MAX9996ETP-T [MAXIM]

SiGe High-Linearity, 1700MHz2 2200MHz Downconversion Mixer with LO Buffer/Switch; SiGe,高线性度, 1700MHz2 2200MHz下变频混频器,带有LO缓冲器/开关
MAX9996ETP-T
型号: MAX9996ETP-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

SiGe High-Linearity, 1700MHz2 2200MHz Downconversion Mixer with LO Buffer/Switch
SiGe,高线性度, 1700MHz2 2200MHz下变频混频器,带有LO缓冲器/开关

开关
文件: 总12页 (文件大小:411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3531; Rev 0; 12/04  
SiGe High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
General Description  
Features  
The MAX9996 high-linearity downconversion mixer pro-  
vides 8.3dB gain, +26.5dBm IIP3, and 9.7dB NF for  
1700MHz to 2200MHz UMTS/WCDMA, DCS, and PCS  
base-station receiver applications. With a 1900MHz to  
2400MHz LO frequency range, this particular mixer is  
ideal for high-side LO injection receiver architectures.  
Low-side LO injection is supported by the MAX9994,  
which is pin-for-pin and functionally compatible with the  
MAX9996.  
1700MHz to 2200MHz RF Frequency Range  
1900MHz to 2400MHz LO Frequency Range  
(MAX9996)  
1400MHz to 2000MHz LO Frequency Range  
(MAX9994)  
40MHz to 350MHz IF Frequency Range  
8.3dB Conversion Gain  
+26.5dBm Input IP3  
In addition to offering excellent linearity and noise per-  
formance, the MAX9996 also yields a high level of com-  
ponent integration. This device includes a double-  
balanced passive mixer core, an IF amplifier, a dual-  
input LO selectable switch, and an LO buffer. On-chip  
baluns are also integrated to allow for single-ended RF  
and LO inputs. The MAX9996 requires a nominal LO  
drive of 0dBm, and supply current is guaranteed to be  
below 240mA.  
+12.6dBm Input 1dB Compression Point  
9.7dB Noise Figure  
72dBc 2LO-2RF Spurious Rejection at  
P
= -10dBm  
RF  
Integrated LO Buffer  
Integrated RF and LO Baluns for Single-Ended  
Inputs  
Low -3dBm to +3dBm LO Drive  
The MAX9994/MAX9996 are pin compatible with the  
MAX9984/MAX9986 815MHz to 995MHz mixers, mak-  
ing this entire family of downconverters ideal for appli-  
cations where a common PC board layout is used for  
both frequency bands. The MAX9996 is also functional-  
ly compatible with the MAX9993.  
Built-In SPDT LO Switch with 43dB LO1 to LO2  
Isolation and 50ns Switching Time  
Pin Compatible with MAX9984/MAX9986 815MHz  
to 995MHz Mixers  
Functionally Compatible with MAX9993  
External Current-Setting Resistors Provide Option  
for Operating Mixer in Reduced Power/Reduced  
Performance Mode  
The MAX9996 is available in a compact, 20-pin, thin  
QFN package (5mm x 5mm) with an exposed paddle.  
Electrical performance is guaranteed over the extended  
-40°C to +85°C temperature range.  
Lead-Free Package Available  
Ordering Information  
Applications  
UMTS/WCDMA Base Stations  
PKG  
CODE  
PART  
TEMP RANGE PIN-PACKAGE  
DCS1800/PCS1900 EDGE Base Stations  
20 Thin QFN-EP*  
-40°C to +85°C  
MAX9996ETP  
MAX9996ETP-T  
T2055-3  
cdmaOne™ and cdma2000® Base Stations  
PHS/PAS Base Stations  
Predistortion Receivers  
Fixed Broadband Wireless Access  
Wireless Local Loop  
5mm × 5mm  
20 Thin QFN-EP*  
-40°C to +85°C  
T2055-3  
T2055-3  
T2055-3  
5mm × 5mm  
20 Thin QFN-EP*  
5mm × 5mm  
MAX9996ETP+D -40°C to +85°C  
20 Thin QFN-EP*  
5mm × 5mm  
Private Mobile Radios  
MAX9996ETP+TD -40°C to +85°C  
*EP = Exposed paddle.  
Military Systems  
Microwave Links  
+ = Lead free. D = Dry pack. T = Tape-and-reel.  
Digital and Spread-Spectrum Communication  
Systems  
cdma2000 is a registered trademark of Telecommunications  
