MAX9969BRCCQ+TD [MAXIM]

Analog Circuit, 1 Func, PQFP100, 14 X 14 MM, 1 MM HEIGHT, LEAD FREE, TQFP-100;
MAX9969BRCCQ+TD
型号: MAX9969BRCCQ+TD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog Circuit, 1 Func, PQFP100, 14 X 14 MM, 1 MM HEIGHT, LEAD FREE, TQFP-100

文件: 总31页 (文件大小:889K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3389; Rev 0; 8/04  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
General Description  
Features  
Low-Power Dissipation: 1.4W/Channel (typ)  
The MAX9969 dual, low-power, high-speed, pin elec-  
tronics driver/comparator with 35mA load IC includes,  
for each channel, a three-level pin driver, a dual com-  
parator, variable clamps, and an active load. An addi-  
tional differential comparator allows comparisons  
between the two channels. The driver features a wide  
voltage range and high-speed operation, includes high-  
impedance and active-termination (3rd-level drive)  
modes, and is highly linear even at low voltage swings.  
The dual comparator provides low dispersion (timing  
variation) over a wide variety of input conditions, and  
differential outputs. The clamps provide damping of  
high-speed device-under-test (DUT) waveforms when  
the device is configured as a high-impedance receiver.  
The programmable load supplies up to 35mA of source  
and sink current. The load facilitates contact/continuity  
testing, at-speed parametric testing of IOH and IOL,  
and pullup of high-output-impedance devices. The  
MAX9969A features tighter matching of offset for the  
drivers and the comparators.  
Greatly Reduced Power Penalty when Load  
Commutated  
High Speed: 1200Mbps at 3V  
and 1800Mbps  
P-P  
at 1V  
P-P  
Programmable 35mA Active-Load Current  
Low Timing Dispersion  
Wide -1.5V to +6.5V Operating Range  
Active Termination (3rd-Level Drive)  
Low-Leakage Mode: 15nA  
Integrated Clamps  
Integrated Differential Comparator  
Interfaces Easily with Most Logic Families  
Digitally Programmable Slew Rate  
Internal Termination Resistors  
Low Offset Error  
The MAX9969 provides high-speed, differential control  
inputs with optional internal termination resistors that  
are compatible with LVPECL, LVDS, and GTL. Flexible  
open-collector outputs with optional internal pullup  
resistors are available for the comparators. These fea-  
tures significantly reduce the discrete component count  
on the circuit board.  
Pin Compatible with the MAX9967  
Ordering Information  
PART  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
100 TQFP-EPR**  
100 TQFP-EPR**  
100 TQFP-EPR**  
100 TQFP-EPR**  
100 TQFP-EPR**  
100 TQFP-EPR**  
100 TQFP-EPR**  
100 TQFP-EPR**  
MAX9969ADCCQ  
MAX9969AGCCQ*  
MAX9969ALCCQ  
MAX9969ARCCQ*  
MAX9969BDCCQ  
MAX9969BGCCQ*  
MAX9969BLCCQ  
MAX9969BRCCQ  
A 3-wire, low-voltage, CMOS-compatible serial inter-  
face programs the low-leakage, slew-rate limit, and tri-  
state/terminate operational configurations of the  
MAX9969.  
The MAX9969’s operating range is -1.5V to +6.5V with  
power dissipation of only 1.4W per channel. The device  
is available in a 100-pin, 14mm x 14mm body, and  
0.5mm pitch TQFP. An exposed 8mm x 8mm die pad  
on the top of the package facilitates efficient heat  
removal. The device is specified to operate with an  
internal die temperature of +60°C to +100°C, and fea-  
tures a die temperature monitor output.  
*Future product—contact factory for availability.  
**EPR = Exposed pad reversed (TOP).  
Applications  
High-Performance Mixed-Signal/  
System-on-Chip ATE  
High-Performance Memory ATE  
Pin Configuration and Selector Guide appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
ABSOLUTE MAXIMUM RATINGS  
V
V
V
to GND............................................................-0.3V to +11V  
to GND..........................................................-5.75V to +0.3V  
DHV_, DLV_, DTV_, CHV_, CLV_,  
CC  
EE  
CC  
COM_ to GND ...................................................-2.5V to +7.5V  
CPHV_ to GND .........................................................-1V to +8.5V  
CPLV_ to GND..........................................................-3.5V to +6V  
DHV_ to DLV_ ...................................................................... 10V  
DHV_ to DTV_ ...................................................................... 10V  
DLV_ to DTV_....................................................................... 10V  
CHV_ or CLV_ to DUT_........................................................ 10V  
CH_, NCH_, CL_, NCL_ to GND..................................-1V to +5V  
- V ...........................................................-0.3V to +16.75V  
EE  
GS to GND............................................................................. 1V  
DUT_ to GND.......................................................-2.75V to +7.5V  
LDH_, LDL_ to GND .................................................-0.3V to +6V  
DATA_, NDATA_, RCV_, NRCV_, LDEN_,  
NLDEN_ to GND...................................................-2.5V to +5V  
DATA_ to NDATA_, RCV_ to NRCV_,  
LDEN_ to NLDEN_.......................................................... 1.5V  
TDATA_, TRCV_, TLDEN_ to GND ...........................-2.5V to +5V  
DATA_, NDATA_, to TDATA_................................................. 2V  
RCV_, NRCV_, to TRCV_ ....................................................... 2V  
LDEN_, NLDEN_ to TLDEN_.................................................. 2V  
All Other Pins to GND ......................(V - 0.3V) to (V  
TEMP Current...................................................-0.5mA to +20mA  
DUT_ Short Circuit to -1.5V to +6.5V..........................Continuous  
+ 0.3V)  
EE  
CC  
Continuous Power Dissipation (T = +70°C)  
A
MAX9969_ _CCQ (derate 167mW/°C above +70°C) ...13.3W*  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature .....................................................+125°C  
V
to GND..........................................................-0.3V to +5V  
SCLK, DIN, CS, RST to GND ......................................-1V to +5V  
CCO_  
*Dissipation wattage values are based on still air with no heat sink. Actual maximum power dissipation is a function of heat extraction  
technique and may be substantially higher.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +9.75V, V = -4.75V, V  
= +2.5V, SC1 = SC0 = 0, V  
= +7.2V, V  
= -2.2V, V _ = V _ = 0, V = 0, T =  
LDH LDL GS J  
CC  
EE  
CCO_  
CPHV_  
CPLV_  
+85°C, unless otherwise noted. All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
POWER SUPPLIES  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Positive Supply  
Negative Supply  
V
9.5  
9.75  
-4.75  
165  
10.5  
-4.50  
185  
V
V
CC  
V
-5.25  
EE  
V
_ = V  
_ = V  
_ = 0, R 10MΩ  
L
LDH  
LDL  
V
V
_ = 3.5V, R = 0,  
L
LDH  
LDL  
Positive Supply Current (Note 2)  
Negative Supply Current (Note 2)  
Power Dissipation (Notes 2, 3)  
I
mA  
mA  
W
CC  
_ = 1.5V, load enabled,  
COM  
245  
-235  
-315  
2.8  
275  
-260  
-350  
3.2  
driver = high impedance  
V
_ = V  
_ = 0, R 10MΩ  
L
LDH  
LDL  
V
V
_ = V  
_ = 3.5V, R = 0,  
L
LDH  
LDL  
I
EE  
_ = -1V, load enabled,  
COM  
driver = high impedance  
V
_ = V  
_ = 0  
LDH  
LDL  
V
V
_ = V  
_ = 3.5V, R = 0,  
L
LDH  
LDL  
P
D
_ = 1.5V, load enabled,  
COM  
3.3  
3.7  
driver = high impedance  
DUT_ CHARACTERISTICS  
Operating Voltage Range  
V
(Note 4)  
-1.5  
+6.5  
3
V
DUT  
Leakage Current in  
High-Impedance Mode  
I
LLEAK = 0; V  
LLEAK = 1; V  
_ = -1.5V, 0, +3V, +6.5V  
_ = -1.5V, 0, +3V, +6.5V  
µA  
DUT  
DUT  
Leakage Current in  
Low-Leakage Mode  
15  
nA  
DUT  
2
_______________________________________________________________________________________  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +9.75V, V = -4.75V, V  
= +2.5V, SC1 = SC0 = 0, V  
= +7.2V, V  
= -2.2V, V _ = V _ = 0, V = 0, T =  
LDH LDL GS J  
CC  
EE  
CCO_  
CPHV_  
CPLV_  
+85°C, unless otherwise noted. All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SYMBOL  
CONDITIONS  
Driver in term mode (DUT_ = DTV_)  
Driver in high-impedance mode  
(Notes 5, 6)  
MIN  
TYP  
3
MAX  
UNITS  
5
6
Combined Capacitance  
C
pF  
DUT  
5
Low-Leakage Enable Time  
Low-Leakage Disable Time  
20  
0.1  
µs  
µs  
(Notes 6, 7)  
Time to return to the specified maximum  
leakage after a 3V, 4V/ns step at DUT_  
(Note 7)  
Low-Leakage Recovery  
4
µs  
LEVEL PROGRAMMING INPUTS (DHV_, DLV_, DTV_, CHV_, CLV_, CPHV_, CPLV_, COM_, LDH_, LDL_)  
Input Bias Current  
Settling Time  
I
MAX9969_RCCQ  
25  
µA  
µs  
BIAS  
To 0.1% of full scale change (Note 7)  
1
DIFFERENTIAL CONTROL INPUTS (DATA_, NDATA_, RCV_, NRCV_, LDEN_, NLDEN_)  
Input High Voltage  
Input Low Voltage  
V
0
3.5  
V
V
IH  
V
-0.2  
0.15  
+3.1  
1.00  
IL  
Between differential inputs  
Differential Input Voltage  
Input Bias Current  
V
V
µA  
V
DIFF  
Between a differential input and its  
termination voltage (Note 7)  
1.9  
25  
MAX9969_DCCQ, MAX9969_RCCQ  
V
V
_
_
TDATA  
MAX9969_GCCQ, MAX9969_LCCQ and  
MAX9969_RCCQ  
Input Termination Voltage  
V
_
0
+3.5  
52.5  
1.45  
TRCV  
TLDEN  
MAX9969_GCCQ, MAX9969_LCCQ, and  
MAX9969_RCCQ between signal and  
corresponding termination voltage input  
Input Termination Resistor  
47.5  
1.05  
0.43  
SINGLE-ENDED CONTROL INPUTS (CS, SCLK, DIN, RST)  
Internal Threshold Reference  
V
1.25  
20  
V
k  
V
THRINT  
Internal Reference Output  
Resistance  
R
O
External Threshold Reference  
V
1.73  
3.5  
THR  
V
+
THR  
0.2  
Input High Voltage  
V
V
IH  
V
-
THR  
0.2  
Input Low Voltage  
Input Bias Current  
V
-0.1  
V
IL  
I
25  
µA  
B
SERIAL INTERFACE TIMING (Figure 5)  
SCLK Frequency  
f
50  
MHz  
ns  
