamping is not desired, set the  
clamp voltages at least 0.7V outside the expected  
DUT_ voltage range; overvoltage protection remains  
active without loading DUT_.  
CLV_  
V
EE  
NCL_  
Figure 3. Open-Collector Comparator Outputs  
CH_  
106Ω  
DUT_  
CHV_  
106Ω  
NCH_  
V
CCO_ _  
Comparators  
The MAX9965/MAX9966 have two independent high-  
speed comparators for each channel. Each comparator  
has one input connected internally to DUT_ and the other  
input connected to either CHV_ or CLV_ (Figure 1).  
Comparator outputs are a logical result of the input con-  
ditions, as indicated in Table 3.  
CL_  
106Ω  
CLV_  
106Ω  
The MAX9965/MAX9966s’ comparators feature BJT  
inputs for improved comparator dispersion in contrast  
to the MAX9963/MAX9964s’ JFET comparators.  
NCL_  
Figure 4. Open-Emitter Comparator Outputs  
______________________________________________________________________________________ 19  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
Three configurations are available for the comparator  
Table 4. Shift Register Functions  
differential outputs to ease interfacing with a wide vari-  
ety of logic families. An open-collector configuration  
switches an 8mA current source between two outputs.  
This configuration is available with and without internal  
BIT  
NAME  
FUNCTION  
Channel 1 Write Enable. Set to 1 to  
D7  
1E  
update the control byte for channel 1. Set  
to zero to make no change to channel 1.  
termination resistors connected to V  
(Figure 3).  
CCO_  
unconnected and  
For external termination, leave V  
CCO_  
add the required external resistors. These resistors are  
typically 50Ω to the pullup voltage at the receiving end  
of the output trace. Alternate configurations may be  
used, provided that the Absolute Maximum Ratings are  
Channel 2 Write Enable. Set to 1 to  
update the control byte for channel 2. Set  
to zero to make no change to channel 2.  
D6  
D5  
D4  
D3  
2E  
3E  
4E  
Channel 3 Write Enable. Set to 1 to  
update the control byte for channel 3. Set  
to zero to make no change to channel 3.  
not exceeded. For internal termination, connect V  
CCO_  
to the desired VOH voltage. Each output provides a  
nominal 400mV swing and 50Ω source termination.  
P-P  
An open-emitter configuration is also available (Figure  
4). Connect an external collector voltage to V and  
Channel 4 Write Enable. Set to 1 to  
update the control byte for channel 4. Set  
to zero to make no change to channel 4.  
CCO_  
add external pulldown resistors. These are typically  
-2V at the receiving end of the output  
50Ω to V  
CCO_  
Low-Leakage Select. Set to 1 to put  
LLEAK driver and clamps into low-leakage  
mode. Set to zero for normal operation.  
trace. Alternate configurations may be used, provided  
that the Absolute Maximum Ratings are not exceeded.  
Low-Leakage Mode, LLEAK  
Asserting LLEAK through the serial port or with RST  
places the MAX9965/MAX9966 into a very-low-leakage  
state in which the DUT_ input current is less than 15nA  
over the 0 to 3V range. In this mode, the driver, compara-  
tors, and clamps are disabled. This mode is convenient  
for making IDDQ and PMU measurements without the  
need for an output disconnect relay. LLEAK is pro-  
grammed independently for each channel. If DUT_ is dri-  
ven with a high-speed signal while LLEAK is asserted,  
leakage current momentarily increases beyond the limits  
specified for normal operation. The Low-Leakage  
Recovery specification in the Electrical Characteristics  
table indicates device behavior under this condition.  
D2  
D1  
SC1  
SC0  
Driver Slew Rate Select. SC1 and SC0  
set the driver slew rate. See Table 1.  
Driver Termination Select. Set to 1 to  
force the driver output to the DTV_  
voltage (term mode) when RCV_ = 1. Set  
to zero to place the driver into a high  
impedance state (high-z mode) when  
RCV_ = 1. See Table 2.  
D0  
TMSEL  
t
CH  
SCLK  
t
t
t
CL  
CSS0  
CSS1  
t
CSH1  
CS  
t
CSWH  
t
DH  
t
DS  
DIN  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 5. Serial Interface Timing  
20 ______________________________________________________________________________________  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
