MAX9979KCTK+TD [MAXIM]

D/A Converter, 1 Func, Serial Input Loading, 20us Settling Time, 10 X 10 MM, 1 MM HEIGHT, ROHS COMPLIANT, TQFN-68;
MAX9979KCTK+TD
型号: MAX9979KCTK+TD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 1 Func, Serial Input Loading, 20us Settling Time, 10 X 10 MM, 1 MM HEIGHT, ROHS COMPLIANT, TQFN-68

信息通信管理 转换器
文件: 总60页 (文件大小:643K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4134; Rev 6; 8/11  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
General Description  
Features  
The MAX9979 fully integrated, high-performance, dual-  
channel pin electronics integrates multiple automatic test  
equipment (ATE) functions into a single IC, including dri-  
ver/comparator/load (DCL), parametric measurement unit  
(PMU), and built-in (16-bit) level-setting digital-to-analog  
converters (DACs). The device is ideal for memory and  
SOC tester applications. Each channel includes a four-  
level pin driver, window comparator, differential compara-  
tor, dynamic clamps, a versatile PMU, an active load, a  
high-voltage (VHH) programmable level, and 14 indepen-  
dent level-setting DACs. The MAX9979 features program-  
mable cable-droop compensation for the driver output  
and for the comparator input, adjustable driver output  
resistance that allows optimal performance over typical  
data-path transmission-line variations, slew-rate adjust-  
ment, and a programmable high-voltage driver output.  
o High Speed: 1.1Gbps at 1V  
P-P  
o Extremely Low Power Dissipation: 1.2W/Channel  
(Active Load Disabled)  
o Wide Voltage Range: -1.5V to +6.5V and Up to 13V  
VHH  
o Wide Voltage Swing Range: 50mV  
o Low-Leak Mode: 10nA max  
to 13V  
P-P  
P-P  
o Integrated Termination-on-the-Fly (3rd-Level  
Drive)  
o Integrated VHH High Voltage (4th-Level Drive)  
o Integrated Voltage Clamps  
o Integrated 20mA Active Load  
o Integrated Per-Pin PMU  
The MAX9979 driver features a wide 8V (-1.5V to +6.5V)  
high-speed operating voltage range and a VHH program-  
mable range of up to +13V. Operation modes include  
high-impedance, active-termination (3rd-level drive) and  
VHH (4th-level drive) modes. The device is highly linear  
even at low voltage swings. The driver provides high-  
speed differential control inputs compatible with most  
high-speed logic families. The window comparators pro-  
vide extremely low timing variation over changes in slew  
rate, pulse width, and overdrive voltage. In high-imped-  
ance mode, the MAX9979 features dynamic clamps that  
dampen high-speed device-under-test (DUT) waveforms.  
The 20mA active load facilitates fast contact testing when  
used in conjunction with the comparators, and functions  
as a pullup/pulldown for open-drain/collector DUT out-  
puts. The PMU offers five current ranges from 2ꢀA to  
50mA and can force and measure current or voltage.  
An SPI™-compatible serial interface configures the  
MAX9979.  
o Integrated Level-Setting CALDACs  
o Programmable Cable-Droop Compensation for  
Both Driver Output and Comparator Input  
o Programmable Driver Output Impedance  
o Four Slew-Rate Settings for Driver Output  
o Analog Measure Bus  
o Very Low Timing Dispersion  
o Minimal External Component Count  
o SPI-Compatible Serial Control Interface  
o 68-Pin Thermally Enhanced TQFN Package with  
Top-Side Heat Removal  
The MAX9979 is available in a small footprint, 68-pin  
(10mm x 10mm x 1mm) TQFN-EP-IDP package with  
exposed pad on the top for easy heat removal. Power dis-  
sipation is 1.2W per channel (typ) over the full operating  
voltage range with the active load disabled. The  
MAX9979 operates over an internal die temperature  
range of +40°C to +100°C and provides a temperature  
monitor output.  
Ordering Information  
PART  
MAX9979KCTK+  
TEMP RANGE  
PIN-PACKAGE  
0°C to +70°C  
68 TQFN-EP-IDP*  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP-IDP = Exposed pad, inverted die pad.  
Applications  
Memory ATE Testers  
Pin Configuration and Typical Operating Circuit appear at  
end of data sheet.  
SOC ATE Testers  
SPI is a trademark of Motorola, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
ABSOLUTE MAXIMUM RATINGS  
V
V
V
V
V
to GND............................................................-0.3V to +11V  
to GND............................................................-5.5V to +0.3V  
TEMP to GND .................................................................0 to V  
CC  
CC  
EE  
MEAS_ to GND.................................(V - 0.3V) to (V  
REF to GND..............................................-0.3V to (2.6V + V  
+ 0.3V)  
)
DGS  
EE  
CC  
to V ...........................................................-0.3V to +16.5V  
CC  
DD  
HHP  
EE  
to DGND ........................................................-0.3V to +5.2V  
to GND..........................................................-0.3V to +19V  
Current into SCLK, DIN, CS, RST, LOAD ......................... 30mA  
Current into LLEAKP_, HIZMEASP_, ENVHHP_,  
DGND to GND .................................................................... 0.3V  
CTV_, BV_ to GND....................................................-0.3V to +5V  
DATA_, NDATA_, RCV_,  
DUTHI_, DUTLO_ ........................................................... 30mA  
PMU-F Continuous Current............................................... 35mA  
PMU-F Peak Current......................................................... 70mA  
PMU-S Continuous Current ................................................ 1mA  
PMU-S Peak Current......................................................... 20mA  
DGS to GND ....................................................................... 0.3V  
DUT_, SENSE_ Short-Circuit  
NRCV_ to GND..............................(V - 0.3V) to (V  
+ 0.3V)  
+ 0.3V)  
EE  
BV_  
MAX79  
CH_, NCH_, CL_, NCL_ to GND..............-1.5V to (V  
CTV_  
Current into CH_, NCH_, CL_, NCL_................................ 35mA  
DATA_ to NDATA_, RCV_ to NRCV_ ..................................... 1V  
DUT_, PMU-F, PMU-S, SENSE_ to GND  
Duration to V , V ................................................Continuous  
CC EE  
(non-VHH mode) ...........................(V - 0.3V) to (V  
DUT_, PMU-F, PMU-S, SENSE_ to GND  
(VHH mode).......................................................-3.5V to +13.5V  
SCLK, DIN, CS, RST, LOAD to GND..........-0.3V to (V  
LLEAKP_, HIZMEASP_, ENVHHP_, DUTHI_,  
+ 0.3V)  
Power Dissipation (T = +70°C)*  
EE  
A
CC  
MAX9979KCTK (derate 125mW/°C above +70°C).............10W  
Storage Temperature Range.............................-65°C to +150°C  
Maximum Junction Temperature .....................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
+ 0.3V)  
DD  
DUTLO_, to GND......................................-0.3V to (V  
+ 0.3V)  
DD  
*Dissipation wattage values are based on still air with no heatsink. Actual maximum power dissipation is a function of heat extraction  
technique and may be substantially higher.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS**  
TQFN  
Junction-to-Case Thermal Resistance (θ )...............8.0°C/W  
JA  
Junction-to-Ambient Thermal Resistance (θ )......................0.3°C/W  
JC  
**Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
ELECTRICAL CHARACTERISTICS  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
EE  
DD  
= 1.4V, V  
HHP  
= 4V, V  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CPLV_  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER  
DC CHARACTERISTICS (R 10MΩ, unless otherwise noted; includes DAC error)  
L
V
V
V
V
V
V
V
= -1.5V, V  
= 1.5V  
-1.45 to +6.50  
-1.50 to +6.45  
DHV  
DLV_  
DHV_  
DHV_  
DHV_  
DLV_  
DTV_  
DTV_  
DTV_  
DLV_  
Output-Voltage Range  
V
V
= 6.5V, V  
= 6.5V, V  
= 1.5V  
V
DLV  
DTV  
DHV  
= -1.5V (Note 2)  
-1.50  
+6.50  
V
= 3V, V  
= -1.5V, V  
= 1.5V  
= 1.5V  
5
5
5
DLV_  
DHV_  
DTV_  
Output Offset Voltage  
mV  
V
V
= 0V, V  
= 6.5V, V  
DLV  
DTV  
DTV_  
= 1.5V, V  
= 6.5V, V  
= -1.5V  
DHV_  
DLV_  
Output-Voltage Temperature  
Coefficient (Notes 3, 4)  
DHV_, DLV_, DTV_  
75  
500  
ꢀV/°C  
2
_______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= -1.5V, V  
= 1.5V, V  
= 0V  
= 0V  
= 0V  
DLV_  
DTV_  
DTV_  
DLV_  
DHV_  
A
0.998  
1
1.002  
DHV_  
and 4.5V  
V
= 6.5V, V  
= 1.5V, V  
DHV_  
DLV_  
A
0.998  
0.998  
1
1
1.002  
1.002  
Gain  
V/V  
DLV  
and 4.5V  
V
= 6.5V, V  
= -1.5V, V  
DTV_  
DHV_  
A
DTV  
and 4.5V  
V
= -1.5V, V  
DTV_  
DLV_  
= 1.5V, V  
= 0V,  
2
2
DHV_  
0.75V, 1.5V, 2.25V, 3V  
= 6.5V, V =  
DTV_  
0 to 3V relative to  
calibration points  
at 0 and 3V  
V
DHV_  
1.5V, V  
= 0V,  
DLV_  
0.75V, 1.5V, 2.25V, 3V  
V
= -1.5V, V  
DLV_  
DHV_  
= 6.5V, V  
= 0V,  
2
DTV_  
0.75V, 1.5V, 2.25V, 3V  
V
= -1.5V, V  
DTV_  
DLV_  
= 1.5V, V  
and 6V  
= -1V  
4.5  
4.5  
4.5  
6
DHV_  
-1V to 6V relative  
to calibration  
V
= 6.5V, V  
=
DTV_  
= -1V  
DHV_  
Linearity Error  
1.5V, V  
mV  
DLV_  
points at 0 and 3V and 6V  
V
= -1.5V, V  
DLV_  
DHV_  
= -1V  
= 6.5V, V  
and 6V  
DTV_  
V
= -1.5V, V  
DLV_  
DTV_  
= 1.5V, V  
=
DHV_  
-1.25V and 6.5V  
V
= 6.5V, V  
=
Full range relative  
to calibration  
DHV_  
DTV_  
1.5V, V  
= -1.5V  
6
DLV_  
and 6.25V  
points at 0 and 3V  
V
= -1.5V, V  
DLV_  
DHV_  
= 6.5V, V  
and 6.5V  
= -1.5V  
6
DTV_  
_______________________________________________________________________________________  
3
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= 0V, V  
=
=
=
DLV_  
DTV_  
MAX79  
DHV_ to DLV_  
DLV_ to DHV_  
1.5V, V  
and 6.5V  
= 0.2V  
7
DHV_  
V
= 5V, V  
DHV_  
DTV_  
1.5V, V  
and 4.8V  
= -1.5  
7
2
3
3
2
DLV_  
V
0V, V  
and 6.5V  
= 3V, V  
DHV_  
DLV_  
DTV_ to DLV_ and  
DHV_  
Crosstalk  
= -1.5V  
mV  
DTV_  
V
0V, V  
and 3V  
= 1.5V, V  
=
=
=
DTV_  
DLV_  
= 1.6V  
DHV_ to DTV_  
DLV_ to DTV_  
DHV_  
V
3V, V  
and 1.4V  
= 1.5V, V  
DTV_  
DHV_  
= 0  
DLV_  
V
3V, V  
DATA_ = 0 and 1  
= 1.5V, V  
DTV_  
DHV_  
Dependence on  
DATA_  
Term Voltage  
= 0V,  
mV  
dB  
DLV_  
DHV_  
DLV_  
DTV_  
V
V
V
= 3V  
= 0V  
40  
40  
40  
DHV_  
DLV_  
DTV_  
DC Power-Supply Rejection  
(Note 5)  
= 1.5V  
DATA_ = 1, V  
-1.5V  
=
=
DUT_  
+60  
+110  
V
V
= 6.5V,  
= -1.5V  
DHV_  
DLV_  
DC Drive Current Limit  
DC Output Resistance  
mA  
Ω
DATA_ = 0, V  
6.5V  
DUT_  
-110  
48  
-60  
52  
2
(Note 6)  
50  
1
DATA_ = 1, V  
1.5V, I  
= 3V, V  
= 0V, V  
=
DHV_  
DLV_  
DTV_  
= 1mA, 8mA, 15mA, 40mA  
DUT_  
DC Output Resistance Variation  
(Note 7)  
Ω
DATA_ = 0, V  
1.5V, I  
= 3V, V  
= 0V, V  
=
DHV_  
DLV_  
DTV_  
1
2
= -1mA, -8mA, -15mA, -40mA  
DUT_  
Adjustable Output Resistance  
Range  
R
R
= 0xF vs. R = 0x8 and R = 0x0 vs.  
O O  
= 0x8, resolution of 0.36Ω (Note 6)  
O
2.5  
Ω
O
4
_______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
AC CHARACTERISTICS (R  
Dynamic Drive Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
_ = 50Ω to Ground) (Note 8)  
(Note 9)  
DUT  
130  
30  
mA  
Cable-droop compensation off, V  
= 0V,  
= 0V,  
= 0V,  
= 0V,  
DLV_  
DLV_  
DLV_  
DLV_  
V
= 0.1V  
DHV_  
Cable-droop compensation off, V  
= 1V  
40  
50  
50  
V
DHV_  
Drive-Mode Overshoot  
mV  
Cable-droop compensation off, V  
= 3V  
V
DHV_  
Cable-droop compensation off, V  
V
V
V
= 5V  
DHV_  
DLV_  
DLV_  
= 0V, V  
= 0V, V  
= 3V, CDRP_ = 0b000  
= 3V, CDRP_ = 0b111  
0
DHV_  
DHV_  
Cable-Droop Compensation  
%
10  
Termination-Mode Overshoot  
Cable-droop compensation off (Note 10)  
To within 100mV, V = 5V, V = 0V  
0
mV  
0.25  
0.25  
0.25  
1
1
1
DHV_  
DLV_  
Settling Time (Notes 4, 11)  
To within 50mV, V  
To within 50mV, V  
= 3V, V  
= 0V  
DLV_  
ns  
DHV_  
DHV_  
= 0.5V, V  
= 0V  
DLV_  
TIMING CHARACTERISTICS (Notes 8, 12)  
Data to output, V  
(Note 13)  
= 3V, V  
= 0V  
DLV_  
DHV_  
1
1.9  
2.7  
4
Drive to term, term to drive (Notes 4, 14)  
1.7  
3.7  
Propagation Delay  
ns  
ps  
Drive to high impedance, high impedance  
to drive, V  
= 1V, V  
= -1V  
DLV_  
1.4  
2.4  
3.4  
80  
DHV_  
(Notes 4, 15)  
t
LH  
vs. t (Note 4)  
40  
40  
HL  
Drivers within package, same edge  
Drive to high impedance vs. high  
impedance to drive, V  
= 1V,  
0.5  
DHV_  
V
= -1V (Note 16)  
DLV_  
Propagation-Delay Match  
ns  
ps  
High impedance vs. data  
Drive to term vs. term to drive, V  
0.5  
0.3  
0.8  
= 3V,  
= 0V,  
DHV_  
V
= 0V, V  
= 1.5V (Note 17)  
DTV_  
DLV_  
Terminate vs. data  
Differential mode, V  
= 1V, V  
DHV_  
DLV_  
Propagation-Delay Channel  
Match  
channel 1 inverted, DIFFERENTIAL0 = 1,  
INVERT1 = 1  
40  
_______________________________________________________________________________________  
5
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
= 0V (Note 4)  
DLV_  
MIN  
TYP  
MAX  
UNITS  
Propagation-Delay Temperature  
Coefficient  
V
= 3V, V  
3
5
ps/°C  
DHV_  
MAX79  
V
= 1V, V  
=
DLV_  
DHV_  
0V, 1ns to 24ns pulse  
width (Note 4)  
25  
35  
60  
60  
V
= 3V, V  
=
DLV_  
DHV_  
Change vs. pulse  
width (Note 18)  
0V, 1ns to 24ns pulse  
width (Note 4)  
Propagation-Delay Change  
ps  
V
= 5V, V  
=
DLV_  
DHV_  
0V, 1.5ns to 23.5ns  
pulse width  
100  
50  
Peak-to-peak change vs. common mode,  
- V = 1V, V = 0 to 6V, using  
V
60  
DHV_  
DLV_  
DHV_  
a DC-blocking capacitor (Note 4)  
0.2V programmed, V = 0.2V,  
P-P  
DHV_  
275  
450  
650  
1000  
40  
V
= 0V, 20% to 80%  
DLV_  
1V  
programmed, V  
= 1V,  
DHV_  
P-P  
330  
500  
800  
550  
800  
V
= 0V, 10% to 90%  
DLV_  
Rise-and-Fall Time  
ps  
3V  
programmed, V  
= 3V,  
DHV_  
P-P  
V
= 0V, 10% to 90%, trim condition  
DLV_  
5V  
programmed, V  
= 5V,  
DHV_  
P-P  
1200  
V
= 0V, 10% to 90% (Note 4)  
DLV_  
0.2V  
programmed, V  
= 0.2V,  
DHV_  
P-P  
V
= 0V, 20% to 80%  
DLV_  
1V  
programmed, V  
= 0V, 10% to 90%  
= 1V,  
DHV_  
P-P  
50  
130  
200  
V
DLV_  
Rise-and-Fall Time Matching  
ps  
3V  
programmed, V  
= 0V, 10% to 90%  
= 3V,  
= 5V,  
P-P  
DHV_  
50  
V
DLV_  
5V  
programmed, V  
DHV_  
= 0V, 10% to 90%  
P-P  
50  
V
DLV_  
6
_______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
SC1 = 0, SC0 = 1,  
= 3V, V  
MIN  
TYP  
MAX  
UNITS  
V
=
75  
DHV_  
DLV_  
0V, 20% to 80%  
SC1 = 1, SC0 = 0,  
Relative to SC1 =  
SC0 = 0  
Slew Rate  
V
DHV_  
= 3V, V  
= 0V,  
50  
25  
%
DLV_  
20% to 80%  
SC1 = 1, SC0 = 1,  
= 3V, V  
V
DHV_  
= 0V,  
DLV_  
20% to 80%  
0.2V programmed,  
P-P  
V
V
= 0.2V,  
= 0V (Note 19)  
800  
950  
1000  
1300  
1100  
DHV_  
DLV_  
1V programmed,  
P-P  
V
DHV_  
= 1V, V  
= 0V  
DLV_  
(Note 19)  
Positive or  
negative  
Minimum Pulse Width  
ps  
3V  
V
programmed,  
P-P  
= 3V, V  
= 0V  
DLV_  
1250  
DHV_  
(Notes 4, 19)  
5V  
V
(Note 19)  
programmed,  
P-P  
= 5V, V  
= 0V  
DLV_  
DHV_  
0.2V programmed,  
V
P-P  
= 0.2V, V  
DLV_  
DHV_  
= 0V  
1V programmed,  
P-P  
900  
800  
To 95%  
(Note 20)  
P-P  
V
DHV_  
= 1V, V  
= 0V  
DLV_  
3V programmed,  
P-P  
V
DHV_  
= 3V, V  
= 0V  
DLV_  
5V programmed,  
P-P  
680  
V
DHV_  
= 5V, V  
= 0V  
DLV_  
Data Rate  
Mbps  
0.2V programmed,  
P-P  
1200  
1100  
900  
V
DHV_  
= 0.2V, V  
= 0V  
DLV_  
1V programmed,  
P-P  
V
DHV_  
= 1V, V  
= 0V  
DLV_  
To 90%  
P-P  
(Note 21)  
3V programmed,  
P-P  
V
DHV_  
= 3V, V  
= 0V  
DLV_  
5V programmed,  
P-P  
720  
V
DHV_  
= 5V, V  
= 0V  
DLV_  
_______________________________________________________________________________________  
7
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
= 3V, V  
MIN  
TYP  
MAX  
UNITS  
Drive to term, V  
= 0V, V  
DTV_  
DHV_  
DLV_  
300  
500  
1000  
MAX79  
= 1.5V, measured 10% to 90% of waveform  
Term to drive, V = 3V, V = 0V, V  
DTV_  
Rise-and-Fall Time  
ps  
DHV_  
DLV_  
300  
-1.5  
600  
850  
= 1.5V, measured 10% to 90% of waveform  
HIGH-SPEED COMPARATORS  
DC CHARACTERISTICS  
Input-Voltage Range  
(Notes 2, 22)  
+6.5  
V
V
Differential Input Voltage  
Input Offset Voltage  
V
V
- V  
, V  
- V (Note 23)  
CLV_  
8
5
DUT_  
DUT_  
CHV_ DUT_  
= 1.5V  
1
mV  
Input-Voltage Temperature  
Coefficient  
(Notes 4, 24)  
= -1.5V, 6.5V (Note 25)  
50  
175  
ꢀV°C  
dB  
Common-Mode Rejection Ratio  
CMRR  
PSRR  
V
50  
50  
55  
1
DUT_  
0 to 3V, V  
= 0V, 1.5V, 3V  
5
DUT_  
Linearity Error (Note 26)  
mV  
dB  
Full range, V  
= -1.5V, 0V, 1.5V, 3V, 6.5V  
1
10  
DUT_  
Power-Supply Rejection Ratio  
V
= -1.5 and 6.5V (Notes 5, 27)  
66  
DUT_  
HYST0  
HYST1  
HYST2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
2
4
Hysteresis  
6
mV  
8
10  
12  
15  
AC CHARACTERISTICS (Notes 4, 28, 29, 30)  
Minimum Pulse Width  
(Note 31)  
0.50  
0.9  
0.65  
1.5  
ns  
ns  
Propagation Delay  
0.5  
Propagation-Delay Temperature  
Coefficient  
1.7  
10  
40  
25  
30  
ps/°C  
ps  
High/low vs. low/high, absolute value of  
delta for each comparator  
Propagation-Delay Match  
25  
55  
40  
55  
Propagation-Delay Dispersion vs.  
Common-Mode Input  
-1.4V to +6.4V (Note 32)  
ps  
P-P  
Propagation-Delay Dispersion vs.  
Duty Cycle  
0.6ns to 24.4ns pulse width, relative to 5ns  
pulse width  
ps  
Propagation-Delay Dispersion vs.  
Slew Rate  
1V/ns to 6V/ns, relative to 2V/ns (Note 33)  
ps  
8
_______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
= 0.5V, driver terminated (Note 34)  
MIN  
1000  
TYP  
1500  
700  
0
MAX  
UNITS  
V
DTV_  
Equivalent 20–80 Bandwidth  
MHz  
Driver high impedance  
CDRP = 0b000  
CDRP = 0b111  
Cable-Droop Compensation,  
Peaking  
1V swing, rise/fall time =  
500ps, DRV terminated  
%
10  
LOGIC OUTPUTS (CH_, NCH_, CL_, NCL_ collector output, R = 50Ω internal pullup to CTV)  
L
Termination Voltage  
CTV  
0
3.5  
V
mA  
mA  
V
_
Output High Current  
Output Low Current  
0
16  
Output-Voltage Compliance  
Differential Rise Time  
Differential Fall Time  
Termination Resistor Value  
Set by I  
, R  
and V  
-0.5  
CTV  
_
OUT_ TERM_  
CTV  
20% to 80% (Note 4)  
20% to 80% (Note 4)  
200  
200  
400  
400  
52  
ps  
ps  
Ω
CTV to CH_, NCH_, CL_, NCL_  
48  
_
With output resistors, R  
(Note 56)  
to V  
CTV - CTV -  
TERM  
CTV  
CTV  
_
_
Output High Voltage  
Output Low Voltage  
Output-Voltage Swing  
V
CTV  
V
V
OH  
_
0.1  
0.02  
With output resistors, R  
(Note 56)  
to V  
CTV - CTV - CTV -  
TERM  
_
_
_
V
OL  