SCLK  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
CS Low to SCLK High Setup  
CS High to SCLK High Setup  
t
8
CH  
t
8
ns  
CL  
t
t
3.5  
3.5  
ns  
CSS0  
CSS1  
ns  
_______________________________________________________________________________________  
3
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +9.75V, V = -4.75V, V  
= +2.5V, SC1 = SC0 = 0, V  
= +7.2V, V  
= -2.2V, V _ = V _ = 0, V = 0, T =  
LDH LDL GS J  
CC  
EE  
CCO_  
CPHV_  
CPLV_  
+85°C, unless otherwise noted. All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SCLK High to CS High Hold  
DIN to SCLK High Setup  
DIN to SCLK High Hold  
CS Pulse Width High  
SYMBOL  
CONDITIONS  
MIN  
3.5  
3.5  
3.5  
20  
TYP  
MAX  
UNITS  
ns  
t
CSH1  
t
ns  
DS  
t
ns  
DH  
t
ns  
CSWH  
TEMPERATURE MONITOR (TEMP)  
Nominal Voltage  
T = +70°C, R 10MΩ  
3.33  
+10  
20  
V
J
L
Temperature Coefficient  
Output Resistance  
mV/°C  
kΩ  
DRIVERS (Note 8)  
DC OUTPUT CHARACTERISTICS (R 10M)  
L
At DUT_ with V  
_,  
DHV  
MAX9969A  
MAX9969B  
15  
V
_, V _  
DTV DLV  
DHV_, DLV_, DTV_,  
Output Offset Voltage  
V
mV  
OS  
independently tested  
at +1.5V  
100  
DHV_, DLV_, DTV_, Output Offset  
Temperature Coefficient  
+200  
-50  
µV/°C  
V/V  
Measured with V  
_, V  
_,  
DHV  
DLV  
DHV_, DLV_, DTV_, Gain  
A
0.960  
1.001  
V
and V  
_ at 0 and 4.5V  
DTV  
DHV_, DLV_, DTV_, Gain  
Temperature Coefficient  
ppm/°C  
mV  
V
_ = 1.5V, 3V (Note 9)  
DUT  
5
15  
2
Linearity Error  
Full range (Notes 9, 10)  
DHV_ to DLV_ Crosstalk  
DLV_ to DHV_ Crosstalk  
V
V
_ = 0; V  
_ = 200mV, 6.5V  
DHV  
mV  
mV  
DLV  
DHV  
_ = 5V; V  
_ = -1.5V, +4.8V  
2
DLV  
DTV_ to DLV_ and DHV_  
Crosstalk  
V
V
_ = 3V; V  
_ = -1.5V, +6.5V  
_ = 0;  
DHV  
DLV  
2
mV  
DTV  
DHV_ to DTV_ Crosstalk  
DLV_ to DTV_ Crosstalk  
V
V
_ = 1.5V; V  
_ = 1.5V; V  
_ = 0; V _ = 1.6V, 3V  
DHV  
2
2
mV  
mV  
DTV  
DLV  
_ = 3V; V _ = 0, 1.4V  
DHV DLV  
DTV  
DHV_, DTV_, DLV_ DC  
Power-Supply Rejection Ratio  
PSRR  
(Note 11)  
18  
mV/V  
Maximum DC Drive Current  
DC Output Resistance  
I
_
40  
49  
80  
51  
1
mA  
DUT  
R
_
DUT  
I
I
I
_ = 30mA (Note 12)  
_ = 1mA, 8mA  
50  
0.5  
DUT  
DUT  
DUT  
DC Output Resistance Variation  
_R  
_
DUT  
_ = 1mA, 8mA, 15mA, 40mA  
0.75  
1.5  
DYNAMIC OUTPUT CHARACTERISTICS (Z = 50)  
L
AC Drive Current  
80  
mA  
mV  
V
V
V
_ = 0, V  
_ = 0, V  
_ = 0, V  
_ = 0.1V  
_ = 1V  
_ = 3V  
15  
22  
DLV  
DLV  
DLV  
DHV  
DHV  
DHV  
Drive-Mode Overshoot  
110  
210  
130  
370  
4
_______________________________________________________________________________________  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +9.75V, V = -4.75V, V  
= +2.5V, SC1 = SC0 = 0, V  
= +7.2V, V  
= -2.2V, V _ = V _ = 0, V = 0, T =  
LDH LDL GS J  
CC  
EE  
CCO_  
CPHV_  
CPLV_  
+85°C, unless otherwise noted. All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
4
MAX  
11  
UNITS  
V
V
V
_ = 0, V  
_ = 0, V  
_ = 0, V  
_ = 0.1V  
_ = 1V  
_ = 3V  
DLV  
DLV  
DLV  
DHV  
DHV  
DHV  
Drive-Mode Undershoot  
mV  
20  
30  
65  
185  
V
= 1.0V  
= t = 250ps  
F
,
,
DUT_  
P-P  
t
R
60  
0
150  
10% to 90%  
Term-Mode Overshoot  
(Note 13)  
mV  
V
= 3.0V  
DUT_  
P-P  
t
R
= t = 500ps  
F
10% to 90%  
_ = 1V, V _ = 0  
DLV  
V
V
V
V
_ = V  
180  
180  
100  
100  
4
250  
250  
DHV  
DTV  
Term-Mode Spike  
mV  
mV  
_ = V  
_ = 0, V  
_ = 1V  
DHV  
DLV  
DLV  
DLV  
DTV  
_ = -1.0V, V _ = 0  
DHV  
High-Impedance Mode Spike  
_ = 0, V  
_ = 1V  
DHV  
Settling Time to within 25mV  
Settling Time to within 5mV  
3V step (Note 14)  
3V step (Note 14)  
ns  
ns  
40  
TIMING CHARACTERISTICS (Z = 50) (Note 15)  
L
Prop Delay, Data to Output  
Prop Delay Match, t vs. t  
t
1.5  
1.7  
40  
2.0  
80  
ns  
ps  
PDD  
3V  
P-P  
LH  
HL  
Prop Delay Match, Drivers within  
Package  
(Note 16)  
40  
ps  
Prop Delay Temperature  
Coefficient  
+1.6  
70  
ps/°C  
MAX9969_DCCQ  
0.2V , 40MHz,  
P-P  
0.6ns to 24.4ns pulse  
width, relative to  
12.5ns pulse width  
MAX9969_GCCQ  
MAX9969_LCCQ  
MAX9969_RCCQ  
25  
70  
50  
50  
60  
MAX9969_DCCQ  
1V , 40MHz, 0.6ns  
P-P  
to 24.4ns pulse width,  
relative to 12.5ns  
pulse width  
MAX9969_GCCQ  
MAX9969_LCCQ  
MAX9969_RCCQ  
25  
Prop Delay Change vs.  
Pulse Width  
ps  
MAX9969_DCCQ  
80  
3V , 40MHz, 0.9ns  
P-P  
to 24.1ns pulse width,  
relative to 12.5ns  
pulse width  
MAX9969_GCCQ  
MAX9969_LCCQ  
MAX9969_RCCQ  
35  
MAX9969_DCCQ  
100  
5V , Z = 500,  
P-P  
L
40MHz, 1.4ns to  
23.6ns pulse width,  
relative to 12.5ns  
pulse width  
MAX9969_GCCQ  
MAX9969_LCCQ  
MAX9969_RCCQ  
100  
_______________________________________________________________________________________  
5
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +9.75V, V = -4.75V, V  
= +2.5V, SC1 = SC0 = 0, V  
= +7.2V, V  
= -2.2V, V _ = V _ = 0, V = 0, T =  
LDH LDL GS J  
CC  
EE  
CCO_  
CPHV_  
CPLV_  
+85°C, unless otherwise noted. All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SYMBOL  
CONDITIONS  
_ = 1V, V _ = 0 to 6V  
MIN  
TYP  
MAX  
UNITS  
Prop Delay Change vs.  
Common-Mode Voltage  
V
V
V
_ - V  
50  
75  
ps  
DHV  
DHV  
DHV  
DLV  
DHV  
Prop Delay,  
Drive to High Impedance  
t
t
_ = 1.0V, V  
_ = 1.0V, V  
_ = -1.0V, V  
_ = -1.0V, V  
_ = 0  
_ = 0  
2.0  
3.0  
2.3  
3.4  
2.6  
3.9  
ns  
ns  
ns  
PDDZ  
PDZD  
DLV  
DTV  
Prop Delay,  
High Impedance to Drive  
DLV  
DTV  
Prop Delay Match,  
-1.3  
-1.1  
-0.9  
t
vs. t  
PDZD  
PDDZ  
Prop Delay Match, t  
vs. t  
0.4  
1.7  
2.0  
0.5  
0.1  
0.6  
2.0  
2.3  
0.3  
0.3  
0.8  
2.3  
2.7  
0.1  
0.5  
ns  
ns  
ns  
ns  
ns  
PDDZ  
LH  
Prop Delay, Drive to Term  
Prop Delay, Term to Drive  
t
t
V
V
_ = 3V, V  
_ = 3V, V  
_ = 0, V  
_ = 0, V  
_ = 1.5V  
_ = 1.5V  
PDDT  
PDTD  
DHV  
DLV  
DTV  
DHV  
DLV  
DTV  
Prop Delay Match, t  
vs. t  
PDTD  
PDDT  
Prop Delay Match, t  
vs. t  
LH  
PDDT  
DYNAMIC PERFORMANCE (Z = 50)  
L
0.2V , 10% to 90%  
300  
330  
500  
800  
350  
390  
650  
1000  
50  
400  
450  
P-P  
1V , 10% to 90%  
P-P  
Rise and Fall Time  
t , t  
ps  
R
F
3V , 10% to 90%  
P-P  
750  
5V , Z = 500, 10% to 90%  
1200  
P-P  
L
Rise and Fall Time Match  
t
R
vs. t  
3V , 10% to 90%  
P-P  
ps  
%
F
Percent of full speed (SC0 = SC1 = 0),  
3V , 20% to 80%  
P-P  
SC1 = 0, SC0 = 1 Slew Rate  
63  
40  
18  
70  
47  
25  
77  
55  
32  
Percent of full speed (SC0 = SC1 = 0),  
3V , 20% to 80%  
P-P  
SC1 = 1, SC0 = 0 Slew Rate  
SC1 = 1, SC0 = 1 Slew Rate  
%
%
Percent of full speed (SC0 = SC1 = 0),  
3V , 20% to 80%  
P-P  
0.2V  
550  
550  
P-P  
1V  
3V  
630  
P-P  
P-P  
Minimum Pulse Width  
Data Rate  
(Note 17)  
ps  
850  
1000  
5V , Z = 500Ω  
1300  
1800  
1800  
1200  
800  
P-P  
L
0.2V  
P-P  
1V  
3V  
P-P  
P-P  
(Note 18)  
(Note 19)  
Mbps  
5V , Z = 500Ω  
P-P  
L
Dynamic Crosstalk  
12  
mV  
P-P  
V
_ = 3V, V  
_ = 0, V _ = 1.5V,  
DTV  
DHV  
DLV  
Rise and Fall Time, Drive to Term  
t
t
, t  
0.6  
0.6  
1.0  
1.0  
1.3  
1.3  
ns  
DTR DTF  
10% to 90%, Figure 1a (Note 20)  
V
_ = 3V, V _ = 0, V _ = 1.5V,  
DHV  
DLV  
DTV  
Rise and Fall Time, Term to Drive  
, t  
ns  
TDR TDF  
10% to 90%, Figure 1b (Note 20)  
6
_______________________________________________________________________________________  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +9.75V, V = -4.75V, V  
= +2.5V, SC1 = SC0 = 0, V  
= +7.2V, V  
= -2.2V, V _ = V _ = 0, V = 0, T =  
LDH LDL GS J  
CC  
EE  
CCO_  
CPHV_  
CPLV_  
+85°C, unless otherwise noted. All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
COMPARATORS (Note 8)  
DC CHARACTERISTICS  
Input Voltage Range  
Differential Input Voltage  
Hysteresis  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
(Note 4)  
-1.5  
8
+6.5  
V
V
IN  
V
DIFF  
V
0
mV  
HYST  
MAX9969A  
MAX9969B  
20  
Input Offset Voltage  
V
V
V
_ = 1.5V  
mV  
OS  
DUT  
100  
Input Offset Voltage Temperature  
Coefficient  
10  
µV/°C  
mV/V  
mV  
Common-Mode Rejection Ratio  
CMRR  
PSRR  
_ = -1.5V, +6.5V (Note 21)  
0.25  
2
3
DUT  
V
V
_ = 1.5V, 3V  
DUT  
DUT  
Linearity Error  
(Note 10)  
_ = -1.5V, +6.5V  
10  
2
Power-Supply Rejection Ratio  
V
_ = 1.5V (Note 11)  
0.035  
mV/V  
DUT  
AC CHARACTERISTICS (Note 22)  
Term mode, t = t = 150ps  
2
3
R
F
Bandwidth  
GHz  
ps  
High-impedance mode  
0.65  
0.75  
MAX9969_LCCQ  
500  
650  
1.6  
50  
and MAX9969_RCCQ  
Minimum Pulse Width  
Prop Delay  
t
(Note 23)  
PW(MIN)  
MAX9969_DCCQ  
600  
1.3  
and MAX9969_GCCQ  
t
1.0  
ns  
PDL  
Prop Delay Temperature  
Coefficient  
+1.7  
ps/°C  
Prop Delay Match, High/Low vs.  
Low/High  
10  
50  
80  
40  
ps  
ps  
ps  
ps  
Prop Delay Match High vs. Low  
Comparator  
Prop Delay Match, Comparators  
within Package  
(Note 16)  
= V  
Prop Delay Dispersion vs.  
Common-Mode Input  
V
= -1.4V to +6.4V  
CHV_  
CLV_  
CLV_  
60  
60  
(Note 24)  
V
V
= V  
= 0.1V to 0.9V,  
CHV_  
_ = 1V , t = t = 250ps,  
40  
DUT  
P-P  
R
F
10% to 90% relative to timing at 50% point  
Prop Delay Dispersion vs.  
Overdrive  
ps  
V
V
= V  
= 40mV to 160mV,  
CLV_  
CHV_  
_ = 0.2V , t = t = 150ps,  
40  
30  
60  
50  
DUT  
P-P  
R
F
10% to 90% relative to timing at 50% point  
Prop Delay Dispersion vs.  
Pulse Width  
0.6ns to 24.4ns pulse width, relative to  
12.5ns pulse width  
ps  
_______________________________________________________________________________________  
7
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +9.75V, V = -4.75V, V  
= +2.5V, SC1 = SC0 = 0, V  
= +7.2V, V  
= -2.2V, V _ = V _ = 0, V = 0, T =  
LDH LDL GS J  
CC  
EE  
CCO_  
CPHV_  
CPLV_  
+85°C, unless otherwise noted. All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Prop Delay Dispersion vs.  
Slew Rate  
