MAX9972ACCS+DW-T [MAXIM]

Comparator;
MAX9972ACCS+DW-T
型号: MAX9972ACCS+DW-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Comparator

放大器
文件: 总22页 (文件大小:403K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0474; Rev 9; 10/11  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
MAX972  
General Description  
Features  
o Small Footprint—Four Channels in 0.3in2  
The MAX9972 four-channel, ultra-low-power, pin-elec-  
tronics IC includes, for each channel, a three-level pin  
driver, a window comparator, a passive load, and  
force-and-sense Kelvin-switched parametric measure-  
ment unit (PMU) connections. The driver features a  
-2.2V to +5.2V voltage range, includes high-impedance  
and active-termination (3rd-level drive) modes, and is  
highly linear even at low voltage swings. The window  
comparator features 500MHz equivalent input band-  
width and programmable output voltage levels. The  
passive load provides pullup and pulldown voltages to  
the device-under-test (DUT).  
o Low-Power Dissipation: 325mW/Channel (typ)  
o High Speed: 300Mbps at 3VP-P  
o -2.2V to +5.2V Operating Range  
o Active Termination (3rd-Level Drive)  
o Integrated PMU Switches  
o Passive Load  
o Low-Leak Mode: 20nA (max)  
o Low Gain and Offset Error  
Low-leakage, high-impedance, and terminate controls  
are operational configurations that are programmed  
through a 3-wire, low-voltage, CMOS-compatible serial  
interface. High-speed PMU switching is realized through  
dedicated digital control inputs.  
Ordering Information  
This device is available in an 80-pin, 12mm x 12mm  
body, 1.0mm pitch TQFP with an exposed 6mm x 6mm  
die pad on the bottom of the package for efficient heat  
removal. The MAX9972 is specified to operate over the  
0°C to +70°C commercial temperature range, and fea-  
tures a die temperature monitor output.  
TEMP  
RANGE  
PIN-  
HEAT  
PART  
PACKAGE EXTRACTION  
0°C to  
+70°C  
MAX9972ACCS+  
80 TQFP-EP*  
Bottom  
+Denotes a lead(Pb)-free/RoHs-compliant package.  
*EP = Exposed pad.  
Applications  
NAND Flash Testers  
DRAM Probe Testers  
Low-Cost Mixed-Signal/System-on-Chip (SoC)  
Testers  
Active Burn-In Systems  
Structural Testers  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
V
SS  
V
to GND...........................................................-0.3V to +9.4V  
to GND..........................................................-6.25V to +0.3V  
CHV_, CLV_ to DUT_ ..................................................V to V  
SS DD  
DOUT to GND...........................................................-0.3V to +5V  
TEMP Short-Circuit Duration ......................................Continuous  
FORCE_ Path Switch Current..............................................50mA  
SENSE_ Path Switch Current .............................................1.5mA  
to V ........................................................................+15.7V  
DD  
SS  
V to GND.................................................................-0.3V to +5V  
L
DHV_, DTV_, DLV_, LDV_, DUT_ to GND...................V to V  
SS  
DD  
DATA_, RCV_ ...........................................................-0.3V to +5V  
CHV_, CLV_, CMPH_, CMPL_, COMPHI,  
Continuous Power Dissipation (T = +70°C)  
A
80-Pin TQFP-EP (derate 35.7mW/°C above +70°C) ....2857mW  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
COMPLO to GND.....................................................V to V  
SS  
DD  
DD  
FORCE_, SENSE_, PMU_ to GND ..............................V to V  
SS  
MAX972  
LD, DIN, SCLK, CS to GND......................................-0.3V to +5V  
DUT_, CMPH_, CMPL_ Short-Circuit Duration...........Continuous  
DHV_, DLV_, DTV_ to Each Other ..............................V to V  
SS  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +8V, V  
= -5V, V = +3V, V  
= +1V, V  
= 0V, V  
= 0V, LOAD EN LOW = LOAD EN HIGH = 0,  
LDV_  
DD  
SS  
L
COMPHI  
COMPLO  
T = +75°C. All temperature coefficients measured at T = +50°C to +100°C, unless otherwise noted.) (Note 1)  
J
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER (all specifications apply when DUT_ = DHV_, DUT_ = DTV_, or DUT_ = DLV_)  
DC CHARACTERISTICS  
Voltage Range  
-2.2  
+5.2  
V
V/V  
Gain  
Measured at 0V and 3V  
0.995  
1
1.005  
Gain Temperature Coefficient  
Offset  
50  
ppm/°C  
mV  
V
= 2V, V  
= 0V, V = 1V  
DTV_  
10  
18  
DHV_  
DLV_  
Offset Temperature Coefficient  
250  
µV/°C  
V
, V independently varied over full  
DD SS  
Power-Supply Rejection Ratio  
PSRR  
mV/V  
range  
Maximum DC Drive Current  
DC Output Resistance  
I
All drive mode specs valid over this range  
40  
mA  
_
DUT_  
I
I
=
10mA (Note 2)  
48.5  
49.5  
50.5  
2.5  
DUT_  
DUT_  
DC Output Resistance Variation  
= -40mA to +40mA  
_
DHV_ to DLV_ and DTV_:  
V
V
= V  
= +1.5V,  
DTV_  
5
5
5
DLV_  
DHV_  
= -2.2V, +5.2V  
DLV_ to DHV_ and DTV_:  
V
V
DC Crosstalk  
Linearity Error  
= V  
= +1.5V,  
DTV_  
mV  
DHV_  
DLV_  
= -2.2V, +5.2V  
DTV_ to DHV_ and DLV_:  
V
V
= V  
= +1.5V,  
DLV_  
DHV_  
DTV_  
= -2.2V, +5.2V  
0 to 3V (Note 3)  
5
mV  
mV  
Full range (Note 4)  
15  
2
_______________________________________________________________________________________  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
MAX972  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +8V, V  
= -5V, V = +3V, V  
= +1V, V  
= 0V, V  
= 0V, LOAD EN LOW = LOAD EN HIGH = 0,  
LDV_  
DD  
SS  
L
COMPHI  
COMPLO  
T = +75°C. All temperature coefficients measured at T = +50°C to +100°C, unless otherwise noted.) (Note 1)  
J
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC CHARACTERISTICS (Note 5)  
Dynamic Output Current  
(Note 1)  
40  
mA  
mV  
Drive-Mode Overshoot,  
Undershoot, and Preshoot  
5%  
+10  
200mV to 4V  
swing (Note 6)  
P-P  
V
V
V
V
= V  
= 1V, V  
= 0V  
= 1V  
25  
25  
25  
25  
2.6  
DHV_  
DLV_  
DLV_  
DLV_  
DTV_  
DLV_  
Term-Mode Spike  
mV  
= V  
= 0V, V  
DTV_  
DHV_  
= -1V, V  
= 0V  
DHV_  
DHV_  
High-Impedance-Mode Spike  
mV  
ns  
= 0V, V  
= 1V  
Propagation Delay, Data to Output  
1.6  
4.2  
Prop-Delay Temperature  
Coefficient  
10  
30  
ps/°C  
ps  
Prop-Delay Match, t vs. t  
LH  
HL  
Prop-Delay Skew, Drivers Within  
Package  
150  
ps  
3V , 40MHz,  
P-P  
PW = 4ns to 21ns  
20  
90  
Prop-Delay Change vs. Pulse  
Width  
Relative to 12.5ns  
pulse  
ps  