SHIFT REGISTER  
SCLK  
0
1
2
3
4
5
6
7
DIN  
CS  
ENABLE  
F/F  
F/F  
F/F  
F/F  
3
7
3
6
3
5
3
4
D
Q
D
Q
D
Q
D
Q
ENABLE  
RST  
ENABLE  
RST  
ENABLE  
RST  
ENABLE  
RST  
RST  
F/F  
D
F/F  
D
F/F  
D
F/F  
D
0-2  
7
0-2  
6
0-2  
5
0-2  
4
Q
Q
Q
Q
3
1
3
1
3
1
3
1
ENABLE  
ENABLE  
ENABLE  
ENABLE  
TMSEL, SC0, SC1 LLEAK  
MODE BITS CHANNEL 1  
TMSEL, SC0, SC1 LLEAK  
MODE BITS CHANNEL 2  
TMSEL, SC0, SC1 LLEAK  
MODE BITS CHANNEL 3  
TMSEL, SC0, SC1 LLEAK  
MODE BITS CHANNEL 4  
Figure 6. Serial Interface  
and RCV_, manage the features of each channel, as  
shown in Tables 1 and 2. RST sets LLEAK = 1 for all  
channels, forcing them into low-leakage mode. All other  
bits are unaffected. At power-up, hold RST low until  
Temperature Monitor  
Each device supplies a single temperature output sig-  
nal, TEMP, that asserts a nominal output voltage of  
3.43V at a die temperature of +70°C (343K). The output  
voltage increases proportionately with temperature at a  
rate of 10mV/°C. The temperature sensor output imped-  
ance is 15kΩ (typ).  
V
and V have stabilized.  
EE  
CC  
Heat Removal  
These devices require heat removal under normal cir-  
cumstances through the exposed pad, either by solder-  
ing to circuit board copper (MAX9966) or by use of an  
external heat sink (MAX9965). The exposed pad is  
Serial Interface and Device Control  
A CMOS-compatible serial interface controls the  
MAX9965/MAX9966 modes (Figure 6). Control data  
flow into a bit shift register (MSB first) and are latched  
when CS is taken high, as shown in the serial timing  
diagram, Figure 5. Data from the shift register are then  
loaded into any or all of a group of four quad latches,  
determined by bits D4 through D7, as indicated in  
Figure 6 and Table 4. The quad latches contain the four  
mode bits for each channel of the quad pin driver. The  
mode bits, in conjunction with external inputs DATA_  
electrically at V potential for both package types, and  
EE  
must be either connected to V or isolated.  
EE  
Chip Information  
TRANSISTOR COUNT: 7293  
PROCESS: Bipolar  
______________________________________________________________________________________ 21  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
Selector Guide  
COMPARATOR  
OUTPUT  
TERMINATION  
HIGH-SPEED  
DIGITAL INPUT  
TERMINATION  
ACCURACY  
GRADE  
COMPARATOR  
OUTPUT TYPE  
HEAT  
EXTRACTION  
PIN-  
PACKAGE  
PART  
MAX9965ADCCQ*  
MAX9965AKCCQ*  
MAX9965AGCCQ*  
MAX9965AHCCQ*  
MAX9965AJCCQ*  
MAX9965BDCCQ*  
MAX9965BKCCQ*  
MAX9965BGCCQ  
MAX9965BHCCQ*  
MAX9965BJCCQ  
MAX9966ADCCQ*  
MAX9966AKCCQ*  
MAX9966AGCCQ*  
MAX9966AHCCQ*  
MAX9966AJCCQ*  
MAX9966BDCCQ*  
MAX9966BKCCQ*  
MAX9966BGCCQ  
MAX9966BHCCQ*  
MAX9966BJCCQ*  
A
A
A
A
A
B
B
B
B
B
A
A
A
A
A
B
B
B
B
B
Open collector  
Open collector  
Open collector  
Open emitter  
Open emitter  
Open collector  
Open collector  
Open collector  
Open emitter  
Open emitter  
Open collector  
Open collector  
Open collector  
Open emitter  
Open emitter  
Open collector  
Open collector  
Open collector  
Open emitter  
Open emitter  
None  
None  
None  
Top  
Top  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100Ω LVDS  
100Ω LVDS  
None  
50Ω to V  
Top  
CCO__  
None  
Top  
None  
None  
None  
100Ω LVDS  
None  
Top  
Top  
100Ω LVDS  
100Ω LVDS  
None  
Top  
50Ω to V  
Top  
CCO__  
None  
None  
None  
None  
Top  
100Ω LVDS  
None  
Top  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
100Ω LVDS  
100Ω LVDS  
None  
50Ω to V  
CCO__  
None  
None  
None  
None  
100Ω LVDS  
None  
100Ω LVDS  
100Ω LVDS  
None  
50Ω to V  
CCO__  
None  
None  
100Ω LVDS  
*Future product—contact factory for availability.  
22 ______________________________________________________________________________________  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
MAX9965 Pin Configuration  
TOP VIEW  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
V
34  
1
2
75 GND  
74  
73 DUT4  
CCO  
DATA4  
NDATA4  
RCV4  
V
CC  
3
4
72  
71  
V
V
EE  
EE  
MAX9965  
NRCV4  
DATA3  
NDATA3  
RCV3  
5
6
70 GND  
69 N.C.  
7
8
68  
V
CC  
NRCV3  
9
67 DUT3  
V
10  