0.5V/ns to 6V/ns slew rate,  
relative to 4V/ns slew rate  
30  
60  
ps  
V
_ = 1.0V , t = t = 250ps,  
DUT P-P R F  
10% to 90% relative to timing at 50% point,  
term mode  
40  
60  
V
_ = 1.0V , t = t = 250ps,  
DUT P-P R F  
Waveform Tracking 10% to 90%  
10% to 90% relative to timing at 50% point,  
high-impedance mode  
ps  
190  
150  
250  
200  
V
_ = 3V , t = t = 500ps,  
DUT P-P R F  
10% to 90% relative to timing at 50% point,  
high-impedance mode  
Term mode  
6
5
DUT_ Slew-Rate Tracking  
V/ns  
High-impedance mode  
LOGIC OUTPUTS (CH_, NCH_, CL_, NCL_)  
V
V
_ Voltage Range  
_ Current  
V
_
VCCO  
0
3.5  
V
CCO  
CCO  
I
_
32  
mA  
V
VCCO  
Output Low Voltage Compliance  
Output High Current  
Set by I , R  
, and V  
_
CCO  
-0.5  
OL TERM  
I
MAX9969_DCCQ, MAX9969_GCCQ  
MAX9969_DCCQ, MAX9969_GCCQ  
MAX9969_DCCQ, MAX9969_GCCQ  
-0.1  
7.6  
+0.3  
8.4  
mA  
mA  
mA  
OH  
Output Low Current  
I
8
OL  
Output Current Swing  
I
_ = I  
_ = I _ = I  
_ = 0,  
V
V
V
CCO_  
CH  
NCH  
CL  
NCL  
CCO_  
CCO_  
Output High Voltage  
Output Low Voltage  
Output Voltage Swing  
V
V
V
OH  
MAX9969_LCCQ, MAX9969_RCCQ  
- 0.05 - 0.005 + 0.01  
I
_ = I _ = I _ = I _ = 0,  
V
CCO_  
- 0.4  
CH  
NCH  
CL  
NCL  
V
OL  
MAX9969_LCCQ, MAX9969_RCCQ  
I
_ = I _ = I _ = I _ = 0,  
CH  
NCH  
CL  
NCL  
380  
48  
400  
420  
52  
mV  
MAX9969_LCCQ, MAX9969_RCCQ  
Single-ended measurement from V  
CH_, NCH_, CL_, NCL_, MAX9969_LCCQ,  
MAX9969_RCCQ  
_ to  
CCO  
Output Termination Resistor  
R
TERM  
MAX9969_DCCQ,  
MAX9969_GCCQ,  
240  
190  
R
TERM  
= 50at end of line  
Differential Rise and Fall Times  
t , t  
20% to 80%  
ps  
R
F
MAX9969_LCCQ,  
MAX9969_RCCQ  
230  
CLAMPS  
High Clamp Input Voltage Range  
Low Clamp Input Voltage Range  
V
_
0
+7.5  
+5.0  
100  
V
V
CPH  
V
_
-2.5  
CPL  
At DUT_ with I  
At DUT_ with I  
_ = 1mA, V  
_ = 0  
DUT  
CPHV  
Clamp Offset Voltage  
V
mV  
OS  
_ = -1mA, V  
DUT  
_ = 0  
100  
CPLV  
8
_______________________________________________________________________________________  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +9.75V, V = -4.75V, V  
= +2.5V, SC1 = SC0 = 0, V  
= +7.2V, V  
= -2.2V, V _ = V _ = 0, V = 0, T =  
LDH LDL GS J  
CC  
EE  
CCO_  
CPHV_  
CPLV_  
+85°C, unless otherwise noted. All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Offset-Voltage Temperature  
Coefficient  
250  
µV/°C  
I
V
_ = 1mA,  
DUT  
10  
10  
_ = 0  
CPHV  
Clamp Power-Supply  
Rejection Ratio  
PSRR  
(Note 11)  
mV/V  
I
_ = -1mA,  
DUT  
V
_ = 0  
CPLV  
Voltage Gain  
A
0.960  
1.005  
V/V  
V
Voltage-Gain Temperature  
Coefficient  
-30  
10  
ppm/°C  
I
V
_ = 1mA, V  
_ = -1.5V,  
DUT  
CPLV  
_ = 0 to 6.5V  
CPHV  
Clamp Linearity  
mV  
I
_ = -1mA, V  
_ = 6.5V,  
CPHV  
DUT  
10  
V
_ = -1.5V to +5V  
CPLV  
V
V
_ = 0, V  
_ = 6.5V  
_ = -1.5V,  
CPLV  
CPHV  
40  
-80  
50  
80  
-40  
55  
DUT  
Short-Circuit Output Current  
Clamp DC Impedance  
I
_
mA  
SCDUT  
V
V
_ = 6.5V, V  
_ = -1.5V  
_ = 5V,  
CPHV  
CPLV  
DUT  
V
_ = 3V, V  
_ = 5mA and 15mA  
_ = 0,  
CPHV  
CPLV  
R
OUT  
I
DUT  
V
= 2.5V; V  
= 10mA, 20mA, 30mA  
= -1.5V;  
CPLV_  
CPHV_  
1.5  
1.5  
I
DUT_  
Clamp DC Impedance Variation  
V
= 6.5V; V  
= -10mA, -20mA, -30mA  
= 2.5V;  
CPLV_  
CPHV_  
I
DUT_  
ACTIVE LOAD (V  
_ = 1.5V, R > 1M, driver in high-impedance mode unless otherwise noted)  
COM L  
COM_ Voltage Range  
Differential Voltage Range  
COM_ Offset Voltage  
V
_
-1  
+6  
+7.5  
100  
V
V
COM  
V
- V  
-7.5  
DUT_  
COM_  
Vos  
I
= I  
= 20mA  
mV  
SOURCE  
SINK  
Offset-Voltage Temperature  
Coefficient  
+100  
µV/°C  
V/V  
COM_ Voltage Gain  
A
V
_ = 0, 4.5V; I  
= I = 20mA  
SINK  
0.98  
1.00  
V
COM  
SOURCE  
Voltage-Gain Temperature  
Coefficient  
-10  
3
ppm/°C  
V
_ = -1V, +6V;  
COM  
COM_ Linearity Error  
15  
10  
mV  
I
= I  
= 20mA  
SOURCE  
SINK  
COM_ Output Voltage  
Power-Supply Rejection Ratio  
V
_ = 2.5V,  
COM  
PSRR  
mV/V  
I
= I  
= 20mA  
SOURCE SINK  
_______________________________________________________________________________________  
9
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +9.75V, V = -4.75V, V  
= +2.5V, SC1 = SC0 = 0, V  
= +7.2V, V  
= -2.2V, V _ = V _ = 0, V = 0, T =  
LDH LDL GS J  
CC  
EE  
CCO_  
CPHV_  
CPLV_  
+85°C, unless otherwise noted. All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
I
=
SOURCE  
V
V
V
_ = 3V, 6.5V with  
DUT  
30  
= 35mA  
SINK  
Output Resistance,  
Sink or Source  
_ = -1V and  
COM  
Ro  
kΩ  
_ = -1.5V, +2V  
DUT  
I
I
=
SOURCE  
500  
with V  
_ = 6V  
COM  
= 1mA  
SINK  
I
I
V
_ = 33.25mA,  
DUT  
Output Resistance,  
Linear Region  
= I  
= 35mA,  
Ro  
11  
15  
SOURCE  
SINK  
_ = 2.5V verfied by deadband test  
COM  
Deadband  
V
_ = 2.5V, 95% I  
COM  
to 95% I  
700  
800  
mV  
SOURCE  
SINK  
SOURCE CURRENT (V _ = 4.5V)  
DUT  
Maximum Source Current  
Source Programming Gain  
V
V
_ = 3.8V  
36  
40  
mA  
LDL  
LDL  
A
TC  
_ = 0.2V, 3V; V  
= 0.1V  
9.75  
10  
10.25  
mA/V  
LDH_  
Source Current Offset (Combined  
Offset of LDL_ and GS)  
I
V
_ = 200mV  
-1000  
0
µA  
OS  
LDL  
Source-Current Temperature  
Coefficient  
I
= 35mA  
-15  
µA/°C  
µA/V  
SOURCE  
I
I
= 25mA  
= 35mA  
60  
84  
SOURCE  
Source-Current Power-Supply  
Rejection Ratio  
PSRR  
SOURCE  
V
_ = 100mV,  
LDL  
60  
1V, 2.25V  
Source Current Linearity  
(Note 25)  
µA  
V
_ = 3V  
130  
LDL  
SINK CURRENT (V _ = -1.5V)  
DUT  
Maximum Sink Current  
Sink Programming Gain  
V
V
_ = 3.8V  
-40  
-36  
mA  
LDH  
A
_ = 0.2V, 3V; V  
LDH  
_ = 0.1V  
LDL  
-10.25  
-10  
+8  
-9.75  
mA/V  
TC  
Sink-Current Offset (Combined  
Offset of LDH_ and GS)  
I
V
_ = 200mV  
LDH  
0
1000  
µA  
OS  
Sink-Current Temperature  
Coefficient  
I
= 35mA  
µA/°C  
µA/V  
SINK  
I
I
= 25mA  
= 35mA  
60  
84  
SINK  
Sink-Current Power-Supply  
Rejection Ratio  
PSRR  
SINK  
V
_ = 100mV,  
LDH  
60  
1V, 2.25V  
Sink-Current Linearity  
(Note 25)  
µA  
V
_ = 3V  
LDH  
130  
GROUND SENSE  
GS Voltage Range  
V
Verified by GS common-mode error test  
250  
mV  
µA  
µA  
GS  
V
V
_ = -1.5V, V  
=
250mV,  
DUT  
LDH  
GS  
20  
_ - V = 0.2V  
GS  
GS Common-Mode Error  
GS Input Bias Current  
V
V
_ = +4.5V, V  
=
GS  
250mV,  
DUT  
20  
25  
_ - V = 0.2V  
LDL  
GS  
V
= 0  
GS  
10 ______________________________________________________________________________________  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +9.75V, V = -4.75V, V  
= +2.5V, SC1 = SC0 = 0, V  
= +7.2V, V  
= -2.2V, V _ = V _ = 0, V = 0, T =  
LDH LDL GS J  
CC  
EE  
CCO_  
CPHV_  
CPLV_  
+85°C, unless otherwise noted. All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC CHARACTERISTICS (Z = 50to GND)  
L
I
V
= 10mA,  
_ = -1V  
SOURCE  
3
3.5  
3.5  
2
4
COM  
Enable Time  
Disable Time  
t
(Note 26)  
(Note 26)  
ns  
EN  
I
= 10mA,  
_ = 1V  
SINK  
3
4
V
COM  
I
= 10mA,  
_ = 1V  
SOURCE  
1.7  
1.7  
2.3  
2.3  
V
COM  
t
ns  
DIS  
I
= 10mA,  
_ = -1V  
SINK  
2
V
COM  
To 10%  
To 1.5%  
To 10%  
To 1.5%  
15  
50  
3
I
= I  
=
=
SOURCE  
SINK  
1mA (Note 27)  
Current Settling Time on  
Commutation  
ns  
5
I
= I  
SOURCE  
SINK  
20mA (Note 27)  
15  
Spike During Enable/Disable  
Transition  
I
= I  
= 35mA, V _ = 0  
COM  
200  
300  
mV  
SOURCE  
SINK  
Note 1: All minimum and maximum DC and driver 3V rise- and fall-time test limits are 100% production tested. All other test limits  
are guaranteed by design. Tests are performed at nominal supply voltages, unless otherwise noted.  
Note 2: Total for dual device at worst-case setting.  
Note 3: Does not include above ground internal dissipation of the comparator outputs. Additional power dissipation is typically  
(32mA x V  
)
VCCO_  
Note 4: Externally forced voltages may exceed this range provided that the Absolute Maximum Ratings are not exceeded.  
Note 5: Transition time from LLEAK being asserted to leakage current dropping below specified limits.  
Note 6: Based on simulation results only.  
Note 7: Transition time from LLEAK being deasserted to output returning to normal operating mode.  
Note 8: With the exception of offset and gain/CMRR tests, reference input values are calibrated for offset and gain.  
Note 9: Specifications measured at the endpoints of the full range. Full range is -1.3V V  
+6.5V, -1.5V V  
+6.3V,  
DLV_  
DHV_  
-1.5V V  
+6.5V.  
DTV_  
Note 10: Relative to straight line between 0 and 4.5V.  
Note 11: Change in offset voltage with power supplies independently set to their minimum and maximum values.  
Note 12: Nominal target value is 50. Contact factory for alternate trim selections within the 45to 51range.  
Note 13: V  
= midpoint of voltage swing, R = 50. Measurement is made using the comparator.  
S
DTV_  
Note 14: Measured from the crossing point of DATA_ inputs to the settling of the driver output.  
Note 15: Prop delays are measured from the crossing point of the differential input signals to the 50% point of the expected output  
swing. Rise time of the differential inputs DATA_ and RCV_ are 250ps (10% to 90%).  
Note 16: Rising edge to rising edge or falling edge to falling edge.  
Note 17: Specified amplitude is programmed. At this pulse width, the output reaches at least 90% of its nominal (DC) amplitude. The  
pulse width is measured at DATA_.  
Note 18: Specified amplitude is programmed. Maximum data rate is specified in transitions per second. A square wave that reaches  
at least 90% of its programmed amplitude may be generated at one-half of this frequency.  
Note 19: Crosstalk from either driver to the other. Aggressor channel is driving 3V  
into a 50load. Victim channel is in term mode  
P-P  
with V  
= +1.5V.  
DTV_  