Industry Association.  
cdmaOne is a trademark of CDMA Development Group.  
Pin Configuration/Functional Diagram and Typical  
Application Circuit appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
SiGe High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
ABSOLUTE MAXIMUM RATINGS  
CC  
IF+, IF-, LOBIAS, LOSEL, IFBIAS to GND...-0.3V to (V  
TAP........................................................................-0.3V to +1.4V  
LO1, LO2, LEXT to GND........................................-0.3V to +0.3V  
RF, LO1, LO2 Input Power .............................................+12dBm  
RF (RF is DC shorted to GND through a balun) .................50mA  
V
to GND...........................................................-0.3V to +5.5V  
θ
θ
.................................................................................+38°C/W  
.................................................................................+13°C/W  
JA  
JC  
+ 0.3V)  
CC  
Operating Temperature Range (Note A) ....T = -40°C to +85°C  
C
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
20-Pin Thin QFN-EP (derate 26.3mW/°C above +70°C)...........2.1W  
Note A: T is the temperature on the exposed paddle of the package.  
C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(MAX9996 Typical Application Circuit, V  
= +4.75V to +5.25V, no RF signal applied, IF+ and IF- outputs pulled up to V  
through  
CC  
CC  
inductive chokes, R = 806, R = 549, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +5V, T  
=
1
2
C
CC  
C
+25°C, unless otherwise noted.)  
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
5.00  
206  
MAX  
5.25  
240  
0.8  
UNITS  
V
4.75  
V
mA  
V
CC  
CC  
Supply Current  
I
LO_SEL Input-Logic Low  
LO_SEL Input-Logic High  
V
IL  
V
2
V
IH  
AC ELECTRICAL CHARACTERISTICS  
(MAX9996 Typical Application Circuit, V  
= +4.75V to +5.25V, RF and LO ports are driven from 50sources, P  
= -3dBm to  
> f , T = -40°C to +85°C,  
CC  
LO  
+3dBm, P = -5dBm, f = 1700MHz to 2200MHz, f  
= 1900MHz to 2400MHz, f = 200MHz, f  
RF  
RF  
LO  
IF  
LO RF C  
unless otherwise noted. Typical values are at V  
= +5V, P = -5dBm, P = 0dBm, f = 1900MHz, f = 2100MHz, f = 200MHz,  
CC  
RF LO RF LO IF  
T
C
= +25°C, unless otherwise noted.) (Notes 1, 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1700  
1900  
1400  
40  
TYP  
MAX  
UNITS  
RF Frequency Range  
f
(Note 3)  
(Note 3)  
2200  
2400  
2000  
350  
MHz  
RF  
LO Frequency Range  
f
MHz  
LO  
MAX9994  
IF Frequency Range  
f
MHz  
dB  
IF  
Conversion Gain  
G
P
< +2dBm, T = +25°C  
7.0  
8.3  
9.0  
C
RF  
A
Gain Variation Over Temperature  
Input Compression Point  
T
= -40°C to +85°C  
0.75  
12.6  
dB  
C
P
(Note 4)  
dBm  
1dB  
Two tones:  
f
P
P
= 2000MHz, f  
= -5dBm/tone, f = 2200MHz,  
LO  
= 2001MHz,  
RF1  
RF2  
Input Third-Order Intercept Point  
IIP3  
23.5  
26.5  
0.5  
dBm  
dB  
RF  
LO  
= 0dBm, T = +25°C  
A
Input IP3 Variation Over  
Temperature  
T
= -40°C to +85°C  
C
2
_______________________________________________________________________________________  
SiGe High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
AC ELECTRICAL CHARACTERISTICS (continued)  
(MAX9996 Typical Application Circuit, V  
= +4.75V to +5.25V, RF and LO ports are driven from 50sources, P  
= -3dBm to  
> f , T = -40°C to +85°C,  
CC  
LO  
+3dBm, P = -5dBm, f = 1700MHz to 2200MHz, f  
= 1900MHz to 2400MHz, f = 200MHz, f  
RF  
RF  
LO  
IF  
LO RF C  
unless otherwise noted. Typical values are at V  
= +5V, P = -5dBm, P = 0dBm, f = 1900MHz, f = 2100MHz, f = 200MHz,  