1V , 40MHz,  
P-P  
PW = 2.5ns to 23.5ns  
Prop-Delay Change vs. Common-  
Mode Voltage  
1V , V  
= 0 to 3V, relative to delay at  
P-P DLV_  
80  
ps  
ns  
V
= 1V  
DLV_  
Prop Delay, Data to High  
Impedance  
V
= +1.5V, V  
= -1.5V, both  
DHV_  
DLV_  
1.8  
1.6  
directions  
V
= +1.5V, V  
= -1.5V, V  
= 0V,  
DTV_  
DHV_  
DLV_  
Prop Delay, Data to Term  
Minimum Voltage Swing  
ns  
both directions  
(Note 7)  
25  
0.7  
0.7  
2.0  
mV  
V
V
V
= 0.2V, V  
= 0V, 20% to 80%  
DLV_  
DHV_  
DHV_  
DHV_  
= 1V, V  
= 3V, V  
= 4V, V  
= 0V, 20% to 80%  
= 0V, 10% to 90%  
= 0V,  
DLV_  
DLV_  
1.5  
2.5  
Rise/Fall Time  
ns  
V
DHV_  
DLV_  
2.6  
3.4  
R = 500_, 10% to 90%  
L
V
= 5V, V  
= 0V,  
DLV_  
DHV_  
R = 500_, 10% to 90%  
L
Rise/Fall-Time Matching  
V
= 1V to 5V  
5
1.8  
2.4  
3.3  
%
DHV_  
200mV, V  
= 0.2V, V  
= 0V  
DLV_  
DHV_  
Minimum Pulse Width (Note 8)  
1V, V  
3V, V  
= 1V, V  
= 0V  
= 0V  
ns  
DHV_  
DHV_  
DLV_  
DLV_  
= 3V, V  
_______________________________________________________________________________________  
3
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +8V, V  
= -5V, V = +3V, V  
= +1V, V  
= 0V, V  
= 0V, LOAD EN LOW = LOAD EN HIGH = 0,  
LDV_  
DD  
SS  
L
COMPHI  
COMPLO  
T = +75°C. All temperature coefficients measured at T = +50°C to +100°C, unless otherwise noted.) (Note 1)  
J
J
PARAMETER  
COMPARATOR (Note 9)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC CHARACTERISTICS (driver in high-impedance mode) (V  
= 0.8V, V  
= 0.2V)  
COMPHI  
COMPLO  
Input Voltage Range  
-2.2  
-7.4  
+5.2  
+7.4  
V
MAX972  
Differential Input Voltage  
Hysteresis  
V
DUT_  
V
CHV_  
V
DUT_  
- V  
, V  
- V  
CLV_  
V
CHV_ DUT_  
= V  
= 1.5V  
8
mV  
mV  
CLV_  
Input Offset Voltage  
= 1.5V  
10  
Input Offset Temperature  
Coefficient  
25  
μV/°C  
dB  
Common-Mode Rejection Ratio  
CMRR  
PSRR  
V
= 0 and 3V  
= 1.5V  
60  
DUT_  
V
5
DUT_  
DUT_  
Linearity Error (Note 10)  
mV  
V
= -2.2V, +5.2V  
10  
V
DUT_  
= 1.5V, supplies independently  
Power-Supply Rejection Ratio  
AC CHARACTERISTICS (Note 11)  
Equivalent Input Bandwidth  
Propagation Delay  
5
mV/V  
varied over full range  
Terminated (Note 12)  
500  
300  
2.2  
MHz  
ns  
High impedance (Note 13)  
0.9  
3.1  
Prop-Delay Temperature  
Coefficient  
4
ps/°C  
ps  
Prop-Delay Match, t to t  
120  
200  
LH  
HL  
Prop-Delay Skew, Comparators  
Within Package  
Same edges (LH and HL)  
ps  
Prop-Delay Dispersions vs.  
Common-Mode Voltage  
(Note 14)  
0 to 4.9V  
20  
30  
ps  
ps  
-1.9V to +4.9V  
V
CHV_  
V
DUT_  
= V  
= 0.1V to 0.9V,  
CLV_  
Prop-Delay Dispersions vs.  
Overdrive  
= 1V , t = t = 500ps, 10% to  
220  
P-P  
R
F
90% relative to timing at 50% point  
Prop-Delay Dispersions vs.  
Pulse Width  
2ns to 23ns pulse width, relative to 12.5ns  
pulse width  
60  
50  
ps  
ps  
Prop-Delay Dispersions vs.  
Slew Rate  
0.5V/ns to 2V/ns  
4
_______________________________________________________________________________________  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
MAX972  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +8V, V  
= -5V, V = +3V, V  
= +1V, V  
= 0V, V  
= 0V, LOAD EN LOW = LOAD EN HIGH = 0,  
LDV_  
DD  
SS  
L
COMPHI  
COMPLO  
T = +75°C. All temperature coefficients measured at T = +50°C to +100°C, unless otherwise noted.) (Note 1)  
J
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOGIC OUTPUTS  
Reference Voltages COMPHI and  
COMPLO  
(Note 15)  
0
+3.6  
50  
V
I
= 0mA, relative to COMPHI at  
OUT  
Output High Voltage Offset  
Output Low Voltage Offset  
mV  
mV  
V
= 1V  
COMPHI  
I
= 0mA, relative to COMPLO at  
OUT  
50  
60  
V
= 0V  
COMPLO  
Output Resistance  
Current Limit  
I
= I  
=
10mA  
40  
50  
25  
Ω
CHV_  
CLV_  
mA  
20% to 80%, V  
load = T-line, 50Ω, > 1ns  
= 1V  
,
CHV_  
P-P  
Rise/Fall Time  
0.7  
ns  
PASSIVE LOAD  
DC CHARACTERISTICS (R  
LDV_ Voltage Range  
Gain  
10MΩ)  
DUT_  
-2.2  
+5.2  
1.01  
V
0.99  
V/V  
Gain Temperature Coefficient  
Offset  
0.02  
%/°C  
mV  
100  
Offset Temperature Coefficient  
Power-Supply Rejection Ratio  
0.02  
10  
mV/°C  
mV/V  
PSRR  
Output Resistance  
Tolerance—High Value  
I
I
=
=
0.2mA, V  
0.1mA, V  
= 1.5V  
= 1.5V  
7.125  
1.90  
7.5  
2.0  
7.875  
2.10  
kΩ  
kΩ  
%
DUT_  
DUT_  
LDV_  
LDV_  
Output Resistance  
Tolerance—Low Value  
0 to 3V  
Full range  
10  
30  
4
Switch Resistance Variation  
Relative to 1.5V  
V
V
= -2V, V  
= +5V  
LDV_  
LDV_  
DUT_  
Maximum Output Current  
(Note 16)  
mA  
mV  
= +5V, V  
= -2V  
4
DUT_  
Measured at -2.2V, +1.5V, and +5.2V  
(Note 16)  
Linearity Error, Full Range  
AC CHARACTERISTICS  
Settling Time, LDV_ to Output  
25  
V
= -2V to +5V step, R  
= 100kΩ  
DUT_  
LDV_  
0.5  
20  
µs  
ns  
(Note 17)  
V
= +1.5V, V  
= -2V to +5V square  
= 50Ω  
LDV_  
DUT_  
DUT_  
Output Transient Response  
wave at 1MHz, R  
_______________________________________________________________________________________  
5
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +8V, V  
= -5V, V = +3V, V  
= +1V, V  
= 0V, V  
= 0V, LOAD EN LOW = LOAD EN HIGH = 0,  
LDV_  
DD  
SS  
L
COMPHI  
COMPLO  
T = +75°C. All temperature coefficients measured at T = +50°C to +100°C, unless otherwise noted.) (Note 1)  
J
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PMU SWITCHES (FORCE_, SENSE_, PMU_)  
Voltage Range  
-2.2  
+5.2  
40  
V
Force Switch Resistance  
V
V
= 1.5V, I  
=
10mA  
Ω
FORCE_  
PMU_  
MAX972  
= 6.2V, V  
set to make  
PMU_  
FORCE_  
25  
25  
I
= 30mA  
FORCE_  
Force Switch Compliance  
mA  
V
= -3.2V, V  
FORCE_  
= -30mA  
set to make  
PMU_  
I
FORCE_  
0 to 3V  
Full range  
10  
30  
Force Switch Resistance  
Variation (Note 18)  
%
Ω
Sense Switch Resistance  
700  
1000  
1300  
Sense Switch Resistance  
Variation  
Relative to 1.3V, full range  
30  
%
PMU_ Capacitance  
Force-and-sense switches open  
5
5
pF  
pF  
pF  
nF  
nF  
FORCE_ Capacitance  
SENSE_ Capacitance  
0.2  
2
FORCE_ External Capacitance  
SENSE_ External Capacitance  
Allowable external capacitance  
Allowable external capacitance  
1
FORCE_ and SENSE_ Switching  
Speed  
Connect or disconnect  
10  
µs  
FORCE EN_ = SENSE EN_ = 0,  
PMU_ Leakage  
0.5  
5
nA  
V
= V  
= -2.2V to +5.2V  
SENSE_  
FORCE_  
TOTAL FUNCTION  
DUT_  
Load switches open,  
V
V
V
V
= +5.2V,  
DUT_  
CLV_  