Note 20: Indicative of switching speed from DHV_ or DLV_ to DTV_ and DTV_ to DHV_ or DLV_ when V  
< V  
< V  
. If  
DHV_  
DLV_  
DTV_  
V
< V  
or V  
> V  
, switching speed is degraded by a factor of approximately 3.  
DHV_  
DTV_  
DLV_  
DTV_  
Note 21: Change in offset voltage over the input range.  
______________________________________________________________________________________ 11  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +9.75V, V = -4.75V, V  
= +2.5V, SC1 = SC0 = 0, V  
= +7.2V, V  
= -2.2V, V _ = V _ = 0, V = 0, T =  
LDH LDL GS J  
CC  
EE  
CCO_  
CPHV_  
CPLV_  
+85°C, unless otherwise noted. All temperature coefficients are measured at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
Note 22: Unless otherwise noted, all propagation delays are measured at 40MHz, V  
= 0 to +1V, V  
= V  
= +0.5V, t = t  
CLV_ R F  
DUT_  
CHV_  
= 250ps, Z = 50, driver in term mode with V  
= +0.5V. Comparator outputs are terminated with 50to 1.25V and  
S
DTV_  
V
_ = 2.5V. Measured from V  
crossing calibrated CHV_/CLV_ threshold to crossing point of differential outputs.  
CCO  
DUT_  
Note 23: At this pulse width, the output reaches at least 90% of its DC voltage swing. The pulse width is measured at the crossing  
points of the differential outputs.  
Note 24: V  
= 200mV . Overdrive = 100mV.  
DUT_  
P-P  
Note 25: Relative to segmented interpolations between 200mV, 2V, 2.5V, and 3.5V.  
Note 26: Measured from crossing of LDEN_ inputs to the 50% point of the output current change.  
Note 27: V  
= 1V, R = 50, driving voltage = 1.55V to 0.45V transition and 0.45V to 1.55V transition (at 1mA) or +2.5V to -0.5V  
COM  
S
transition and -0.5V to +2.5V transition (at 20mA). Settling time is measured from V  
_ = 1V to I  
/I  
settling with-  
DUT  
SINK SOURCE  
in specified tolerance.  
t
DTF  
90%  
DHV_  
DLV_  
10%  
90%  
DTV_  
10%  
t
DTR  
(A) DRIVE-TO-TERM RISE AND FALL TIME  
t
TDR  
90%  
DHV_  
10%  
90%  
DTV_  
DLV_  
TDF  
10%  
t
(B) TERM-TO-DRIVE RISE AND FALL TIME  
Figure 1. Drive-to-Term and Term-to-Drive Rise and Fall Times  
12 ______________________________________________________________________________________  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
DRIVER LARGE-SIGNAL RESPONSE  
DRIVER SMALL-SIGNAL RESPONSE  
DRIVER LARGE-SIGNAL RESPONSE  
INTO 500  
V
= 0  
V
= 0  
V
= 0  
DLV_  
R = 50  
L
DLV_  
R = 50Ω  
L
DLV_  
R = 500Ω  
L
V
= 5V  
= 3V  
= 1V  
V
= 500mV  
DHV_  
V
= 5V  
= 3V  
= 1V  
DHV_  
C = 0.1pF  
DHV_  
L
V
V
DHV_  
DHV_  
DHV_  
V
= 200mV  
= 100mV  
DHV_  
DHV_  
V
V
V
DHV_  
0
0
0
t = 2.0ns/div  
t = 2.0ns/div  
t = 2.0ns/div  
DRIVER 1V 600Mbps  
SIGNAL RESPONSE  
DRIVER 1V 1800Mbps  
SIGNAL RESPONSE  
DRIVER 3V 400Mbps  
SIGNAL RESPONSE  
V
= 0, V  
= 1V, R = 50Ω  
V
= 0, V  
= 1V, R = 50Ω  
V
V
= 0  
DLV_  
DHV_  
L
DLV_  
DHV_  
L
DLV_  
DLV_  
L
= 3V  
R = 50Ω  
0
0
0
t = 500ps/div  
t = 200ps/div  
t = 1ns/div  
DRIVER 3V TRAILING-EDGE TIMING  
ERROR vs. PULSE WIDTH  
DRIVER 3V 1200Mbps  
SIGNAL RESPONSE  
DRIVER DYNAMIC  
CURRENT-LIMIT RESPONSE  
40  
20  
POSITIVE PULSE  
DRIVER SOURCING  
DRIVER SINKING  
0
-20  
-40  
-60  
-80  
-100  
NEGATIVE PULSE  
0
V
V
= 0  
DLV_  
DHV_  
L
= 3V  
NORMALIZED TO PW = 12.5ns  
0
R = 50Ω  
PERIOD = 25ns, V  
= +3V, V  
= 0  
DHV_  
DLV_  
20  
R = 10Ω  
L
0
5
10  
15  
25  
t = 250ps/div  
t = 50ns/div  
PULSE WIDTH (ns)  
______________________________________________________________________________________ 13  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
DRIVER 1V TRAILING-EDGE TIMING  
DRIVER TIME DELAY  
vs. COMMON-MODE VOLTAGE  
ERROR vs. PULSE WIDTH  
DRIVE-TO-TERM TRANSITION  
30  
50  
40  
30  
20  
10  
0
20  
DHV_ TO DTV_  
POSITIVE PULSE  
10  
RISING EDGE  
0
FALLING EDGE  
-10  
NEGATIVE PULSE  
DLV_ TO DTV_  
-20  
-10  
-20  
NORMALIZED TO PW = 12.5ns  
0
PERIOD = 25ns, V  
= +1V, V  
= 0  
NORMALIZED AT V = 1.5V  
CM  
R = 50Ω  
L
DHV_  
DLV_  
20  
-30  
0
5
10  
15  
25  
t = 2.0ns/div  
-1  
0
1
2
3
4
5
6
PULSE WIDTH (ns)  
COMMON-MODE VOLTAGE (V)  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
DRIVE TO  
HIGH-IMPEDANCE TRANSITION  
8
8
6
DUT_ = DHV_  
DUT_ = DLV_  
V
DLV_  
V
DTV_  
= -1.5V  
= 0  
V
V
= +6.5V  
= 0  
DLV_  
DTV_  
6
4
DHV_ TO HIGH IMPEDANCE  
4
2
2
0
0
0
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
DLV_ TO HIGH IMPEDANCE  
R = 50Ω  
L
t = 2.0ns/div  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
V
V
DUT_  
DUT_  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
CROSSTALK TO DUT_ FROM  
DLV_ WITH DUT_ = DHV_  
CROSSTALK TO DUT_ FROM  
DHV_ WITH DUT_ = DLV_  
8
6
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
DUT_ = DTV_  
V
V
= 5V  
= 1.5V  
V
V
= 0  
= 1.5V  
DHV_  
DTV_  
DLV_  
DTV_  
V
DLV_  
V
DHV_  
= -1.5V  
= +6.5V  
4
2
0
-2  
-4  
-6  
-8  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
NORMALIZED AT V  
= 0  
NORMALIZED AT V  
= 5V  
DLV_  
DHV_  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
V
V
V
DHV_  
DUT_  
DLV_  
14 ______________________________________________________________________________________  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
CROSSTALK TO DUT_ FROM  
DTV_ WITH DUT_ = DHV_  
CROSSTALK TO DUT_ FROM  
DTV_ WITH DUT_ = DLV_  
CROSSTALK TO DUT_ FROM  
DLV_ WITH DUT_ = DTV_  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
V
V
= 3V  
= 0  
V
V
= 0  
= 6.5V  
V
V
= 1.5V  
= 6.5V  
DHV_  
DLV_  
DLV_  
DHV_  
DTV_  
DHV_  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
NORMALIZED AT V  
= 1.5V  
NORMALIZED AT V  
= 1.5V  
NORMALIZED AT V  
= 0  
DTV_  
DTV_  
DLV_  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
V
V
V
DLV_  
DTV_  
DTV_  
CROSSTALK TO DUT_ FROM  
DHV_ WITH DUT_ = DTV_  
DRIVER GAIN vs. TEMPERATURE  
DRIVER OFFSET vs. TEMPERATURE  
1.0  
0.8  
1.0015  
1.0010  
1.0005  
1.0000  
0.9995  
0.9990  
0.9985  
5
V
V
= 1.5V  
DTV_  
DLV_  
4
3
= -1.5V  
0.6  
0.4  
2
0.2  
1
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1  
-2  
-3  
-4  
-5  
NORMALIZED AT T = +85°C  
NORMALIZED AT V  
= 3V  
J
DHV_  
NORMALIZED AT T = +85°C  
J
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
60 65 70 75 80 85 90 95 100  
60 65 70 75 80 85 90 95 100  
V
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DHV_  
COMPARATOR OFFSET  
vs. COMMON-MODE VOLTAGE  
COMPARATOR TIMING VARIATION  
vs. COMMON-MODE VOLTAGE  
COMPARATOR WAVEFORM TRACKING  
2.0  
1.5  
1.0  
0.5  
0
10  
0
30  
25  
20  
15  
10  
5
OTHER COMPARATOR REFERENCE = 2.5V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
RISING EDGE  
FALLING EDGE  
FALLING EDGE  
-0.5  
-1.0  
-1.5  
-2.0  
0
NORMALIZED AT 50% REFERENCE LEVEL  
RISING EDGE  
-5  
-10  
NORMALIZED AT V = 1.5V  
CM  
V
= 0 TO 1V PULSE  
NORMALIZED AT V = 1.5V  
CM  
DUT_  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
COMMON-MODE VOLTAGE (V)  
0
20  
40  
60  
80  
100  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
COMMON-MODE VOLTAGE (V)  
REFERENCE LEVEL (%)  
______________________________________________________________________________________ 15  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
COMPARATOR TRAILING-EDGE TIMING  
VARIATION vs. PULSE WIDTH  
COMPARATOR TIMING VARIATION  
vs. INPUT SLEW RATE  
COMPARATOR DIFFERENTIAL  
OUTPUT RESPONSE  
10  
20  
15  
10  
5
LOW PULSE  
5
0
-5  
HIGH PULSE  
-10  
V
FALLING  
DUT_  
0
0
-15  
-20  
-25  
-5  
-10  
-15  
-20  
-25  
V
RISING  
DUT_  
MAX9969_LCCQ  
MAX9969_RCCQ  
-30  
NORMALIZED AT PW = 12.5ns  
NORMALIZED AT SR = 4V/ns  
-35  
0
5
10  
15  
20  
25  
0
1
2
3
4
5
6
7
t = 2ns/div  
= 0 TO 3V PULSE  
PULSE WIDTH (ns)  
SLEW RATE (V/ns)  
V
V
DUT_  
CHV_  
= V  
= 1.5V  
CLV_  
EXTERNAL LOAD = 50Ω  
COMPARATOR OFFSET  
vs. TEMPERATURE  
COMPARATOR RESPONSE TO  
HIGH SLEW RATE OVERDRIVE  
CLAMP RESPONSE AT SOURCE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
0
0
NORMALIZED AT T = +85°C  
J
60 65 70 75 80 85 90 95 100  
t = 10ns/div  
t = 2ns/div  
TEMPERATURE (°C)  
V
R
V
= 0 TO 1V SQUARE WAVE  
INPUT SLEW RATE = 4V/ns  
HIGH IMPEDANCE  
DUT_  
= 10Ω  
S
= -0.1V, V  
= +1.1V  
CPLV_  
CPHV_  
ACTIVE-LOAD CURRENT  
vs. LOAD VOLTAGE  
ACTIVE-LOAD COMMUTATION  
SIGNAL RESPONSE  
ACTIVE-LOAD ENABLE  
SIGNAL RESPONSE  
50  
40  
V
V
V
= 2.5V  
= 3.5V  
= 3.5V  
COM_  
LDH_  
LDL_  
V
V
= 2V  
= 2V  
V
V
= 2V  
= 2V  
LDH_  
LDL_  
LDH_  
LDL_  
30  
20  
I
LDH_  
10  
0
0
0
-10  
-20  
-30  
-40  
-50  
I
LDL_  
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4  
(V)  
t = 5ns/div  
t = 5ns/div  
V
DUT_  
16 ______________________________________________________________________________________  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
ACTIVE-LOAD LINEARITY  
ERROR I vs. V  
ACTIVE-LOAD LINEARITY  
ERROR I vs. V  
HIGH-IMPEDANCE CURRENT  
vs. DUT_ VOLTAGE  
DUT_  
CALIBRATION POINTS AT  
LDH_  
DUT_  
CALIBRATION POINTS AT  
LDL_  
50  
40  
50  
40  
-0.30  
-0.35  
-0.40  
-0.45  
-0.50  
-0.55  
-0.60  
-0.65  
-0.70  
-0.75  
200mV, 2.0V, 2.5V, AND 3.5V  
200mV, 2.0V, 2.5V, AND 3.5V  
V
V
= 1.5V, V  
= 0  
V
V
= 1.5V, V  
= 0  
COM_  
DUT  
LDL_  
COM_  
DUT  
LDH_  
30  
30  
= 0  
= 3V  
20  
20  
10  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
V
(V)  
V
(V)  
V
(V)  
DUT_  
LDH_  
LDL_  
CLAMP CURRENT  
vs. DIFFERENCE VOLTAGE  
CLAMP CURRENT  
vs. DIFFERENCE VOLTAGE  
LOW-LEAKAGE CURRENT  
vs. DUT_ VOLTAGE  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
0
V
V
= 3V  
= 0  
4
DUT_  
CPLV  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
2
0
-2  
-4  
-6  
-8  
V
V
= 0  
CPHV_  
DUT_  
= 3V  
-10  
-100  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0  
(V)  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1  