CC  
RF LO RF LO IF  
T
C
= +25°C, unless otherwise noted.) (Notes 1, 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Noise Figure  
NF  
Single sideband  
9.7  
dB  
P
f
= 5dBm, f = 2000MHz,  
RF  
RF  
LO  
Noise Figure Under-Blocking  
LO Drive  
19  
dB  
= 2190MHz, f  
= 2100MHz (Note 5)  
BLOCK  
-3  
+3  
dBm  
P
P
P
P
= -10dBm  
= -5dBm  
= -10dBm  
= -5dBm  
72  
67  
87  
77  
49  
43  
-20  
-30  
40  
50  
15  
RF  
RF  
RF  
RF  
2 x 2  
3 x 3  
2LO-2RF  
3LO-3RF  
Spurious Response at IF  
dBc  
LO2 selected, 1900MHz < f < 2100MHz  
LO  
LO1 to LO2 Isolation  
dB  
LO1 selected, 1900MHz < f < 2100MHz  
LO  
Maximum LO Leakage at RF Port  
Maximum LO Leakage at IF Port  
Minimum RF-to-IF Isolation  
LO Switching Time  
P
P
= +3dBm  
= +3dBm  
dBm  
dBm  
dB  
LO  
LO  
50% of LOSEL to IF settled to within 2°  
ns  
RF Port Return Loss  
dB  
LO1/2 port selected,  
LO2/1 and IF terminated  
16  
26  
20  
LO Port Return Loss  
IF Port Return Loss  
dB  
dB  
LO1/2 port unselected,  
LO2/1 and IF terminated  
LO driven at 0dBm, RF terminated into 50,  
differential 200Ω  
Note 1: Guaranteed by design and characterization.  
Note 2: All limits include external component losses. Output measurements taken at IF output of the Typical Application Circuit.  
Note 3: Operation outside this range is possible, but with degraded performance of some parameters.  
Note 4: Compression point characterized. It is advisable not to operate continuously the mixer RF input above +12dBm.  
Note 5: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of all  
SNR degradations in the mixer, including the LO noise as defined in Maxim Application Note 2021.  
_______________________________________________________________________________________  
3
SiGe High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics  
(MAX9996 Typical Application Circuit, V  
= +5.0V, P = 0dBm, P = -5dBm, f > f , f = 200MHz, unless otherwise noted.)  
LO RF LO RF IF  
CC  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
11  
10  
9
11  
10  
9
11  
10  
9
T
C
= -25°C  
P
LO  
= -3dBm, 0dBm, +3dBm  
8
8
8
V
= 4.75V, 5.0V, 5.25V  
CC  
T
= +85°C  
C
T
C
= +25°C  
7
7
7
6
6
6
1500  
1700  
1900  
2100  
2300  
1500  
1700  
1900  
2100  
2300  
1500  
1700  
1900  
2100  
2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
28  
27  
26  
25  
24  
23  
22  
28  
27  
26  
25  
24  
23  
22  
21  
28  
27  
26  
25  
24  
23  
22  
V
= 4.75V, 5.0V  
CC  
T
= +25°C  
C
V
CC  
= 5.25V  
P
= -3dBm, 0dBm, +3dBm  
LO  
T
C
= -25°C  
T
C
= +85°C  
1500  
1700  
1900  
2100  
2300  
1500  
1700  
1900  
2100  
2300  
1500  
1700  
1900  
2100  
2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
13  
12  
11  
10  
9
12  
11  
10  
9
12  
11  
10  
9
P
= 0dBm  
V
= 5.25V  
LO  
CC  
P
LO  
= -3dBm  
T
C
= +85°C  
T
C
= +25°C  
V
CC  
= 5.0V  
P
= +3dBm  
LO  
V
CC  
= 4.75V  
T
C
= -25°C  
8
8
8
7
6
7
7
1500  
1700  
1900  
2100  
2300  
1500  
1700  
1900  
2100  
2300  
1500  
1700  
1900  
2100  
2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
4
_______________________________________________________________________________________  
SiGe High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics (continued)  
(MAX9996 Typical Application Circuit, V  
= +5.0V, P = 0dBm, P = -5dBm, f > f , f = 200MHz, unless otherwise noted.)  
LO RF LO RF IF  
CC  
2LO-2RF RESPONSE vs. RF FREQUENCY  
2LO-2RF RESPONSE vs. RF FREQUENCY  
2LO-2RF RESPONSE vs. RF FREQUENCY  
85  
80  
75  
70  
65  
60  
55  
50  
45  
85  