DUT_  
CLV_  
Leakage, High-Impedance Mode  
= V  
= -2.2V,  
2
µA  
CHV_  
= -2.2V,  
= V  
= +5.2V, full range  
CHV_  
Leakage, Low-Leakage Mode  
Low-Leakage Recovery Time  
Full range  
(Note 19)  
1
10  
2
20  
nA  
µs  
Term mode  
Combined Capacitance  
pF  
High-impedance mode  
(Note 20)  
5
Load Resistance  
1
GΩ  
Load Capacitance  
(Note 20)  
12  
nF  
6
_______________________________________________________________________________________  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
MAX972  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +8V, V  
= -5V, V = +3V, V  
= +1V, V  
= 0V, V  
= 0V, LOAD EN LOW = LOAD EN HIGH = 0,  
LDV_  
DD  
SS  
L
COMPHI  
COMPLO  
T = +75°C. All temperature coefficients measured at T = +50°C to +100°C, unless otherwise noted.) (Note 1)  
J
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
VOLTAGE REFERENCE INPUTS (DHV_, DTV_, DLV_, DATA_, RCV_, CHV_, CLV_, LDV_, COMPHI, COMPLO)  
Input Bias Current  
100  
µA  
nA/°C  
µs  
Input Bias Current Temperature  
Coefficient  
200  
Settling to Output  
0.1% of full-scale step  
10  
DIGITAL INPUTS (DATA_, RCV_, LD, DIN, SCLK, CS)  
V /2 +  
L
0.2  
Input High Voltage  
Input Low Voltage  
(Note 21)  
+3.6  
V
V
V /2 -  
L
0.2  
(Note 21)  
0
DATA_,  
100  
Input Bias Current  
µA  
LD, DIN,  
SCLK, CS  
1
SERIAL DATA OUTPUT (DOUT)  
V
- 0.4  
L
Output High Voltage  
I
I
= -1mA  
= 1mA  
V
L
V
OH  
OL  
Output Low Voltage  
0
+0.4  
V
Output Rise and Fall Time  
C = 10pF  
L
1.1  
ns  
SERIAL-INTERFACE TIMING (Note 22)  
SCLK Frequency  
50  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
CS Low to SCLK High Setup  
SCLK High to CS Low Hold  
CS High to SCLK High Setup  
SCLK High to CS High Hold  
DIN to SCLK High Setup  
DIN to SCLK High Hold  
CS High to LOAD Low Hold  
CS High Pulse Width  
t
10  
10  
3.5  
3.5  
3.5  
15  
7.5  
3.5  
6
CH  
t
CL  
t
CSS0  
CSH0  
t
t
CSS1  
CSH1  
t
t
DS  
DH  
t
t
CSHLD  
t
20  
20  
0
CSWH  
LD Low Pulse Width  
t
LDW  
LD High to Any Activity  
SCLK Low to DOUT Delay  
t
C = 10pF  
L
5
40  
DO  
V Rising to CS Low  
L
Power-on delay  
2
TEMP SENSOR  
Nominal Voltage  
T = +27°C  
J
3.20  
+10  
500  
V
mV/°C  
Ω
Temperature Coefficient  
Output Resistance  
_______________________________________________________________________________________  
7
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +8V, V  
= -5V, V = +3V, V  
= +1V, V  
= 0V, V  
= 0V, LOAD EN LOW = LOAD EN HIGH = 0,  
LDV_  
DD  
SS  
L
COMPHI  
COMPLO  
T = +75°C. All temperature coefficients measured at T = +50°C to +100°C, unless otherwise noted.) (Note 1)  
J
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLIES  
Positive Supply Voltage  
Negative Supply Voltage  
Logic Supply Voltage  
V
(Note 23)  
(Note 23)  
7.6  
-5.25  
2.3  
8
8.4  
-4.75  
3.6  
V
V
DD  
V
-5  
SS  
MAX972  
V
V
L
Positive Supply Current  
Negative Supply Current  
Logic Supply Current  
I
f
f
= 0MHz  
= 0MHz  
97  
99  
120  
120  
0.30  
1.5  
mA  
mA  
mA  
W
DD  
OUT  
I
SS  
OUT  
I
0.15  
1.3  
1.4  
L
Static Power Dissipation  
Operating Power Dissipation  
f
f
= 0MHz  
OUT  
OUT  
= 100Mbps (Note 24)  
W
Note 1: All minimum and maximum specifications are 100% production tested except driver dynamic output current and  
driver/comparator propagation delays, which are guaranteed by design. All specifications are with DUT_ and PMU_ elec-  
trically isolated, unless otherwise noted.  
Note 2: Nominal target value is 49.5Ω. Contact factory for alternate trim selections within the 45Ω to 55Ω range.  
Note 3: Measured at 1.5V, relative to a straight line through 0 and 3V.  
Note 4: Measured at end points, relative to a straight line through 0 and 3V.  
Note 5: DUT_ is terminated with 50Ω to ground, V  
= 3V, V  
= 0, V  
= 1.5V, unless otherwise specified. DATA_ and  
DTV_  
DHV_  
DLV_  
RCV_ logic levels are V  
= 2V, V  
= 1V.  
HIGH  
LOW  
Note 6: Undershoot is any reflection of the signal back towards its starting voltage after it has reached 90% of its swing. Preshoot  
is any aberration in the signal before it reaches 10% of its swing.  
Note 7: At the minimum voltage swing, undershoot is less than 20%. DHV_ and DLV_ references are adjusted to result in the  
specified swing.  
Note 8: At this pulse width, the output reaches at least 90% of its nominal (DC) amplitude. The pulse width is measured at DATA_.  
Note 9: With the exception of offset and gain/CMRR tests, reference input values are calibrated for offset and gain.  
Note 10: Relative to a straight line through 0 and 3V.  
Note 11: Unless otherwise noted, all propagation delays are measured at 40MHz, V  
= 0 to 1V, V  
= V  
= +0.5V, t = t  
CLV_ R F  
DUT_  
CHV_  
= 500ps, Z = 50Ω, driver in term mode with V  
= +0.5V. Comparator outputs are terminated with 50Ω to GND.  
S
DTV_  
Measured from V  
crossing calibrated CHV_/CLV_ threshold to midpoint of nominal comparator output swing.  
DUT_  
Note 12: Terminated is defined as driver in drive mode and set to zero volts.  
Note 13: High impedance is defined as driver in high-impedance mode.  
Note 14: V  
= 200mV . Propagation delay is compared to a reference time at 1.5V.  
P-P  
DUT_  
Note 15: The comparator meets all its timing specifications with the specified output conditions when the output current is less than  
10mA, V > V , and V - V 1V. Higher voltage swings are valid but AC performance may  
COMPHI  
COMPLO  
COMPHI  
COMPLO  
degrade. The maximum comparator output swing is (COMPHI - COMPLO) 1V when the output is terminated with a 50Ω  
resistor to termination voltage V , where COMPHI V COMPLO.  
TERM  
TERM  
Note 16: LOAD EN LOW = LOAD EN HIGH = 1.  
Note 17: Waveform settles to within 5% of final value into load 100kΩ.  
Note 18: I 2mA at V = -2.2V, +1.5V, and +5.2V. Percent variation relative to value calculated at V = +1.5V.  
FORCE_  
=
PMU_  
FORCE_  
Note 19: Time to return to the specified maximum leakage after a 3V, 4V/ns step at DUT_.  
Note 20: Load at end of 2ns transmission line; for stability only, AC performance may be degraded.  
Note 21: The driver meets all of its timing specifications over the specified digital input voltage range.  
Note 22: Timing characteristics with V = 3V.  
L
Note 23: Specifications are simulated and characterized over the full power-supply range. Production tests are performed with  