(V)  
0
V
V
V
CPLV_  
DUT_  
CPHV_  
DRIVE 1V TO  
LOW-LEAKAGE TRANSITION  
LOW-LEAKAGE TO  
DRIVE 1V TRANSITION  
DRIVER REFERENCE CURRENT  
vs. DRIVER REFERENCE VOLTAGE  
0.930  
0.905  
0.880  
0.855  
0.830  
0.805  
0.780  
0.755  
0.730  
R = 100kΩ  
L
L
C = 10pF  
DHV_  
DLV_  
DTV_  
R = 100kΩ  
L
0
0
L
C = 10pF  
0
t = 2µs/div  
0
t = 50ns/div  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
INPUT VOLTAGE (V)  
______________________________________________________________________________________ 17  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
COMPARATOR REFERENCE CURRENT  
INPUT CURRENT  
vs. INPUT VOLTAGE, CPHV_  
INPUT CURRENT  
vs. INPUT VOLTAGE, CPLV_  
vs. INPUT VOLTAGE  
100  
625  
600  
575  
550  
525  
500  
475  
450  
-500  
-550  
-600  
-650  
-700  
-750  
-800  
-850  
V
= 6.5V  
V
= -2.2V  
CPLV_  
V
= 7.2V  
DUT_  
CPHV_  
CLV_  
0
-100  
-200  
-300  
-400  
-500  
CHV_  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
INPUT VOLTAGE (V)  
0
1.5  
3.0  
V
4.5  
(V)  
6.0  
7.5  
-2.5  
-1.0  
0.5  
V
2.0  
(V)  
3.5  
5.0  
CPHV_  
CPLV_  
LOAD REFERENCE INPUT CURRENT  
vs. INPUT VOLTAGE  
INPUT CURRENT  
vs. INPUT VOLTAGE, COM_  
200  
100  
0.90  
0.88  
0.86  
0.84  
0.82  
0.80  
0.78  
0.76  
0.74  
0
LDH_  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
LDL_  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
INPUT VOLTAGE (V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
V
COM_  
18 ______________________________________________________________________________________  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT I vs. V  
CC  
SUPPLY CURRENT I vs. V  
EE  
CC  
EE  
320  
300  
280  
260  
240  
220  
200  
240  
220  
200  
180  
160  
140  
120  
C
C
A
A
B
D
D
B
R = 10k, C = 0.05pF, V = -4.75V  
R = 10k, C = 0.5pF, V = 9.75V  
L
L
EE  
L
L
CC  
9.5  
9.7  
9.9  
10.1  
10.3  
10.5  
-5.25  
-5.15  
-5.05  
-4.95  
-4.85  
-4.75  
V
(V)  
V (V)  
EE  
CC  
A: V  
V
= V  
DTV_  
= V  
CLV_  
= V  
LDL_  
= 1.5V, V  
= 3V, V  
= 0  
A: V  
V
= V  
DTV_  
= V  
CLV_  
= V  
LDL_  
= 1.5V, V  
= 3V, V  
= 0  
DUT_  
CHV_  
LDH_  
DHV_  
= 7.2V, V  
DLV_  
DUT_  
CHV_  
LDH_  
DHV_  
= 7.2V, V  
DLV_  
= 0, V  
= -2.2V  
= 0, V  
= -2.2V  
CPHV_  
CPLV_  
CPHV_  
CPLV_  
V
= 0, I  
= I  
= 0  
V
= 0, I  
= I  
= 0  
SOURCE SINK  
SOURCE SINK  
B: SAME AS A EXCEPT DRIVER DISABLED HIGH-Z  
AND LOAD ENABLED  
B: SAME AS A EXCEPT DRIVER DISABLED HIGH-Z  
AND LOAD ENABLED  
C: SAME AS B EXCEPT I  
= I  
= 35mA,  
C: SAME AS B EXCEPT I  
= I  
= 35mA,  
SOURCE SINK  
= 1.5V, RL = 0  
SOURCE SINK  
V
V
= -1V, R = 0  
COM_ L  
COM_  
D: SAME AS C EXCEPT LOW-LEAKAGE MODE ASSERTED  
D: SAME AS C EXCEPT LOW-LEAKAGE MODE ASSERTED  
I
vs. TEMPERATURE  
I
vs. TEMPERATURE  
EE  
CC  
234  
233  
232  
231  
230  
229  
228  
165  
164  
163  
162  
161  
160  
V
V
V
= V  
DTV_  
= V  
CLV_  
= V  
LDL_  
= 1.5V, V  
= 0, V  
= 3V, V  
= 0  
V
V
V
= V  
DTV_  
= V  
CLV_  
= V  
LDL_  
= 1.5V, V  
= 0, V  
= 3V, V  
= 0  
DUT_  
CHV_  
LDH_  
DHV_  
DLV_  
DUT_  
CHV_  
LDH_  
DHV_  
DLV_  
= 7.2V, V  
= -2.2V  
= 7.2V, V  
= -2.2V  
CHV_  
CPLV_  
CHV_  
CPLV_  
= 0, V = 9.75, V = -5.25  
= 0, V = 9.75, V = -5.25  
CC  
EE  
CC  
EE  
60  
70  
80  
90  
100  
110  
60  
70  
80  
90  
100  
110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 19  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Pin Description  
PIN  
NAME  
FUNCTION  
1
TEMP  
Temperature Monitor Output  
Negative Power-Supply Input  
2, 9, 12, 14,  
17, 24, 35,  
45, 46, 60,  
80, 81, 91  
V
EE  
3, 5, 10, 16,  
21, 23, 25,  
34, 43, 44,  
82, 83, 92  
GND  
Ground Connection  
4, 11, 15, 22,  
33, 41, 42,  
V
Positive Power-Supply Input  
CC  
66, 84, 85, 93  
6, 8, 18,  
20, 50, 76  
N.C.  
No Connection. Do not connect.  
7
DUT1  
GS  
Channel 1 DUT Input/Output. Combined I/O for driver, comparator, clamp, and load.  
Ground Sense. GS is the ground reference for LDH_ and LDL_.  
Channel 2 DUT Input/Output. Combined I/O for driver, comparator, clamp, and load.  
Channel 2 Low-Comparator Reference Input  
13  
19  
26  
27  
28  
29  
30  
31  
32  
36  
37  
DUT2  
CLV2  
CHV2  
DLV2  
DTV2  
DHV2  
CPLV2  
CPHV2  
NCH2  
CH2  
Channel 2 High-Comparator Reference Input  
Channel 2 Driver-Low Reference Input  
Channel 2 Driver-Termination Reference Input  
Channel 2 Driver-High Reference Input  
Channel 2 Low-Clamp Reference Input  
Channel 2 High-Clamp Reference Input  
Channel 2 High-Comparator Output. Differential output of channel 2 high comparator.  
Channel 2 Collector Voltage Input. Voltage input for channel 2 comparator output termination  
resistors. Provides pullup voltage and current for the output termination resistors. Not internally  
connected for versions without internal termination resistors.  
38  
V
CCO2  
39  
40  
47  
NCL2  
CL2  
Channel 2 Comparator Low Output. Differential output of channel 2 low comparator.  
Channel 2 Active-Load Commutation-Voltage Reference Input  
COM2  
20 ______________________________________________________________________________________  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Pin Description (continued)  
PIN  
48  
NAME  
LDL2  
FUNCTION  
Channel 2 Active-Load Source-Current Reference Input  
Channel 2 Active-Load Sink-Current Reference Input  
49  
LDH2  
Channel 2 Data-Termination Voltage Input. Termination voltage input for the DATA2 and NDATA2  
differential inputs. Not internally connected on versions without internal termination resistors.  
51  
TDATA2  
Channel 2 Multiplexer Control Inputs. Differential controls DATA2 and NDATA2 select driver 2s  
input from DHV2 or DLV2. Drive DATA2 above NDATA2 to select DHV2. Drive NDATA2 above  
DATA2 to select DLV2.  
52  
53  
NDATA2  
DATA2  
Channel 2 RCV Termination Voltage Input. Termination voltage input for the RCV2 and NRCV2  
differential inputs. Not internally connected on versions without internal termination resistors.  
54  
TRCV2  
Channel 2 Multiplexer Control Inputs. Differential controls RCV2 and NRCV2 place channel 2 in  
receive mode. Drive RCV2 above NRCV2 to place channel 2 into receive mode. Drive NRCV2  
above RCV2 to place channel 2 into drive mode.  
55  
56  
NRCV2  
RCV2  
Channel 2 Load-Enable Termination Voltage Input. Termination voltage input for the LDEN2 and  
NLDEN2 differential inputs. Not internally connected on versions without internal termination resistors.  
57  
TLDEN2  
Channel 2 Multiplexer Control Inputs. Differential controls LDEN2 and NLDEN2 enable/disable the  
active load. Drive LDEN2 above NLDEN2 to enable the channel 2 active load. Drive NLDEN2  
above LDEN2 to disable the channel 2 active load.  
58  
59  
NLDEN2  
LDEN2  
61  
62  
RST  
CS  
Reset Input. Asynchronous reset input for the serial register. RST is active low.  
Chip-Select Input. Serial port activation input. CS is active low.  
Single-Ended Logic Threshold. Leave THR unconnected to set the threshold to +1.25V or force  
THR to a desired threshold voltage.  
63  
THR  
64  
65  
SCLK  
DIN  
Serial Clock Input. Clock for serial port.  
Data Input. Serial port data input.  
Channel 1 Multiplexer Control Inputs. Differential controls LDEN1 and NLDEN1 enable/disable the  
active load. Drive LDEN1 above NLDEN1 to enable the channel 1 active load. Drive NLDEN1  
above LDEN1 to disable the channel 1 active load.  
67  
68  
LDEN1  
NLDEN1  
Channel 1 Load-Enable Termination Voltage Input. Termination voltage input for the LDEN1 and  
NLDEN1 differential inputs. Not internally connected on versions without internal termination  
resistors.  
69  
TLDEN1  
______________________________________________________________________________________ 21  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Channel 1 Multiplexer Control Inputs. Differential controls RCV1 and NRCV1 place channel 1 in  
receive mode. Drive RCV1 above NRCV1 to place channel 1 into receive mode. Drive NRCV1  
above RCV1 to place channel 1 into drive mode.  
70  
RCV1  
71  
72  
NRCV1  
TRCV1  
Channel 1 RCV Termination Voltage Input. Termination voltage input for the RCV1 and NRCV1  
differential inputs. Not internally connected on versions without internal termination resistors.  
Channel 1 Multiplexer Control Inputs. Differential controls DATA1 and NDATA1 select driver 1s  
input from DHV1 or DLV1. Drive DATA1 above NDATA1 to select DHV1. Drive NDATA1 above  
DATA1 to select DLV1.  
73  
74  
DATA1  
NDATA1  
Channel 1 Data-Termination Voltage Input. Termination voltage input for the DATA1 and NDATA1  
differential inputs. Not internally connected on versions without internal termination resistors.  
75  
TDATA1  
77  
78  
79  
86  
87  
LDH1  
LDL1  
COM1  
CL1  
Channel 1 Active-Load Sink-Current Reference Input  
Channel 1 Active-Load Source-Current Reference Input  
Channel 1 Active-Load Commutation-Voltage Reference Input  
Channel 1 Low-Comparator Output. Differential output of channel 1 low comparator.  
NCL1  
Channel 1 Collector Voltage Input. Voltage input for channel 1 comparator output-termination  
resistors. Provides pullup voltage and current for the output-termination resistors. Not internally  
connected for versions without internal termination resistors.  
88  
V
CCO1  
89  
90  
94  
95  
96  
97  
98  
99  
100  
CH1  
NCH1  
CPHV1  
CPLV1  
DHV1  
DTV1  
DLV1  
CHV1  
CLV1  
Channel 1 High-Comparator Output. Differential output of channel 1 high comparator.  
Channel 1 High-Clamp Reference Input  
Channel 1 Low-Clamp Reference Input  
Channel 1 Driver-High Reference Input  
Channel 1 Driver-Termination Reference Input  
Channel 1 Driver-Low Reference Input  