80  
75  
70  
65  
60  
55  
50  
45  
85  
80  
75  
70  
65  
60  
55  
50  
45  
P
RF  
= -5dBm  
P
RF  
= -5dBm  
P
RF  
= -5dBm  
P
LO  
= +3dBm  
T
C
= +85°C  
P
= 0dBm  
LO  
V
= 5.25V  
V
= 5.0V  
CC  
CC  
T
C
= +25°C  
V
= 4.75V  
CC  
P
LO  
= -3dBm  
T
C
= -25°C  
1500  
1700  
1900  
2100  
2300  
1500  
1700  
1900  
2100  
2300  
1500  
1700  
1900  
2100  
2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
3LO-3RF RESPONSE vs. RF FREQUENCY  
3LO-3RF RESPONSE vs. RF FREQUENCY  
3LO-3RF RESPONSE vs. RF FREQUENCY  
95  
90  
85  
80  
75  
70  
65  
60  
55  
95  
90  
85  
80  
75  
70  
65  
60  
55  
95  
90  
85  
80  
75  
70  
65  
60  
55  
P
= -5dBm  
P
= -5dBm  
RF  
P
= -5dBm  
RF  
RF  
V
= 4.75V  
CC  
T
= +85°C  
C
P
LO  
= -3dBm, 0dBm, +3dBm  
V
CC  
= 5.0V  
2100  
T
= +25°C  
C
V
= 5.25V  
CC  
T
C
= -25°C  
1500  
1700  
1900  
2100  
2300  
1500  
1700  
1900  
2100  
2300  
1500  
1700  
1900  
2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
1dB  
1dB  
1dB  
15  
14  
13  
12  
11  
10  
15  
14  
13  
12  
11  
10  
15  
14  
13  
12  
11  
10  
V
= 5.25V  
CC  
T
= +85°C  
C
P
= -3dBm, 0dBm, +3dBm  
LO  
T
= +25°C  
V
= 5.0V  
C
CC  
T
= -25°C  
C
V
CC  
= 4.75V  
1700  
1500  
1700  
1900  
2100  
2300  
1500  
1700  
1900  
2100  
2300  
1500  
1900  
2100  
2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
_______________________________________________________________________________________  
5
SiGe High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics (continued)  
(MAX9996 Typical Application Circuit, V  
= +5.0V, P = 0dBm, P = -5dBm, f > f , f = 200MHz, unless otherwise noted.)  
LO RF LO RF IF  
CC  
LO SWITCH ISOLATION  
vs. LO FREQUENCY  
LO SWITCH ISOLATION  
vs. LO FREQUENCY  
LO SWITCH ISOLATION  
vs. LO FREQUENCY  
50  
45  
40  
35  
30  
50  
45  
40  
50  
T
= -25°C  
C
45  
40  
35  
30  
T
C
= +85°C  
V
= 4.75V, 5.0V, 5.25V  
CC  
T
C
= +25°C  
P
LO  
= -3dBm, 0dBm, +3dBm  
35  
30  
1700  
1900  
2100  
2300  
2500  
1700  
1900  
2100  
2300  
2500  
2500  
2500  
1700  
1900  
2100  
2300  
2500  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT  
vs. LO FREQUENCY  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
P
= +3dBm  
LO  
T
C
= -25°C  
V
= 5.25V  
CC  
V
CC  
= 5.0V  
P
= 0dBm  
LO  
V
= 4.75V  
CC  
P
LO  
= -3dBm  
T
C
= +25°C  
T
C
= +85°C  
1700  
1900  
2100  
2300  
2500  
1700  
1900  
2100  
2300  
2500  
1700  
1900  
2100  
2300  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT  
vs. LO FREQUENCY  
-10  
-15  
-20  
-25  
-30  
-10  
-10  
-15  
-20  
-25  
-30  
-15  
-20  
-25  
-30  
V
= 5.25V  
CC  
V
CC  
= 4.75V  
1900  
V
= 5.0V  
CC  
T
= -25°C, +25°C, +85°C  
C
P
LO  
= -3dBm, 0dBm, +3dBm  
1700  
2100  
2300  
1700  
1900  
2100  
2300  
2500  
1700  
1900  
2100  
2300  
2500  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
SiGe High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics (continued)  
(MAX9996 Typical Application Circuit, V  
= +5.0V, P = 0dBm, P = -5dBm, f > f , f = 200MHz, unless otherwise noted.)  
LO RF LO RF IF  
CC  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
RF-TO-IF ISOLATION  
vs. RF FREQUENCY  
60  
60  
55  
50  
45  
40  
35  
30  
60  
55  
50  
45  
40  
35  
30  
T
= +85°C  
C
55  
50  
45  
40  
35  
30  
T
= +25°C  
C
T
C
= -25°C  
V = 4.75V, 5.0V, 5.25V  
CC  
P
LO  
= -3dBm, 0dBm, +3dBm  
1500  
1700  
1900  
2100  
2300  
1500  
1700  
1900  
2100  
2300  
1500  
1700  
1900  
2100  
2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF PORT RETURN LOSS  