0.55  
0.4  
0.35  
With output resistors, 50Ω nominal trim  
(Note 56)  
350  
400  
450  
mV  
DYNAMIC CLAMPS  
CPHV_ Functional Clamp Range  
I
I
_ = -1mA, V  
= -1.5V (Note 2)  
= 6.5V (Note 2)  
-0.3  
-1.5  
+6.5  
+5.3  
V
V
DUT  
CPLV_  
CPLV_ Functional Clamp Range  
_ = 1mA, V  
DUT  
CPHV_  
CPHV_ Maximum Programmable  
Voltage  
I
I
_ = 0mA (Note 23)  
_ = 0mA (Note 23)  
7.2  
7.5  
V
V
DUT  
CPLV_ Minimum Programmable  
Voltage  
-2.5  
-2.2  
DUT  
I
= -1mA, V  
= 1mA, V  
= 1.5V, V = -1.5V  
CPLV_  
10  
10  
DUT_  
CPHV_  
Offset Voltage  
mV  
I
= 1.5V, V  
= 6.5V  
DUT_  
CPLV_  
CPHV_  
Offset-Voltage Temperature  
Coefficient  
V
= V  
= 1.5V  
CPLV_  
0.5  
mV/°C  
CPHV_  
I
= -1mA, V  
= 1.5V, V  
=
DUT_  
CPHV_ CPLV_  
40  
40  
-1.5V (Note 5)  
Power-Supply Rejection Ratio  
dB  
I
= +1mA, V  
= 1.5V, V  
=
CPHV_  
DUT_  
CPLV_  
6.5V (Note 5)  
High Clamp Voltage Gain  
Low Clamp Voltage Gain  
V
V
= -0.3V, 6.5V  
0.998  
0.998  
1.002  
1.002  
V/V  
V/V  
CPHV_  
CPLV_  
= -1.5V, 5.3V  
Voltage-Gain Temperature  
Coefficient  
100  
ppm/°C  
_______________________________________________________________________________________  
9
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
_ = -1mA, V = -0.3V, 1.5V, 3.25V,  
MIN  
TYP  
MAX  
UNITS  
I
DUT  
CPHV_  
30  
MAX79  
5V, 6.5V  
Linearity  
mV  
I
_ = 1mA, V  
4V, 5.3V  
= -1.5V, 0.5V, 2.25V,  
DUT  
CPLV_  
CPLV_  
CPHV_  
CPLV_  
30  
-60  
120  
55  
V
6.5V  
= 0V, V  
= 5V, V  
= 0V, V  
= -1.5V, R = 0Ω to  
L
CPHV_  
-120  
60  
Static Output Current  
mA  
V
= 6.5V, R = 0Ω to  
L
CPLV_  
-1.5V  
V
= -1.5V, I  
_ =  
DUT  
CPHV_  
High Clamp Resistance  
48  
Ω
Ω
Ω
-5mA and -15mA  
V
= 6.5V, V  
= 0V, I _ = 5mA  
DUT  
CPHV_  
CPLV_  
Low Clamp Resistance  
48  
55  
and 15mA  
I
V
_ = -20mA and -30mA, V  
DUT  
= 2.5V,  
CPHV_  
High Clamp-Resistance Variation  
5
= -1.5V (Note 35)  
CPLV_  
I
V
_ = 20mA and 30mA, V  
= 2.5V,  
CPLV_  
DUT  
Low Clamp-Resistance Variation  
Overshoot and Undershoot  
5
Ω
= 6.5V (Note 35)  
CPHV_  
(Note 36)  
700  
mV  
PARAMETRIC MEASUREMENT UNIT (PMU)  
DC ELECTRICAL CHARACTERISTICS  
FORCE VOLTAGE (R 10MΩ, V  
= 2.5V, unless otherwise noted)  
L
IN_  
I
I
I
I
I
I
= 0mA  
-1.5  
-1.5  
-1.5  
1.1  
-1.1  
-5  
+6.5  
+4.5  
+6.1  
6.5  
DUT_  
DUT_  
DUT_  
DUT_  
DUT_  
DUT_  
= +FSR/2, range A  
Force-Voltage Output Range  
(Note 2)  
V
= +FSR/2, ranges B–E  
= -FSR/2, range A  
= -FSR/2, ranges B–E  
= 0mA  
V
IN  
+6.5  
+5  
Force-Voltage Offset Error  
Force-Voltage PSRR  
mV  
(Note 5)  
-5  
+5  
mV/V  
I
= +FSR/2 to -FSR/2 using SENSE_  
DUT_  
Force-Voltage Load Regulation  
200  
50  
ꢀV  
input  
Force-Voltage Offset  
Temperature Coefficient  
(Note 37)  
ꢀV/°C  
%
Force-Voltage Gain Error  
V
V
= -1.5V to +6.5V, nominal gain = +1  
= -1.5V, 0.5V, 2.5V, 4.5V, 6.5V  
-0.1  
+0.1  
IN  
IN  
Force-Voltage Gain Temperature  
Coefficient  
10  
ppm/°C  
Force-Voltage Linearity Error  
-0.02  
+0.02  
%FSR  
(Notes 38, 39)  
10 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
From any two adjacent ranges, C  
=
DUT_  
Force-Voltage Range Switching  
Glitch  
100pF, I  
= ( 0.25 x FSR) of lower  
0.3  
V
DUT_  
current range (Note 4)  
MEASURE CURRENT (Measured at MEAS_ in FIMI mode, V  
= V  
= V  
= 2.5V)  
IN_  
IIOS  
DUT_  
Measure-Current Offset  
IMOS  
(Note 38)  
-1  
+1  
%FSR  
Measure-Current PSRR  
I
= 0mA (Note 5)  
-0.05  
+0.05 %FSR/V  
DUT_  
Measure-Current Offset  
Temperature Coefficient  
ppmFSR/  
°C  
20  
Ranges A, B, C  
Ranges D, E  
Ranges B–E  
Range A  
-1.0  
-1.1  
+1.0  
%
Measure-Current Gain Error  
IMGE  
+1.1  
20  
Measure-Current Gain  
Temperature Coefficient  
ppm/°C  
+0.02  
+100  
Ranges B–E, I  
= -FSR/2, -FSR/4, 0,  
DUT_  
-0.02  
-0.03  
-0.06  
FSR/4, FSR/2 relative to end points  
Measure-Current Linearity Error  
(Note 38)  
Range A, I = -30mA, -15mA, 0, 15mA,  
DUT_  
IMLER  
+0.03  
+0.06  
%FSR  
30mA, relative to end points  
Range A, I = -FSR/2, -FSR/4, 0, FSR/4,  
DUT_  
FSR/2 relative to end points  
V
V
V
V
= 2V (Note 40)  
= 4V (Note 40)  
= 2V (Note 40)  
= 4V (Note 40)  
6
8
IIOSMIN  
IIOSMAX  
IIOSMIN  
IIOSMAX  
+FSR Measure Output Voltage  
-FSR Measure Output Voltage  
V
V
-2  
0
Rejection of Output Measure Error Due  
to Common-Mode Sense Voltage  
I
= 0mA, V = -1.5V to +6.5V, percent  
DUT_ IN_  
CMVRLER  
0.003 %FSR/V  
+2  
FSR change at MEAS_ per volt change at DUT_  
Range E, R_E = 500kΩ  
Range D, R_D = 50kΩ  
Range C, R_C = 5kΩ  
-2  
-20  
-200  
-2  
+20  
+200  
+2  
ꢀA  
Measure-Current Range (Note 2)  
Range B, R_B = 500Ω  
Range A, R_A = 20Ω (Note 41)  
mA  
-50  
+50  
FORCE CURRENT (V  
= V  
= V  
= 2.5V, unless otherwise noted)  
DUT_  
IN_  
IIOS  
V
V
V
V
= 2V  
6
IIOSMIN  
IIOSMAX  
IIOSMIN  
IIOSMAX  
Input-Voltage Range For Setting  
Force Current to +FSR/2  
V
V
V
= 3.5V  
= 2V  
7.5  
-2  
Input-Voltage Range For Setting  
Force Current to -FSR/2  
= 3.5V  
-0.5  
Current-Sense Amplifier Offset  
Voltage Input  
Relative to V  
2.0  
2.5  
3.5  
DGS  
______________________________________________________________________________________ 11  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
Force-Current Offset  
SYMBOL  
CONDITIONS  
MIN  
-0.1  
-0.2  
TYP  
MAX  
+0.1  
+0.2  
UNITS  
%FSR  
(Note 38)  
(Note 5)  
MAX79  
Force-Current Offset PSRR  
%FSR/V  
Force-Current Offset-Temperature  
Coefficient  
ppmFSR/  
°C  
(Note 37)  
20  
Force-Current Gain Error  
V
= -1.5V and 6.5V  
-0.1  
+0.1  
%
IN_  
Ranges B–E  
Range A  
20  
Force-Current Gain-Temperature  
Coefficient  
ppm/°C  
-100  
Ranges B–E, V  
6.5V relative to end points of I  
= -1.5V, 0.5V, 2.5V, 4.5V,  
IN_  
-0.025  
-0.03  
-0.06  
+0.025  
+0.03  
+0.06  
DUT_  
Force-Current Linearity Error  
(Notes 38, 39)  
Range A, IDUT_ 30mA, VIN_ = 0V, 1V, 1.3V,  
2.5V, 3.7V, 4.9V relative to end points of I  
%FSR  
DUT_  
Range A, V  
= -1.5V, 0.5V, 2.5V, 4.5V,  
IN_  
6.5V relative to end points of I  
DUT_  
Rejection of Output Error Due to  
Common-Mode DUT_ Voltage  
Percent of FSR change of the force current per  
volt change in DUT_, V = -1.5V to 6.5V  
0.007 %FSR/V  
+2  
DUT_  
Range E, R_E = 500k  
Range D, R_D = 50kꢀ  
Range C, R_C = 5kꢀ  
Range B, R_B = 500ꢀ  
-2  
-20  
-200  
-2  
μA  
+20  
+200  
+2  
Force-Current Range (Note 2)  
mA  
Range A, R_A = 20 , (Note 41)  
-50  
+50  
MEASURE VOLTAGE (Measured at MEAS_ in FVMV mode, V  
= 0, V  
= V  
= V  
IIOS  
= 2.5V)  
-25  
VIOS  
DUT_  
IN_  
Measure-Voltage Offset  
+25  
+5  
mV  
Measure-Voltage PSRR  
(Note 5)  
-5  
mV/V  
Measure-Voltage Offset  
Temperature Coefficient  
100  
10  
μV/°C  
%
Measure-Voltage Gain Error  
V
DUT_  
= -1.5V and 6.5V, nominal gain = +1  
-1  
+1  
Measure-Voltage Gain-  
Temperature Coefficient  
ppm/°C  
V
= -1.5V, 0.5V, 2.5V, 4.5V, 6.5V relative  
IN_  
Measure-Voltage Linearity Error  
-0.02  
+0.02  
%FSR  
to end points. (Note 38)  
For V = 6.5V, measure voltage input  
DUT_  
6.5 +  
range = -1.5V to 6.5V, V  
range at MEAS_  
offsets the  
VIOS  
V
VIOS  
Measure Output Voltage  
(Note 42)  
V
V
-1.5 +  
For V  
= -1.5V  
DUT_  
V
VIOS  
Voltage Sense Amp Offset  
Voltage Input  
V
Relative to DUT ground (Note 42)  
0
1.5  
IOS  
12 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
FORCE OUTPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Range A, V  
CLENABLE = 0  
= -1.5V, V  
= -1.5V, V  
= 6.5V,  
= 6.5V,  
= -1.5V,  
= -1.5V,  
IN_  
DUT_  
DUT_  
DUT_  
DUT_  
-100  
-8  
-55  
-3  
Range B, V  
CLENABLE = 0  
IN_  
Short-Circuit Current Limit in  
FV Mode  
mA  
Range A, V = 6.5V, V  
CLENABLE = 0  
IN_  
55  
3
100  
8
Range B, V = 6.5V, V  
CLENABLE = 0  
IN_  
Force-to-Sense Resistor  
RFS  
(Note 4)  
10  
k
SENSE INPUT  
All modes except V  
driver mode  
-1.5  
-1.5  
+6.5  
HHP  
Input-Voltage Range  
V
VHH_ driver-mode compliance, SENSE  
open (Note 43)  
+13.0  
V
= -1.5V and 6.5V, sense input  
SENSE_  
Input Bias Current  
-5  
+5  
nA  
enabled  
COMPARATOR INPUTS (V  
= V  
IIOS  
= 2.5V, HYSTEN = 0, unless otherwise noted)  
IN_  
Maximum at V  
= 3.4V, MI mode  
= 2V, MI mode  
+7.4  
-2.2  
IIOS  
Input-Voltage Range  
V
Minimum at V  
IIOS  
FIMV Offset Voltage  
FVMI Offset Current  
V
= 2.5V (Note 44)  
-5  
+5  
mV  
DUT_  
IVMAX_ = IVMIN_ = 2.5V (Note 44)  
-0.1  
+0.1  
%FSR  
HYSTEN = 1, functionally tested in  
MV mode  
Hysteresis  
25  
50  
mV  
VOLTAGE CLAMPS (FI mode, CLENABLE_ = 1)  
Clamp Voltage Range  
(Note 45)  
-1.5  
+6.5  
V
V
FI loop not influenced when V  
from voltage clamps  
0.5V  
V
V
DUT_  
CLAMPLO_  
+ 0.5  
CLAMPHI_  
- 0.5  
Linear FI DUT_ Range  
V
= V  
= -1.5V, 0V, 1.5V,  
CLAMPHI_  
CLAMPLO_  
Clamp Voltage Accuracy  
-20  
+20  
mV  
2.5V, 4V, 5V, 6.5V  
CURRENT CLAMPS (FV mode, CLENABLE_ = 1)  
Clamp current = I  
=
V
+
-
CLAMPHI_  
IIOS  
1.3V  
V
CLAMPHI_MAX  
(V  
- V  
)/R (sourcing)  
RANGE  
CLAMPHI_  
IIOS  
Input Control Voltage Range  
V
Clamp current = I  
(V  
=
V
IIOS  
CLAMPLOI_  
VCLAMPLO_MIN  
- V  
)/ R (sinking)  
RANGE  
1.3V  
CLAMPLO_  
IIOS  
______________________________________________________________________________________ 13  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
Range E, R_E = 500kΩ  
MIN  
-2.2  
-22  
TYP  
MAX  
+2.2  
+22  
UNITS  
MAX79  
Range D, R_D = 50kΩ  
Range C, R_C = 5kΩ  
Range B, R_B = 500Ω  
Range A, R_A = 20Ω  
ꢀA  
-220  
-2.2  
-55  
+220  
+2.2  
+55  
Clamp Current Range (Note 45)  
mA  
A
FV loop not influenced when I  
FSR from current clamps  
10%  
I
I
CLAMPHI_  
- 10%FSR  
DUT_  
CLAMPLO_  
+ 10%FSR  
Linear FV I  
Range  
DUT_  
|I  
| = |I  
= 0, (0.25 x FSR),  
CLAMPHI_  
CLAMPLO_  
(0.50 x FSR) and (0.55 x FSR), calibrated at 0  
and (0.50 x FSR)  
Clamp Current Accuracy  
-0.5  
+0.5  
%FSR  
COMPARATOR OUTPUTS (Note 46)  
Output High Voltage  
V
0.2  
-
DD  
R
R
= 1kΩ to V  
= 1kΩ to V  
V
V
PULLUP  
PULLUP  
DD  
DD  
Output Low Voltage  
0.4  
High-Impedance State Leakage  
Current  
1
6
ꢀA  
High-Impedance State Output  
Capacitance  
pF  
AC ELECTRICAL CHARACTERISTICS (V  
= 0V, V  
= 2.5V, C  
= C  
= 100pF, R  
= 4 x R  
to 2.5V,  
VIOS  
IIOS  
DUT_  
MEAS_  
DUT_  
RANGE  
unless otherwise noted; setting times are to 0.1%FSR)  
FORCE VOLTAGE  
Range E, R_E = 500kΩ  
Range D, R_D = 50kΩ  
Range C, R_C = 5kΩ  
Range B, R_B = 500Ω  
140  
30  
V
= -1.5V, 6.5V  
IN_  
20  
30  
Settling Time  
ꢀs  
20  
Range A, R_A = 20Ω ,  
V
= -1V to  
IN_  
R
DUT_  
= 200Ω to 2.5V  
20  
+6.5V  
(Note 41)  
Maximum Stable Load  
Capacitance  
2500  
pF  
FORCE VOLTAGE/MEASURE CURRENT  
Range E, R_E = 500kΩ  
Range D, R_D = 50kΩ  
Range C, R_C = 5kΩ  
Range B, R_B = 500Ω  
300  
40  
20  
35  
Settling Time  
ꢀs  
20  
Range A, R_A = 20Ω , R  
2.5V (Note 41)  
= 200Ω to  
DUT_  
20  
14 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
In addition to force-voltage and measure-  
current settling times, range A to range B  
(Note 47)  
Range-Change Switching  
20  
ꢀs  
FORCE CURRENT (Measured at MEAS_ in FIMI Mode)  
Range E, R_E = 500kΩ  
Range D, R_D = 50kΩ  
Range C, R_C = 5kΩ  
Range B, R_B = 500Ω  
500  
100  
25  
V
= -1.5V,  
IN_  
+6.5V  
35  
Settling Time  
20  
ꢀs  
Range A, R_A = 20Ω  
V
= -1.1V to  
IN_  
+4.1V  
R
= 200Ω to 2.5V  
20  
DUT_  
(Note 41)  
FORCE CURRENT/MEASURE VOLTAGE (Note 48)  
Range E, R_E = 500kΩ  
1900  
200  
30  
Range D, R_D = 50kΩ  
Range C, R_C = 5kΩ  
Range B, R_B = 500Ω  
40  
Settling Time  
ꢀs  
20  
Range A, R_A = 20Ω, R  
2.5V (Note 41)  
= 200Ω to  
DUT_  
20  
20  
In addition to force-current/measure-voltage  
settling times, range A to range B. (Note 47)  
Range-Change Switching  
ꢀs  
ꢀs  
SENSE INPUT TO MEASURE OUTPUT PATH (Note 49)  
Measured at 90% of output, SENSE input  
slew rate 2V/ꢀs  
Propagation Delay  
0.07  
80  
MEASURE OUTPUT  
High-Impedance Leakage Current  
V
= -1.5V, 2.5V, 6.5V  
-10  
+10  
nA  
ns  
MEAS_  
R
= 5kΩ to GND, V  
= 2.5V,  
= 2.5V,  
MEAS_  
SENSE  
HIZMEASP_ True to High-  
Impedance Time  
measured from the 50% point of  
HIZMEASP_ to 90% of output  
R
= 5kΩ to GND, V  
SENSE  
MEAS_  
measured from the 50% point of  
HIZMEASP_ False to Active Time  
40  
ns  
HIZMEASP_ to 10% of output  
Maximum Stable Load  
Capacitance  
1000  
pF  
FORCE OUTPUT  
V
= 1V, R  
= R  
to GND, FVMI  
RANGE_  
IN_  
DUT_  
mode, measured from the 50% point of  
LLEAKP_ True to Low-Leak Time  
0.3  
ꢀs  
LLEAKP_ to 90% of output  
______________________________________________________________________________________ 15  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
= R to GND, FVMI  
RANGE_  
MIN  
TYP  
MAX  
UNITS  
V
= 1V, R  
IN  
_
DUT_  
MAX79  
mode, measured from the 50% point of  
LLEAKP_ False to Active Time  
0.3  
ꢀs  
LLEAKP_ to 10% of output  
COMPARATORS (C  
_
= 20PF, R  
= 1kΩ to V )  
DD  
CMP  
PULLUP  
Rise Time  
Fall Time  
20% to 80%  
80% to 20%  
35  
1.5  
ns  
ns  
Measured from the 50% point of CS (or  
LOAD) to 10% of the output  
Disable True to High Impedance  
25  
20  
ns  
ns  
Measured from the 50% point of CS (or  
LOAD) to 90% of the output  
Disable False to Active  
ACTIVE LOAD  
DC CHARACTERISTICS (V  
VCOM_ Voltage Range  
VCOM_ Offset Voltage  
= 2.5V, V  
= V  
= 6V, unless otherwise noted)  
VCOM_  
DHV_  
DLV_  
VCOM_  
-1.5  
-8  
+6.5  
5
V
mV  
V
I
= 0mA  
DUT_  
Differential Voltage Range  
V
V
V
- V  
+8  
DUT_  
VCOM_  
Offset Voltage-Temperature  
Coefficient  
100  
1
ꢀV/°C  
V/V  
VCOM_ Voltage Gain  
_
= 0, 4.5V  
0.998  
1.002  
15  
VCOM  
VCOM_ Voltage-Gain  
Temperature Coefficient  
-10  
ppm/°C  
_
= -1.5V, 0V, 1.5V, 3V, 4.5V, 6.5V  
VCOM  
VCOM_ Linearity Error  
3
mV  
dB  
relative to end points  
VCOM_ Output-Voltage Power-  
Supply Rejection Ratio  
(Note 5)  
40  
30  
I
= I  
= I  
=
=
SOURCE  
SINK  
V
V
V
V
_ = 3V, 6.5V with  
DUT  
VCOM  
20mA  
_
= -1.5V or  
= -1.5V, 2V with  
Sink or Source Output Resistance  
Linear Region Output Resistance  
Dead-Band  
kΩ  
Ω
_
DUT  
I
SOURCE  
SINK  
250  
_
= 6.5V  
VCOM  
1mA  
I
I
_
=
10mA  
12  
18  
DUT  
= I  
SINK_  
= 10mA, 80%  
SOURCE  
commutation  
_
400  
mV  
95% I  
to 95% I  
, I  
=
SOURCE_  
= 20mA  
SINK_ SOURCE  
700  
900  
I
SINK  
16 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
= -1V, V = 6V, V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SOURCE CURRENT (V  
= 0V, V = 6V, unless otherwise noted)  
DUT_  
VCOM_  
VLDL_  
VLDH_  
Source Current Output Range  
V
= 0 to 6V (Note 2)  
= 300mV (1mA)  
0
20  
mA  
ꢀA  
VLDH_  
VLDH_  
Source Current Offset  
V
-20  
+20  
Source Current Programming  
Gain  
V
= 0.3V, 5.4V (1mA, 18mA)  
3.326  
3.333  
-10  
3.340  
mA/V  
ꢀA/oC  
ꢀA/V  
ꢀA  
VLDH_  
Source Current Temperature  
Coefficient  
Source Current Power-Supply  
Rejection Ratio  
(Note 5)  
60  
80  
V
= 0V, 0.1V, 0.3V, 1.5V, 3V, 5.4V, 6V,  
VLDH_  
Source Current Linearity  
relative to 0.3V and 5.4V  
= -1V, V = 6V, V = 0V, unless otherwise noted)  
VCOM_ VLDL_  
SINK CURRENT (V  
= 6V, V  
DUT_  
VLDH_  
Sink Current Output Range  
V
V
V
= 0 to 6V (Note 2)  
0
20  
mA  
ꢀA  
VLDL_  
VLDL_  
VLDL_  
Sink Current Offset  
= 300mV (1mA)  
-20  
+20  
Sink Current Programming Gain  
= 0.3V, 5.4V (1mA, 18mA)  
3.326  
3.333  
10  
3.340  
mA/V  
Sink Current Temperature  
Coefficient  
ꢀA/°C  
ꢀA/V  
ꢀA  
Sink Current Power-Supply  
Rejection Ratio  
PSRR  
(Note 5)  
60  
80  
V
= 0V, 0.1V, 0.3V, 1.5V, 3V, 5.4V, 6V,  
VLDL_  
Sink Current Linearity  
relative to 0.3V and 5.4V  
AC CHARACTERISTICS (Z = 50Ω to GND, V  
= V = 6V, TMSEL_ = LDDIS_ = LDCAL_ = 0)  
L
VLDH_  
VLDL_  
Measured from 50% crossing of RCV/NRVC  
Transition Time to/from Inhibit via  
RCV/NRCV  
t
to 10% level of output waveform; V =  
VCOM_  
2
ns  
EN  
-1.5V and 1.5V  
Spike During Enable/Disable  
Transition  
V
= 0V (Note 4)  
200  
300  
mV  
VCOM_  
TEMPERATURE MONITOR  
Nominal Voltage  
T = +70°C, R 10MΩ  
3.43  
10  
V
J
L
Temperature Coefficient  
Output Resistance  
DIGITAL I/O  
mV/°C  
kΩ  
15  
DIFFERENTIAL CONTROL INPUTS (DATA_, NDATA_, RCV_, NRCV_)  
Input High Voltage  
-1.6  
-2.0  
0.15  
+3.5  
+3.1  
1.0  
V
V
V
Input Low Voltage  
Differential Input Voltage  
______________________________________________________________________________________ 17  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Between RCV and NRCV, DATA, and  
Differential Termination  
Resistance  
MAX79  
NDATA, tested at I  
(Note 50)  
=
4mA  
96  
104  
Ω
RCV_/NRCV_  
SINGLE-ENDED CONTROL INPUTS (CS, SCLK, DIN, RST, LOAD, ENVHHP_, LLEAKP_, HIZMEASP_)  
2/3 x  
Input High  
V
V
DD  
V
DD  
1/3 x  
Input Low  
-0.1  
-25  
V
V
DD  
Input Bias Current  
+25  
ꢀA  
SINGLE-ENDED OUTPUT (DOUT)  
V
0.15  
-
DD  
Output High  
I
I
= 25ꢀA  
V
V
OH  
OL  
DGND  
+ 0.15  
Output Low  
= -25ꢀA  
SERIAL PORT TIMING  
SCLK Frequency  
f
50  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
CS Low to SCLK High Setup  
SCLK High to CS Low Hold  
CS High to SCLK High Setup  
SCLK High to CS High Hold  
DIN to SCLK High Setup  
DIN to SCLK High Hold  
CS High Pulse Width  
t
8
CH  
t
8
CL  
t
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
40  
20  
20  
20  
CSS0  
CSH0  
t
t
CSS1  
t
CSH1  
t
DS  
t
DH  
t
CSWH  
LOAD Low Pulse Width  
RST Low Pulse Width  
t
LDW  
t
RST  
CS High to LOAD Low Hold Time  
SCLK to DOUT Delay  
t
CSHLD  
t
40  
DO  
COMMON FUNCTIONS  
Operating Voltage Range  
(Note 2)  
-1.5  
-2  
+13.0  
+2  
V
V
V
V
_ = 0V, 1.5V, 3V  
DUT  
DUT_ High-Impedance Leakage  
_ = V  
_ = 6.5V, V _ = -1.5V  
DUT  
-5  
+5  
ꢀA  
CLV  
CLV  
CHV  
CHV  
_ = V  
_ = -1.5V, V _ = 6.5V  
DUT  
-5  
+5  
18 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
_ = 0V, 1.5V, 3V, T < +90°C  
MIN  
-10  
TYP  
MAX  
+10  
UNITS  
V
V
DUT  
J
_ = V _ = 6.5V, V _ = -1.5V,  
CHV DUT  
CLV  
-10  
-10  
+10  
T < +90°C  
DUT_ Low-Leak Mode Leakage  
J
nA  
V
J
_ = V _ = -1.5V, V _ = 6.5V,  
CHV DUT  
CLV  
+10  
4.3  
T < +90°C  
Driver in terminate mode (Note 4)  
3.4  
8
DUT_ Combined Capacitance  
pF  
Driver in high impedance, PMU in high  
impedance  
Low-Leakage Enable Time  
Low-Leakage Disable Time  
POWER SUPPLY  
LLEAKP_ low to DUT_ = low leak  
LLEAKP_ high to normal operation  