Channel 1 High-Comparator Reference Input  
Channel 1 Low-Comparator Reference Input  
22 ______________________________________________________________________________________  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Functional Diagram  
CH_ MODE BITS  
V
V
CC  
SC0  
CS  
SCLK  
DIN  
EE  
SERIAL INTERFACE IS COMMON  
TO BOTH CHANNELS.  
MODE BITS INDEPENDENTLY  
LATCHED FOR EACH CHANNEL.  
SC1  
TMSEL  
LLEAK  
LDDIS  
CDIFF  
SERIAL INTERFACE  
TEMP  
GND  
RST  
THR  
DLV_  
DHV_  
DTV_  
0
SLEW-RATE  
CONTROL  
MULTIPLEXER  
BUFFER  
50Ω  
DUT_  
0
1
LLEAK  
OPTIONAL R  
DATA  
2 x 50Ω  
SC0 SC1  
TDATA_  
DATA_  
NDATA_  
RCV_  
MAX9969  
HIGH IMPEDANCE  
NRCV_  
TMSEL  
TRCV_  
CPHV_  
OPTIONAL R  
RCV  
CLAMPS  
2 x 50Ω  
FROM DUT_  
OTHER CHANNEL  
CPLV_  
CHV_  
0
1
CH_  
NCH_  
CDIFF  
OPTIONAL R  
CCO  
V
CCO_  
4 x 50Ω  
COMPARATORS  
CL_  
NCL_  
V
CC  
SINK  
(HIGH)  
CURRENT  
CLV_  
LDH_  
LLEAK  
LDDIS  
TLDEN_  
1
ACTIVE  
LOAD  
CONTROL  
OPTIONAL R  
LDEN  
2 x 50Ω  
ACTIVE  
LOAD  
LDEN_  
NLDEN_  
COM_  
LDL_  
1
SOURCE  
(LOW)  
CURRENT  
GS  
V
EE  
ONE OF TWO IDENTICAL CHANNELS SHOWN  
______________________________________________________________________________________ 23  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
unconnected for 100differential LVDS termination. In  
Detailed Description  
addition, flexible open-collector outputs with optional  
internal pullup resistors are available for the compara-  
tors. These features significantly reduce the discrete  
component count on the circuit board.  
The MAX9969 dual, low-power, high-speed, pin elec-  
tronics DCL IC includes, for each channel, a three-level  
pin driver, a dual comparator, variable clamps, and an  
active load. An additional differential comparator allows  
comparisons between the two channels. The driver fea-  
tures a -1.5V to +6.5V operating range and high-speed  
operation, includes high-impedance and active-termi-  
nation (3rd-level drive) modes, and is highly linear even  
at low-voltage swings. The dual comparator provides  
low dispersion (timing variation) over a wide variety of  
input conditions, and differential outputs. The clamps  
provide damping of high-speed DUT waveforms when  
the device is configured as a high-impedance receiver.  
The programmable load supplies up to 35mA of source  
and sink current. The load facilitates contact/continuity  
testing, at-speed parametric test of IOH and IOL, and  
pullup of high-output-impedance devices. The  
MAX9969A features tighter matching of offset for the  
drivers and the comparators.  
A 3-wire, low-voltage CMOS-compatible serial interface  
programs the low-leakage, load-disable, slew-rate, dif-  
ferential/window comparator and tri-state/terminate  
operational configurations of the MAX9969.  
Output Driver  
The driver input is a high-speed multiplexer that selects  
one of three voltage inputs: DHV_, DLV_, or DTV_. This  
switching is controlled by high-speed inputs DATA_  
and RCV_ and mode-control bit TMSEL (Table 1). A  
slew-rate circuit controls the slew rate of the buffer  
input. Select to one of four possible slew rates accord-  
ing to Table 2. The speed of the internal multiplexer  
sets the 100% driver slew rate (see the Driver Large-  
Signal Response graph in the Typical Operating  
Characteristics).  
Optional internal resistors at the high-speed inputs pro-  
vide compatibility with LVPECL, LVDS, and GTL inter-  
faces. Connect the termination voltage inputs (TDATA_,  
TRCV_, TLDEN_) to the appropriate voltage for termi-  
nating LV_PECL, GTL, or other logic. Leave the inputs  
DUT_ can be toggled at high speed between the buffer  
output and high-impedance mode, or it can be placed  
into low-leakage mode (Figure 2, Table 1). In high-  
impedance mode, the clamps are connected. High-  
speed input RCV_ and mode-control bits TMSEL and  
HIGH-SPEED  
INPUTS  
REFERENCE  
INPUTS  
0
1
DLV_  
0
1
MAX9969  
0
50  
BUFFER  
SLEW RATE  
DHV_  
DTV_  
0
DUT_  
1
DATA_  
RCV_  
CPHV_  
CPLV_  
CLAMPS  
COMPARATORS  
AND  
ACTIVE LOAD  
4
MODE  
Figure 2. Simplified Driver Channel  
24 ______________________________________________________________________________________  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Table 1. Driver Logic  
Table 3a. Comparator Logic, CDIFF = 0  
DUT_ > CHV_ DUT_ > CLV_ CL_, NCL_  
CH_, NCH_  
INTERNAL  
CONTROL  
REGISTER  
EXTERNAL  
CONNECTIONS  
DRIVER  
OUTPUT  
0
0
1
1
0
1
0
1
0
1
0
1
0
0
1
1
DATA  
RCV  
TMSEL LLEAK  
1
0
0
0
X
X
0
0
Drive to DHV_  
Drive to DLV_  
Table 3b. Comparator Logic, CDIFF = 1  
Drive to DTV_  
(term mode)  
X
1
1
0
DUT1 > DUT2 DUT_ > CLV_  
CL_, NCL_  
CH_, NCH_  
High-impedance mode  
(high-Z)  
0
0
1
1
0
1
0
1
0
1
0
1
0
0
1
1
X
X
1
X
0
X
0
1
Low-leakage mode  
Table 2. Slew-Rate Logic  
not desired, set the clamp voltages at least 0.7V out-  
side the expected DUT_ voltage range; overvoltage  
protection remains active without loading DUT_.  
SC1  
SC0  
DRIVER SLEW RATE (%)  
0
0
1
1
0
1
0
1
100  
75  
Comparators  
The MAX9969 provides two independent high-speed  
comparators for each channel. Each comparator has  
one input connected internally to DUT_ and the other  
input connected to either CHV_ or CLV_ (see the  
Functional Diagram). Comparator outputs are a logical  
result of the input conditions, as indicated in Tables 3a  
and 3b.  
50  
25  
LLEAK control the switching. In high-impedance mode,  
the bias current at DUT_ is less than 3µA over the 0 to  
3V range, while the node maintains its ability to track  
high-speed signals. In low-leakage mode, the bias cur-  
rent at DUT_ is further reduced to less than 15nA, and  
signal tracking slows. See the Low-Leakage Mode,  
LLEAK section for more details.  
The comparator differential outputs are open-collector  
outputs to ease interfacing with a wide variety of logic  
families. Versions with and without internal termination  
resistors switch an 8mA current source between the  
two outputs (Figure 3). The optional termination resis-  
The nominal driver output resistance is 50. Contact  
the factory for different resistance values within the  
45to 51range.  
tors connect the outputs to voltage input V  
_. For  
CCO  
CCO  
versions without internal termination, leave V  
_
Clamps  
Configure the voltage clamps (high and low) to limit the  
voltage at DUT_ and to suppress reflections when the  
channel is configured as a high-impedance receiver.  
The clamps behave as diodes connected to the out-  
puts of high-current buffers. Internal circuitry compen-  
sates for the diode drop at 1mA clamp current. Set the  
clamp voltages using the external connections CPHV_  
and CPLV_. The clamps are enabled only when the dri-  
ver is in high-impedance mode (Figure 2). For transient  
suppression, set the clamp voltages to approximately  
the minimum and maximum expected DUT_ voltage  
range. The optimal clamp voltages are application spe-  
cific and must be empirically determined. If clamping is  
unconnected and add the required external resistors.  
These resistors are typically 50to the pullup voltage  
at the receiving end of the output trace. Alternate con-  
figurations can be used provided that the Absolute  
Maximum Ratings are not exceeded. For versions with  
internal termination, connect V  
_ to the desired V  
CCO  
OH  
P-P  
voltage. Each output provides a nominal 400mV  
swing and 50source termination.  
The upper comparators are configurable as differential  
receivers for LVDS and other differential DUT_ signals.  
When mode bit CDIFF is asserted, the upper compara-  
tor inputs are routed from the DUT_ outputs for both  
channels.  
______________________________________________________________________________________ 25  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Table 4. Active Load Programming  
FROM DUT_  
OTHER CHANNEL  
INTERNAL  
CONTROL  
REGISTER  
CDIFF  
EXTERNAL  
CONNECTIONS  
MAX9969  
MODE  
CH_  
CHV_  
DUT_  
LDEN_  
LDDIS LLEAK  
Normal operating mode,  
load disabled  
NCH_  
0
0
0
0
0
1  
1Ω  
Normal operating mode,  
load enabled  
8mA  
8mA  
1
V
OPTIONAL  
4 x 50Ω  
CCO_  
X
X
1
X
0
1
Load disabled  
Low-leakage mode  
V
EE  
Low-Leakage Mode, LLEAK section for more detailed  
information.  
CL_  
LDDIS  
In some tester configurations, the load enable is driven  
with the complement of the driver high-impedance sig-  
nal (RCV_), so disabling the driver enables the load  
and vice versa. The LDDIS signal allows the load to be  
disabled independent of the state of LDEN_ (Table 4).  
CLV_  
NCL_  
Figure 3. Open-Collector Comparator Outputs  
GS Input  
The GS input allows a single level-setting DAC, such as  
the MAX5631 or MAX5734, to program the MAX9969s  
active load, driver, comparator, and clamps. Although  
Active Load  
The active load consists of linearly programmable,  
class AB source and sink current sources, a commuta-  
tion buffer, and a diode bridge (see the Functional  
Diagram). Analog control inputs LDH_ and LDL_ pro-  
gram the sink and source currents, respectively, within  
the 0 to 35mA range. Analog reference input COM_  
sets the commutation buffer output voltage. The source  
and sink naming convention is referenced to the DUT.  
Current out of the MAX9969 constitutes sink current  
and current into the MAX9969 constitutes source cur-  
rent. The class AB loads of the MAX9969 offer substan-  
tial efficiency improvement over conventional  
active-load circuitry.  
all the DAC levels are typically offset by V , the oper-  
GS  
ation of the MAX9969s ground-sense input nullifies this  
offset with respect to the active-load current. Connect  