power supplies at typical values.  
Note 24: All channels driven at 3V , load = 2ns, 50Ω transmission line terminated with 3pF.  
P-P  
8
_______________________________________________________________________________________  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
MAX972  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
DRIVER SMALL-  
DRIVER LARGE-  
DRIVER LARGE-  
SIGNAL RESPONSE  
SIGNAL RESPONSE  
SIGNAL RESPONSE INTO 500Ω  
V
= 0  
V
DLV_  
= 0  
V
= 0  
DLV_  
DLV_  
R = 50Ω  
L
R = 500Ω  
C = 0.1pF  
L
R = 50Ω  
L
L
V
= 500mV  
DHV_  
V
= 3V  
V
= 3V  
= 1V  
DHV_  
DHV_  
V
V
= 200mV  
= 100mV  
DHV_  
DHV_  
V
DHV_  
V
DHV_  
= 1V  
0
0
0
4.5ns CABLE  
t = 2.0ns/div  
t = 2.0ns/div  
t = 2.0ns/div  
DRIVER 1V , 150Mbps  
P-P  
SIGNAL RESPONSE  
DRIVER 1V , 400Mbps  
P-P  
SIGNAL RESPONSE  
DRIVER 3V , 100Mbps  
P-P  
SIGNAL RESPONSE  
V
V
= 0  
= 1V  
V
V
= 0  
= 1V  
V
V
= 0  
= 3V  
DLV_  
DHV_  
L
DLV_  
DHV_  
DLV_  
DHV_  
L
0
0
0
R = 50Ω  
R = 50Ω  
L
R = 50Ω  
t = 2ns/div  
t = 1ns/div  
t = 2.5ns/div  
DRIVER DC CURRENT-LIMIT  
AND OVERVOLTAGE RESPONSE  
DRIVER 3V TRAILING-EDGE  
TIMING ERROR vs. PULSE WIDTH  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
2.5  
2.0  
100  
80  
50  
0
V
= 1.5V  
POSITIVE PULSE  
DHV_  
DUT_ = DTV_  
V
V
= 1.5V  
= 1.5V  
DLV_  
DHV_  
1.5  
60  
-50  
1.0  
40  
20  
0.5  
-100  
-150  
-200  
-250  
-300  
0
0
-20  
-40  
-60  
-80  
-100  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
NEGATIVE PULSE  
NORMALIZED AT PW = 12.5ns,  
PERIOD = 25ns, V  
= 3V, V  
= 0  
DHV_  
DLV_  
-6  
-3  
0
3
6
9
3
4
5
6
7
8
9
10 11 12 13  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
(V)  
V
(V)  
DUT_  
PULSE WIDTH (ns)  
V
DUT_  
_______________________________________________________________________________________  
9
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
DRIVER TIME DELAY  
vs. COMMON-MODE VOLTAGE  
80  
DRIVE-TO-TERM  
TRANSITION  
DRIVE-TO-HIGH-IMPEDANCE  
TRANSITION  
RISING EDGE  
60  
40  
DHV_ TO DTV_  
MAX972  
DHV_ TO HIGH IMPEDANCE  
FALLING EDGE  
20  
0
0
-20  
-40  
-60  
DLV_ TO DTV_  
t = 2ns/div  
DLV_ TO HIGH IMPEDANCE  
0
NORMALIZED AT V = 1.5V  
CM  
R = 50Ω  
L
R = 50Ω  
L
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
t = 2ns/div  
COMMON-MODE VOLTAGE (V)  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
2.5  
2.0  
2.5  
2.5  
2.0  
DUT_ = DLV_  
DUT_ = DTV_  
DUT_ = DHV_  
2.0  
1.5  
V
DHV_  
V
DTV_  
= 1.5V  
= 1.5V  
V
V
= 1.5V  
= 1.5V  
V
V
= 1.5V  
= 1.5V  
DLV_  
DHV_  
DLV_  
DTV_  
1.5  
1.5  
1.0  
0.5  
1.0  
1.0  
0.5  
0.5  
0
0
0
-0.5  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-1.0  
-1.5  
-2.0  
-2.5  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
(V)  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
(V)  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
(V)  
V
DUT_  
V
V
DUT_  
DUT_  
CROSSTALK, DUT_ DRIVEN BY  
DHV_ WITH DLV_ VARIED  
CROSSTALK, DUT_ DRIVEN BY  
DHV_ WITH DTV_ VARIED  
CROSSTALK, DUT_ DRIVEN BY  
DLV_ WITH DHV_ VARIED  
100  
80  
100  
80  
100  
80  
V
V
= 3V  
DHV_  
V
V
= 1.5V  
= 0  
V
V
= 3V  
= 1.5V  
DTV_  
DLV_  
DHV_  
DTV_  
= 0  
DLV_  
60  
40  
60  
40  
60  
40  
20  
20  
20  
0
0
0
-20  
-40  
-60  
-20  
-40  
-60  
-20  
-40  
-60  
-80  
-80  
-80  
NORMALIZED AT V = 1.5V  
DTV_  
NORMALIZED AT V  
= 3V  
NORMALIZED AT V  
= 0  
DHV_  
DLV_  
-100  
-100  
-100  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
(V)  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
(V)  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
(V)  
V
V
V
DHV_  
DLV_  
DTV_  
10 ______________________________________________________________________________________  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
MAX972  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
CROSSTALK, DUT_ DRIVEN BY  
DLV_ WITH DTV_ VARIED  
CROSSTALK, DUT_ DRIVEN BY  
DTV_ WITH DHV_ VARIED  
CROSSTALK, DUT_ DRIVEN BY  
DTV_ WITH DLV_ VARIED  
100  
80  
100  
80  
100  
80  
V
V
= 3V  
= 0  
V
V
= 3V  
= 1.5V  
V
DTV_  
V
DLV_  
= +1.5V  
= -1.5V  
DHV_  
DLV_  
DHV_  
DTV_  
60  
40  
60  
40  
60  
40  
20  
20  
20  
0
0
0
-20  
-40  
-60  
-20  
-40  
-60  
-20  
-40  
-60  
-80  
-80  
-80  
NORMALIZED AT V  
= 0  
NORMALIZED AT V  
= 3V  
NORMALIZED AT V  
= 1.5V  
DLV_  
DHV_  
DTV_  
-100  
-100  
-100  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
(V)  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
(V)  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
(V)  
V
V
V
DLV_  
DTV_  
DHV_  
COMPARATOR RESPONSE TO  
0 TO 3V SIGNAL  
DRIVER GAIN vs. TEMPERATURE  
DRIVER OFFSET vs. TEMPERATURE  
1.0008  
1.0006  
1.0004  
1.0002  
1.0000  
5
V
V
= V = 1.5V, R = 50Ω  
CLV_ L  
CHV_  
= 1V, V  
= 0  
4
3
COMPHI  
COMPLO  
2
1
0
-1  
0.9998  
0.9996  
-2  
-3  
NORMALIZED AT T = +85°C  
NORMALIZED AT T = +85°C  
J
J
50  
60  
70  
80  
90  
100  
50  
60  
70  
80  
90  
100  
t = 2.0ns/div  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
COMPARATOR TIMING VARIATION  
vs. PULSE WIDTH  
COMPARATOR OFFSET  
vs. COMMON-MODE VOLTAGE  
COMPARATOR WAVEFORM TRACKING  
50  
30  
400  
300  
200  
100  
0
0.20  
0.15  
0.10  
0.05  
0
V
DUT_  
FALLING  
10  
V
RISING  
DUT_  
-10  
-30  
-50  
-70  
-90  
-110  
-130  
-150  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.35  
-100  
-200  
-300  
-400  
NORMALIZED AT V = 1.5V  
CM  
OTHER COMPARATOR REFERENCE = -2.5V  
NORMALIZED AT 50% REFERENCE  
= 0 TO 1V PULSE  
V
DUT_  
NORMALIZED AT PW = 10ns  
0
20  
40  
60  
80  
100  
1
2
3
4
5
6
7
8
9
10  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
COMMON-MODE VOLTAGE (V)  
REFERENCE LEVEL (%)  
PULSE WIDTH (ns)  
______________________________________________________________________________________ 11  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
COMPARATOR TIMING VARIATION  
COMPARATOR OFFSET  
vs. TEMPERATURE  
COMPARATOR RESPONSE  
vs. HIGH SLEW-RATE OVERDRIVE  
vs. INPUT SLEW RATE  
60  
50  
40  
150  
100  
50  
INPUT SLEW RATE = 6V/ns  
TERM MODE, V  
= 0 TO 1V  
DTV_  
MAX972  
V
FALLING  
V
RISING  
DUT_  
DUT_  
30  
20  
0
-50  
10  
-100  
-150  
-200  
-250  
-300  
0
-10  
-20  
-30  
-40  
-50  
-60  
NORMALIZED AT SR = 2V/ns  
= 1V, V = 0, R = 50Ω  
-350  
-400  
NORMALIZED AT T = +75°C  
V
= 1V, V  
= 0, R  
= 50Ω  
J
COMPHI  
COMPLO  
