MAXM17536ALY [MAXIM]

4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down SiP Power Module with Integrated Inductor;
MAXM17536ALY
型号: MAXM17536ALY
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down SiP Power Module with Integrated Inductor

文件: 总22页 (文件大小:1059K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
General Description  
Benefits and Features  
Reduces Design Complexity, Manufacturing Risks,  
The Himalaya series of voltage regulator ICs and power  
modules enables cooler, smaller, and simpler power supply  
solutions. The MAXM17536 is an easy-to-use, step-down  
power module that combines a switching power supply  
controller, dual n-channel MOSFET power switches, fully  
shielded inductor, and the compensation components in  
a low-profile, thermally-efficient system-in-package (SiP).  
The device operates over a wide input-voltage range  
of 4.5V to 60V and delivers up to 4A continuous output  
current with excellent line and load regulation over an  
output-voltage range of 0.9V to 12V. The high level of  
integration significantly reduces design complexity,  
manufacturing risks, and offers a true plug-and-play power  
supply solution, reducing time-to-market.  
and Time-to-Market  
• Integrated Synchronous Step-Down DC-DC  
Converter  
• Integrated Inductor  
• Integrated FETs  
• Integrated Compensation Components  
Saves Board Space in Space-Constrained  
Applications  
• Complete Integrated Step-Down Power Supply  
in a Single Package  
Small Profile, 9mm x 15mm x 4.32mm SiP Package  
Simplified PCB Design with Minimal External BOM  
The device can be operated in the pulse-width modulation  
(PWM), pulse-frequency modulation (PFM), or discontinuous  
conduction mode (DCM) control schemes.  
Components  
Offers Flexibility for Power-Design Optimization  
• Wide Input-Voltage Range from 4.5V to 60V  
• Output-Voltage Adjustable Range from 0.9V to 12V  
The MAXM17536 is available in a low-profile, highly  
thermal-emissive, compact, 29-pin, 9mm x 15mm x  
4.32mm SiP package that reduces power dissipation in  
the package and enhances efficiency. The package is  
easily soldered onto a printed circuit board and suitable  
for automated circuit board assembly.  
• Adjustable Frequency with External Frequency  
Synchronization (100kHz to 2.2MHz)  
• PWM, PFM, or DCM Current-Mode Control  
• Programmable Soft-Start  
Auxiliary Bootstrap LDO for Improved Efficiency  
• Optional Programmable EN/UVLO  
Applications  
Test and Measurement Equipment  
Distributed Supply Regulation  
FPGA and DSP Point-of-Load Regulator  
Base-Station Point-of-Load Regulator  
HVAC and Building Control Systems  
Operates Reliably in Adverse Environments  
• Integrated Thermal Protection  
• Hiccup Mode Overload Protection  
RESET Output-Voltage Monitoring  
• Ambient Operating Temperature Range  
(-40°C to +125°C)/Junction Temperature Range  
(-40°C to +150°C)  
Typical Application Circuit  
V
IN  
7V TO 60V  
• Complies with CISPR22(EN55022) Class B  
Conducted and Radiated Emissions  
C
IN  
4 x 4.7µF  
IN  
5V, 4A  
V
OUT  
OUT  
EN/UVLO  
Ordering Information appears at end of data sheet.  