vs. RF FREQUENCY  
IF PORT RETURN LOSS  
vs. IF FREQUENCY  
LO SELECTED RETURN LOSS  
vs. LO FREQUENCY  
0
5
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
5
10  
15  
20  
25  
30  
35  
40  
10  
15  
20  
25  
30  
35  
40  
P
LO  
= +3dBm  
P
LO  
= -3dBm  
P
LO  
= -3dBm, 0dBm, +3dBm  
V
CC  
= 4.75V, 5.0V, 5.25V  
P
LO  
= 0dBm  
1500  
1700  
1900  
2100  
2300  
2500  
50  
100  
150  
200  
250  
300  
350  
1500  
1700  
1900  
2100  
2300  
2500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO UNSELECTED RETURN LOSS  
vs. LO FREQUENCY  
SUPPLY CURRENT  
vs. TEMPERATURE (T )  
C
0
5
230  
V
CC  
= 5.25V  
220  
210  
200  
190  
180  
170  
10  
15  
20  
25  
30  
35  
P
LO  
= -3dBm, 0dBm, +3dBm  
V
= 4.75V  
CC  
V
= 5.0V  
CC  
40  
1500  
1700  
1900  
2100  
2300  
2500  
-30  
-10  
10  
30  
50  
70  
90  
LO FREQUENCY (MHz)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
SiGe High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Pin Description  
PIN  
NAME  
FUNCTION  
Power-Supply Connection. Bypass each V  
Application Circuit.  
pin to GND with capacitors as shown in the Typical  
CC  
1, 6, 8, 14  
V
CC  
Single-Ended 50RF Input. This port is internally matched and DC shorted to GND through a balun.  
Requires an external DC-blocking capacitor.  
2
3
RF  
Center Tap of the Internal RF Balun. Bypass to GND with capacitors close to the IC, as shown in the  
Typical Application Circuit.  
TAP  
GND  
4, 5, 10, 12,  
13, 17  
Ground  
7
9
LOBIAS  
LOSEL  
LO1  
Bias Resistor for Internal LO Buffer. Connect a 5491% resistor from LOBIAS to the power supply.  
Local Oscillator Select. Logic control input for selecting LO1 or LO2.  
Local Oscillator Input 1. Drive LOSEL low to select LO1.  
11  
15  
LO2  
Local Oscillator Input 2. Drive LOSEL high to select LO2.  
External Inductor Connection. Connect a low-ESR, 10nH inductor from LEXT to GND. This inductor  
carries approximately 100mA DC current.  
16  
LEXT  
Differential IF Outputs. Each output requires external bias to V  
Typical Application Circuit).  
through an RF choke (see the  
CC  
18, 19  
IF-, IF+  
20  
EP  
IFBIAS  
GND  
IF Bias Resistor Connection for IF Amplifier. Connect an 806resistor from IFBIAS to GND.  
Exposed Ground Paddle. Solder the exposed paddle to the ground plane using multiple vias.  
This device can operate in low-side LO injection appli-  
Detailed Description  
cations with an extended LO range, but performance  
The MAX9996 high-linearity downconversion mixer pro-  
vides 8.3dB of conversion gain and 26.5dBm of IIP3,  
with a typical 9.7dB noise figure. The integrated baluns  
and matching circuitry allow for 50single-ended inter-  
faces to the RF and the two LO ports. A single-pole, dou-  
ble-throw (SPDT) switch provides 50ns switching time  
between the two LO inputs with 43dB of LO-to-LO isola-  
tion. Furthermore, the integrated LO buffer provides a  
high drive level to the mixer core, reducing the LO drive  
required at the MAX9996’s inputs to a -3dBm to +3dBm  
range. The IF port incorporates a differential output,  
which is ideal for providing enhanced IIP2 performance.  
degrades as f  
continues to decrease. The  
LO  
MAX9994—a variant of the MAX9996—provides better  
low-side performance since it is tuned for a lower LO  
range of 1400MHz to 2000MHz.  
RF Input and Balun  
The MAX9996 RF input is internally matched to 50,  
requiring no external matching components. A DC-  
blocking capacitor is required because the input is  