COMP_  
V
COMPHI  
COMPLO  
L
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
SLEW RATE (V/ns)  
50  
60  
70  
80  
90  
100  
t = 2ns/div  
TEMPERATURE (°C)  
HIGH-IMPEDANCE LEAKAGE AT DUT_  
vs. DUT_ VOLTAGE  
DRIVE 1V TO LOW-LEAKAGE TRANSITION  
LOW LEAKAGE TO DRIVE 1V TRANSITION  
0.2  
0.1  
0
10μA  
-0.1  
-0.2  
10μA  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
0μA  
0μA  
-0.8  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
t = 2.5μs/div  
t = 100ns/div  
V
DUT_  
(V)  
LOW-LEAKAGE CURRENT  
vs. DUT_VOLTAGE  
I
SUPPLY CURRENT  
vs.TEMPERATURE  
I
SUPPLY CURRENT  
SS  
vs.TEMPERATURE  
DD  
1.8  
1.7  
1.6  
1.5  
1.4  
108  
107  
-104  
-105  
-106  
106  
105  
104  
-107  
-108  
-109  
-110  
1.3  
1.2  
1.1  
1.0  
0.9  
103  
102  
101  
100  
0.8  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
50  
60  
70  
80  
90  
100  
50  
60  
70  
80  
90  
100  
V
(V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DUT_  
12 ______________________________________________________________________________________  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
MAX972  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
PASSIVE LOAD OFFSET  
vs. TEMPERATURE  
PASSIVE LOAD HIGH RESISTOR  
vs. VOLTAGE  
PASSIVE LOAD LOW RESISTOR  
vs. VOLTAGE  
160  
140  
8000  
7900  
7800  
7700  
7600  
7500  
7400  
2200  
2150  
2100  
2050  
2000  
1950  
1900  
1850  
1800  
DUT_ = DLV_  
= -2.2V  
DUT_ = DLV_  
V
= -2.2V  
DLV_  
120  
100  
80  
V
DLV_  
V
= +5.2V  
DLV_  
V
= +5.2V  
DLV_  
60  
40  
7300  
7200  
7100  
V
= +1.5V  
V
DLV_  
= +1.5V  
DLV_  
20  
0
-20  
7000  
50  
60  
70  
80  
90  
100  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
VOLTAGE (V)  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
VOLTAGE (V)  
TEMPERATURE (°C)  
PMU_ FORCE_ SWITCH RESISTANCE  
vs. FORCE_ CURRENT  
PMU_ FORCE_ SWITCH RESISTANCE  
vs. FORCE_ CURRENT  
PMU_ FORCE_ SWITCH RESISTANCE  
vs. FORCE_ CURRENT  
45  
42  
39  
36  
33  
30  
27  
24  
21  
18  
15  
45  
42  
39  
36  
33  
30  
27  
24  
21  
18  
15  
45  
42  
39  
36  
33  
30  
27  
24  
21  
18  
15  
V = -2.2V  
PMU_  
V
= 5.2V  
V
= 1.5V  
PMU_  
PMU_  
-50 -40 -30 -20 -10  
0
10 20 30 40 50  
-50 -40 -30 -20 -10  
0
10 20 30 40 50  
-50 -40 -30 -20 -10  
0
10 20 30 40 50  
FORCE_ CURRENT (mA)  
FORCE_ CURRENT (mA)  
FORCE_ CURRENT (mA)  
______________________________________________________________________________________ 13  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
Pin Description  
PIN  
1
NAME  
DATA1  
RCV1  
GND  
FUNCTION  
Channel 1 Multiplexer Control Input. Selects driver 1 input from DHV1 or DLV1 in drive mode. See  
Table 1 and Figure 2.  
2
Channel 1 Multiplexer Control Input. Sets channel 1 mode to drive or receive. See Table 1 and Figure 2.  
3, 8, 13,  
18, 51  
Analog Ground  
MAX972  
4
5
CMPH1 Channel 1 High-Side Comparator Output  
CMPL1  
DATA2  
RCV2  
Channel 1 Low-Side Comparator Output  
Channel 2 Multiplexer Control Input. Selects driver 2 input from DHV2 or DLV2 in drive mode. See  
Table 1 and Figure 2.  
6
7
Channel 2 Multiplexer Control Input. Sets channel 2 mode to drive or receive. See Table 1 and Figure 2.  
9
CMPH2 Channel 2 High-Side Comparator Output  
10  
11  
12  
14  
CMPL2  
CMPL3  
Channel 2 Low-Side Comparator Output  
Channel 3 Low-Side Comparator Output  
CMPH3 Channel 3 High-Side Comparator Output  
RCV3  
DATA3  
CMPL4  
Channel 3 Multiplexer Control Input. Sets channel 3 mode to drive or receive. See Table 1 and Figure 2.  
Channel 3 Multiplexer Control Input. Selects driver 3 input from DHV3 or DLV3 in drive mode. See  
Table 1 and Figure 2.  
15  
16  
17  
19  
Channel 4 Low-Side Comparator Output  
CMPH4 Channel 4 High-Side Comparator Output  
RCV4  
Channel 4 Multiplexer Control Input. Sets channel 4 mode to drive or receive. See Table 1 and Figure 2.  
Channel 4 Multiplexer Control Input. Selects driver 4 input from DHV4 or DLV4 in drive mode. See  
Table 1 and Figure 2.  
20  
DATA4  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
DHV4  
DLV4  
DTV4  
CHV4  
CLV4  
DHV3  
DLV3  
DTV3  
CHV3  
CLV3  
DGND  
DOUT  
Channel 4 Driver High Voltage Input  
Channel 4 Driver Low Voltage Input  
Channel 4 Driver Termination Voltage Input  
Channel 4 Threshold Voltage Input for High-Side Comparator  
Channel 4 Threshold Voltage Input for Low-Side Comparator  
Channel 3 Driver High Voltage Input  
Channel 3 Driver Low Voltage Input  
Channel 3 Driver Termination Voltage Input  
Channel 3 Threshold Voltage Input for High-Side Comparator  
Channel 3 Threshold Voltage Input for Low-Side Comparator  
Digital Ground Connection  
Serial-Interface Data Output  
Load Input. Latches data from the serial input register to the control register on rising edge.  
Transparent when low.  
33  
LD  
34  
35  
36  
37  
38  
DIN  
SCLK  
CS  
Serial-Interface Data Input  
Serial Clock  
Chip Select  
SENSE4  
Channel 4 PMU Sense Connection  
FORCE4 Channel 4 PMU Force Connection  
14 ______________________________________________________________________________________  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
MAX972  
Pin Description (continued)  
PIN  
39  
NAME  
FUNCTION  
SENSE3  
Channel 3 PMU Sense Connection  
40  
FORCE3 Channel 3 PMU Force Connection  
41  
TEMP  
Temperature Sensor Output  
42, 47, 52,  
56, 60  
V
DD  
Positive Power-Supply Input  
43  
44  
DUT4  
PMU4  
Channel 4 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 4.  
Channel 4 Parametric Measurement Connection. PMU switch I/O node for channel 4.  
45, 50, 53,  
57  
V
Negative Power-Supply Input  
SS  
46  
48  
49  
54  
55  
58  
59  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
V
Logic Power-Supply Input  
L
DUT3  
PMU3  
PMU2  
DUT2  
PMU1  
DUT1  
Channel 3 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 3.  
Channel 3 Parametric Measurement Connection. PMU switch I/O node for channel 3.  
Channel 2 Parametric Measurement Connection. PMU switch I/O node for channel 2.  
Channel 2 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 2.  
Channel 1 Parametric Measurement Connection. PMU switch I/O node for channel 1.  
Channel 1 Device-Under-Test Connection. Driver, comparator, and load I/O node for channel 1.  
FORCE2 Channel 2 PMU Force Connection  
SENSE2 Channel 2 PMU Sense Connection  