C
R1  
174kΩ  
OUT  
V
CC  
R3  
715kΩ  
EXTVCC  
FB  
3 x 47µF  
MAXM17536  
DL  
C
BST  
LX  
F
RESET  
R2  
38.3kΩ  
2.2pF  
CF  
MODE/SYNC  
SGND  
C
SS  
RT  
PGND  
22nF  
: GRM31CZ72A475KE11L  
: GRM32ER71A476KE15L  
C
C
IN  
OUT  
19-100573; Rev 1; 8/19  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Absolute Maximum Ratings  
IN to PGND ...........................................................-0.3V to +65V  
EN/UVLO, SS to SGND ........................................-0.3V to +65V  
EXTVCC to PGND ................................................-0.3V to +26V  
OUT to PGND (V ≤ 16V).........................-0.3V to (V + 0.3V)  
IN  
IN  
LX to PGND................................................-0.3V to (V + 0.3V)  
OUT to PGND (V > 16V)......................................-0.3V to 16V  
IN  
IN  
BST to PGND........................................................-0.3V to +70V  
BST to LX.............................................................-0.3V to +6.5V  
Output Short-Circuit Duration....................................Continuous  
Operating Temperature Range ........................ -40°C to +125°C  
Junction Temperature (Note 1)........................................+150°C  
Storage Temperature Range............................ -55°C to +150°C  
Soldering Temperature (reflow).......................................+240°C  
BST to V  
...........................................................-0.3V to +65V  
CC  
FB, CF, RESET, MODE/SYNC, RT to SGND......-0.3V to +6.5V  
DL, V to PGND ................................................-0.3V to +6.5V  
CC  
SGND to PGND....................................................-0.3V to +0.3V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 29-PIN SiP  
Package Code  
L29915#1  
21-100177  
90-100055  
Outline Number  
Land Pattern Number  
Thermal Resistance, Four-Layer Board: (Note 2)  
Junction to Ambient (θ  
)
24°C/W  
JA  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Note 1: Junction temperature greater than +125°C degrades operating lifetimes.  
Note 2: Package thermal resistance is measured on an evaluation board with natural convection.  
Electrical Characteristics  
(V = V  
= 24V, R = OPEN (450kHz), V  
= V  
= V  
= 0V, LX = SS = RESET = CF = DL = V  
= OUT =  
IN  
EN/UVLO  
RT  
PGND  
SGND  
MODE/SYNC  
CC  
open, V  
= 0V, V  
to V = 5V, V = 1V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.  
EXTVCC  
BST LX FB A A  
All voltages are referenced to SGND, unless otherwise noted.) (Note 3)  
PARAMETER  
INPUT SUPPLY (V  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
IN  
Input-Voltage Range  
V
4.5  
60  
16  
V
IN  
Input-Shutdown Current  
I
V
= 0V, (Shutdown mode)  
11  
128  
1.27  
19  
μA  
μA  
IN_SH  
EN/UVLO  
I
MODE/SYNC = open  
DCM Mode  
Q_PFM  
Input-Quiescent Current  
I
2
Q_DCM  
mA  
I
PWM Mode, no load, V  
= V  
= 5V  
Q_PWM  
OUT  
EXTVCC  
ENABLE/UNDERVOLTAGE LOCKOUT (EN/UVLO)  
V
V
V
rising  
falling  
1.185  
1.06  
3.15  
1.215  
1.09  
3.32  
1.245  
1.12  
3.45  
ENR  
EN/UVLO  
EN/UVLO Threshold  
V
V
ENF  
ENP  
EN/UVLO  
Enable Pullup Resistor  
R
Pullup resistor between IN and EN/UVLO pins  
MΩ  
Maxim Integrated  
2  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Electrical Characteristics (continued)  
(V = V  
= 24V, R = OPEN (450kHz), V  
= V  
= V  
= 0V, LX = SS = RESET = CF = DL = V  
= OUT =  
IN  
EN/UVLO  
RT  
PGND  
SGND  
MODE/SYNC  
CC  
open, V  
= 0V, V  
to V = 5V, V = 1V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.  