20  
20  
ꢀs  
ꢀs  
Positive Supply Voltage  
Negative Supply Voltage  
Logic Supply Voltage  
V
9.5  
-5.2  
2.7  
17  
9.75  
-4.75  
3.3  
10.5  
-4.5  
5.0  
18  
V
V
CC  
V
EE  
V
V
DD  
V
Supply Voltage  
V
17.5  
120  
245  
4.5  
V
HHP  
HHP  
Positive Supply Current  
Negative Supply Current  
Logic Supply Current  
I
(Note 51)  
135  
260  
7
mA  
mA  
mA  
CC  
I
(Note 51)  
EE  
I
(Note 51)  
DD  
(Note 51)  
1.5  
2.0  
50  
V
Supply Current  
I
mA  
W
HHP  
H
VHH mode, no load  
45  
Includes CTV power at V  
1.4V (Note 51)  
= V  
=
CTV1  
CTV2  
Power Dissipation per Channel  
1.2  
1.35  
ANALOG INPUTS  
DUT GROUND SENSE  
Input Range  
V
Relative to AGND (Note 52)  
V = 0V  
DGS  
-150  
-10  
+150  
+10  
mV  
ꢀA  
DGS  
Input Bias Current  
DHV_, DLV_, DTV_, CPHV_, CPLV_, VHH_  
All other levels and MEAS_ output  
0.985  
0.995  
0.990  
1.000  
1.005  
1.005  
Gain  
V/V  
2.5V REFERENCE  
Nominal Voltage  
Input Bias Current  
V
(Notes 53, 54)  
2.5  
V
REF  
-2  
+2  
ꢀA  
ANALOG BUS (V  
= -1.5V to +6.5V, PMU-F = PMU-S = -1.5V to +6.5V, unless otherwise noted)  
DUT_  
I
=
2.5mA, V  
= -1.25V, 2.50V,  
SWITCH  
DUT_  
PMU-F Switch  
100  
2.5  
Ω
6.25V  
I
=
100ꢀA, V  
= -1.25V, 2.50V,  
SWITCH  
DUT_  
PMU-S Switch  
kΩ  
6.25V  
______________________________________________________________________________________ 19  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
=
10ꢀA, V  
= 6.5V to 13V,  
DUT_  
SWITCH  
MAX79  
PMU-S Switch  
V
= V  
= 6.5V to 13V for V  
HH  
5
kΩ  
PMU-F  
PMU-S  
level calibration  
PMU-F Path Current  
30  
+10  
+10  
mA  
nA  
nA  
F and S Independent, other channel  
switches off  
PMU-F, PMU-S On-Leakage  
-10  
-10  
5
1
PMU-F, PMU-S Off-Leakage  
DIFFERENTIAL COMPARATOR (DIFFERENTIAL_ = 1)  
DC CHARACTERISTICS (V  
= V  
= 0V, unless otherwise noted)  
CLV_  
CHV_  
V
V
,
DUT0  
Input-Voltage Range  
(Notes 22, 55)  
-1.5  
-1  
+6.5  
+1  
V
V
DUT1  
Differential Threshold Voltage  
Range  
Levels may be safely programmed beyond  
this range  
CLV, CHV  
Differential Input Voltage  
Offset Error  
(Notes 22, 23)  
-8  
-5  
+8  
+5  
V
V
V
= 0V  
mV  
V/V  
DUT_  
DUTn  
Gain  
= 0V, V  
= -1V, 1V  
0.998  
1
1.002  
DUTm  
DUTm  
Linearity Error Relative to Straight  
Line from -1V to +1V  
V
= 0V, V  
= -1V, -0.5V, 0, 0.5V,  
DUTn  
-5  
+5  
mV  
mV  
1V  
HYST0  
HYST1  
HYST2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
2
1
0
4
Hysteresis  
1
6
0
8
1
10  
12  
15  
0
1
Offset Temperature Coefficient  
DC Power-Supply Rejection Ratio  
V
V
= 0V and V  
= -1V, 1V (Note 4)  
-150  
50  
+150  
ꢀV/°C  
dB  
DUTn  
DUT_  
DUTm  
= 1.5V (Note 27)  
66  
55  
V
= -1.5V and 6.5V, V  
= V  
=
CHV_  
DUT_  
CLV_  
Common-Mode Rejection Ratio  
CMRR  
50  
dB  
0V (Note 25)  
AC CHARACTERISTICS (V  
Minimum Pulse Width  
Propagation Delay  
= V  
= 0V, driver terminated, unless otherwise noted) (Note 4)  
CHV_  
CLV_  
(Note 31)  
0.5  
1
0.65  
1.5  
ns  
ns  
0.5  
Propagation-Delay Match H/L vs.  
L/H, Individual Comparator  
-25  
+25  
ps  
20 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Change in Propagation Delay vs.  
Duty Cycle  
500mV swing, 250mV overdrive, 2ns to  
23ns pulse width, relative to PW = 12.5ns  
-45  
+45  
ps  
V
= 200mV, 100mV overdrive,  
SWING  
Propagation Delay vs. Common-  
Mode Voltage  
common-mode voltage = -1.4V to +6.4V  
(Note 32)  
70  
50  
ps  
P-P  
Propagation-Delay Temperature  
Coefficient  
3
ps/°C  
ps  
Propagation Delay vs. Slew Rate  
1V/ns to 6V/ns, relative to 2V/ns  
CDRP = 0b000  
CDRP = 0b111  
0
1V swing, rise/fall time =  
500ps  
Cable-Droop Compensation  
%
10  
DRIVER VHH  
DC CHARACTERISTICS  
Output-Voltage Range  
VHH  
0
13  
V
VHH_ = 13V, I  
= 10mA, V  
> 12.25V  
< 0.75V  
+10  
DUT_  
DUT_  
DC Output Current  
Current Limit  
mA  
VHH_ = 0V, I  
= -10mA, V  
-10  
25  
DUT_  
DUT_  
VHH_ = 13V, V  
= 0V and VHH_ = 0V,  
DUT_  
11  
mA  
V
= 13V  
DUT_  
Offset Voltage  
VHH_ = 8V  
VHH_ = 8V, 12V  
30  
1.002  
10  
mV  
V/V  
mV  
mV  
Ω
Gain  
0.998  
1
Linearity Relative to 8V, 12V  
Linearity Relative to 2V, 12V  
Output Resistance  
VHH_ = 7V, 8V, 10V, 12V, 13V  
VHH_ = 0, 2V, 4V, 8V 12V, 13V  
30  
I
=
2mA, VHH_ = 1V  
VHH_ = 7V to 13V (Note 4)  
= 100pF)  
DUT_  
75  
DUT_  
Output-Voltage Temperature  
Coefficient  
75  
500  
ꢀV/°C  
AC CHARACTERISTICS (R 10MΩ, C  
L
VHH Rise/Fall Times  
V
V
= 3V, VHH_ = 13V, 10% to 90%  
= 3V to VHH_ = 13V rise  
170  
150  
200  
ns  
DHV_  
DHV_  
VHH Overshoot (Note 4)  
mV  
VHH_ = 13V to V  
= 3V fall  
DHV_  
LEVEL DACs  
Settling Time  
Full-scale transition to within 5mV  
(VLDH_), I (VLDL_)  
20  
ꢀs  
ꢀA  
mV  
mV  
I
3.5  
2
SOURCE  
SINK  
Differential Nonlinearity  
VHH_, IIOS  
All other levels  
1
______________________________________________________________________________________ 21  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
Note 1: Unless otherwise specified, all minimum and maximum specifications are production tested. All other specification test  
limits are guaranteed by design. All tests are performed at nominal supply voltages and after gain and offset calibration,  
unless otherwise specified.  
MAX79  
Note 2: Guaranteed by the associated linearity test.  
Note 3: Change in offset at any voltage over the operating range. Specification includes both gain and offset temperature effects.  
Limits have been simulated over the entire operating range and verified at worst-case conditions (V  
- V  
>
DHV_  
DLV_  
200mV).  
Note 4: Guaranteed by design and characterization.  
Note 5:  
Note 6: DATA_ = 1V, V  
V
and V independently varied over their full range.  
CC E  
E
= 3V, V  
= 0V, V  
= 1.5V, I  
= 30mA. Different values within the range of 48Ω to 52Ω are  
OUT  
DHV_  
DLV_  
DTV_  
available by custom trimming (contact factory).  
Note 7: Resistance measurements are made using 2.5mA current changes in the loading instrument about the noted value.  
Absolute value of the difference in measured resistance at the specified points, tested separately for each current polarity.  
Note 8: Rise time, unless otherwise specified for the differential inputs DATA_ and RCV_, is 250ps (10% to 90%) at 40MHz. (These  
conditions are for bench characterization. Final test conditions may differ from bench.)  
Note 9:  
8V step into AC-coupled 10Ω load. Current supplied for a minimum of 10ns. Guaranteed by design to be greater than or  
equal to DC drive current.  
Note 10: V  
= 1.5V, R = 50Ω. External signal driven into a transmission line to produce a 0 to 3V edge at the comparator input  
DTV_  
S
with a 600ps rise time (10% to 90%). Measurement point is at the comparator input.  
Note 11: Measured between the 90% point of the driver output (relative to its final value) and the waveform settling to within the  
specified limit.  
Note 12: Propagation delays are measured from the crossing point of the differential input signals to the 50% point of expected out-  
put swing.  
Note 13: Average of two measurements for propagation-delay match, t vs. t  
.
HL  
LH  
Note 14: Four measurements are made: DHV_ to high impedance, DLV_ to high impedance, high impedance to DHV_, and high  
impedance to DLV_. The worst of the four measurements is reported.  
Note 15: Average of four measurements of propagation-delay match, drive to high impedance vs. high impedance to drive.  
Measured from the crossing point of RCV/NRCV to the 50% point of the output waveform.  
Note 16: Average of four measurements for propagation-delay match, drive to term vs. term to drive. Measured from the crossing  
point of RCV/NRCV to the 50% point of the output waveform.  
Note 17: Four measurements are made: DHV_ to DTV_, DLV_ to DTV_, DTV_ to DHV_, and DTV_ to DLV_. The worst-case differ-  
ence is reported.  
Note 18: Propagation-delay change is reported with respect to a 5ns pulse width.  
Note 19: At this pulse width, the output reaches at least 95% of its nominal (DC) amplitude. The pulse width is measured at DATA_  
and NDATA_.  
Note 20: Maximum data rate in transitions/second. A waveform that reaches at least 95% of its programmed amplitude may be gen-  
erated at half of this frequency.  
Note 21: Maximum data rate in transitions/second. A waveform that reaches at least 90% of its programmed amplitude may be gen-  
erated at half of this frequency.  
Note 22: The comparators tolerate the V  
produced by the driver; however, the specifications only apply to the -1.5V to +6.5V  
HH  
input range.  
Note 23: This specification is implicitly tested, by meeting the high-impedance leakage specification.  
Note 24: Change in offset at any voltage over operating range. Includes both gain (CMRR) and offset temperature effects.  
Note 25: Change in offset voltage over the input range.  
Note 26: Relative to straight line between 0 and 3V.  
Note 27: Change in offset voltage with power supplies independently varied over their full range. Both high and low comparators  
are tested.  
Note 28: All propagation delays measured from V  
crossing calibrated CHV_/CLV_ threshold to crossing point of differential  
DUT_  
outputs.  
22 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
V
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0V, V  
= 7.2V,  
= 2.5V,  
CC  
CPLV_  
EE  
DD  
= 1.4V, V  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
= 1V, V  
IVMIN_ COM_  
= -2.2V, V  
= 4V, V  
= V  
= 0V, V  
= V  
= 2V, V  
= V  
DGS  
GND  
CTV_  
BV_  
CHV_  
IVMAX_  
CLV_  
V
= 0V, V  
= 0V, V  
= 2.5V, V  
= 0V, V  
= 2.5V, V  
= 5V, V  
= 0V, V  
= 10V, CDRP = 0b001, RO  
LDHV_  
LDLV_  
IN_  
VIOS  
J
IIOS  
CLAMPHI_  
CLAMPLO_  
HH_  
= 0b1000, HYST = 0b000, Z  
measured at T = +40°C to +100°C, unless otherwise noted.) (Note 1)  
= 50Ω, T = +70°C to an accuracy of 15°C, unless otherwise noted. All temperature coefficients are  
LOAD  
J
Note 29: All delay specifications are measured with DUT_ (comparator input) as the reference.  
Note 30: 40MHz, 0 to 1V input to comparator, reference = 0.5V, 50% duty cycle, 250ps rise/fall time, Z = 50Ω, driver in term mode  
S
with V  
= 0V, and hysteresis disabled, unless otherwise specified.  
DTV_  
Note 31: At this pulse width, the output reaches at least 90% of its nominal peak-to-peak swing. The pulse width is measured at the  
crossing points of the differential outputs. 250ps rise/fall time at DUT_. Timing dispersion specifications are not guaran-  
teed.  
Note 32: V  
= 200mV  
, rise/fall time = 150ps, overdrive = 100mV, V  
= V . Valid for common-mode ranges where the  
DUT_  
DTV_ CM  
P-P  
signal does not exceed the operating range. Specification is worst case (slowest–fastest) over the specified range.  
Note 33: For any input slew rate up to 6V/ns, no unusual behavior should be exhibited (i.e., glitching, changing polarity, etc.).  
2
Note 34: Input to comparator is 40MHz at 0 to 1V, 50% duty cycle, 250ps 10% to 90% rise time. EQ bandwidth = 0.22/(t  
^ +  
TCMP  
2
t ^ )^(1/2) where t  
TINPUT  
and t  
are the 20% to 80% transition time of the comparator input and reconstructed  
TINPUT  
TCMP  
output.  
Note 35: Resistance measurements are made using 2.5mA current changes in the loading instrument. Value reported is the absolute  
value of the difference in measured resistance over the specified range, tested separately for each current polarity.  
Note 36: Stimulus is 0 to 3V, 2.5V/ns square wave from far end of 3ns transmission line with R = 25Ω, clamps set to 0 and 3V.  
S
Note 37: Change in offset over the entire operating range. Includes both gain and offset temperature effects.  
Note 38: Interpretation of errors are expressed in terms of %FSR (percent of full-scale range) as a percentage of the end-point-to-  
end-point range (i.e., for the 2mA range, the full-scale range = 4mA and a 1% error = 40ꢀA).  
Note 39: With clamps enabled, the linear DUT_ current range for force voltage is defined by the clamp-current-range specification,  
and the linear DUT_ voltage range for force current is defined by the linear FI V  
range specification.  
DUT_  
Note 40: For currents greater than +FSR/2, V  
is greater than V  
+ 4V and for currents less than -FSR/2, V  
is less than  
MEAS  
IIOS  
MEAS  
V
IIOS  
- 4V.  
Note 41: This current is supplied by the driver.  
Note 42: V  
may be programmed to greater than 1.5V to a maximum value of 2.5V; however, the maximum valid V  
value  
VIOS  
DUT_  
must be reduced below 6.5V, as the maximum MEAS output is limited to 8V. Because V  
= V  
+ V  
, then  
VIOS  
MEAS_  
DUT_  
V
= 8V - V  
when V  
> 1.5V.  
DUT_MAX  
VIOS  
VIOS  
Note 43: Guaranteed by driver VHH_ and DLV_ linearity tests.  
Note 44: IVMAX and IVMIN do not have separate calibration registers for MI and MV modes. Specifications apply with calibration  
for each mode.  
Note 45: Guaranteed by the associated accuracy test.  
Note 46: The digital interface is compatible with 2.7V V  
5V CMOS logic.  
DD  
Note 47: See the Typical Operating Characteristics section.  
Note 48: FIMV settling times are a function of C and R  
. Increased DUT_ capacitance will increase settling time.  
RANGE  
DUT_  
Note 49: The propagation delay time is guaranteed only over the force-voltage output range. Propagation delay is measured by  
holding V steady and transitioning IVMAX_ or IVMIN_.  
SENSE_  
Note 50: Default configuration has internal 100Ω resistors between DATA and NDATA, RCV and NRCV. Resistor terminations from  
DATA, NDATA, RCV, and NRCV to a separate pin are available by special request.  
Note 51: At nominal supply voltages. Total current for dual device. R 10MΩ.  
L
Note 52: Increasing DGS beyond 0V requires a proportional increase in the minimum supply levels. Specified ranges for all DAC  
output levels are defined with respect to DGS.  
Note 53: The error of the external 2.5V reference impacts the accuracy of the DAC levels; a 1% error in the 2.5V reference will trans-  
late to a 1% error in the DAC level gain. Use a precision voltage reference, such as the MAX6225.  
Note 54: Generate the 2.5V external reference with respect to DGS (DUT ground sense).  
Note 55: Guaranteed by associated CMRR_ test.  
Note 56: The comparator outputs are normally source side-terminated with 50Ω on-die to CTV_ and at the receive side of the trans-  
mission path. The comparator outputs are tested with the 50Ω on-die source resistors only with limits relative to CTV_ twice  
the values indicated.  
______________________________________________________________________________________ 23  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
Typical Operating Characteristics  
(V  
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0, V  
= 7.2V,  
CC  
EE  
DD  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
V
= -2.2V, R = 50Ω || 1pF, C = 100pF, CTV_ = 1.4V, T = +70°C, unless otherwise specified. All temperature coefficients are  
CPLV_  
T
L
J
measured at T = +40°C to +100°C.)  
J
DRIVER TRAILING-EDGE TIMING  
ERROR vs. PULSE WIDTH  
DRIVER SMALL-SIGNAL RESPONSE  
DRIVER LARGE-SIGNAL RESPONSE  
30  
20  
V
= 0V  
V
= 0V  
DLV_  
DLV_  
9
R = 50Ω TO GND  
L
R = 50Ω TO GND  
L
POSITIVE PULSE  
V
= 0.5V  
V
= 5V  
DHV_  
DHV_  
10  
0
V
= 0.2V  
V
= 3V  
DHV_  
DHV_  
-10  
-20  
-30  
-40  
NEGATIVE PULSE  
V
= 0.1V  
V
= 1V  
DHV_  
DHV_  
0
NORMALIZED TO PW = 5ns,  
0
PERIOD = 25ns, V  
= 3V, V  
= 0V  
DHV_  
DLV_  
20  
2ns/div  
0
5
10  
15  
25  
2ns/div  
PULSE WIDTH (ns)  
DRIVER TIME DELAY  
vs. COMMON-MODE VOLTAGE  
DRIVER TO HIGH-IMPEDANCE TRANSITION  
DRIVER-TO-TERM TRANSITION  
25  
20  
15  
10  
5
R = 50Ω TO GND,  
DHV_  
DLV_  
R = 50Ω TO GND,  
L
V
V
L
NORMALIZED AT V = 1.5V  
CM  
= 1V,  
= -1V  
V
V
V
= 3V,  
= 1.5V,  
= 0V  
DHV_  
DTV_  
DLV_  
DHV  
DLV  
DHV  
DLV  
RISING EDGE  
0
0
-5  
-10  
0
FALLING EDGE  
0
1
2
3
4
5
6
2ns/div  
2ns/div  
COMMON-MODE VOLTAGE (V)  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
DUT_ = DLV_  
DUT_ = DHV_  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
V
DUT_  
V
DUT_  
24 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
Typical Operating Characteristics (continued)  
(V  
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0, V  
= 7.2V,  
CC  
EE  
DD  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
V
= -2.2V, R = 50Ω || 1pF, C = 100pF, CTV_ = 1.4V, T = +70°C, unless otherwise specified. All temperature coefficients are  
CPLV_  
T
L
J
measured at T = +40°C to +100°C.)  
J
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
CROSSTALK TO DUT_  
FROM DLV_ WITH DUT_ = DHV_  
CROSSTALK TO DUT_  
FROM DHV_ WITH DUT_ = DLV_  
3.0  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
DUT_ = DTV_  
NORMALIZED AT V  
= 5V,  
DHV_  
NORMALIZED AT V  
= 0V,  
= 1.5V  
DLV_  
2.5  
V
= 0V, V  
= 1.5V  
DLV_  
DTV_  
V
= 5V, V  
DHV_  
DTV_  
2.0  
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-0.5  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
0
1
2
3
4
5
6
7
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
(V)  
V
(V)  
V
(V)  
DHV_  
V
DUT_  
DLV_  
CROSSTALK TO DUT_  
FROM DTV_ WITH DUT_ = DHV_  
CROSSTALK TO DUT_  
FROM DTV_ WITH DUT_ = DLV_  
CROSSTALK TO DUT_  
FROM DLV_ WITH DUT_ = DTV_  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
NORMALIZED AT V  
= 1.5V,  
NORMALIZED AT V  
= 1.5V,  
NORMALIZED AT V  
= 0V,  
= 3V  
DTV_  
= 3V  
DTV_  
= 3V  
DLV_  
V
= 0V, V  
V
= 0V, V  
V
= 1.5V, V  
DLV_  
DHV_  
DLV_  
DHV_  
DTV_  
DHV_  
-0.5  
-1.0  
-1.5  
-0.5  
-0.5  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5  
-1.0  
-0.5  
0
0.5  
1.0  
1.5  
V
V
V
(V)  
DLV_  
DTV_  
DTV_  
CROSSTALK TO DUT_  
FROM DHV_ WITH DUT_ = DTV_  
DRIVER GAIN ERROR  
vs. TEMPERATURE  
2.0  
1.5  
1.0  
0.5  
0
0.4  
0.3  
0.2  
0.1  
0
NORMALIZED AT V  
= 3V,  
DHV_  
V
= 0V, V  
= 1.5V  
DLV_  
DTV_  
DHV  
DLV  
DTV  
-0.1  
-0.2  
NORMALIZED AT T = +85°C  
J
-0.5  
40  
50  
60  
70  
80  
90  
100  
1.5  
2.5  
3.5  
4.5  
(V)  
5.5  
6.5  
V
TEMPERATURE (°C)  
DHV_  
______________________________________________________________________________________ 25  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
Typical Operating Characteristics (continued)  
(V  