66  
65  
V
V
EE  
EE  
EE  
GND 11  
RST 12  
CS 13  
64 GND  
63 TEMP  
62 GND  
SCLK 14  
DIN 15  
61  
60  
V
V
EE  
EE  
V
CC  
16  
NRCV2 17  
RCV2 18  
59 DUT2  
58  
V
CC  
NDATA2 19  
DATA2 20  
NRCV1 21  
RCV1 22  
57 N.C.  
56 GND  
55  
54  
V
V
EE  
EE  
NDATA1 23  
DATA1 24  
53 DUT1  
52  
51 GND  
V
CC  
V
CCO  
12 25  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
TQFP-EPR  
______________________________________________________________________________________ 23  
Quad Low-Power, 500Mbps  
ATE Driver/Comparator  
MAX9966 Pin Configuration  
TOP VIEW  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
V
12  
1
2
75 GND  
74  
73 DUT1  
CCO  
DATA1  
NDATA1  
RCV1  
V
CC  
3
4
72  
71  
V
V
EE  
EE  
MAX9966  
NRCV1  
DATA2  
NDATA2  
RCV2  
5
6
70 GND  
69 N.C.  
7
8
68  
V
CC  
NRCV2  
9
67 DUT2  
V
10  
66  
65  
V
V
CC  
EE  
EE  
DIN 11  
12  
64 GND  
63 TEMP  
62 GND  
SCLK  
CS 13  
14  
RST  
GND 15  
16  
61  
60  
V
V
EE  
EE  
V
EE  
NRCV3 17  
RCV3 18  
59 DUT3  
58  
V
CC  
NDATA3 19  
DATA3 20  
NRCV4 21  
RCV4 22  
57 N.C.  
56 GND  
55  
54  
V
V
EE  
EE  
NDATA4 23  
DATA4 24  
53 DUT4  
52  
51 GND  
V
CC  
V
CCO  
34 25  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
TQFP-EP  
Package Information  
For the latest package outline information, go to  
www.maxim-ic.com/packages.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  
ENGL ISH ? ? ? ? ? ? ? ? ? ?  
WH AT 'S NEW  
PR OD UC TS  
SO LUTI ONS  
D ES IG N  
A PPNOTES  
SU PPORT  
B U Y  
COM PA N Y  
M EMB ERS  
M A X 9 9 6 5  
Pa rt Nu m ber T abl e  
N
o
t
e
s
:
1 . S e e t h e M A X 9 9 6 5 Q u i c k V i e w D a t a S h e e t f o r f u r t h e r i n f o r m a t i o n o n t h i s p r o d u c t f a m i l y o r d o w n l o a d t h e  
M A X 9 9 6 5 f u l l d a t a s h e e t ( P D F , 4 8 4 k B ) .  
2 . O t h e r o p t i o n s a n d l i n k s f o r p u r c h a s i n g p a r t s a r e l i s t e d a t : h t t p : / / w w w . m a x i m - i c . c o m / s a l e s .  
3 . D i d n ' t F i n d W h a t Y o u N e e d ? A s k o u r a p p l i c a t i o n s e n g i n e e r s . E x p e r t a s s i s t a n c e i n f i n d i n g p a r t s , u s u a l l y w i t h i n  
o
n
e
b
u
s
i
n
e
s
s
d
a
y
.
4 . P a r t n u m b e r s u f f i x e s : T o r T & R = t a p e a n d r e e l ; + = R o H S / l e a d - f r e e ; # = R o H S / l e a d - e x e m p t . M o r e : S e e f u l l  
d a t a s h e e t o r P a r t N a m i n g C o n v e n t i o n s .  
5 . * S o m e p a c k a g e s h a v e v a r i a t i o n s , l i s t e d o n t h e d r a w i n g . " P k g C o d e / V a r i a t i o n " t e l l s w h i c h v a r i a t i o n t h e p r o d u c t  
u s e s .  
P
a
r
t
N
u
m
b
e
r
F r e e  
S a m p l e  
B u y  
D i r e c t  
T
e
m
p
R o H S / L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : T Y P E P I N S S I Z E  
D R A W I N G C O D E / V A R *  
M
A
X
9
9
6
5
B
G
C
C
Q
-
T
D
0 C t o + 7 0 C R o H S / L e a d - F r e e : N o  
0 C t o + 7 0 C R o H S / L e a d - F r e e : N o  
0 C t o + 7 0 C R o H S / L e a d - F r e e : Y e s  
0 C t o + 7 0 C R o H S / L e a d - F r e e : Y e s  
0 C t o + 7 0 C R o H S / L e a d - F r e e : Y e s  
M A X 9 9 6 5 B J C C Q - T D  
M A X 9 9 6 5 B G C C Q + T D  
M A X 9 9 6 5 B J C C Q + D  
M A X 9 9 6 5 B J C C Q + T D  
M A X 9 9 6 5 B G C C Q - D  
M A X 9 9 6 5 B J C C Q - D  
T Q F P ; 1 0 0 p i n ; 1 4 x 1 4 x 1 m m  
D w g : 2 1 - 0 1 4 8 A ( P D F )  
U s e p k g c o d e / v a r i a t i o n : C 1 0 0 E - 8 R *  
0 C t o + 7 0 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
T Q F P ; 1 0 0 p i n ; 1 4 x 1 4 x 1 m m  
D w g : 2 1 - 0 1 4 8 A ( P D F )  
0 C t o + 7 0 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
C
1
0
0
E
-
8
R
*
M A X 9 9 6 5 B G C C Q + D  
T Q F P ; 1 0 0 p i n ; 1 4 x 1 4 x 1 . 0 m m  
D w g : 2 1 - 0 1 4 8 A ( P D F )  
0 C t o + 7 0 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : C 1 0 0 E + 8 R *  
D i d n ' t F i n d W h a t Y o u N e e d ?  
C O N T A C T U S : S E N D U S A N E M A I L  
C o p y r i g h t 2 0 0 7 b y M a x i m I n t e g r a t e d P r o d u c t s , D a l l a s S e m i c o n d u c t o r L e g a l N o t i c e s P r i v a c y P o l i c y  