EXTVCC  
BST LX FB A A  
All voltages are referenced to SGND, unless otherwise noted.) (Note 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOW DROPOUT (INLDO)  
6V < V < 60V, I = 1mA  
VCC  
4.75  
4.75  
50  
5
5
5.25  
5.25  
150  
0.4  
V
Output Voltage  
IN  
CC  
V
V
CC  
Range  
1mA < I  
< 45mA  
VCC  
V
Current Limit  
I
V
V
V
V
= 4.3V, V = 7V  
90  
mA  
V
CC  
VCC_MAX  
CC  
IN  
IN to V  
Dropout  
V
= 4.5V, I  
= 45mA  
CC  
CC_DO  
IN  
VCC  
V
rising  
falling  
4.1  
3.7  
4.2  
3.8  
4.3  
CC_UVR  
CC  
CC  
V
UVLO  
V
CC  
V
3.9  
CC_UVF  
LOW DROPOUT (EXTVCC)  
EXTVCC  
Operating Voltage Range  
4.84  
24  
V
V
Rising  
Falling  
4.56  
4.33  
4.7  
4.84  
4.6  
EXTVCC Switchover  
Voltage  
4.45  
EXTVCC to V  
Dropout  
V
V
V
= 5V, I = 45mA  
EXTVCC  
0.6  
V
CC  
EXTVCC_DO  
EXTVCC  
EXTVCC Current Limit  
SOFT-START (SS)  
I
= 4.3V, EXTVCC = 8V  
45  
85  
5
140  
mA  
EXTVCC_MAX  
CC  
SS  
Charging Current  
I
V
= 0.5V  
4.7  
5.3  
μA  
SS  
OUTPUT SPECIFICATIONS  
Line Regulation Accuracy  
V
= 7V to 60V, V  
= 5V  
0.16  
1
mV/V  
mV/A  
IN  
OUT  
Load Regulation  
Accuracy  
Tested with I  
= 0A to 4A at V  
= 5V  
CC  
OUT  
OUT  
MODE/SYNC = SGND or MODE = V  
MODE/SYNC = OPEN  
0.8875  
0.9  
0.9135  
0.936  
+75  
FB Regulation Voltage  
FB Input Bias Current  
V
V
FB_REG  
0.8875 0.915  
-75  
I
0 < V < 1V  
FB  
nA  
V
FB  
FB Undervoltage Trip  
Level to Cause Hiccup  
V
0.55  
0.58  
0.61  
FB_HICF  
HICCUP Timeout  
32768  
Cycles  
MODE/SYNC PIN  
V
MODE/SYNC = V  
(DCM mode)  
V
- 0.6  
CC  
M_DCM  
CC  
MODE Threshold  
V
MODE/SYNC = OPEN (PFM mode)  
MODE/SYNC = GND (PWM mode)  
V
/2  
CC  
V
M_PFM  
V
0.6  
1.4 x f  
M_PWM  
SYNC Frequency-  
Capture Range  
f
set by R  
1.1 x f  
kHz  
ns  
SW  
RT  
SW  
SW  
SYNC Pulse Width  
50  
V
2.0  
IH  
SYNC Threshold  
V
V
0.8  
IL  
Maxim Integrated  
3  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Electrical Characteristics (continued)  
(V = V  
= 24V, R = OPEN (450kHz), V  
= V  
= V  
= 0V, LX = SS = RESET = CF = DL = V  
= OUT =  
IN  
EN/UVLO  
RT  
PGND  
SGND  
MODE/SYNC  
CC  
open, V  
= 0V, V  
to V = 5V, V = 1V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.  
EXTVCC  
BST LX FB A A  
All voltages are referenced to SGND, unless otherwise noted.) (Note 3)  
PARAMETER  
RT PIN  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Switching Frequency  
Accuracy  
f
= 100kHz to 2.2MHz  
-12  
420  
100  
+12  
480  
%
SW  
Switching Frequency  
f
R
= open  
450  
114  
kHz  
kHz  
ns  
SW  
RT  
Switching Frequency  
Adjustable Range  
2200  
160  
Minimum On-Time  
t
ON(MIN)  
RESET PIN  
RESET Sink Current  
RESET Output-Level Low  
10  
mA  
mV  
I
RESET  
400  
I
= 10mA  
= 5.5V  
RESET  
RESET Output-Leakage  
Current  
-100  
90.4  
93.4  
+100  
94.6  
97.7  
nA  
%
V
RESET  
V
Threshold for  
OUT  
V
V
falling  
92.5  
95.5  
OUT_OKF  
FB  
FB  
RESET Assertion  
V
Threshold for  
OUT  
V
V
rising  
%
OUT_OKR  
RESET Deassertion  
RESET Deassertion  
Delay After FB Reaches  
95% Regulation  
1024  
Cycles  
THERMAL SHUTDOWN  
Thermal Shutdown  
Threshold  
Temperature Rising  
165  
10  
°C  
°C  
Thermal Shutdown  
Hysteresis  
Note 3: Electrical specifications are production tested at T = + 25°C. Specifications over the entire operating temperature range  
A
are guaranteed by design and characterization.  
Maxim Integrated  
4  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Typical Operating Characteristics  
(V = V  
= 24V, V  
= V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.  
IN  
EN/UVLO  
SGND  
PGND A A  
All voltages are referenced to GND, unless otherwise noted. The circuit values for different output-voltage applications are as in Table 1,  
unless otherwise noted.)  