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0, V  
= 7.2V,  
CC  
EE  
DD  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
V
= -2.2V, R = 50Ω || 1pF, C = 100pF, CTV_ = 1.4V, T = +70°C, unless otherwise specified. All temperature coefficients are  
CPLV_  
T
L
J
measured at T = +40°C to +100°C.)  
J
DRIVER OFFSET  
vs. TEMPERATURE  
COMPARATOR OFFSET  
vs. COMMON-MODE VOLTAGE  
COMPARATOR RISING-EDGE TIMING  
VARIATION vs. COMMON-MODE VOLTAGE  
1.5  
0.2  
0
8
6
4
2
NORMALIZED AT V = 1.5V  
CM  
DLV  
1.0  
MAX79  
CHV  
-0.2  
-0.4  
-0.6  
0.5  
CHV  
DHV  
0
-0.5  
-1.0  
-1.5  
CLV  
0
-2  
-4  
-6  
-0.8  
-1.0  
-1.2  
-1.4  
CLV  
DTV  
NORMALIZED AT T = +85°C  
J
NORMALIZED AT V = 1.5V  
CM  
V
= 3.0V, V  
= 1.5V, V  
= 0V  
DHV_  
DTV_  
DLV_  
40  
50  
60  
70  
80  
90  
100  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
COMMON-MODE VOLTAGE (V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
COMPARATOR FALLING-EDGE TIMING  
VARIATION vs. COMMON-MODE VOLTAGE  
COMPARATOR TRAILING-EDGE TIMING  
VARIATION vs. PULSE WIDTH  
COMPARATOR TIMING VARIATION  
vs. INPUT SLEW RATE  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
40  
30  
20  
10  
NORMALIZED AT V = 1.5V  
CM  
NORMALIZED AT PW = 5ns,  
PERIOD = 25ns  
V
RISING  
DUT_  
LOW  
PULSE  
V
FALLING  
DUT_  
HIGH  
PULSE  
0
-10  
-20  
-30  
-40  
CHV  
0
-5  
0
CLV  
-10  
-15  
-5  
NORMALIZED AT 2V/ns  
-10  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
COMMON-MODE VOLTAGE (V)  
0
5
10  
15  
20  
25  
1
2
3
4
5
6
PULSE WIDTH (ns)  
SLEW RATE (V/ns)  
COMPARATOR DIFFERENTIAL  
OUTPUT RESPONSE  
COMPARATOR RESPONSE  
TO HIGH SLEW-RATE INPUT  
HIGH-IMPEDANCE MODE, INPUT = 6V/ns  
INPUT  
OUTPUT  
0
R = 50Ω  
L
1ns/div  
3ns/div  
26 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
Typical Operating Characteristics (continued)  
(V  
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0, V  
= 7.2V,  
CC  
EE  
DD  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
V
= -2.2V, R = 50Ω || 1pF, C = 100pF, CTV_ = 1.4V, T = +70°C, unless otherwise specified. All temperature coefficients are  
CPLV_  
T
L
J
measured at T = +40°C to +100°C.)  
J
COMPARATOR OFFSET  
vs. TEMPERATURE  
ACTIVE LOAD  
CURRENT vs. VOLTAGE  
CLAMP RESPONSE AT SOURCE  
2.0  
25  
20  
15  
10  
5
R
V
= 25Ω, V  
SOURCE  
= 3.1V, V  
= 0 to 3V SQUARE WAVE  
= -0.1V,  
CPLV_  
V
= V  
= 6V  
VLDL_  
S
CPHV_  
VLDH_  
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
0
-5  
-10  
-15  
-20  
0
NORMALIZED AT T = +70°C  
J
-2.0  
-25  
40  
50  
60  
70  
80  
90  
100  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
3ns/div  
TEMPERATURE (°C)  
V
DUT_  
ACTIVE LOAD LINEARITY ERROR  
HIGH-IMPEDANCE LEAKAGE CURRENT  
vs. DUT_ VOLTAGE  
ACTIVE-LOAD LINEARITY ERROR  
vs. V  
I
vs. V  
I
DUT_  
LDL_  
DUT_  
LDH_  
50  
40  
1.0  
0.8  
0.6  
0.4  
0.2  
0
50  
40  
CALIBRATION POINTS AT  
CALIBRATION POINTS AT  
V
V
= 300mV AND 5.4V,  
V
V
= 300mV AND 5.4V, V  
= 6V,  
LDL_  
LDH_  
LDL_  
COM_  
= -1V, V  
= 0V, V  
= 6V  
DUT_  
= 0V, V  
= -1.0V  
COM_  
LDH_  
DUT_  
30  
30  
20  
20  
10  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0.1  
1
10  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
0.1  
1.0  
10.0  
V
(V)  
V
(V)  
DUT_  
V
(V)  
LDL_  
LDH_  
LOW-LEAKAGE CURRENT  
vs. DUT_ VOLTAGE  
HIGH-IMPEDANCE CLAMP CURRENT  
vs. DIFFERENCE VOLTAGE  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-10  
-20  
-30  
V
= 5V, V  
= 6.5V  
CPLV_  
CPHV_  
-10  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
V
V
DUT_  
DUT_  
______________________________________________________________________________________ 27  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
Typical Operating Characteristics (continued)  
(V  
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0, V  
= 7.2V,  
CC  
EE  
DD  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
V
= -2.2V, R = 50Ω || 1pF, C = 100pF, CTV_ = 1.4V, T = +70°C, unless otherwise specified. All temperature coefficients are  
CPLV_  
T
L
J
measured at T = +40°C to +100°C.)  
J
HIGH-IMPEDANCE CLAMP CURRENT  
HIGH IMPEDANCE TO LOW-LEAK  
TRANSITION  
DRIVE TO LOW-LEAK  
TRANSITION  
vs. DIFFERENCE VOLTAGE  
10  
R
= 50Ω TO GND  
R
= 50Ω TO GND  
LOAD  
LOAD  
0
-10  
-20  
-30  
-40  
MAX79  
LOW-LEAK TO HIGH IMPEDANCE  
LOW-LEAK TO DRIVE  
DRIVE TO LOW-LEAK  
-50  
-60  
-70  
0
0
V
= -1.5V, V  
= 0V  
-80  
-90  
CPLV_  
CPHV_  
HIGH IMPEDANCE TO LOW-LEAK  
10ns/div  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
10ns/div  
V
DUT_  
SUPPLY CURRENT  
(I vs. V  
SUPPLY CURRENT  
SUPPLY CURRENT  
(I vs. TEMPERATURE)  
CC  
)
(I vs. V  
)
CC  
DRIVER TERM MODE, V  
CC  
EE  
EE  
140  
0
140  
120  
100  
80  
= 1.5V, NO LOAD  
DTV_  
T = +70°C  
J
120  
100  
80  
-50  
-100  
-150  
-200  
-250  
-300  
LOW-LEAK MODE  
60  
40  
20  
0
60  
40  
20  
0
LOW-LEAK MODE  
DRIVER TERM MODE, V  
= 1.5V, NO LOAD  
DTV_  
DRIVER TERM MODE, V  
= 1.5V, NO LOAD  
T = +70°C  
J
DTV_  
9.5  
9.7  
9.9  
V
10.1  
(V)  
10.3  
10.5  
-5.2 -5.1 -5.0 -4.9 -4.8 -4.7 -4.6 -4.5  
(V)  
40  
50  
60  
70  
80  
90  
100  
V
EE  
TEMPERATURE (°C)  
CC  
SUPPLY CURRENT  
(I vs. TEMPERATURE)  
TRANSIENT RESPONSE  
FVMI RANGE A  
EE  
DRIVER TERM MODE, V  
0
= 1.5V, NO LOAD  
DTV_  
V
RISING  
DUT_  
-50  
-100  
-150  
-200  
-250  
-300  
V
RISING  
MEAS_  
V
FALLING  
FALLING  
MEAS_  
0
V
DUT_  
V
= -1V TO +6.5V AND +6.5V TO -1V  
R = 200Ω TO 2.5V  
IN_  
L
40  
50  
60  
70  
80  
90  
100  
5μs/div  
TEMPERATURE (°C)  
28 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
Typical Operating Characteristics (continued)  
(V  
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0, V  
= 7.2V,  
CC  
EE  
DD  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
V
= -2.2V, R = 50Ω || 1pF, C = 100pF, CTV_ = 1.4V, T = +70°C, unless otherwise specified. All temperature coefficients are  
CPLV_  
T
L
J
measured at T = +40°C to +100°C.)  
J
TRANSIENT RESPONSE  
FVMI RANGE B  
TRANSIENT RESPONSE  
FVMI RANGE C  
TRANSIENT RESPONSE  
FVMI RANGE D  
V
= -1.5V TO +6.5V AND +6.5V TO -1.5V  
V
RISING  
V
RISING  
MEAS_  
IN_  
L
MEAS_  
R = 2000Ω TO 2.5V  
V
RISING AND V  
RISING  
DUT_  
MEAS_  
V
RISING  
V
RISING  
DUT_  
DUT_  
V
= -1.5V TO +6.5V AND  
IN_  
+6.5V TO -1.5V  
R = 200kΩ TO 2.5V  
L
V
= -1.5V TO +6.5V AND +6.5V TO -1.5V  
IN_  
L
R = 20kΩ TO 2.5V  
V
FALLING  
0
DUT_  
0
0
V
FALLING  
DUT_  
V
FALLING  
MEAS_  
V
FALLING AND V  
FALLING  
V
FALLING  
DUT_  
MEAS_  
MEAS_  
5μs/div  
5μs/div  
5μs/div  
TRANSIENT RESPONSE  
FVMI RANGE E  
TRANSIENT RESPONSE  
FIMI RANGE A  
TRANSIENT RESPONSE  
FIMI RANGE B  
V
RISING  
MEAS_  
V
RISING AND V  
RISING  
V
RISING  
MEAS_  
DUT_  
DUT_  
V
RISING  
DUT_  
V
RISING  
MEAS_  
V
= -1.5V TO +6.5V AND +6.5V TO -1.5V  
V
= -1.5V TO +6.5V AND  
IN_  
L
IN_  
R = 2MΩ TO 2.5V  
V
= 1.1V TO 4.1V AND 4.1V TO 1.1V  
IN_  
+6.5V TO -1.5V  
R = 2kΩ TO 2.5V, C  
R = 200Ω TO 2.5V, C  
= 100pF  
= 100pF  
L
LOAD  
L
LOAD  
0
V
FALLING  
DUT_  
V
FALLING  
MEAS_  
0
0
V
FALLING  
MEAS_  
V
FALLING  
DUT_  
V
FALLING AND V  
FALLING  
MEAS_  
DUT_  
50μs/div  
5μs/div  
5μs/div  
TRANSIENT RESPONSE  
FIMI RANGE C  
TRANSIENT RESPONSE  
FIMI RANGE D  
V
RISING  
V
RISING  
MEAS_  
MEAS_  
V
RISING  
V
RISING  
DUT_  
DUT_  
V
= -1.5V TO +6.5V AND  
V
= -1.5V TO +6.5V AND  
IN_  
IN_  
+6.5V TO -1.5V  
+6.5V TO -1.5V  
R = 20kΩ TO 2.5V, C  
= 100pF  
R = 200kΩ TO 2.5V,  
LOAD  
L
LOAD  
L
C
= 100pF  
0
0
V
FALLING  
DUT_  
V
FALLING  
DUT_  
V
FALLING  
V
FALLING  
MEAS_  
MEAS_  
5μs/div  
12.5μs/div  
______________________________________________________________________________________ 29  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
Typical Operating Characteristics (continued)  
(V  
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0, V  
= 7.2V,  
CC  
EE  
DD  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
V
= -2.2V, R = 50Ω || 1pF, C = 100pF, CTV_ = 1.4V, T = +70°C, unless otherwise specified. All temperature coefficients are  
CPLV_  
T
L
J
measured at T = +40°C to +100°C.)  
J
TRANSIENT RESPONSE  
FIMI RANGE E  
TRANSIENT RESPONSE  
FIMV RANGE C  
TRANSIENT RESPONSE  
VHH  
V
= -1.5V TO +6.5V AND +6.5V TO -1.5V  
IN_  
L
V
RISING AND V  
RISING  
MAX79  
R = 2MΩ TO 2.5V, C  
= 100pF  
DUT_  
MEAS_  
LOAD  
V
RISING  
MEAS_  
V
= -1.5V TO +6.5V AND  
V
RISING  
IN_  
DUT_  
+6.5V TO -1.5V  
R = 20kΩ TO 2.5V, C  
= 100pF  
L
LOAD  
V
FALLING  
DUT_  
0
0
0
V
FALLING  
V
FALLING AND V  
FALLING  
MEAS_  
DUT_  
MEAS_  
5μs/div  
0.1μs/div  
50μs/div  
DRIVER  
DRIVER  
1.2Gbps TOGGLE RATE, 1V  
DRIVER  
900Mbps TOGGLE RATE, 3V  
CABLE-DROOP COMPENSATION  
R
= 50Ω TO GND  
LOAD  
R
= 50Ω TO GND,  
LOAD  
3V SWING,  
CDRP = 0b001,  
0b100, 0b111  
0
0
R
= 50Ω TO GND  
LOAD  
0
2.5ns/div  
0.5ns/div  
0.5ns/div  
PMU  
RANGE CHANGE A TO B  
PMU  
RANGE CHANGE B TO A  
C
= 100pF, R  
= -2mA, -1mA, 0, 1mA, AND 2mA  
= 2kΩ TO 2.5V  
C
= 100pF, R  
= -2mA, -1mA, 0, 1mA, AND 2mA  
= 2kΩ TO 2.5V  
LOAD  
LOAD  
LOAD  
LOAD  
I
I
LOAD  
LOAD  
0
0
5μs/div  
5μs/div  
30 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
Typical Operating Characteristics (continued)  
(V  
= 9.75V, V = -4.75V, V  
= 3.3V, V  
= 17.5V, V  
= 3V, V  
= 0V, V  
= 1.5V, SC1 = SC0 = 0, V  
= 7.2V,  
CC  
EE  
DD  
HHP  
DHV_  
DLV_  
DTV_  
CPHV_  
V
= -2.2V, R = 50Ω || 1pF, C = 100pF, CTV_ = 1.4V, T = +70°C, unless otherwise specified. All temperature coefficients are  
CPLV_  
T L J  
measured at T = +40°C to +100°C.)  
J
PMU  
FV LINEARITY  
PMU  
MV LINEARITY  
PMU  
MI LINEARITY  
4
0.020  
0.016  
0.012  
0.008  
0.004  
0
0.020  
0.016  
0.012  
0.008  
0.004  
0
FVMI MODE, RANGE C,  
= 2.5V, V = 2.5V  
SENSE_ INPUT, RANGE B,  
V
3
2
I
= -2mA, 0, AND 2mA  
VIOS_  
DUT_  
LOAD  
1
0
-0.004  
-0.008  
-0.012  
-0.016  
-0.020  
-0.004  
-0.008  
-0.012  
-0.016  
-0.020  
-1  
-2  
-3  
-4  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
_ (V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
V
V
V
MEAS_  
IN_  
DUT  
PMU MI  
COMMON-MODE RESPONSE  
PMU  
VOLTAGE CLAMP ACCURACY  
PMU  
CURRENT CLAMP ACCURACY  
4
3
20  
15  
10  
5
0.4  
0.3  
0.2  
0.1  
0
FVMI MODE, RANGE B,  
FIMV MODE  
FVMI MODE, RANGE B, V = 2.5V  
IIOS  
V
= 2.5V, V  
= V  
,
IIOS  
DUT_  
IN_  
NORMALIZED AT V = 2.5V,  
IN_  
CLAMPHI_  
2
I
= -2mA, 0, AND 2mA  
LOAD  
1
CLAMPHI_  
0
0
CLAMPLO_  
CLAMPLO_  
-1  
-2  
-3  
-4  
-5  
-0.1  
-0.2  
-0.3  
-0.4  
-10  
-15  
-20  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
V
V
V
(V)  
CLAMP_  
IN_  
CLAMP_  
______________________________________________________________________________________ 31  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
Pin Description  
PIN  
1
NAME  
MEAS0  
DUTHI0  
DUTLO0  
REF  
DESCRIPTION  
Channel 0 Measure Output  
Channel 0 PMU High Comparator Output  
Channel 0 PMU Low Comparator Output  
DAC Reference Input  
2
3
4
5
DGS  
DUT Ground Sense Input  
Analog Ground  
MAX79  
6, 35, 51  
GND  
7
DOUT  
DGND  
CS  
Data Output. Serial-interface data output.  
Digital Ground  
8
9
Chip-Select Input  
10  
11  
12  
13  
14  
15  
16  
17  
SCLK  
DIN  
Serial-Clock Input  
Data Input. Serial-interface data input.  
Digital Power Supply  
V
DD  
LOAD  
RST  
Load Input. Serial-interface asynchronous load control.  
Reset Input. Serial-interface reset.  
DUTLO1  
DUTHI1  
MEAS1  
Channel 1 PMU Low Comparator Output  
Channel 1 PMU High Comparator Output  
Channel 1 Measure Output  
18, 37, 40,  
46, 49, 68  
V
Positive Power Supply  
Negative Power Supply  
CC  
19, 36, 39,  
47, 50, 67  
V
EE  
20  
21  
HIZMEASP1 Channel 1 High-Impedance Enable Input for PMU Measure Output  
LLEAKP1  
NRCV1  
RCV1  
Channel 1 Low-Leak Enable Input  
22  
Channel 1 Negative Receive Multiplexer Control Input  
Channel 1 Positive Receive Multiplexer Control Input  
Channel 1 Bias Voltage Input  
23  
24  
BV1  
25  
NDATA1  
DATA1  
ENVHHP1  
NCL1  
Channel 1 Negative Data Multiplexer Control Input  
Channel 1 Positive Data Multiplexer Control Input  
Channel 1 High-Voltage Mode Enable Input  
Channel 1 Negative Low Comparator Output  
Channel 1 Positive Low Comparator Output  
Channel 1 Comparator Termination Voltage  
Channel 1 Negative High Comparator Output  
Channel 1 Positive High Comparator Output  
Channel 1 PMU Sense Input  
26  
27  
28  
29  
CL1  
30  
CTV1  
31  
NCH1  
CH1  
32  
33  
SENSE1  
N.C.  
34, 42, 52  
38  
No Connection. Not internally connected.  
Channel 1 DUT Connection  
DUT1  
32 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
Pin Description (continued)  
PIN  
41  
43  
44  
45  
48  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
NAME  
TEMP  
DESCRIPTION  
Temperature Output  
V
High-Voltage Power Supply  
HHP  
PMU-F  
PMU-S  
DUT0  
PMU External Force Connection  
PMU External Sense Connection  
Channel 0 DUT Connection  
SENSE0  
CH0  
Channel 0 PMU Sense Input  
Channel 0 Positive High Comparator Output  
NCH0  
Channel 0 Negative High Comparator Output  
Channel 0 Comparator Termination Voltage  
Channel 0 Positive Low Comparator Output  
Channel 0 Negative Low Comparator Output  
Channel 0 High-Voltage Mode Enable Input  
Channel 0 Positive Data Multiplexer Control Input  
Channel 0 Negative Data Multiplexer Control Input  
Channel 0 Bias Voltage Input  
CTV0  
CL0  
NCL0  
ENVHHP0  
DATA0  
NDATA0  
BV0  
RCV0  
Channel 0 Positive Receive Multiplexer Control Input  
Channel 0 Negative Receive Multiplexer Control Input  
Channel 0 Low-Leak Enable Input  
NRCV0  
LLEAKP0  
HIZMEASP0 Channel 0 High-Impedance Enable Input For PMU Measure Output  
Exposed Pad. Internally connected to ground. Connect to a large open copper PCB plane or heatsink  
to maximize thermal performance. Not intended as an electrical connection point.  
EP  
comparators provide extremely low timing variation over  
changes in slew rate, pulse width, or overdrive voltage,  
Detailed Description  
The MAX9979 dual-channel pin electronics DCL/PMU  
integrates multiple pin-electronics functions into a sin-  
gle IC. Each channel includes a four-level pin driver, a  
window comparator, a differential comparator, dynamic  
clamps, a versatile PMU, an active load, and 14 inde-  
pendent 16-bit level-setting DACs. Additionally, each  
channel of the MAX9979 features programmable cable-  
droop compensation for the driver output and for the  
comparator input, adjustable driver output resistance,  
and driver slew-rate adjustment.  
and have 50Ω source outputs internally terminated to an  
applied voltage at CTV_. When high-impedance mode is  
selected, the programmable dynamic clamps provide  
damping of high-speed DUT waveforms. The 20mA  
active load facilitates fast contact testing when used in  
conjunction with the comparators, and functions as a  
pullup for open-drain/collector DUT outputs. The PMU  
offers five current ranges from 2ꢀA to 50mA and can  
force and measure current or voltage. Placing the  
MAX9979 DUT_ output into its very low-leakage state  
disables the DCL functions and the PMU force function.  
This feature is convenient for making IDDQ measure-  
ments without the need for an output disconnect relay.  
Low-leakage control is independent for each channel.  
An SPI-compatible serial interface and external inputs  
configure the MAX9979.  
The MAX9979 driver features a wide -1.5V to +6.5V high-  
speed operating range, high-impedance and active-ter-  
mination (3rd-level drive) modes, and is highly linear  
even at low voltage swings. The MAX9979 also features  
a built-in super voltage (VHH) level up to 13V. The driver  
provides high-speed differential control inputs compati-  
ble with most high-speed logic families. The window  
______________________________________________________________________________________ 33  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
HYSTERESIS  
CONTROL  
INPUT  
SELECT  
MAX9979  
CHV*  
CH_  
NCH_  
DUT FROM  
OTHER CHANNEL  
CTV_  
COMPARATORS  
CL_  
MAX79  
NCL_  
CLV*  
CS  
SCLK  
DIN  
LOAD CONTROL  
DROOP  
COMPENSATION  
SERIAL  
INTERFACE  
LOAD  
RST  
VLDH  
VLDL  
ACTIVE  
LOAD  
VCOM  
SLEW  
CONTROL  
DROOP  
LLEAKP_  
COMPENSATION  
R
CONTROL  
OUT  
DHV  
DTV  
20Ω  
DUT_  
DLV  
25Ω 2.5  
MUX/DRIVER  
VHH*  
CPHV  
DATA_  
NDATA_  
RCV_  
TO OTHER  
CHANNEL  
CLAMPS  
CPLV  
RANGE CONTROL  
PMU-F  
PMU-S  
NRCV_  
REF  
VIN  
BV_  
V
V
CC  
DD  
V
EE  
CLAMPHI*  
CLAMPLO  
V
HHP  
10kΩ  
GND  
4x  
1x  
PMU  
DGND  
ENVHHP_  
TEMP_  
IIOS  
MEAS_  
DGS  
IVMAX*  
IVMIN*  
VIOS  
DUTHI_  
DUTLO_  
SENSE_  
HIZMEASP_  
HIGH-IMPEDANCE CONTROL  
*SHARED LEVELS.  
KEY:  
DAC  
SERIAL BITS  
Figure 1. Simplified Block Diagram. Only one of two channels is shown. The PMU is shown in high range. The single serial interface  
controls both channels.  
34 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
The integration of DCL and PMU functions in the  
MAX9979 requires defined states to manage the inter-  
action of these resources. The PMU controls supersede  
those of the DCL, as described below and shown in  
Table 1. Important details to keep in mind are:  
tion modes. While in a calibration mode, the DCL  
states are still selected by the controls normally  
associated with those functions. When in a calibra-  
tion mode, the PMU range A is not available. The  
PMU range defaults to range B if the serial-interface  
bit RS2_ = 1.  
• Normal high-speed DCL operation is intended only  
when the PMU is in the FNMN state and the DCL is  
available, as indicated by Note B in Table 1.  
Driver  
The driver uses a high-speed multiplexer to select one  
of three DAC voltages (DHV_, DLV_, and DTV_), or to  
select high-impedance mode. Multiplexer switching is  
controlled by high-speed differential inputs  
DATA_/NDATA_ and RCV_/NRCV_ and mode-control  
bit TMSEL_ (see Table 2). The multiplexer output is  
buffered to drive DUT_. A programmable slew-rate cir-  
cuit controls the slew rate of the buffer input.  
• Forcing LLEAKP_ = 0 immediately places the DCL  
into low-leak mode, and the PMU into its high-  
impedance state independent of any other pro-  
grammed control bit or external control inputs.  