GS to the ground reference used by the DAC. (V  
_ -  
LDL  
V
V
) sets the source current by +10mA/V. (V  
GS  
) sets the sink current by -10mA/V.  
GS  
_ -  
LDH  
To maintain an 8V range in the presence of GS variations,  
DHV_, DLV_, DTV_, CPHV_, CPLV_, and COM_ ranges  
are offset by GS. Adequate supply headroom must be  
maintained in the presence of GS variations. Ensure:  
V
9.5V + Max(V  
)
CC  
GS  
The programmed source (low) current loads the DUT  
V
-4.5V + Min(V  
)
GS  
EE  
when V  
_ > V  
_. The programmed sink (high)  
COM  
DUT  
Low-Leakage Mode, LLEAK  
current loads the DUT when V  
_ < V  
_.  
COM  
DUT  
Asserting LLEAK through the serial port or with RST  
places the MAX9969 into a very low-leakage state (see  
the Electrical Characteristics). With LLEAK asserted, the  
comparators function at a reduced speed, and the dri-  
ver, clamps, and active load are disabled. This mode is  
convenient for making IDDQ and PMU measurements  
without the need for an output disconnect relay. LLEAK  
is programmed independently for each channel.  
High-speed differential input LDEN_ and 2 bits of the  
control word (LDDIS and LLEAK) control the load  
(Table 4). When the load is enabled, the internal source  
and sink current sources connect to the diode bridge.  
When the load is disabled, the internal current sources  
shunt to ground and the top and bottom of the bridge  
float (see the Functional Diagram). LLEAK places the  
load in low-leakage mode, and overrides LDEN_. See the  
26 ______________________________________________________________________________________  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
tion. The low-leakage recovery specification in the  
Electrical Characteristics table indicates device behav-  
SCLK  
DIN  
CS  
ior under this condition.  
SHIFT REGISTER  
Serial Interface and Device Control  
0
1
2
3
4
5
6
7
A CMOS-compatible serial interface controls the  
MAX9969 modes (Figure 4 and Table 5). Control data  
flow into an 8-bit shift register (MSB first) and are  
latched when CS is taken high, as shown in Figure 5.  
Latches contain 6 control bits for each channel of the  
dual pin driver. Data from the shift register are loaded  
to either or both of the latches as determined by bits D6  
and D7. When CDIFF = 1, its effect is independent of  
bits D6 and D7. The control bits, in conjunction with  
external inputs DATA_ and RCV_, manage the features  
of each channel, as shown in Tables 1 and 2. RST sets  
LLEAK = 1 for both channels, forcing them into low-  
leakage mode. All other bits are unaffected. At power-  
ENABLE  
F/F  
F/F  
5
7
5
6
Q
D
D
Q
ENABLE  
SET  
ENABLE  
SET  
RST  
F/F  
D
F/F  
D
0 - 4  
7
0 - 4  
6
Q
Q
up, hold RST low until V  
and V have stabilized.  
EE  
CC  
ENABLE  
ENABLE  
Analog control input THR sets the threshold for the  
input logic, allowing operation with CMOS logic as low  
as 0.9V. Leaving THR unconnected results in a nominal  
threshold of 1.25V from an internal reference, providing  
compatibility with 2.5V to 3.3V logic.  
5
1
1
5
20k  
V
= 1.25V  
THR  
THRINT  
LDDIS,  
TMSEL,  
CDIFF,  
LDDIS,  
TMSEL,  
CDIFF,  
LLEAK  
LLEAK  
SC0, SC1  
SC0, SC1  
MAX9967 Compatibility  
The MAX9969 is pin compatible with the MAX9967 with  
minor changes.  
MAX9969  
CHANNEL 1 MODE BITS  
CHANNEL 2 MODE BITS  
No PMU force/sense connection on the MAX9969  
Different common-mode ranges for control inputs  
Figure 4. Serial Interface  
MAX9967 comparator outputs additionally support  
When DUT_ is driven with a high-speed signal while  
LLEAK is asserted, the leakage current momentarily  
increases beyond the limits specified for normal opera-  
open emitter  
Different serial interface bit structures  
t
CH  
SCLK  
t
t
CSS0  
t
CL  
CSS1  
t
CSH1  
CS  
t
t
CSWH  
DH  
t
DS  
DIN  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 5. Serial-Interface Timing  
______________________________________________________________________________________ 27  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
and sink currents are programmed to 0mA. Maximum  
dissipation occurs when the source and sink currents  
are both at 35mA, the V _ is at an extreme of the  
Table 5. Shift Register Functions  
BIT NAME  
DESCRIPTION  
DUT  
voltage range (-1.5V or +6.5V), and the diode bridge is  
fully commutated. Under these conditions, the addition-  
al power dissipated (per channel) is:  
Channel 1 Write Enable. Set to 1 to update the  
control byte for channel 1. Set to 0 to make no  
changes to channel 1.  
D7  
D6  
CH1  
If DUT_ is sourcing current:  
Channel 2 Write Enable. Set to 1 to update the  
CH2 control byte for channel 2. Set to 0 to make no  
changes to channel 2.  
P
= (V  
- V ) x I  
DUT_ EE SOURCE  
D
If DUT_ is sinking current:  
= (V - V  
P
D
) x I  
SINK  
CC  
DUT_  
Low-Leakage Select. Set to 1 to put driver,  
load, and clamps in low-leakage mode.  
D5 LLEAK Comparators remain active in low-leakage  
mode, but at reduced speed. Set to 0 for  
normal operation.  
DUT_ sources the programmed (low) current when  
> V . The path of the current is from DUT_  
V
DUT_  
COM_  
through the outside of the diode bridge and the source  
(low) current source to V . The programmed sink cur-  
EE  
rent is greatly reduced by the class AB load architecture.  
Termination Select. Driver Termination Select  
Bit. Set to 1 to force the driver output to the  
D4 TMSEL DTV_ voltage when RCV_ = 1 (term mode). Set  
to 0 to place the driver into high-impedance  
DUT_ sinks the programmed (high) current when V  
DUT_  
through  
< V  
. The path of the current is from V  
COM_  
CC  
the sink (high) current source and the outside of the  
diode bridge to DUT_. The programmed source current  
is greatly reduced by the class AB architecture.  
mode when RCV_ = 1 (high-Z). See Table 1.  
D3  
D2  
SC1  
SC0  
Driver Slew Rate Select. SC1 and SC0 set the  
driver slew rate. See Table 2.  
of the exposed-pad package is very low, approxi-  
θ
JC  
mately 1°C/W to 2°C/W. Die temperature is thus highly  
dependent upon the heat removal techniques used in  
the application. Maximum total power dissipation  
occurs under the following conditions:  
Differential Comparator Enable. Set to 1 to  
enable the differential comparators and  
disable the CH_ window comparators. Set to 0  
to enable the CH_ window comparators and  
disable the differential comparators. See  
Tables 3a and 3b.  
D1 CDIFF  
D0 LDDIS  
V  
= +10.5V  
CC  
V = -5.25V  
EE  
I  
= I  
= 35mA for both channels  
SINK  
SOURCE  
Load Disable. Set LDDIS to 1 to disable the  
load. Set to 0 for normal operation. See Table 4.  
Load enabled  
V  
V  
= -1.5V  
DUT_  
= +0.5V  
COM_  
Temperature Monitor  
Under these extreme conditions, the total power dissi-  
pation is 3.9W typical and 4.4W maximum. If the die  
temperature cannot be maintained at an acceptable  
level under these conditions, use software clamping to  
limit the load output currents to lower values and/or  
reduce the supply voltages.  
The MAX9969 supplies a temperature output signal,  
TEMP, that asserts a 3.33V nominal output voltage at a  
+70°C (343K) die temperature. The output voltage  
changes proportionally with temperature at 10mV/°C.  
Heat Removal  
Under normal circumstances, the MAX9969 requires  
heat removal through the exposed pad by use of an  
external heat sink. The exposed pad is electrically at  
EE  
isolated.  
Power-Supply Considerations  
Bypass all V  
and V power input pins with 0.01µF  
EE  
CC  
capacitors, and use bulk bypassing of at least 10µF on  
each supply.  
V
potential, and must be either connected to V or  
EE  
Chip Information  
TRANSISTOR COUNT: 5284  
Power dissipation is highly dependent upon the appli-  
cation. The Electrical Characteristics table indicates  
power dissipation under the condition that the source  
PROCESS: Bipolar  
28 ______________________________________________________________________________________  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Selector Guide  
HIGH-SPEED DIGITAL  
INPUT TERMINATION ()  
COMPARATOR  
OUTPUT  
TERMINATION  
ACCURACY  
GRADE  
PART  
HEAT EXTRACTION  
RCV_  
DATA_  
None  
100  
LDEN_  
MAX9969ADCCQ  
MAX9969AGCCQ  
MAX9969ALCCQ  
MAX9969ARCCQ  
MAX9969BDCCQ  
MAX9969BGCCQ  
MAX9969BLCCQ  
MAX9969BRCCQ  
A
A
A
A
B
B
B
B
None  
None  
None  
100  
None  
100  
Top  
Top  
Top  
Top  
Top  
Top  
Top  
Top  
50to VCCO_  
50to VCCO_  
None  
100  
100  
100  
None  
None  
100  
100  
100  
None  
100  
None  
100  
None  
50to VCCO_  
50to VCCO_  
100  
100  
100  
None  
100  
100  
Pin Configuration  
TOP VIEW  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
TEMP  
1
2
3
4
5
6
7
8
9
75 TDATA1  
74 NDATA1  
73 DATA1  
72 TRCV1  
71 NRCV1  
70 RCV1  
V
EE  
GND  
V
CC  
GND  
N.C.  
DUT1  
N.C.  
69 TLDEN1  
68 NLDEN1  
67 LDEN1  
V
EE  
GND 10  
66  
V
CC  
V
11  
12  
65 DIN  
64 SCLK  
63 THR  
62 CS  
CC  
V
EE  
GS 13  
MAX9969  
V
14  
15  
EE  
V
CC  
61 RST  
GND 16  
17  
60  
V
EE  
V
EE  
59 LDEN2  
58 NLDEN2  
57 TLDEN2  
56 RCV2  
N.C. 18  
DUT2 19  
N.C. 20  
GND 21  
55 NRCV2  
54 TRCV2  
53 DATA2  
52 NDATA2  
51 TDATA2  
V
CC  
22  
GND 23  
24  
V
EE  
GND 25  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
______________________________________________________________________________________ 29  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
30 ______________________________________________________________________________________  
Dual, Low-Power, 1200Mbps ATE  
Driver/Comparator with 35mA Load  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 31  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9969BRCCQ-D