EFFICIENCY vs. LOAD CURRENT  
(3.3V OUTPUT, PWM MODE, fSW = 300kHz)  
EFFICIENCY vs. LOAD CURRENT  
(3.3V OUTPUT, PFM MODE, fSW = 300kHz)  
EFFICIENCY vs. LOAD CURRENT  
(5V OUTPUT, PWM MODE, fSW = 450kHz)  
toc01  
toc03  
toc02  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 60V  
VIN = 48V  
VIN = 60V  
VIN = 48V  
VIN = 60V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 5V  
VIN = 36V  
VIN = 24V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 5V  
VIN = 12V  
VIN = 7.5V  
0
1000  
2000  
3000  
4000  
1
10  
100  
1000  
0
1000  
2000  
3000  
4000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
EFFICIENCY vs. LOAD CURRENT  
(5V OUTPUT, DCM MODE, fSW = 450kHz)  
EFFICIENCY vs. LOAD CURRENT  
(5V OUTPUT, PFM MODE, fSW = 450kHz)  
EFFICIENCY vs. LOAD CURRENT  
(3.3V OUTPUT, DCM MODE, fSW = 300kHz)  
toc04  
toc05  
toc06  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 24V  
VIN = 24V  
VIN = 12V  
VIN = 7.5V  
VIN = 12V  
VIN = 5V  
VIN = 60V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 60V  
VIN = 48V  
VIN = 60V  
VIN = 48V  
VIN = 36V  
VIN = 36V  
VIN = 7.5V  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
EFFICIENCY vs. LOAD CURRENT  
(1.2V OUTPUT, PWM MODE, fSW = 400kHz)  
EFFICIENCY vs. LOAD CURRENT  
(0.9V OUTPUT, PWM MODE, fSW = 300kHz)  
EFFICIENCY vs. LOAD CURRENT  
(1.5V OUTPUT, PWM MODE, fSW = 400kHz)  
toc07  
toc08  
toc09  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 12V  
VIN = 5V  
VIN = 12V  
VIN = 12V  
VIN = 5V  
VIN = 5V  
0
1000  
2000  
3000  
4000  
0
1000  
2000  
3000  
4000  
0
1000  
2000  
3000  
4000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.  
IN  
EN/UVLO  
SGND  
PGND A A  
All voltages are referenced to GND, unless otherwise noted. The circuit values for different output-voltage applications are as in Table 1,  
unless otherwise noted.)  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
(1.8V OUTPUT, PWM MODE, fSW = 400kHz)  
(2.5V OUTPUT, PWM MODE, fSW = 400kHz)  
(8V OUTPUT, PWM MODE, fSW = 750kHz)  
toc12  
toc11  
toc10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 24V  
VIN = 12V  
VIN = 5V  
VIN = 60V  
VIN = 48V  
VIN = 24V  
VIN = 12V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 5V  
0
1000  
2000  
3000  
4000  
0
1000  
2000  
3000  
4000  
0
1000  
2000  
3000  
4000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
EFFICIENCY vs. LOAD CURRENT  
(12V OUTPUT, PWM MODE, fSW = 900kHz)  
EFFICIENCY vs. LOAD CURRENT  
(1.2V OUTPUT, PFM MODE, fSW = 400kHz)  
EFFICIENCY vs. LOAD CURRENT  
(0.9V OUTPUT, PFM MODE, fSW = 300kHz)  
toc15  
toc13  
toc14  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 60V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 16V  
VIN = 12V  
VIN = 5V  
VIN = 12V  
VIN = 5V  
1
10  
100  
1000  
0
1000  
2000  
3000  
4000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
(2.5V OUTPUT, PFM MODE, fSW = 400kHz)  
(1.5V OUTPUT, PFM MODE, fSW = 400kHz)  
(1.8V OUTPUT, PFM MODE, fSW = 400kHz)  
toc18  
toc16  
toc17  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 24V  
VIN = 12V  
VIN = 5V  
VIN = 12V  
VIN = 24V  
VIN = 12V  
VIN = 5V  
VIN = 5V  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.  