internally DC shorted to ground through the on-chip  
balun. Input return loss is typically 15dB over the entire  
1700MHz to 2200MHz RF frequency range.  
Specifications are guaranteed over broad frequency  
ranges to allow for use in UMTS, cdma2000, and  
2G/2.5G/3G DCS1800 and PCS1900 base stations. The  
MAX9996 is specified to operate over a 1700MHz to  
2200MHz RF frequency range, a 1900MHz to 2400MHz  
LO frequency range, and a 40MHz to 350MHz IF fre-  
quency range. Operation beyond these ranges is pos-  
sible; see the Typical Operating Characteristics for  
additional details.  
LO Inputs, Buffer, and Balun  
The MAX9996 can be used for either high-side or low-  
side injection applications with a 1900MHz to 2400MHz  
LO frequency range. For a device with a 1400MHz to  
2000MHz LO frequency range, refer to the MAX9994  
data sheet. As an added feature, the MAX9996 includes  
an internal LO SPDT switch that can be used for fre-  
quency-hopping applications. The switch selects one of  
the two single-ended LO ports, allowing the external  
oscillator to settle on a particular frequency before it is  
8
_______________________________________________________________________________________  
SiGe High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
switched in. LO switching time is typically less than  
50ns, which is more than adequate for virtually all GSM  
applications. If frequency hopping is not employed, set  
the switch to either of the LO inputs. The switch is con-  
trolled by a digital input (LOSEL): logic-high selects  
LO2, logic-low selects LO1. To avoid damage to the  
The IF output impedance is 200(differential). For  
evaluation, an external low-loss 4:1 (impedance ratio)  
balun transforms this impedance down to a 50single-  
ended output (see the Typical Application Circuit).  
Bias Resistors  
Bias currents for the LO buffer and the IF amplifier are  
optimized by fine tuning resistors R1 and R2. If  
reduced current is required at the expense of perfor-  
mance, contact the factory for details. If the 1% bias  
resistor values are not readily available, substitute stan-  
dard 5% values.  
part, voltage must be applied to V  
before digital logic  
CC  
is applied to LOSEL. LO1 and LO2 inputs are internally  
matched to 50, requiring only a 22pF DC-  
blocking capacitor.  
A two-stage internal LO buffer allows a wide input  
power range for the LO drive. All guaranteed specifica-  
tions are for an LO signal power from -3dBm to +3dBm.  
The on-chip low-loss balun, along with an LO buffer,  
drives the double-balanced mixer. All interfacing and  
matching components from the LO inputs to the IF out-  
puts are integrated on-chip.  
LEXT Inductor  
LEXT serves to improve the LO-to-IF and RF-to-IF leak-  
age. The inductance value can be adjusted by the user to  
optimize the performance for a particular frequency  
band. Since approximately 100mA flows through this  
inductor, it is important to use a low-DCR wire-wound coil.  
High-Linearity Mixer  
The core of the MAX9996 is a double-balanced, high-  
performance passive mixer. Exceptional linearity is pro-  
vided by the large LO swing from the on-chip LO  
buffer. When combined with the integrated IF ampli-  
fiers, the cascaded IIP3, 2LO-2RF rejection, and NF  
performance is typically 26.5dBm, 72dBc, and 9.7dB,  
respectively.  
If the LO-to-IF and RF-to-IF leakage are not critical  
parameters, the inductor can be replaced by a short  
circuit to ground.  
Layout Considerations  
A properly designed PC board is an essential part of  