FORCE1 Channel 1 PMU Force Connection  
SENSE1 Channel 1 PMU Sense Connection  
COMPLO Comparator Output-Low Voltage Reference Input  
COMPHI Comparator Output-High Voltage Reference Input  
LDV4  
LDV3  
LDV2  
LDV1  
CLV2  
CHV2  
DTV2  
DLV2  
DHV2  
CLV1  
CHV1  
DTV1  
DLV1  
DHV1  
EP  
Channel 4 Load Voltage Input  
Channel 3 Load Voltage Input  
Channel 2 Load Voltage Input  
Channel 1 Load Voltage Input  
Channel 2 Threshold Voltage Input for Low-Side Comparator  
Channel 2 Threshold Voltage Input for High-Side Comparator  
Channel 2 Driver Termination Voltage Input  
Channel 2 Driver Low Voltage Input  
Channel 2 Driver High Voltage Input  
Channel 1 Threshold Voltage Input for Low-Side Comparator  
Channel 1 Threshold Voltage Input for High-Side Comparator  
Channel 1 Driver Termination Voltage Input  
Channel 1 Driver Low Voltage Input  
Channel 1 Driver High Voltage Input  
Exposed Pad. Leave unconnected or connect to ground.  
______________________________________________________________________________________ 15  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
ONE OF FOUR IDENTICAL CHANNELS SHOWN  
MAX9972  
DHV_  
50Ω  
MULTIPLEXER  
BUFFER  
DUT_  
DTV_  
DLV_  
0
MAX972  
LLEAK  
HIGH IMPEDANCE  
DATA_  
RCV_  
0
HIGH-IMPEDANCE  
LOGIC  
TERM  
CHV_  
CMPH_  
CMPL_  
SEE  
TABLE 3  
CLV_  
LDV_  
7.5kΩ  
0
0
LOAD EN  
HIGH  
2.0kΩ  
LOAD EN  
LOW  
30Ω  
1kΩ  
PMU_  
TEMP  
FORCE_  
SENSE_  
0
0
FORCE EN  
SENSE EN  
COMMON TO ALL FOUR CHANNELS  
COMPHI  
COMPLO  
V
DD  
TERM  
CS  
V
L
SCLK  
LLEAK  
V
SS  
DIN  
LD  
SENSE EN  
FORCE EN  
LOAD EN LOW  
SERIAL  
INTERFACE  
GND  
DGND  
DOUT  
LOAD EN HIGH  
Figure 1. Block Diagram  
16 ______________________________________________________________________________________  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
MAX972  
The nominal driver output resistance is 50Ω. Custom  
Detailed Description  
The MAX9972 is a four-channel, pin-electronics IC for  
resistance values from 45Ω to 51Ω are possible; con-  
sult factory for further information.  
automated test equipment that includes, for each chan-  
nel, a three-level pin driver, a window comparator, a  
passive load, and a Kelvin instrument connection  
(Figure 1). All functions feature a -2.2V to +5.2V operat-  
ing range and the drivers include both high-impedance  
and active-termination (3rd-level drive) modes. The  
comparators feature programmable output voltages,  
allowing optimization for different CMOS interface stan-  
dards. The loads have selectable output resistance for  
optimizing DUT current loading. The Kelvin paths allow  
accurate connection of an instrument with 25mA  
source/sink capability. Additionally, the MAX9972 offers  
a low-leakage mode that reduces DUT_ leakage cur-  
rent to less than 20nA.  
Table 1. Driver Channel Control Signals  
EXTERNAL  
INTERNAL  
DRIVER  
OUTPUT  
DRIVER  
MODE  
CONNECTIONS CONTROL BITS  
RCV_ DATA_ TERM LLEAK  
0
0
0
1
X
X
0
0
DUT_ = DLV_  
DUT_ = DHV_  
Drive  
Drive  
High  
Impedance  
1
1
X
X
X
X
0
1
X
0
0
1
Receive  
DUT_ = DTV_ Receive  
Low  
Low Leak  
Each of the four channels feature single-ended CMOS-  
compatible inputs, DATA_ and RCV_, for control of the  
driver signal path (Figure 2). The MAX9972 modal  
operation is programmed through a 3-wire, low-voltage  
CMOS-compatible serial interface.  
Leakage  
0
1
Output Driver  
The driver input is a high-speed multiplexer that selects  
one of three voltage inputs: DHV_, DLV_, or DTV_. This  
switching is controlled by high-speed inputs DATA_ and  
RCV_, and mode-control bit TERM (Table 1). DATA_  
and RCV_ are single-ended inputs with threshold levels  
DLV_  
0
1
50Ω  
0
BUFFER  
DUT_  
DHV_  
DTV_  
LLEAK  
DATA_  
RCV_  
equal to V /2. Each channel’s threshold levels are inde-  
L
COMPARATORS  
AND LOAD  
pendently generated to minimize crosstalk.  
DUT_ can be toggled at high speed between the buffer  
output and high-impedance mode, or it can be placed  
into low-leakage mode (Figure 2, Table 1). High-speed  
input RCV_ and mode-control bits TERM and LLEAK  
control these modes. In high-impedance mode, the  
bias current at DUT_ is less than 2µA over the -2.2V to  
+5.2V range, while the node maintains its ability to  
track high-speed signals. In low-leakage mode, the  
bias current at DUT_ is further reduced to less than  
20nA, and signal tracking slows.  
TERM  
HIGH  
IMPEDANCE  
MAX9972  
Figure 2. Multiplexer and Driver Channel  
______________________________________________________________________________________ 17  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
Comparators  
The MAX9972 provides two independent high-speed  
Table 2. Comparator Logic  
comparators for each channel. Each comparator has  
one input connected internally to DUT_ and the other  
input connected to either CHV_ or CLV_ (see Figure 1).  
Comparator outputs are a logical result of the input  
conditions, as indicated in Table 2.  
DUT_ > CHV_ DUT_ > CLV_  
CMPH_  
CMPL_  
0
0
1
1
0
1
0
1
0
0
1
1
0
1
0
1
The comparator output voltages are easily interfaced to a  
wide variety of logic standards. Use buffered inputs  
COMPHI and COMPLO to set the high and low output  
voltages. For correct operation, COMPHI should be  
greater than or equal to COMPLO. The comparator 50Ω  
output impedance provides source termination (Figure 3).  
MAX972  
MAX9972  
Passive Load  
The MAX9972 channels each feature a passive load  
consisting of a buffered input voltage, LDV_, connected  
to DUT_ through two resistive paths (Figure 1). Each  
path connects to DUT_ individually by a switch con-  
trolled through the serial interface. Programming  
options include none (load disconnected), either, or  
both paths connected. The loads facilitate fast  
open/short testing in conjunction with the comparator,  
and pullup of open-drain DUT_ outputs.  
COMPHI  
CHV_  
50Ω  
CMPH_  
DUT_  
Parametric Switches  
Each of the four MAX9972 channels provides force-  
and-sense paths for connection of a PMU or other DC  
resource to the device-under-test (Figure 1). Each  
force-and-sense switch is independently controlled  
though the serial interface providing maximum applica-  
tion flexibility. PMU_ and DUT_ are provided on sepa-  
rate pins allowing designs that do not require the  
parametric switch feature to avoid the added capaci-  