IN  
EN/UVLO  
SGND  
PGND A A  
All voltages are referenced to GND, unless otherwise noted. The circuit values for different output-voltage applications are as in Table 1,  
unless otherwise noted.)  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
(8V OUTPUT, PFM MODE, fSW = 750kHz)  
(12V OUTPUT, PFM MODE, fSW = 900kHz)  
toc19  
toc20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 60V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 16V  
VIN = 60V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
STEADY-STATE SWITCHING WAVEFORMS  
STEADY-STATE SWITCHING WAVEFORMS  
(VIN = 24V, VOUT = 5V, IOUT = 4A, PWM MODE)  
(VIN = 24V, VOUT = 5V, IOUT = 0A, PWM MODE)  
toc22  
toc21  
20mV/div  
VOUT (AC)  
20mV/div  
VOUT (AC)  
10V/div  
10V/div  
VLX  
VLX  
2µs/div  
2µs/div  
STEADY-STATE SWITCHING WAVEFORMS  
(VIN = 24V, VOUT = 5V, IOUT = 100mA, DCM MODE)  
STEADY-STATE SWITCHING WAVEFORMS  
(VIN = 24V, VOUT = 5V, IOUT = 25mA, PFM MODE)  
toc23  
toc24  
100mV/div  
VOUT (AC)  
10mV/div  
VOUT (AC)  
10V/div  
10V/div  
VLX  
VLX  
100µs/div  
1µs/div  
Maxim Integrated  
7  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.  
IN  
EN/UVLO  
SGND  
PGND A A  
All voltages are referenced to GND, unless otherwise noted. The circuit values for different output-voltage applications are as in Table 1,  
unless otherwise noted.)  
OUTPUT VOLTAGE vs. LOAD CURRENT  
(5V OUTPUT, PWM MODE, fSW = 450kHz)  
OUTPUT VOLTAGE vs. LOAD CURRENT  
(5V OUTPUT, PFM MODE, fSW = 450kHz)  
toc25  
toc26  
5.000  
4.995  
4.990  
4.985  
4.980  
4.975  
4.970  
5.150  
5.130  
5.110  
5.090  
5.070  
5.050  
5.030  
5.010  
4.990  
4.970  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 60V  
VIN = 7.5V  
VIN = 12V  
VIN = 7.5V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 60V  
0
1000  
2000  
3000  
4000  
0
1000  
2000  
3000  
4000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE vs. LOAD CURRENT  
(3.3V OUTPUT, PWM MODE, fSW = 300kHz)  
OUTPUT VOLTAGE vs. LOAD CURRENT  
(3.3V OUTPUT, PFM MODE, fSW = 300kHz)  
toc27  
toc28  
3.317  
3.316  
3.315  
3.314  
3.313  
3.312  
3.311  
3.310  
3.309  
3.42  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
VIN = 5V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 60V  
VIN = 60V  
VIN = 48V  
VIN = 36V  
VIN = 24V  
VIN = 12V  
VIN = 5V  
0
1000  
2000  
3000  
4000  
0
1000  
2000  
3000  
4000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
POWER-UP AND DOWN THROUGH EN/UVLO  
POWER-UP AND DOWN THROUGH EN/UVLO  
(VIN = 24V, VOUT = 5V, IOUT = 25mA, PFM MODE)  
(VIN = 24V, VOUT = 3.3V, IOUT = 25mA, PFM MODE)  
toc29  
toc30  
2V/div  
2V/div  
VEN/UVLO  
VEN/UVLO  
5V/div  
VOUT  
2V/div  
5V/div  
VOUT  
5V/div  
VRESET  
VRESET  
4ms/div  
4ms/div  
Maxim Integrated  
8  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.  
IN  
EN/UVLO  
SGND  
PGND A A  
All voltages are referenced to GND, unless otherwise noted. The circuit values for different output-voltage applications are as in Table 1,  
unless otherwise noted.)  