Forcing LLEAKP_ = 1 is required to allow any other  
mode of operation.  
• Forcing HIZFORCE_ = 1 enables the PMU and  
simultaneously forces the DCL into low-leak mode.  
In high-impedance mode, the clamps and comparators  
remain connected to DUT_, the DUT_ bias current is  
less than 2ꢀA, and the node continues to track high-  
speed signals. In low-leakage mode, the bias current at  
DUT_ is further reduced to less than 10nA, yet signal  
tracking slows.  
• Additional PMU settings such as the force and mea-  
sure modes, current range, the measure output,  
comparators, and the clamp features are controlled  
as described later in this document.  
• The MAX9979 provides calibration modes under  
which both the DCL and the PMU are simultaneously  
active. Forcing HIZFORCE_ = 0 ordinarily disables  
the PMU, however, when LLEAKS_ is not asserted,  
the FMODE_ and MMODE_ bits select these calibra-  
The nominal driver output resistance is 50Ω and fea-  
tures an adjustment range of 2.5Ω through the serial  
interface in 360mΩ increments. Contact the factory for  
different output resistance values.  
Table 1. MAX9979 Mode Selection  
MODES  
DRIVER  
Low leak  
Low leak  
Low leak  
Low leak  
Low leak  
Available  
Available  
Available  
Low leak  
Low leak  
COMPARATOR  
Low leak  
Low leak  
Low leak  
Low leak  
Available  
Available  
Available  
Available  
Low leak  
Low leak  
LOAD  
PMU  
FVMI  
FVMV  
FIMI  
FMODE_  
MMODE_  
LLEAKP_  
HIZFORCE_  
NOTE  
A
Low leak  
Low leak  
Low leak  
Low leak  
Available  
Available  
Available  
Available  
Low leak  
Low leak  
0
0
1
1
0
0
1
1
X
X
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
X
X
PMU  
FIMV  
FVMI  
FIMV  
FNMN  
FNMV  
FNMN  
FNMV  
A
DCL  
B
A
FNMx  
A = Calibration modes.  
B = Normal high-speed DCL operation mode.  
______________________________________________________________________________________ 35  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
Table 2. Driver Control  
SERIAL-INTERFACE BITS  
DIGITAL INPUTS  
DRIVER OUTPUT  
Drive to DLV  
LLEAKS_  
ENVHHS_  
TMSEL_  
LLEAKP_  
ENVHHP_  
RCV_  
DATA_  
0
0
0
0
0
0
X
1
X*  
X*  
0
X
X
0
1
X
X
X
X
1
1
1
1
1
1
0
X
1
1
1
1
X
0
X
X
0
0
1
1
1
X
X
X
0
1
X
X
X
X
X
X
Drive to DHV  
High-impedance receive  
Drive to DTV  
0
MAX79  
1
Drive to VHH**  
Drive to VHH**  
Low leak  
0
X
X
Low leak  
*Specified DHV, DLV transition times are not altered by the state of ENVHHS_.  
**PMU and active load must be disabled to drive to VHH_ (HIZFORCE_ = 0, FMODE_ = 1, MMODE_ = 0, LDDIS_ = 1).  
Table 3. Driver Slew Control  
TRANSMISSION  
LOSS  
TYPICAL  
DRIVER  
SC1_  
SC0_  
DRIVER SLEW RATE (%)  
DUT  
0
0
1
1
0
1
0
1
100*  
75  
50  
25  
*The power-on-reset and RST default value.  
MAX9979  
Driver Slew Control  
TRANSMISSION  
LOSS  
BUFFER  
A slew-rate circuit controls the slew rate of the buffer  
input. Select one of four possible slew rates according  
to Table 3. The speed of the internal multiplexer sets  
the 100% driver slew rate (see the Driver Large-Signal  
Response graph in the Typical Operating  
Characteristics section). SC1 and SC0 are set to 0 at  
power-up or when RST is forced low.  
WAVEFORM  
SHAPING  
MUX  
DUT  
CDRP_  
VHH Function  
VHH allows DUT_ to drive voltages up to 13V. The  
VHH_ DAC, which doubles as the PMU’s CLAMPHI_ DAC,  
adjusts from 0 to +13V. Table 2 indicates the control  
settings required to set DUT_ to VHH_. Table 23 shows  
the transfer function for the VHH_ DAC.  
Figure 2. Cable-Droop Compensation  
form to the nominal output waveform (pre-emphasis).  
Figure 2 depicts a comparison between a typical driver  
and the MAX9979, and shows how droop compensa-  
tion counters signal degradation. Control bits CDRP0,  
CDRP1, and CDRP2 vary the amplitude of the compen-  
sation signal. Table 4 shows the percent compensation  
as a function of control bit settings. The power-on-reset  
and RST values for CDRP0, CDRP1, and CDRP2 are 0.  
The specified default value is CDRP0 = 1 for Electrical  
Characteristics table data.  
Driver Cable-Droop Compensation  
The driver incorporates active cable-droop compensa-  
tion. At high frequencies, transmission-line effects from  
the DUT_ output, across the tester signal delivery path  
to the device under test, can degrade the output wave-  
form fidelity, resulting in a highly degraded or unusable  
signal. The compensation circuit counters this degrada-  
tion by adding a double time-constant decaying wave-  
36 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
Table 4. Cable-Droop Compensation Control  
SERIAL-INTERFACE BITS  
DROOP COMPENSATION (%)  
CDRP2_  
CDRP1_  
CDRP0_  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0*  
1.5**  
3
4.5  
6
7.5  
9
10.5  
*The power-on-reset and RST default value.  
**Specified default value for Electrical Characteristics table data.  
Adjustable Driver Output Impedance (ΔR )  
value. Table 5 presents the output resistance control  
O
The MAX9979’s nominal 50Ω driver output resistance is  
adjustable by 2.5Ω with a 360mΩ resolution. The RO  
bits in the DCL calibration register set the resistance  
logic. The output resistance is set to R + 0.0Ω  
O
(0b1000) at power-up or when RST is forced low.  
Table 5. Output Resistance Control  
SERIAL-INTERFACE BITS  
DRIVER OUTPUT RESISTANCE (Ω)  
RO3_  
RO2_  
RO1_  
RO0_  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
R
R
- 2.88  
- 2.52  
-2.16  
- 1.80  
- 1.44  
- 1.08  
- 0.72  
- 0.36  
+ 0*  
O
O
R
O
O
O
O
O
O
R
R
R
R
R
R
O
R
+ 0.36  
+ 0.72  
+ 1.08  
+ 1.44  
+ 1.80  
+ 2.16  
+ 2.52  
O
R
R
R
R
R
R
O
O
O
O
O
O
*Power-on-reset and RST default value.  
______________________________________________________________________________________ 37  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
Driver DATA Invert Mode  
The DATA_/NDATA_ signals for a driver channel are  
internally inverted when the INVERT_ bit in the DCL reg-  
ister is asserted. The INVERT_ bit is set to 0 at power-  
up or when RST is forced low.  
voltages at least 0.7V outside the expected DUT_ volt-  
age range when not using the clamps. Overvoltage  
protection then remains active without loading DUT_.  
Driver clamps are always and only enabled in driver  
high-impedance mode.  
Driver Differential Data Mode  
The MAX9979 allows the drivers to be configured for  
control of both channels from the channel 0  
DATA0/NDATA0 inputs. This feature allows the two  
channels to drive DUT nodes in parallel, providing a  
25Ω driver at twice the nominal drive current. Enable  
this feature by setting the DIFFERENTIAL0 bit in the  
DCL register. The DIFFERENTIAL0 bit is set to 0 at  
power-up or when RST is forced low.  
High-Speed Comparators  
The MAX9979 provides two independent high-speed  
comparators for each channel. Each comparator has  
one input connected internally to DUT_ and the other  
input connected to either CHV_ or CLV_ (Figure 4).  
Cable-droop compensation is present on both chan-  
nels. Comparator outputs are a logical result of the  
input conditions.  
MAX79  
This configuration switches a 16mA current source  
between the two outputs, and each output has an internal  
termination resistor connected to CTV_. These resistors  
are typically 50Ω. Use alternate configurations to termi-  
nate different path impedance provided that the absolute  
maximum ratings are not exceeded. Note that the resistor  
value also sets the voltage swing. The output provides a  
Driver Invert + Differential Data Mode  
Combining the differential and the invert modes allows  
the two channels to produce complementary outputs at  
DUT0 and DUT1 from a single digital data stream at  
DATA0/NDATA0. The driver block diagram (Figure 3)  
shows the logic of the differential and inverted modes.  
nominal 400mV  
swing with a 50Ω load termination,  
P-P  
and a 50Ω source termination. See the Electrical  
Bias Voltage Input (BV_)  
Characteristics section titled High-Speed Comparators,  
Logic Outputs for definition of the V  
Apply a voltage to BV_ that is the V voltage used for  
IH  
voltage.  
the DATA_ and RCV_ inputs (V (DATA_, RCV_)) <  
OH  
IH  
V
BV  
< 3.5V, because there are ESD-protection diodes  
Single-Ended Window Comparator  
Set the DIFFERENTIAL1 bit = 0 in the channel 1 DCL  
register to enable the high-speed window comparator.  
DAC voltages CHV_ and CLV_ control the comparator  
thresholds. Table 6 shows the truth table for the com-  
parators. Figure 4 shows the comparator block dia-  
gram.  
between BV_ and the high-speed inputs. Failure to do  
this turns on the protection diodes, degrading the  
DATA_ and RCV_ signals. Input bias current for BV_ is  
less than 1ꢀA.  
Driver Voltage Clamps  
The voltage clamps (high and low) limit the voltage at  
DUT_ and suppress reflections when the channel is  
configured as a high-impedance receiver. The clamps  
behave as diodes connected to the outputs of high-  
current buffers (Figure 1). Internal circuitry compen-  
sates for the diode drop at 1mA clamp current. Set the  
clamp voltages using the level-setting DACs (CPHV_  
and CPLV_). The clamps are enabled only when the  
driver is in the high-impedance mode. For transient  
suppression, set the clamp voltages to approximately  
the minimum and maximum expected DUT_ voltage  
range. The optimal clamp voltages are application-spe-  
cific and must be empirically determined. Set the clamp  
Table 6. Single-Ended Window  
Comparator Truth Table  
CONDITION  
CH_  
CL_  
0
V
V
V
V
< V  
< V  
> V  
> V  
V
V
V
V
< V  
> V  
< V  
> V  
0
0
1
1
DUT_  
DUT_  
DUT_  
DUT_  
CHV_  
CHV_  
CHV_  
CHV_  
DUT_  
DUT_  
DUT_  
DUT_  
CLV_  
CLV_  
CLV_  
CLV_  
1
0
1
38 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
LLEAKS0  
LLEAKP0  
TMSEL0  
SLEW  
DROOP  
CONTROL  
CONTROL  
VHH0  
SC0  
CDRP0  
CPLV0  
CPHV0  
DLV0  
DTV0  
DHV0  
20Ω  
CABLE  
COMPENSATION  
OUTPUT  
BUFFER  
MUX  
DUT0  
25Ω 2.5  
NRCV0  
BV0*  
RO0  
VHH  
ENABLE  
100Ω  
ENVHHS0  
RCV0  
ENVHHP0  
NDATA0  
MAX9979  
INVERT0  
100Ω  
100Ω  
0
1
DATA0  
DATA1  
0
DGS  
0
1
NDATA1  
INVERT1  
DIFFERENTIAL0  
ENVHHP1  
RCV1  
BV1*  
ENVHHS1  
VHH  
ENABLE  
100Ω  
RO1  
NRCV1  
CPHV1  
CPLV1  
DHV1  
DTV1  
DLV1  
20Ω  
CABLE  
COMPENSATION  
OUTPUT  
BUFFER  
MUX  
SC1  
DUT1  
25Ω 2.5  
CDRP1  
VHH1  
SLEW  
DROOP  
CONTROL  
CONTROL  
TMSEL1  
LLEAKP1  
LLEAKS1  
*SEE THE BIAS VOLTAGE INPUT (BV_) SECTION.  
Figure 3. Driver Block Diagram  
______________________________________________________________________________________ 39  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
CHV0  
0
CH0  
NCH0  
1
CHANNEL ZERO  
CABLE-DROOP  
MAX79  
DUT0  
COMPARATORS  
COMPENSATION  
CTV0  
CDRP0  
0
1
CL0  
NCL0  
CLV0  
LLEAKP0  
50Ω x 4  
LLEAKS0  
HYST0  
MAX9979  
DIFFERENTIAL  
COMPARATORS  
DIFFERENTIAL1  
DGS  
50Ω x 4  
1
0
1
CH1  
CHV1  
NCH1  
CTV1  
CHANNEL ONE  
COMPARATORS  
CABLE-DROOP  
COMPENSATION  
DUT1  
1
0
1
CL1  
CDRP1  
CLV1  
NCL1  
HYST1  
LLEAKP1  
LLEAKS1  
Figure 4. High-Speed Comparators Block Diagram  
40 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
Table 7. Differential Window Comparator Truth Table  
CONDITION  
CH0  
CL0  
0
V
V
V
V
- V  
- V  
- V  
- V  
< V  
< V  
> V  
> V  
- V  
- V  
- V  
- V  
V
V
V
V
- V  
- V  
- V  
- V  
< V  
> V  
< V  
> V  
- V  
- V  
- V  
- V  
0
0
1
1
DUT0  
DUT0  
DUT0  
DUT0  
DUT1  
DUT1  
DUT1  
DUT1  
CHV1  
CHV1  
CHV1  
CHV1  
DGS  
DGS  
DGS  
DGS  
DUT0  
DUT0  
DUT0  
DUT0  
DUT1  
DUT1  
DUT1  
DUT1  
CLV1  
CLV1  
CLV1  
CLV1  
DGS  
DGS  
DGS  
DGS  
1
0
1
Differential Window Comparator  
select one of eight values (0, 2mV, 4mV, 6mV, 8mV,  
10mV, 12mV, or 15mV). Hysteresis control affects both  
single-ended and differential comparators. The HYST  
bits are set to 0b000 at power-up or when RST is forced  
low. Table 8 shows the HYST bit functions.  
Set the DIFFERENTIAL1 bit = 1 in the channel 1 DCL  
register to enable the high-speed differential window  
comparator. CHV1 and CLV1 control the differential  
comparator thresholds. CHV0 and CLV0 are not used  
when differential comparison is active. The valid volt-  
age range for CHV1 and CLV1 in differential compari-  
son mode is 1V. Setting levels outside 1V does not  
damage the device, but performance is not guaran-  
teed. Differential comparator outputs are multiplexed to  
the channel 0 comparator outputs. The channel 1 com-  
parator outputs are both forced to a high state. Figure 4  
shows the operation of the comparators. Table 7 shows  
the truth table for the differential comparator. Figure 4  
shows the comparator block diagram.  
Table 8. Hysteresis Logic  
SERIAL-INTERFACE BITS  
COMPARATOR  
HYSTERESIS (mV)  
HYST1_  
HYST1_  
HYST0_  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
2
4
6
8
Comparator Hysteresis  
The DCL calibration register controls the high-speed  
comparator hysteresis. The HYST bits of that register  
10  
12  
15  
VLDH_  
MAX9979  
DUT_  
VCOM_  
LDCAL_  
0
LLDIS_  
TMSEL_  
RCV_  
VLDL_  
TRM  
100Ω  
DGS  
NRCV_  
LLEAK_  
LLEAKP_  
Figure 5. Active Load Block Diagram (One Channel Shown)  
______________________________________________________________________________________ 41  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
Comparator Cable-Droop Compensation  
Control comparator cable-droop compensation using  
the same serial bits used for the driver droop compen-  
sation, CDRP_. Cable-droop compensation is active for  
both the single-ended and the differential comparators.  
Load Calibration Enable (LDCAL_)  
LDCAL_ allows the load and driver to be simultaneously  
enabled for diagnostic purposes. LDDIS_ overrides  
LDCAL_.  
Parametric Measurement Unit (PMU)  
The MAX9979 PMU forces and measures voltages from  
-1.5V to 6.5V, and currents up to 50mA. The lowest  
full-scale current range is 2ꢀA. Available PMU modes  
are force-voltage/measure voltage (FVMV), force-volt-  
age/measure current (FVMI), force-current/measure  
current (FIMI), force-current/measure voltage (FIMV),  
force-nothing/measure voltage (FNMV), and force-noth-  
ing/measure nothing (FNMN). Figure 6 presents a block  
diagram on the PMU.  
Active Load  
The active load is a linearly programmable current  
source and sink, a commutation buffer, and a diode  
bridge (Figure 5). Level-setting DACs VLDH_ and  
VLDL_ set the sink and source currents from 0 to 20mA.  
Level-setting DAC VCOM_ sets the commutation buffer  
output voltage. The source and sink naming convention  
is referenced to the MAX9979, so current out of the  
MAX9979 constitutes source current and current into  
the MAX9979 constitutes sink current.  
MAX79  
PMU Current-Range Selection  
Three bits from the control word (RS0, RS1, and RS2)  
control the full-scale current range for both force-  
current (FI) and measure-current (MI) modes. The PMU  
ranges are independent of the programmed PMU  
mode, except range A, which is not allowed in any cali-  
bration mode. In these modes range A defaults to  
range B (see Table 1). Table 10 presents the PMU cur-  
rent-range control logic.  
The programmed source current loads the device  
under test when V  
_ < V  
_. The programmed  
COM  
DUT  
sink current loads the device under test when V  
_ >  
DUT  
V
_. The high-speed differential inputs  
COM  
(RCV_/NRCV_) and three bits of the control word  
(LLDIS_, LDCAL_, and TMSEL_) control the load.  
LLEAKP_ and LLEAK_ place the load into low-leakage  
mode. The low-leakage controls override other controls.  
Table 9 details load control logic.  
Table 9. Load Control Logic  
RCV_  
TMSEL_  
LDDIS_  
LDCAL_  
LLEAKS_  
LLEAKP_  
LOAD STATE  
X
X
0
X
1
1
X
X
X
X
X
1
0
X
X
X
0
1
0
0
0
X
X
0
X
0
0
1
1
X
0
0
0
0
0
X
0
1
1
1
1
1
Low leak  
Low leak  
Off  
Off  
Off  
On  
On  
Table 10. PMU Current-Range Control  
DIGITAL INPUT  
SERIAL-INTERFACE BITS  
RANGE  
LLEAKP_  
HIZFORCE_  
RS2_  
RS1_  
RS0_  
X
X
X
X
X
0
1
X
X
X
X
0
1
1
0
0
0
0
1
1
1
0
0
1
1
X
X
X
0
1
0
1
X
X
X
E
D
C
B
B*  
B*  
A
*Range A operation is not allowed for PMU high-impedance modes—PMU defaults to range B.  
42 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
TO OTHER CHANNEL  
PMU-F_  
100Ω  
PMU-F  
PMU-S  
HIZFORCE_  
VIN_  
RANGE-SETTING  
RESISTORS  
1
1
LLEAKP_  
2.5kΩ  
PMU-S_  
25Ω  
DUT_  
1
0
1
10kΩ  
REF  
FMODE_  
CLAMPLO_  
CLAMPHI_  
CLENABLE_  
1
0
CLAMP  
CONTROL  
MEASI  
TO OTHER  
CHANNEL  
4x  
1x  
HIZMEASS_  
IIOS  
DGS  
HIZMEASP_  
MEAS_  
0
0
1
DISABLE_  
SENSE_  
1
MMODE_  
IVMAX_  
VIOS  
TO OTHER  
CHANNEL  
DUTHI_  
DUTLO_  
MEASV  
PMUSENSE_  
0
1
IVMIN_  
MAX9979  
HYSTEN_  
Figure 6. PMU Block Diagram (One Channel Shown)  
______________________________________________________________________________________ 43  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
PMU Comparators  
Two comparators, configured as a window comparator,  
monitor the MEASV_ and MEASI_ signals (Figure 6).  
Level-setting DACs IVMAX_ and IVMIN_ set the high  
and low thresholds that determine the window (DAC  
IVMAX_ shares duties with VHH_). Both PMU window  
comparator outputs are open-drain and share a single  
serial disable bit (DISABLE_) that puts the outputs in a  
high-impedance, low-leakage state. MEAS_ includes the  
influence of VIOS, while the comparator outputs do not.  
Table 11 presents the PMU comparator output logic.  
IIOS Reference Level for PMU Measure Current  
MEAS_ Output  
In MI mode, adjust the MEAS_ output around the I  
DUT_  
= 0 center reference using the IIOS level-setting DAC.  
IIOS is programmable from 0 to 5V, but levels outside  
of the 2V to 4V range are invalid. The single IIOS DAC  
is shared by both channels. IIOS allows level shifting  
the 4V MI output range to fully above ground at the  
MEAS_ output, useful when MEAS_ is read by a unipo-  
lar ADC. The nominal 0x0000 to 0xFFFF code range for  
IIOS equates to 0 to 5V. The power-on-reset and RST  
state of IIOS is 0x4000, or 1.25V. For normal operation,  
the level of IIOS is 2.5V for a -1.5V to +6.5V MI MEAS_  
output. The IIOS DAC range is programmable outside  
the valid operational range of the IIOS signal, but doing  