tance of PMU_. It also allows PMU_ to connect to DUT_  
either directly or with an impedance-matching network.  
50Ω  
CMPL_  
CLV_  
COMPLO  
Figure 3. Complementary 50Ω Comparator Outputs  
Low-Leakage Mode, LLEAK  
Asserting LLEAK through the serial port places the  
MAX9972 into a very-low-leakage state (see the  
Electrical Characteristics table). This mode is conve-  
nient for making IDDQ and PMU measurements without  
the need for an output disconnect relay. LLEAK control  
is independent for each channel.  
Table 3. Passive Load Resistance Values  
HIGH RESISTOR (kΩ)  
LOW RESISTOR (kΩ)  
7.5  
2
Temperature Monitor  
When DUT_ is driven with a high-speed signal while  
LLEAK is asserted, the leakage current momentarily  
increases beyond the limits specified for normal opera-  
tion. The low-leakage recovery specification in the  
Electrical Characteristics table indicates device behav-  
ior under this condition.  
Each device supplies a single temperature output sig-  
nal, TEMP, that asserts a nominal 3.43V output voltage  
at a +70°C (343K) die temperature. The output voltage  
increases proportionately with temperature at a rate of  
10mV/°C. The temperature sensor output impedance is  
500Ω, typical.  
18 ______________________________________________________________________________________  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
MAX972  
The latches contain the six mode bits for each channel  
of the device. The mode bits, in conjunction with exter-  
nal inputs DATA_ and RCV_, manage the features of  
each channel. Transfer data asynchronously from the  
input registers to the channel registers by forcing LD  
low. With LD always low, data transfer on the rising  
edge of CS.  
Serial Interface and Device Control  
A CMOS-compatible serial interface controls the  
MAX9972 modes (Figure 4). Control data flow into a 12-  
bit shift register (LSB first) and are latched when CS is  
taken high. Data from the shift register are then loaded  
to the per-channel control latches as determined by  
bits D8–D11, and indicated in Figure 4 and Table 4.  
SCLK  
DIN  
11  
10  
9
8
7
6
5
4
3
2
1
0
ENABLE  
CS  
LD  
MAX9972  
QUAD F/F  
QUAD F/F  
QUAD F/F  
QUAD F/F  
0–5  
0–5  
11  
0–5  
8
0–5  
D
Q
D
Q
D
Q
D
Q
9
10  
ENABLE  
LOAD  
ENABLE  
LOAD  
ENABLE  
LOAD  
ENABLE  
LOAD  
6
6
6
6
MODE BITS  
CHANNEL 1  
MODE BITS  
CHANNEL 2  
MODE BITS  
CHANNEL 3  
MODE BITS  
CHANNEL 4  
Figure 4. Serial Interface  
Table 4. Control Register Bit Functions  
BIT STATE  
POWER-UP  
STATE  
BIT  
NAME  
FUNCTION  
0
1
0
1
TERM  
LLEAK  
Term Mode Control  
Assert Low-Leakage Mode  
Enable Sense Switch  
High Impedance  
Term Mode  
Disabled  
Disabled  
Disabled  
Disabled  
X
Term Mode  
Low Leakage  
Enabled  
Enabled  
Enabled  
Enabled  
X
0
0
0
0
0
0
0
0
1
1
1
1
2
SENSE EN  
FORCE EN  
LOAD EN LOW  
LOAD EN HIGH  
3
Enable Force Switch  
4
Enable Low Load Resistor  
Enable High Load Resistor  
Unused  
5
6
7
Unused  
X
X
8
CH1  
Update Channel 1 Control Register  
Update Channel 2 Control Register  
Update Channel 3 Control Register  
Update Channel 4 Control Register  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
9
CH2  
10  
11  
CH3  
CH4  
______________________________________________________________________________________ 19  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
t
CH  
SCLK  
t
t
CL  
t
CSS1  
CSSO  
t
t
CSH1  
9
CSHO  
CS  
t
CSWH  
t
DH  
t
DS  
DIN  
D0  
D1  
D2  
D3  
D4  
D5  
D10  
D11  
t
DO  
D10 LAST  
D11 LAST  
D0  
DOUT  
LOAD  
D0 LAST  
D1 LAST  
D2 LAST  
D3 LAST  
D4 LAST  
D5 LAST  
t
CSHLD  
t
LDW  
Figure 5. Serial-Interface Timing  
Heat Removal  
Chip Information  
Package Information  
With adequate airflow, no external heat sinking is need-  
ed under most operating conditions. If excess heat must  
be dissipated through the exposed pad, solder it to cir-  
cuit board copper. The exposed pad must be either left  
unconnected, isolated, or connected to ground.  
PROCESS: BiCMOS  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
Power Minimization  
To minimize power consumption, activate only the  
needed channels. Each channel placed in low-leakage  
mode saves approximately 240mW.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
80 TQFP-EP  
C80E+4  
21-0115  
90-0152  
20 ______________________________________________________________________________________  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
MAX972  
Pin Configuration  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65  
64 63 62  
61  
+
DATA1  
1
2
60  
V
DD  
RCV1  
GND  
59 DUT1  
58 PMU1  
3
CMPH1  
CMPL1  
DATA2  
RCV2  
4
57  
56  
V
V
SS  
5
DD  
6
55 DUT2  
54 PMU2  
7
GND  
8
53  
52  
V
V
SS  
9
CMPH2  
CMPL2  
CMPL3  
CMPH3  
DD  
10  
11  
12  
51 GND  
50  
MAX9972  
V
SS  
49 PMU3  
48 DUT3  
GND 13  
RCV3 14  
47  
46  
45  
V
V
V
DD  
L
DATA3  
CMPL4  
CMPH4  
15  
16  
17  
SS  
44 PMU4  
43 DUT4  
EP  
GND 18  
RCV4 19  
DATA4 20  
V
42  
41  
DD  
TEMP  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
TQFP  
______________________________________________________________________________________ 21  
Quad, Ultra-Low-Power, 300Mbps ATE  
Drivers/Comparators  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
6/06  
Initial release  
Changed driver offset max value in Electrical Characteristics table and removed all  
references to MAX9971  
1
2
7/09  
4/10  
1–22  
Added soldering temperature to Absolute Maximum Ratings, updated SCLK to DOUT  
specification in Electrical Characteristics table, and replaced Figure 5  
MAX972  
2, 7, 20  
3
4
9/10  
Updated Absolute Maximum Ratings and Figure 1  
Updated Electrical Characteristics table and notes  
2, 16  
12/10  
3, 4, 7, 8  
Changed maximum DC drive current in Electrical Characteristics table to reflect actual  
circuit operation  
5
6
7
1/11  
3/11  
6/11  
2
Narrowed down product offerings and modified exposed die pad connection  
description; added CS high pulse width to Electrical Characteristics table  
1, 2, 4, 5, 7, 15,  
17, 18, 20  
Corrected/changed SPI timing parameters to improve yield and changed global levels  
2–8  
for V  
and V  
COMPLO  
COMPHI  
8
9
6/11  
Restored original global levels changed in Rev 7  
Correct value for Temp Sensor nominal voltage  
2–8  
7
10/11  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9972ACCS+TD