POWER-UP AND DOWN THROUGH EN/UVLO  
POWER-UP AND DOWN THROUGH EN/UVLO  
(VIN = 24V, VOUT = 5V, IOUT = 4A, PWM MODE)  
(VIN = 24V, VOUT = 3.3V, IOUT = 4A, PWM MODE)  
toc31  
toc32  
2V/div  
2V/div  
2V/div  
VEN/UVLO  
VEN/UVLO  
VOUT  
VOUT  
5V/div  
5V/div  
5A/div  
5V/div  
5A/div  
VRESET  
IOUT  
VRESET  
IOUT  
4ms/div  
4ms/div  
POWER-UP WITH 2.5V BIAS  
(VIN = 24V, VOUT = 3.3V, IOUT = 0A, PWM MODE)  
POWER-UP WITH 2.5V BIAS  
(VIN = 24V, VOUT = 5V, IOUT = 0A, PWM MODE)  
toc33  
toc34  
2V/div  
2V/div  
VEN/UVLO  
VEN/UVLO  
2V/div  
5V/div  
1V/div  
5V/div  
VOUT  
VOUT  
VRESET  
VRESET  
4ms/div  
4ms/div  
LOAD TRANSIENT  
(VIN = 24V, VOUT = 5V, IOUT = 0A TO 2A, PWM MODE)  
LOAD TRANSIENT  
(VIN = 24V, VOUT = 5V, IOUT = 2A TO 4A, PWM MODE)  
toc36  
toc35  
100mV/div  
VOUT (AC)  
VOUT (AC)  
100mV/div  
2A/div  
IOUT  
IOUT  
2A/div  
400µs/div  
400µs/div  
Maxim Integrated  
9  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.  
IN  
EN/UVLO  
SGND  
PGND A A  
All voltages are referenced to GND, unless otherwise noted. The circuit values for different output-voltage applications are as in Table 1,  
unless otherwise noted.)  
LOAD TRANSIENT  
LOAD TRANSIENT  
(VIN = 24V, VOUT = 3.3V, IOUT = 0A TO 2A, PWM MODE)  
(VIN = 24V, VOUT = 3.3V, IOUT = 2A TO 4A, PWM MODE)  
toc37  
toc38  
VOUT (AC)  
100mV/div  
VOUT (AC)  
100mV/div  
2A/div  
1A/div  
IOUT  
IOUT  
400µs/div  
400µs/div  
LOAD TRANSIENT  
LOAD TRANSIENT  
(VIN = 24V, VOUT = 3.3V, IOUT = 25mA TO 2A, PFM MODE)  
(VIN = 24V, VOUT = 5V, IOUT = 25mA TO 2A, PFM MODE)  
toc39  
toc40  
100mV/div  
VOUT (AC)  
VOUT (AC)  
100mV/div  
IOUT  
IOUT  
1A/div  
1A/div  
400µs/div  
400µs/div  
LOAD TRANSIENT  
LOAD TRANSIENT  
(VIN = 24V, VOUT = 3.3V, IOUT = 25mA TO 2A, DCM MODE)  
(VIN = 24V, VOUT = 5V, IOUT = 25mA TO 2A, DCM MODE)  
toc41  
toc42  
100mV/div  
VOUT (AC)  
VOUT (AC)  
100mV/div  
IOUT  
1A/div  
1A/div  
IOUT  
400µs/div  
400µs/div  
Maxim Integrated  
10  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Typical Operating Characteristics (continued)  
(V = V  
= 24V, V  
= V  
= 0V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.  
IN  
EN/UVLO  
SGND  
PGND A A  
All voltages are referenced to GND, unless otherwise noted. The circuit values for different output-voltage applications are as in Table 1,  
unless otherwise noted.)  