Analog Circuit, 1 Func, PQFP100, 14 X 14 MM, 1 MM HEIGHT, TQFP-100
MAXIM

MAX9969BRCCQ-TD

Analog Circuit, 1 Func, PQFP100, 14 X 14 MM, 1 MM HEIGHT, TQFP-100
MAXIM

MAX996ESD

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators
MAXIM

MAX996ESD

QUAD COMPARATOR, 7000uV OFFSET-MAX, 210ns RESPONSE TIME, PDSO14, SOIC-14
ROCHESTER

MAX996ESD+

Comparator, 4 Func, 7000uV Offset-Max, 210ns Response Time, PDSO14, SO-14
MAXIM

MAX996ESD+T

Comparator, 4 Func, 7000uV Offset-Max, 210ns Response Time, PDSO14, SO-14
MAXIM

MAX996EUD

High-Speed, Micropower, Low-Voltage
MAXIM

MAX996EUD

QUAD COMPARATOR, 7000uV OFFSET-MAX, 210ns RESPONSE TIME, PDSO14, TSSOP-14
ROCHESTER

MAX997

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V,Beyond-the-Rails Comparators
MAXIM

MAX9971BCCS

Comparator, 4 Func, 100000uV Offset-Max, 2ns Response Time, BICMOS, PQFP80, 12 X 12 MM, 1 MM PITCH, TQFP-80
MAXIM

MAX9971BCCS+

Comparator, 4 Func, 100000uV Offset-Max, 2ns Response Time, BICMOS, PQFP80, 12 X 12 MM, 1 MM PITCH, LEAD FREE, TQFP-80
MAXIM

MAX9972

Quad, Ultra-Low-Power, 300Mbps ATE Drivers/Comparators
MAXIM