any RF/microwave circuit. Keep RF signal lines as short  
as possible to reduce losses, radiation, and induc-  
tance. For the best performance, route the ground pin  
traces directly to the exposed pad under the package.  
The PC board exposed pad MUST be connected to the  
ground plane of the PC board. It is suggested that mul-  
tiple vias be used to connect this pad to the lower level  
ground planes. This method provides a good RF/ther-  
mal conduction path for the device. Solder the exposed  
pad on the bottom of the device package to the PC  
board. The MAX9996 Evaluation Kit can be used as a  
reference for board layout. Gerber files are available  
upon request at www.maxim-ic.com.  
Differential IF Output Amplifier  
The MAX9996 mixer has a 40MHz to 350MHz IF fre-  
quency range. The differential, open-collector IF output  
ports require external pullup inductors to V . Note that  
CC  
these differential outputs are ideal for providing  
enhanced 2LO-2RF rejection performance. Single-  
ended IF applications require a 4:1 balun to transform  
the 200differential output impedance to a 50single-  
ended output. After the balun, the IF return loss is bet-  
ter than 15dB.  
Applications Information  
Power-Supply Bypassing  
Proper voltage-supply bypassing is essential for high-  
Input and Output Matching  
The RF and LO inputs are internally matched to 50.  
No matching components are required. Return loss at  
the RF port is typically 15dB over the entire input range  
(1700MHz to 2200MHz) and return loss at the LO ports  
is typically better than 16dB (1900MHz to 2400MHz).  
RF and LO inputs require only DC-blocking capacitors  
for interfacing.  
frequency circuit stability. Bypass each V  
pin and  
CC  
TAP with the capacitors shown in the Typical Application  
Circuit; see Table 1. Place the TAP bypass capacitor to  
ground within 100 mils of the TAP pin.  
_______________________________________________________________________________________  
9
SiGe High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
be soldered to a ground plane on the PC board, either  
directly or through an array of plated via holes.  
Exposed Pad RF/Thermal Considerations  
The exposed paddle (EP) of the MAX9996’s 20-pin thin  
QFN-EP package provides a low thermal-resistance  
path to the die. It is important that the PC board on  
which the MAX9996 is mounted be designed to con-  
duct heat from the EP. In addition, provide the EP with a  
low-inductance path to electrical ground. The EP MUST  
Chip Information  
TRANSISTOR COUNT: 1414  
PROCESS: SiGe BiCMOS  
Table 1. Component List Referring to the Typical Application Circuit  
COMPONENT  
VALUE  
470nH  
10nH  
DESCRIPTION  
Wire-wound high-Q inductors (0805)  
L1, L2  
L3  
Wire-wound high-Q inductor (0603)  
Microwave capacitor (0603)  
Microwave capacitor (0603)  
Microwave capacitors (0603)  
Microwave capacitors (0603)  
Microwave capacitors (0603)  
Microwave capacitor (0402)  
1% resistor (0603)  
C1  
4pF  
C4  
10pF  
C2, C6, C7, C8, C10, C12  
22pF  
C3, C5, C9, C11  
0.01µF  
150pF  
150pF  
806Ω  
C13, C14  
C15  
R1  
R2  
549Ω  
1% resistor (0603)  
R3  
7.15Ω  
4:1 balun  
MAX9996  
1% resistor (1206)  
T1  
IF balun  
U1  
Maxim IC  
Pin Configuration/Functional Diagram  
20  
18  
19  
16  
17  
V
CC  
1
2
3
4
15  
14  
13  
12  
11  
LO2  
V
RF  
CC  
MAX9996  
TAP  
GND  
GND  
LO1  
GND  
GND  
5
6
7
8
9
10  
10 ______________________________________________________________________________________  