Comparator,
MAXIM

MAX9972ACCS-DW

Comparator
MAXIM

MAX9972ACCS-DW-T

暂无描述
MAXIM

MAX9972BCCS

Quad, Ultra-Low-Power, 300Mbps ATE Drivers/Comparators
MAXIM

MAX9972BCCS+

Comparator, 4 Func, 100000uV Offset-Max, 2ns Response Time, BICMOS, PQFP80, 12 X 12 MM, 1 MM PITCH, LEAD FREE, TQFP-80
MAXIM

MAX9972BCCS-T

Comparator, 4 Func, 100000uV Offset-Max, 2ns Response Time, BICMOS, PQFP80, 12 X 12 MM, 1 MM PITCH, TQFP-80
MAXIM

MAX9972_11

Quad, Ultra-Low-Power, 300Mbps ATE Drivers/Comparators Integrated PMU Switches
MAXIM

MAX9972_1110

Quad, Ultra-Low-Power, 300Mbps ATE Drivers/Comparators
MAXIM

MAX9973

Dual Driver/Comparator/Load with Internal DACs
MAXIM

MAX9973GCCB

Dual Driver/Comparator/Load with Internal DACs
MAXIM

MAX9973GCCB+D

暂无描述
MAXIM

MAX9973GCCB+TD

Comparator, 1 Func, 50000uV Offset-Max, 1.2ns Response Time, BICMOS, PQFP64, 10 X 10 MM, 1 MM HEIGHT, ROHS COMPLIANT, MS-026ACD, TQFP-64
MAXIM