so will not harm the device. Table 23 presents the IIOS  
DAC transfer function.  
MAX79  
PMU Measure Output (MEAS_)  
The MEAS_ output presents a voltage proportional to  
the measured voltage or current. Force logic input  
HIZMEASP_ or bit HIZMEASS_ low to place MEAS_ in a  
low-leakage, high-impedance state.  
The MI MEAS_ output is a buffered version of an inter-  
nal node that is used to close the force-current loop.  
The sourcing range of forced current is limited for IIOS  
VIOS Offset Level for PMU Measure Voltage  
MEAS_ Output  
In MV mode, use the VIOS level-setting DAC to offset  
the MEAS_ output voltage. The valid range of VIOS is 0  
to 1.5V, but the VIOS DAC is programmable from  
-1.25V to +3.75V. The single VIOS DAC is shared by  
both channels. VIOS allows level shifting the MEAS_  
output, useful when MEAS_ is read by a unipolar ADC.  
The nominal 0x0000 to 0xFFFF code range for VIOS  
equates to -1.25V to +3.75V. The power-on-reset and  
RST state of VIOS is 0x4000, or 0V, the level for normal  
operation. The MEAS_ output tracks DGS. The VIOS  
DAC range is programmable outside the valid opera-  
tional range of the VIOS signal, but doing so will not  
harm the device. Table 23 presents the VIOS DAC  
transfer function.  
levels above 3.5V by the V upper limit of approxi-  
IN  
mately 7.5V.  
PMU Sense  
Control bit PMUSENSE_ determines which of two inputs  
reaches the PMU sense amplifier (Figure 6). One input  
is from DUT_ through an internal 10kΩ resistor, the  
other input is from external input SENSE_. Not shown in  
Figure 6 is a third input to the sense amplifier (GND),  
which is used in VHH and FNMN modes to isolate and  
protect the amplifier from potential overvoltage and  
glitches. GND is connected automatically based on  
mode setting and no discrete control is required. Table  
12 presents the PMU sense control logic.  
Table 11. PMU Comparator Output Logic  
COMPARATOR OUTPUTS  
DISABLE_ BIT  
CONDITION  
DUTHI_  
DUTLO_  
0
X
High impedance  
High impedance  
1
V
> V  
and V  
0
1
1
0
1
1
0
0
MEASURE  
IVMAX  
IVMIN  
> V  
MEASURE IVMIN  
1
V
> V  
IVMAX  
1
V
and V  
> V  
MEASURE  
IVMAX  
IVMIN  
MEASURE  
1
V
> V  
> V  
*
IVMAX  
IVMIN  
*Normal operation is with V  
operation of the comparators.  
> V  
. This condition has V  
IVMIN  
> V  
. This does not cause any problems with the  
IVMAX  
IVMAX  
IVMIN  
44 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
Table 12. PMU Sense Control Logic  
DIGITAL INPUT  
SERIAL-INTERFACE BITS  
PMU MODE  
SENSE PATH  
LLEAKP_  
HIZFORCE_  
FMODE_  
MMODE_  
PMUSENSE_  
1
1
1
1
1
1
1
0
0
0
1
1
0
0
0
0
0
X
X
X
X
X
0
0
1
1
1
X
X
X
X
X
X
X
0
1
1
0
1
1
0
1
0
1
X
0
1
X
0
1
FyMy*  
Internal  
External  
Internal  
External  
GND  
FyMy*  
FVMy* (calibration)  
FVMy* (calibration)  
FNMN  
FNMV (calibration)  
FNMV (calibration)  
FNMN  
Internal  
External  
GND  
FNMV (calibration)  
FNMV (calibration)  
Internal  
External  
*y = V or I.  
PMU Analog Signal Polarities  
source drives DUT_ beyond a voltage clamp level, the  
PMU will current limit safely. When a PMU voltage  
clamp is active and at its limit, the MV and MI functions  
remain valid. Do not let external voltage levels at DUT_  
exceed the absolute maximum rating limits.  
In FV mode, DUT_ voltage is proportional to level-  
setting DAC voltage V . In FI mode, the current flow-  
IN_  
ing out of DUT_ is equal to:  
V
V  
IIOS  
(
)
IN  
PMU Current Clamps  
Current clamps are available on the PMU output only in  
the FV mode. Program the clamps with level-setting  
DACs CLAMPLO_ and CLAMPHI_. The PMU current  
clamps handle the full current range ( 50mA for range  
A, 2mA for range B, etc.). If the clamp currents are  
exceeded, the PMU enters a constant-voltage mode.  
The current clamp circuits override the PMU only, and  
do not limit external sources. When a PMU current  
clamp is active, the MV and MI functions are still valid.  
4 ×R  
RANGE  
Positive current is defined as flowing out of the PMU. In  
FN mode, the PMU output is high impedance. Table 13  
presents the range resistor values. Table 23 presents  
the DAC transfer functions.  
PMU Voltage Clamps  
Voltage clamps are available on the PMU output only in  
the FI mode. Program the clamps with level-setting  
DACs CLAMPLO_ and CLAMPHI_. The PMU voltage  
clamps handle the full 50mA and are triggered by the  
voltage at DUT_ independent of the voltage at SENSE_.  
The voltage clamps override the PMU only, and do not  
limit the voltage of external sources. If an external  
PMU Clamp Enable  
The CLENABLE_ bit in the PMU register enable the volt-  
age and current clamps. Table 14 presents the clamp  
enable control logic.  
Table 13. Range Resistor Values  
Table 14. Clamp Enable Control Logic  
RANGE  
RESISTOR VALUE (Ω)  
CLENABLE_ BIT  
MODE  
1
0
Clamps enabled  
Clamps disabled  
A
B
C
D
E
20  
500  
5k  
50k  
500k  
______________________________________________________________________________________ 45  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
PMU Voltage/Current-Limit Flags  
Table 15. Measure Output High-Impedance  
Control Logic  
The PMU features two comparators, arranged as a win-  
dow comparator, to flag current or voltage levels, allow-  
ing fast go/no-go testing. The comparators monitor the  
load current or voltage, and compare it to level-setting  
DACs IVMAX and IVMIN. The MMODE_ bit selects  
whether the window comparator monitors MEASV_ or  
MEASI_ (Figure 6). If MMODE_ selects MEASV_ then  
the PMUSENSE_ bit selects either the SENSE_ input or  
DUT_ (Figure 6).  
HIZMEASS_  
HIZMEASP_  
MEAS_ STATE  
BIT  
INPUT  
1
1
0
0
1
0
1
0
Measure output enabled  
High impedance  
High impedance  
MAX79  
High impedance  
Independent Control of PMU Feedback Switch  
and Measure Switch  
the PMU in a low-leakage state. Table 1 presents the  
low-leakage logic for the PMU output.  
Two single-pole/double-throw (SPDT) switches deter-  
mine the mode of operation of the PMU. One switch  
determines whether the sensed DUT_ current or DUT_  
voltage is fed back to the input, and thus determines  
which of these parameters is forced. The other switch  
determines whether the sensed DUT_ current or DUT_  
voltage is presented at MEAS_. Independent control of  
these switches and the force high-impedance state  
allow for flexible modes of operation beyond the tradi-  
tional force-voltage/measure-current (FVMI) and force-  
current/measure-voltage (FIMV) modes. The modes  
supported are:  
PMU DUT Ground Sense (DGS)  
All the DAC and MEAS_ outputs track with respect to  
the DUT ground sense input (DGS). Connect DGS to  
the ground of the device under test.  
PMU DUT_ Node Force and Sense Switches  
The MAX9979 features additional PMU force (PMU-F)  
and PMU sense (PMU-S) connections, through serial-  
controlled switches, that are shared between channels  
(Figure 6) and can be used to connect an external  
PMU. The force switch is maximum 100Ω, and the  
sense switch is maximum 2.5kΩ.  
• FVMI: Force-voltage/measure-current mode  
• FIMV: Force-current/measure-voltage mode  
• FVMV: Force-voltage/measure-voltage mode  
• FIMI: Force-current/measure-current mode  
• FNMV: Force-nothing/measure-voltage mode  
• FNMN: Force-nothing/measure-nothing mode  
PMU DUT_ Voltage Swing vs. DUT_ Current  
and Power-Supply Voltages  
Two issues limit the DUT_ voltage that the PMU delivers.  
The first issue is the headroom required by the ampli-  
fiers and other on-chip circuitry at zero output current.  
The second issue is the headroom required with sense  
resistor and additional circuit voltage drops at full-scale  
current. When the PMU is sourcing or sinking DUT_ cur-  
rent, the voltage range is reduced linearly. This compli-  
ance curve applies to both FV and FI modes and is  
PMU Measure Output High-Impedance Control  
The MEAS_ output features a low-leakage, high-imped-  
ance state. To activate this state, either place the  
HIZMEASS_ bit low or force the HIZMEASP_ logic input  
low. The two controls are logically ANDed together  
(Figure 6). The HIZMEASP_ input allows multiplexing  
between PMU measure outputs without the use of the ser-  
ial interface. At power-up, HIZMEASS_ defaults low, plac-  
ing MEAS_ in a high-impedance state. Table 15 presents  
the high-impedance control logic for the MEAS_ output.  
independent of V  
. Because the forced DUT_ voltage  
DGS  
in FV mode is = DGS + V , V  
is further limited by  
IN DUT_  
the V  
and the -2.5V to +7.5V V range. Force out-  
DGS  
IN  
put capabilities of the PMU are presented in Figure 7.  
These limitations are based on the guaranteed perfor-  
mance of the MAX9979. Operating the DUT node outside  
these limits will not harm the MAX9979, as long as the  
absolute maximum rating limits are observed. With the  
above considerations, it is possible to extend the range of  
the DUT swing beyond the limits of Figure 7. However,  
some specifications, such as linearity, will begin to  
degrade. Performance while operating outside the limits  
shown in Figure 7 is not guaranteed.  
PMU Low-Leakage Mode  
The PMU output features a low-leakage, high-imped-  
ance state. To activate this state, either place the  
HIZFORCE_ bit low or force the LLEAKP_ logic input  
low. The two controls are logically ANDed together  
(Figure 6). At power-up, HIZFORCE_ defaults low, placing  
46 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
clock speeds up to 50MHz and includes the signals CS,  
V
DUT  
SCLK, DIN, RST, LOAD, and DOUT. Serial-interface tim-  
ing is shown in Figure 9 and timing specifications are  
detailed in the Electrical Characteristics section.  
6.5V  
4.5V (A)  
6.1V (B–E)  
Loading Data into the MAX9979  
Load data into the 24-bit shift register from DIN on the  
rising edge of SCLK, while CS is low (Figure 8). The  
MAX9979 is updated when the control and level-setting  
data are latched into the control and level-setting regis-  
ters. The control and level-setting registers are separated  
from the shift register by the input and channel-select  
registers. Two methods allow data to transfer from the  
shift register to the control and level-setting registers,  
depending on the state of external digital input LOAD.  
I
DUT_  
1.1V (A)  
-1.1V (B–E)  
-1.5V  
Holding LOAD high during the rising edge of CS allows  
the shift register data to transfer only into the input and  
channel-select registers. Force LOAD low to transfer  
the data into the control and level-setting registers.  
Changes update on the falling edge of LOAD, which  
allows preloading of data and facilitates synchronizing  
updates across multiple devices.  
-FSR/2  
+FSR/2  
Figure 7. Output-Voltage Range  
Serial Interface  
An SPI-compatible serial interface and the logic-con-  
trolled inputs shown in Table 1 control the MAX9979.  
The serial interface, detailed in Figure 8, operates with  
MAX9979  
SCLK  
DIN  
SHIFT REGISTER  
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 A0 A1 A2 A3 A4 A5 A6 A7  
DOUT  
LOAD  
CS  
16  
8
RST  
CHANNEL-SELECT  
REGISTER  
INPUT REGISTERS  
PMU CONTROL  
REGISTER  
DCL CONTROL  
REGISTER  
LEVEL-SETTING DACs  
AND DAC CALIBRATION REGISTERS  
Figure 8. Serial-Interface Block Diagram  
______________________________________________________________________________________ 47  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
t
CH  
SCLK  
t
t
CL  
t
CSS1  
CSSO  
MAX79  
t
t
CSH1  
CSHO  
CS  
t
CSWH  
t
DH  
t
DS  
DIN  
A7  
A6  
A5  
A4  
A3  
A2  
D1  
D0  
t
RST  
RST  
t
CSHLD  
t
CLL  
LOAD  
t
DO  
D1 LAST  
D0 LAST  
A7  
DOUT  
A7 LAST  
A6 LAST  
A5 LAST  
A4 LAST  
A3 LAST  
A2 LAST  
Figure 9. Serial-Interface Timing  
verify that data were properly shifted in during the pre-  
vious communication.  
Holding LOAD low during the rising edge of CS forces  
the input and channel-select registers to become trans-  
parent and all data transfers through these registers  
directly to the control and level-setting registers.  
Changes update on the rising edge of CS. Figures 10  
and 11 show how LOAD and CS function, and also the  
data configuration of SCLK, DIN, and DOUT.  
Controlling the MAX9979  
Control and level-setting registers are selected to  
receive data based on the channel and mode-select  
bits (A0–A7). Table 16 presents the control register bits  
and their functions. Level-setting DAC data and control-  
register data are contained in the 16 data bits D0–D16.  
Tables 15, 16, and 17 detail the bit functions. Clock in  
bit A7 first, and bit D0 last, as shown in Figure 8.  
The calibration registers change on the rising edge of  
CS, regardless of the state of LOAD.  
DOUT  
DOUT is a buffered version of the last bit in the serial-  
interface shift register. The complete contents of the  
shift register can be read at DOUT during the next write  
cycle. To shift data out without modifying any registers,  
perform a write with address bits A4 and A5 set to 0.  
Use DOUT to daisy chain multiple devices, and/or to  
Bit A6 allows access to the DAC calibration registers.  
Use the calibration registers to adjust the gain and off-  
set of each DAC. Set bit A6 to write to the calibration  
registers (Table 18). See the Level-Setting DACs sec-  
tion for more information.  
48 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
CS  
INPUT AND  
CHANNEL  
REGISTERS  
UPDATED  
SCLK  
0
1
2
3
4
5
6
7
8
9
20  
21  
22  
23  
DIN  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14  
D3  
D2  
D1  
D0  
DOUT  
A7'  
A6'  
A5'  
A4'  
A3'  
A2'  
A1'  
A0'  
D15' D14'  
D3'  
D2'  
D1'  
D0'  
A7  
FIRST BIT  
FROM  
LAST BIT  
FROM  
PREVIOUS  
WRITE  
PREVIOUS  
WRITE  
LOAD  
RST  
LEVEL-SETTING AND  
CONTROL REGISTERS  
UPDATED  
Figure 10. Using LOAD to Update the Level-Setting and Control Registers  
CS  
INPUT, CHANNEL,  
LEVEL-SETTING AND  
CONTROL  
REGISTERS ALL  
UPDATED  
SCLK  
0
1
2
3
4
5
6
7
8
9
20  
21  
D2  
D2'  
22  
D1  
D1'  
23  
DIN  
A7  
A7'  
A6  
A6'  
A5  
A5'  
A4  
A4'  
A3  
A3'  
A2  
A2'  
A1  
A1'  
A0  
D15  
D14  
D3  
D0  
D0'  
DOUT  
A0' D15' D14'  
D3'  
A7  
FIRST BIT  
FROM  
LAST BIT  
FROM  
PREVIOUS  
WRITE  
PREVIOUS  
WRITE  
LOAD = 0  
RST  
Figure 11. Using CS to Update the Level-Setting and Control Registers (LOAD Held Low)  
______________________________________________________________________________________ 49  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
Table 16. MAX9979 Control and Calibration Register Bits  
REGISTER  
CDRP_  
FUNCTION  
Driver and comparator cable-droop compensation  
CLENABLE_  
DIFFERENTIAL0  
DIFFERENTIAL1  
DISABLE_  
ENVHHS_  
FMODE_  
GCAL_  
PMU clamp enable  
Select DATA1/NDATA1 as data control for both channels 1 and 2 (Figure 3)  
Enable differential comparator outputs (Figure 4)  
PMU comparator output disable  
VHH_ mode enable  
MAX79  
PMU force-mode control  
DAC gain calibration  
HIZFORCE_  
HIZMEASS_  
HYST_  
PMU DUT_ high-impedance control  
PMU measure output high-impedance control  
High-speed comparator hysteresis select  
PMU comparator hysteresis enable  
DATA_/NDATA_ polarity control  
Load calibration enable  
HYSTEN_  
INVERT_  
LDCAL_  
LDDIS_  
Load disable  
LLEAKS_  
MMODE_  
OCAL_  
DCL low-leak enable  
PMU measure-mode control  
DAC offset calibration  
PMU-F_  
Force switch enable (Figure 6)  
Sense switch enable (Figure 6)  
PMU MEASV input control  
PMU-S_  
PMUSENSE_  
RO_  
Driver output resistance select  
PMU current range select  
RS_  
SC_  
Driver slew-rate control  
TMSEL_  
Driver terminate select control  
Factory use only. Program to 0.  
TMUX_  
Table 17. Serial-Input Data Overview  
BIT  
FUNCTION  
A7  
A6  
Not used. Write 0 or 1  
Calibration register write enable  
Channel 1 write enable  
A5  
A4  
Channel 0 write enable  
A3–A0  
D15–D0  
Register address (see Table 18)  
Register data (see Table 19)  
50 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
Table 18. Register Address Bits  
BITS  
REGISTER  
A3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
A6 = 0  
DCL control  
A6 = 1  
DCL calibration  
DHV calibration  
DLV calibration  
DTV calibration  
CHV calibration  
CLV calibration  
CPHV calibration  
CPLV calibration  
DHV level  
DLV level  
DTV level  
CHV level/PMU IVMAX  
CLV level/PMU IVMIN  
CPHV level  
CPLV level  
PMU control  
VIN level  
VIN calibration  
VCOM calibration  
VLDH calibration  
VLDL calibration  
VIOS/IIOS* calibration  
VCOM level  
VLDH level  
VLDL level  
VIOS/IIOS* level  
CLAMPHI/VHH level  
CLAMPLO level  
CLAMPHI/VHH calibration  
CLAMPLO calibration  
*Channel 0 register programs the VIOS level; channel 1 register programs the IIOS level. Select channels with bits A4 and A5.  
Table 19. Data Bit Assignments*  
DAC GAIN AND OFFSET  
CALIBRATION REGISTERS  
DCL  
CALIBRATION  
REGISTER**  
BIT  
DCL CONTROL  
REGISTER**  
PMU CONTROL  
REGISTER**  
LEVEL-SETTER  
REGISTER  
VIN  
ALL OTHERS  
OCAL0  
OCAL1  
OCAL2  
OCAL3  
OCAL4  
OCAL5  
OCAL6  
OCAL7  
GCAL0  
GCAL1  
GCAL2  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
SC0  
SC1  
RO0  
RO1  
FMODE_  
MMODE_  
RS0_  
Bit 0 (LSB)  
Bit 1  
OCAL0  
OCAL1  
OCAL2  
OCAL3  
OCAL4  
OCAL5  
OCAL6  
OCAL7  
GCAL0  
GCAL1  
GCAL2  
LLEAKS  
TMSEL  
RO2  
Bit 2  
RO3  
RS1_  
Bit 3  
LDDIS  
HYST0  
HYST1  
HYST2  
CDRP0  
CDRP1  
CDRP2  
RS2_  
Bit 4  
INVERT  
CLENABLE_  
HIZFORCE_  
HIZMEASS_  
DISABLE_  
PMUSENSE_  
HYSTEN_  
Bit 5  
DIFFERENTIAL  
LDCAL  
Bit 6  
Bit 7  
ENVHHS  
TMUX0 = 0  
TMUX1 = 0  
Bit 8  
Bit 9  
Bit 10  
*The data bits enter the shift register in the order, MSB to LSB.  
**The DCL control, DCL calibration, and PMU control registers default to 0x0004, 0x0008, and 0x0003 respectively at power-up.  
______________________________________________________________________________________ 51  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
Table 19. Data Bit Assignments* (continued)  
FUNCTION  
DAC GAIN AND OFFSET  
CALIBRATION REGISTERS  
DCL  
CALIBRATION  
REGISTER**  
BIT  
DCL CONTROL  
REGISTER**  
PMU CONTROL  
REGISTER**  
LEVEL-SETTER  
REGISTER  
VIN  
ALL OTHERS  
GCAL3  
GCAL4  
GCAL5  