SiGe High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Application Circuit  
V
CC  
T1  
3
6
4
IF  
R3  
OUTPUT  
L1  
L2  
2
C13  
1
C15  
17  
C14  
R1  
L3  
V
CC  
19  
18  
16  
20  
C12  
C3  
C2  
V
CC  
LO2  
LO2  
INPUT  
1
2
3
4
5
15  
C1  
MAX9996  
V
CC  
RF  
INPUT  
RF  
TAP  
14  
13  
12  
11  
V
CC  
C11  
C5  
GND  
GND  
C4  
GND  
GND  
C10  
LO1  
INPUT  
LO1  
6
7
8
9
10  
R2  
C7  
V
CC  
LOSEL  
INPUT  
C6  
C8  
C9  
V
CC  
______________________________________________________________________________________ 11  
SiGe High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
XXXXX  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45  
DETAIL A  
e
PIN # 1  
I.D.  
(ND-1) X  
e
DETAIL B  
e
L
C
C
L
L1  
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32L THIN QFN, 5x5x0.8mm  
1
-DRAWING NOT TO SCALE-  
21-0140  
G
2
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
MIN. NOM. MAX. MIN. NOM. MAX. ±0.15  
DOWN  
BONDS  
ALLOWED  
L
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
PKG.  
CODES  
T1655-1  
T1655-2  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
A
**  
**  
**  
**  
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05  
0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF.  
A1  
0
0
0
0
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
A3  
b
T2055-2  
T2055-3  
T2055-4  
T2055-5  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
Y
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
**  
**  
D
E
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
e
0.80 BSC.  
0.25  
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50  
0.65 BSC.  
0.50 BSC.  
0.50 BSC.  
T2855-1  
T2855-2  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
NO  
NO  
**  
**  
**  
**  
k
-
-
0.25  
-
-
0.25  
-
-
0.25  
-
-
L
T2855-3  
T2855-4  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
YES  
YES  
NO  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
N
ND  
16  
4
20  
5
28  
7
32  
8
T2855-5  
T2855-6  
T2855-7  
T2855-8  
**  
**  
**  
NO  
YES  
4
5
7
8
NE  
2.80  
3.35  
3.35  
3.20  
2.60 2.70  
3.15 3.25  
2.60 2.70 2.80  
3.15 3.25 3.35  
3.15 3.25 3.35  
3.00 3.10 3.20  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
JEDEC  
0.40  
Y
N
NO  
T2855N-1 3.15 3.25  
**  
**  
**  
NOTES:  
T3255-2  
T3255-3  
T3255-4  
3.00 3.10  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
YES  
NO  
**  
**  
NO  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
**SEE COMMON DIMENSIONS TABLE  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1,  
T2855-3 AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
PACKAGE OUTLINE,  
16, 20, 28, 32L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
G
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX999AAUK+T

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators
MAXIM

MAX999EUA-T

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators
MAXIM

MAX999EUK

Comparator, 1 Func, 4500uV Offset-Max, 4.5ns Response Time, PDSO5, MO-178AA, SOT-23, 5 PIN
MAXIM

MAX999EUK+

暂无描述
MAXIM

MAX999EUK+T

Comparator, 1 Func, 4500uV Offset-Max, 4.5ns Response Time, CMOS, PDSO5, LEAD FREE, MO-178AA, SOT-23, 5 PIN
MAXIM

MAX999EUK+TG21

Comparator, 1 Func, 4500uV Offset-Max, 4.5ns Response Time, PDSO5, MO-178AA, SOT-23, 5 PIN
MAXIM

MAX999EUK-T

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V,Beyond-the-Rails Comparators
MAXIM
MAXIM

MAX9K0000B

MAX9K0000B 5 PPM
VISHAY

MAXC001

150レF Low-ESR Aluminum Electroytic Capacitor
MAXIM

MAXFILTERBRD+

MAXFILTERBRD
MAXIM

MAXI

MAXI® Fuseholders
COOPER