相关型号:

MAX9965BJCCQ

Comparator, 4 Func, 100000uV Offset-Max, 1.2ns Response Time, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, 0.50 MM PITCH, TQFP-100
MAXIM

MAX9965BJCCQ+TD

Comparator, 4 Func, 100000uV Offset-Max, 1.2ns Response Time, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, TQFP-100
MAXIM

MAX9965BJCCQ-D

Comparator, 4 Func, 100000uV Offset-Max, 1.2ns Response Time, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, 0.50 MM PITCH, TQFP-100
MAXIM

MAX9965BJCCQ-TD

Comparator, 4 Func, 100000uV Offset-Max, 1.2ns Response Time, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, 0.50 MM PITCH, TQFP-100
MAXIM

MAX9966ADCCQ

Comparator, 4 Func, 1.2ns Response Time, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, 0.50 MM PITCH, TQFP-100
MAXIM

MAX9966AGCCQ

Comparator, 4 Func, 1.2ns Response Time, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, 0.50 MM PITCH, TQFP-100
MAXIM

MAX9966AHCCQ

Comparator, 4 Func, 1.2ns Response Time, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, 0.50 MM PITCH, TQFP-100
MAXIM

MAX9966AJCCQ

Comparator, 4 Func, 1.2ns Response Time, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, 0.50 MM PITCH, TQFP-100
MAXIM

MAX9966AKCCQ

Comparator, 4 Func, 1.2ns Response Time, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, 0.50 MM PITCH, TQFP-100
MAXIM

MAX9966AZCCQ-T

Comparator, 4 Func, 1.2ns Response Time, BIPolar, PQFP100, 14 X 14 MM, 0.50 MM PITCH, 1 MM HEIGHT, TQFP-100
MAXIM

MAX9966BDCCQ

Comparator, 4 Func, 100000uV Offset-Max, 1.2ns Response Time, BIPolar, PQFP100, 14 X 14 MM, 1 MM HEIGHT, 0.50 MM PITCH, TQFP-100
MAXIM

MAX9966BGCCQ

QUAD COMPARATOR, 100000uV OFFSET-MAX, 1.2ns RESPONSE TIME, PQFP100, 14 X 14 MM, 1 MM HEIGHT, 0.50 MM PITCH, TQFP-100
ROCHESTER