D11  
D12  
D13  
D14  
D15  
TMUX2 = 0  
PMU-F  
PMU-S  
Bit 11  
Bit 12  
GCAL3  
GCAL4  
GCAL5  
GCAL6  
TMUX3 = 0  
MAX79  
Bit 13  
Bit 14  
Bit 15 (MSB)  
*The data bits enter the shift register in the order, MSB to LSB.  
**The DCL control, DCL calibration, and PMU control registers default to 0x0004, 0x0008, and 0x0003 respectively at power-up.  
Level-Setting DACs  
The MAX9979 includes 28 level-setting DACs that pro-  
vide the DC voltage levels for the various control and  
MAX9979  
CLAMPHI1  
CHV1  
CLAMPHI1  
VHH1  
monitor circuits of the 2-channel MAX9979. Some of the  
DACs are shared between the MAX9979 channels, and  
some perform dual functions within a channel (Figure  
12). Important details about the operation of shared  
DACs are:  
CHV1  
CHANNEL 1  
IVMAX1  
CLV1  
CLV1  
• VIOS share a common DAC level for both channels.  
VIOS DAC simultaneously updates the VIOS1 and  
VIOS2 levels.  
IVMIN1  
IIOS  
IIOS  
VIOS  
• IIOS share a common DAC level for both channels.  
The IIOS DAC simultaneously updates the IIOS1 and  
IIOS2 levels.  
VIOS  
VIOS  
IIOS  
IVMIN2  
CLV2  
• CLAMPHI_ and VHH_ share a common DAC level.  
The CLAMPHI_/VHH_ DAC simultaneously updates  
the CLAMPHI_ and VHH_ levels. Note that the VHH_  
output is 0 to +13V. If CLAMPHI_ is set to a negative  
value and the VHH_ mode is selected, the VHH_ out-  
put limits close to 0V.  
CHANNEL 2  
CLV2  
CHV2  
IVMAX2  
CHV2  
VHH2  
CLAMPHI2  
CLAMPHI2  
• CHV_ and IVMAX_ share a common DAC level. The  
CHV_/IVMAX_ DAC simultaneously updates the  
CHV_ and IVMAX_ levels.  
Figure 12. Arrangement of Shared DACs  
Calibrating DAC Gain and Offset  
• CLV_ and IVMIN_ share a common DAC level. The  
CLV_/IVMIN_ DAC simultaneously updates the CLV_  
and IVMIN_ levels.  
DAC calibration registers adjust the gain and offset of  
each DAC. Each DAC has at least one calibration regis-  
ter. All DAC calibration registers are programmed with a  
14-bit code, except VIN_, which uses a 15-bit code  
(Table 19). The codes are divided into two fields, one field  
each for gain (GCAL_) and offset (OCAL_). VIN_ has a 7-  
bit field for gain and an 8-bit field for offset. All other DACs  
have a 6-bit field for gain and an 8-bit field for offset.  
A 16-bit code that varies between 0x0000 and 0xFFFF  
sets all DAC levels. Table 20 presents a list of the DACs  
and their default values.  
52 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
The VCH_, VCL_, and VIN_ DACs have duplicate calibra-  
tion registers that are selected and addressed as a func-  
tion of the selected DCL/PMU modes. The VCH_ and  
VCL_ registers each have three separate calibration  
registers that are used by the window comparator, the  
differential comparator, and the PMU comparator,  
respectively. The VIN_ register features six duplicate cali-  
bration registers that are selected as a function of the  
PMU force mode. These registers are individually  
addressed by first selecting the appropriate mode, then  
performing the register write. After the calibration regis-  
ters are programmed, the appropriate register is automat-  
ically switched in as a function of the operating mode.  
Table 20 presents a list of the DAC registers and their  
default values. Calibration registers are programmed to  
default values only during a power-on reset. Asserting  
RST does not force the calibration registers to their  
default values. Table 21 summarizes the DAC register  
addresses. Figure 13 shows how the calibration regis-  
ters affect the DAC outputs.  
Table 20. DAC Power-Up and Reset Default Values  
LEVEL-SETTING REGISTER  
POWER-UP AND RST VALUE  
CALIBRATION REGISTER  
POWER-UP VALUE*  
DAC  
DESCRIPTION  
DHV_  
DLV_  
Driver high  
Driver low  
Driver term  
0x4000  
0x4000  
0x4000  
0x4000  
0x4000  
0x4000  
0x4000  
0x4000  
0x4000  
0x4000  
0x4000  
0x4000  
0x4000  
0x4000  
0x4000  
0x2080  
0x2080  
0x2080  
0x2080  
0x2080  
0x2080  
0x2080  
0x4080  
0x2080  
0x2080  
0x2080  
0x2080  
0x2080  
0x2080  
0x2080  
DTV_  
CHV_/IVMAX_  
CLV_/IVMIN_  
CPHV_  
High comparator/PMU high comparator  
Low comparator/PMU low comparator  
High high-impedance clamp  
Low high-impedance clamp  
PMU force value  
CPLV_  
VIN_  
VCOM_  
Load commutation voltage  
Load source current  
VLDH_  
VLDL_  
Load sink current  
VIOS  
PMU measure voltage offset  
PMU force/measure current offset  
PMU high clamp/driver super voltage  
PMU low clamp  
IIOS  
CLAMPHI_/VHH_  
CLAMPLO_  
*Calibration registers not affected by RST.  
______________________________________________________________________________________ 53  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
Table 21. DAC Level-Setting and Calibration Register Addresses  
LEVEL-SETTING  
CALIBRATION  
REGISTER ADDRESS  
REGISTER ADDRESS  
DAC  
DESCRIPTION  
NOTES  
Ch 0  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
Ch 1  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x29  
0x2A  
0x2B  
0x2C  
Both  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x39  
0x3A  
0x3B  
0x3C  
Ch 0  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
Ch 1  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x69  
0x6A  
0x6B  
0x6C  
-
Both  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x79  
0x7A  
0x7B  
0x7C  
DHV_  
DLV_  
Driver high  
Driver low  
Driver term  
1, 3  
2, 3  
3
DTV_  
MAX79  
CHV_/IVMAX_  
CLV_/IVMIN_  
CPHV_  
High comparator/PMU high comparator  
Low comparator/PMU low comparator  
High high-impedance clamp  
Low high-impedance clamp  
PMU force value  
CPLV_  
VIN_  
VCOM_  
Load commutation voltage  
Load source current  
4
VLDH_  
VLDL_  
Load sink current  
VIOS  
PMU measure voltage offset  
PMU force/measure current offset  
PMU high clamp/driver super voltage  
PMU low clamp  
IIOS  
0x2D  
0x2E  
0x2F  
0x6D  
0x6E  
0x6F  
5
CLAMPHI_/VHH_  
CLAMPLO_  
0x1E  
0x1F  
0x3E  
0x3F  
0x5E  
0x5F  
0x7E  
0x7F  
3, 6  
Note 1: A common DAC is used for both the CHV_ and IVMAX_ levels.  
Note 2: A common DAC is used for both the CLV_ and IVMIN_ levels.  
Note 3: The CHV_ and CLV_ levels each have a pair of calibration registers. One is active when using the window comparator; the  
other is active when using the differential comparator. The VIN_ level has six calibration registers corresponding to the force  
voltage and the five ranges of force current modes of the PMU. The CLAMPHI_, VHH_, IVMAX_, and IVMIN_ levels each  
have their own dedicated calibration register. Addressing any of these calibration registers requires device mode settings  
(Table 22) as well as the register’s address.  
Note 4: The VIOS level is common to both channels. A channel 0 DAC is used to generate VIOS.  
Note 5: The IIOS level is common to both channels. A channel 1 DAC is used to generate IIOS.  
Note 6: A common DAC is used for both the CLAMPHI_ and VHH_ levels.  
54 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
14-BIT GAIN AND OFFSET  
ONE OF FOUR IDENTICAL  
WINDOW COMPARATOR  
CALIBRATION REGISTER  
CIRCUITS SHOWN, FOR  
DACs CHV_/IVMAX_ AND  
CLV_/IVMIN_  
14-BIT GAIN AND OFFSET  
CALIBRATION REGISTER  
DIFFERENTIAL COMPARATOR  
16-BIT DAC  
OFFSET AND GAIN  
CALIBRATION CIRCUIT  
CHV_  
OFFSET AND GAIN  
CALIBRATION CIRCUIT  
IVMAX_  
14-BIT GAIN AND OFFSET  
CALIBRATION REGISTER  
ONE OF 22 IDENTICAL  
CIRCUITS SHOWN, FOR DACs  
DHV_, DLV_, DTV_, VCOM_,  
VLDH_, VLDL_, CPHV_, CPLV_,  
CLAMPLO_, VIOS, AND IIOS  
14-BIT GAIN AND OFFSET  
CALIBRATION REGISTER  
OFFSET AND GAIN  
CALIBRATION CIRCUIT  
DHV_  
16-BIT DAC  
14-BIT GAIN AND OFFSET  
CALIBRATION REGISTER  
VHH_AND CLAMPHI_  
DACs  
OFFSET AND GAIN  
CALIBRATION CIRCUIT  
CLAMPHI_  
VHH_  
16-BIT DAC  
OFFSET AND GAIN  
CALIBRATION CIRCUIT  
14-BIT GAIN AND OFFSET  
CALIBRATION REGISTER  
VIN_ DACs  
15-BIT GAIN AND OFFSET  
CALIBRATION REGISTER  
A
B
15-BIT GAIN AND OFFSET  
CALIBRATION REGISTER  
FV  
FI  
15-BIT GAIN AND OFFSET  
CALIBRATION REGISTER  
C
D
15-BIT GAIN AND OFFSET  
CALIBRATION REGISTER  
15-BIT GAIN AND OFFSET  
CALIBRATION REGISTER  
E
15-BIT GAIN AND OFFSET  
CALIBRATION REGISTER  
OFFSET AND GAIN  
CALIBRATION CIRCUIT  
16-BIT DAC  
VIN_  
Figure 13. DAC Calibration Registers  
______________________________________________________________________________________ 55  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
An example calibration sequence follows:  
3) Offset calibration (must be done after the gain cali-  
bration).  
1) Power up the MAX9979. This sets the level-setting  
DACs to their default 0V values, and the gain and  
offset calibration registers to their default midscale  
values (Table 20).  
a. Set the level of the DAC to the desired offset  
calibration point (e.g., midscale).  
b. Measure V  
ed output.  
and compare it to the expect-  
OUT_  
2) Gain calibration (gain must be calibrated before  
calibrating offset).  
c. Adjust the offset calibration register until  
is as close as possible to the expected  
a. Program a level-setting DAC to its minimum  
value and measure the output voltage  
V
OUT_  
MAX79  
voltage. Record the value of the offset calibra-  
tion register for later use.  
(V  
). Then, reprogram the DAC to its  
OUT_MIN  
maximum value and again measure the output  
voltage (V ). Calculate the gain using  
4) Repeat the above procedure for all DACs that need  
calibration, recording each of the gain and offset  
calibration register settings for later use.  
OUT_MAX  
the following equation:  
V
V  
OUT_MIN  
OUT_MAX  
The prior procedure only needs to be done once. Each  
time the power is cycled, simply reprogram the gain  
and offset registers using the recorded values.  
GAIN =  
V
V  
SET_MIN  
SET_MAX  
where V  
and V  
are the desired gain  
SET_MIN  
SET_MAX  
calibration points.  
Table 22 presents the mode settings required to access  
the calibration registers of the shared DACs. In some  
cases there is more than one way to access the register.  
b. Set the DACs gain calibration register until the  
gain is as close to 1 as possible. This cali-  
brates the gain for the DAC. Record the gain  
calibration register value for later use.  
Table 22. Mode-Control Settings to Access Calibration Registers of Shared DACs  
CALIBRATION REGISTER  
SERIAL-INTERFACE BITS  
RS_ BIT  
DAC  
MODE  
HIZFORCE_  
DIFFERENTIAL1 FMODE_ MMODE_  
2
X
X
X
X
X
1
X
X
X
X
X
0
X
X
X
X
X
Window  
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
X
X
1
X
1
X
1
X
1
X
CLV_, CHV_  
Differential  
X
X
X
X
0
X
X
1
1
X
1
X
1
X
1
X
IVMAX_, IVMIN_  
CLAMPHI_  
VHH_  
FV*  
X
X
X
FI Range A  
1
1
X
X
X
X
FI Range B*  
0
0
0
0
1
1
0
0
1
0
1
0
VIN_  
FI Range C*  
FI Range D*  
FI Range E*  
*Any of these conditions allow access to the calibration register.  
56 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
DAC Output Level Transfer Functions  
Each of the MAX9979 analog DAC levels is set with a  
transfer function that includes the 16-bit DAC code set-  
ting, the gain code setting, and the offset code setting.  
A separate DAC (VIN_) is used for the PMU force value.  
This DAC has a finer gain adjustment resolution and fol-  
lows the equation:  
The V  
and V  
expressions below present the  
VINDAC  
DAC  
DAC  
CODE  
1 × V  
V  
DGS  
(
)
REF  
basic DAC transfer functions. Each DAC has a voltage  
output range of -2.5V to +7.5V (typ). Thirteen of these  
DACs are identical and generate a potential according  
to the following equation:  
16384  
V
= ⎝  
VINDAC  
+ OFFSET  
× 0.001 0.128  
(
)
CODE  
GAIN  
CODE  
× 0.98+ 0.02 ×  
+ V  
DGS  
64  
DAC  
CODE  
1 × V  
V  
DGS  
+
(
)
REF  
16384  
V
= ⎝  
DAC  
For all DACs, the offset code is an integer value between  
0 and 255. The VIN_DAC gain code is an integer value  
between 0 and 127, and for all other DACs the gain code  
is an integer value between 0 and 63. Offset and gain  
codes are based on the calibration register settings.  
OFFSET  
(
× 0.001 0.128  
)
CODE  
GAIN  
CODE  
× 0.98+ 0.02×  
+ V  
DGS  
32  
Table 23. DAC Transfer Functions  
LEVEL  
LEVEL TRANSFER FUNCTION  
DHV_  
DLV_  
V
V
V
V
V
V
V
V
V
V
x DHV_ gain + DHV_ offset  
x DLV_ gain + DLV_ offset  
x DTV_ gain + DTV_ offset  
x CHV_ gain + CHV_ offset  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
VINDAC  
DTV_  
CHV_  
IVMAX_  
x IVMAX_ gain + IVMAX_ offset  
x CLV_ gain + CLV_ offset  
CLV_  
IVMIN_  
x IVMIN_ gain + IVMIN_ offset  
x CPHV_ gain + CPHV_ offset  
x CPLV_ gain + CPLV_ offset  
CPHV_  
CPLV_  
VIN_ (FVMI)  
VIN_ (FIMV 50mA)  
VIN_ (FIMV 2mA)  
VIN_ (FIMV 200_A)  
VIN_ (FIMV 20_A)  
VIN_ (FIMV 2_A)  
VCOM_  
x PMU_FV_ gain + PMU_FV_ offset  
(V  
(V  
(V  
(V  
(V  
- V  
- V  
- V  
- V  
- V  
) x (50mA/4V) x PMU_FI_ gain + PMU_FI_ offset  
) x (2mA/4V) x PMU_FI_ gain + PMU_FI_ offset  
) x (200_A/4V) x PMU_FI_ gain + PMU_FI_ offset  
) x (20_A/4V) x PMU_FI_ gain + PMU_FI_ offset  
) x (2_A/4V) x PMU_FI_ gain + PMU_FI offset  
VINDAC  
VINDAC  
VINDAC  
VINDAC  
VINDAC  
IIOS  
IIOS  
IIOS  
IIOS  
IIOS  
V
x VCOM_ gain + VCOM_ offset  
DAC  
VLDH_  
(V  
DAC  
(V  
DAC  
- DGS) x (20mA/6V) x VLDH_ gain + VLDH_ offset  
- DGS) x (20mA/6V) x VLDL_ gain + VLDL_ offset  
VLDL_  
VIOS  
((V  
((V  
+ DGS)/2) x VIOS gain + VIOS offset  
+ REF)/2) x IIOS gain + IIOS offset  
DAC  
DAC  
DAC  
IIOS  
VHH_  
(V  
- DGS) x 2 x VHH_ gain + VHH_ offset + DGS  
CLAMPHI_ (Voltage)  
CLAMPHI_ (Current)  
CLAMPLO_ (Voltage)  
CLAMPLO_ (Current)  
V
x CLAMPHI_ gain + CLAMPHI_ offset  
DAC  
(V  
- V  
) x FSR/2V x CLAMPHI_ gain + CLAMPHI_ offset  
DAC  
DAC  
IIOS  
V
x CLAMPLO_ gain + CLAMPLO_ offset  
- V ) x FSR/2V x CLAMP_LO_ gain + CLAMPLO_ offset  
(V  
DAC  
IIOS  
Values for PMU_FI_ gain and PMU_FI_ offset are different  
for each PMU current range.  
VLDH_ and VLDL_ levels less than zero are truncated.  
Full-scale range is dependent upon the PMU current range.  
Values are 100mA, 4mA, 400ꢀA, 40ꢀA, and 4ꢀA for ranges  
A–E, respectively.  
Values for CLAMPHI_ gain, CLAMPLO_ gain, CLAMPHI_ off-  
set, and CLAMPLO_ offset vary with PMU force mode and  
current range.  
______________________________________________________________________________________ 57  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
The V  
voltages are then utilized for the various sig-  
0x0004, 0x0008, and 0x0003, respectively. For initial  
power-up values for the level-setting registers, see Table  
20. Power supplies may be powered on in any sequence.  
DAC  
nal paths within the MAX9979 (i.e., driver level DHV_).  
Each of these signal paths have inherent gain and offset  
errors, denoted as _gain and _offset terms in the Level  
Transfer Function column in Table 23. These error terms  
are presented to convey the non-ideal gain and offset of  
the signal paths—they do not have a specified value.  
Power-Supply Considerations  
Bypass each supply input to GND and REF to DGS with  
0.1ꢀF capacitors (Figure 13). Additionally, use bulk  
bypassing of at least 10ꢀF where the power-supply  
connections meet the circuit board.  
The GAIN  
and OFFSET  
features of each  
CODE  
CODE  
DAC are designed to correct for these errors to make  
the level transfer function expressions, and therefore,  
the final signal path outputs (e.g., DHV_) more ideal.  
MAX79  
Exposed Pad  
The exposed pad is internally connected to ground.  
Connect to a open copper PCB ground plane or  
heatsink to maximize thermal performance. Not intend-  
ed as an electrical connection point.  
Applications Information  
Device Power-Up State  
Upon power-up, the DCL enters low-leak mode and the  
PMU enters high-impedance mode. The DCL control,  
DCL calibration, and PMU control registers default to  
Pin Configuration  
TOP VIEW  
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52  
+
MEAS0  
DUTHI0  
DUTLO0  
REF  
1
2
3
4
5
6
7
8
9
51 GND  
50  
49  
V
V
EE  
CC  
48 DUT0  
DGS  
47  
46  
V
V
EE  
GND  
CC  
DOUT  
DGND  
CS  
45 PMU-S  
44 PMU-F  
MAX9979  
43  
V
HHP  
SCLK 10  
DIN 11  
42 N.C.  
41 TEMP  
V
12  
40  
39  
V
V
DD  
CC  
EE  
LOAD 13  
RST 14  
38 DUT1  
DUTLO1 15  
DUTHI1 16  
MEAS1 17  
37  
36  
V
V
CC  
EE  
*EP  
35 GND  
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
TQFN-EP-IDP  
*EP = EXPOSED PAD.  
58 ______________________________________________________________________________________  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
MAX79  
Typical Operating Circuit  
+9.75V  
-4.75V  
+1.4V  
+17.5V  
+3.3V  
TO OTHER  
MAX9979s  
4 X 50Ω  
MAX6225  
2.2μF  
2.2μF  
+3.5V  
0.1μF  
0.1μF  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
+
1
2
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
MEAS0  
GND  
2 x 1000Ω  
V
DUTHI0  
DUTLO0  
REF  
EE  
3
0.1μF  
0.1μF  
V
CC  
4
DUT0  
0.1μF  
5
TO DUT  
GROUND  
V
DGS  
EE  
6
V
GND  
CC  
7
DOUT  
DGND  
CS  
PMU-S  
PMU-F  
MAX9979  
8
0.1μF  
9
V
HHP  
10  
11  
12  
13  
14  
15  
16  
17  
SCLK  
DIN  
N.C.  
TEMP  
0.1μF  
V
CC  
V
DD  
0.1μF  
0.1μF  
V
LOAD  
EE  
RST  
DUT1  
V
DUTLO1  
DUTHI1  
MEAS1  
CC  
V
EE  
2 x 1000Ω  
GND  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
+3.5V  
0.1μF  
0.1μF  
4 X 50Ω  
+1.4V  
Package Information  
Chip Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
LAND  
PATTERN NO.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE NO.  
21-0192  
90-0090  
68 TQFN-EP-IDP T6800RN+6  
______________________________________________________________________________________ 59  
Dual 1.1Gbps Pin Electronics with Integrated  
PMU and Level-Setting DACs  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
6/08  
Initial release  
10/08  
Corrected error in Table 2 and formula on page 57  
36, 57  
37, 38, 41, 42, 44,  
45, 46, 48, 50–54,  
56, 57, 58  
2
12/08  
Added new Tables 6 and 7 and renumbered subsequent tables  
MAX79  
3
4
5
6
4/09  
6/09  
1/11  
8/11  
Made spec changes and clarifications  
5–8, 20, 57  
59  
Corrected Typical Operating Circuit  
Updated Pin Description, Exposed Pad section, and Package Information  
Clarified use of exposed die attach pad  
33, 58, 59  
33, 58  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
60 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX997ESA

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V,Beyond-the-Rails Comparators
MAXIM

MAX997ESA+

Comparator, 1 Func, 2000uV Offset-Max, 4.5ns Response Time, CMOS, PDSO8, 0.150 INCH, LEAD FREE, SOIC-8
MAXIM

MAX997ESA+T

暂无描述
MAXIM

MAX997ESA-T

Comparator, 1 Func, 2000uV Offset-Max, 4.5ns Response Time, CMOS, PDSO8, 0.150 INCH, MS-012AA, SOIC-8
MAXIM

MAX997EUA

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V,Beyond-the-Rails Comparators
MAXIM

MAX997EUA+

暂无描述
MAXIM

MAX997EUA+T

Comparator, 1 Func, 4500uV Offset-Max, 4.5ns Response Time, CMOS, PDSO8, LEAD FREE, UMAX-8
MAXIM

MAX997EUA-T

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators
MAXIM

MAX997EUT-T

Comparator, 1 Func, PDSO6, SOT-23, 6 PIN
MAXIM

MAX998

Single/Dual/Quad, SOT23, Single-Supply, High-Speed, Low-Power Comparators
MAXIM

MAX9981

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer
MAXIM

MAX9981EGX-T

825MHz to 915MHz, Dual SiGe High-Linearity Active Mixer
MAXIM