OUTPUT SHORT IN STEADY STATE  
(VIN = 24V, VOUT = 5V, PWM MODE)  
STARTUP INTO SHORT  
(VIN = 24V, VOUT = 5V, PWM MODE)  
SYNC FREQUENCY AT 630kHz  
(VIN = 24V, VOUT = 5V, IOUT = 4A, PWM MODE)  
toc45  
toc44  
toc43  
10V/div  
2V/div  
20V/div  
VLX  
VEN/UVLO  
VOUT  
500mV/div  
20V/div  
VLX  
VOUT  
5V/div  
5V/div  
50mV/div  
5V/div  
VLX  
5A/div  
SHORT  
IOUT  
5A/div  
VSYNC  
IOUT  
10µs/div  
2ms/div  
20ms/div  
BODE PLOT  
(VIN = 24V, VOUT = 5V, IOUT = 4A)  
OUTPUT CURRENT  
vs. AMBIENT TEMPERATURE  
BODE PLOT  
(VIN = 24V, VOUT = 3.3V, IOUT = 4A)  
toc48  
toc46  
toc47  
40  
30  
120  
5
4
3
2
1
0
40  
30  
120  
100  
80  
PHASE  
100  
80  
PHASE  
20  
20  
60  
60  
10  
10  
40  
40  
0
0
VOUT = 5V  
20  
20  
GAIN  
GAIN  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
0
0
-20  
-40  
-60  
-20  
-40  
-60  
VOUT = 3.3V  
fCR = 36.49kHz,  
PHASE MARGIN = 63°  
fCR = 33.33kHz,  
PHASE MARGIN = 58.7°  
105  
103  
104  
105  
103  
104  
FREQUENCY (Hz)  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY (Hz)  
AMBIENT TEMPERATURE (°C)  
RADIATED EMISSION PLOT  
CONDUCTED EMISSION PLOT  
(NO FILTER C18 = C19 = C20 = C21 = C22 = OPEN, L1 = SHORT)  
(WITH FILTER C18 = C19 = C20 = C21 = C22 = 4.7µF, L1 = 8.2µH)  
toc49  
toc50  
CISPR-22 CLASS B QP LIMIT  
60  
60  
50  
CISPR-22 CLASS B AVG LIMIT  
50  
CISPR-22 CLASS B QP LIMIT  
40  
AVERAGE EMISSION  
40  
30  
PEAK EMISSION  
30  
VERTICAL SCAN  
20  
20  
10  
10  
0
HORIZONTAL SCAN  
1000  
30  
100  
0.15  
1
10  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
CONDITIONS : VIN = 24V, VOUT = 5V, IOUT = 4A  
FROM : MAXM17536EVKIT#  
CONDITIONS : VIN = 24V, VOUT = 5V, IOUT = 4A  
FROM : MAXM17536EVKIT#  
Maxim Integrated  
11  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Pin Configuration  
OUT  
IN  
PGND  
DL  
OUT  
MODE/SYNC  
+
29  
26  
25  
1
2
3
4
28  
27  
23  
V
CC  
OUT  
OUT  
24  
RESET  
22  
21  
20  
MAXM17536  
PGND  
PGND  
RT  
EP1  
EP2  
SGND  
5
6
CF  
FB  
19  
18  
PGND  
EP3  
PGND  
PGND  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
LX  
SS  
EN/UVLO  
IN  
PGND  
EXTVCC  
BST  
PGND  
PGND PGND  
29-PIN SiP  
(9mm x 15mm x 4.32mm)  
Pin Description  
PIN  
NAME  
FUNCTION  
is bypassed to PGND internally through a 2.2µF capacitor.  
5V LDO Output. The V  
CC  
1
V
CC  
Do not connect any external components to the V  
pin.  
CC  
Open-Drain RESET Output. The RESET output is driven low if FB drops below 92.5% of its set value.  
RESET goes high 1024 clock cycles after FB rises above 95.5% of its set value. See the RESET Output  
section for more details.  
2
3
RESET  
Switching Frequency Programming. Connect a resistor from RT to SGND to set the regulator's  
switching frequency. Leave RT open for the default 450kHz frequency. See the Setting the Switching  
Frequency (RT) section for more details.  
RT  
4
5
SGND  
CF  
Analog Ground.  
Compensation Pin. Connect a 2.2pF capacitor from CF to FB.  
Feedback Input. Connect FB to the center tap of an external resistor-divider from the OUT to SGND to  
set the output voltage.  
6
FB  
Maxim Integrated  
12  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
7
SS  
Soft-Start Input. Connect a capacitor from SS to SGND to set the soft-start time.  
Enable/Undervoltage-Lockout Input. Connect a resistor from EN/UVLO to SGND to set the UVLO  
threshold. By default, the module is enabled with the EN/UVLO pin open.  
8
EN/UVLO  
IN  
Power-Supply Input. Decouple to PGND with a capacitor; place the capacitor close to the IN and  
PGND pins.  
9, 28  
10, 14-21,  
27  
PGND  
EXTVCC  
BST  
Power Ground  
External Power Supply Input for the Internal LDO. Applying a voltage between 4.7V and 24V at the  
EXTVCC pin bypasses the internal LDO and improves efficiency.  
11  
12  
Boost Flying Capacitor Node. Internally a 0.1μF is connected from BST to LX. Do not connect any  
external components to the BST pin.  
13  
22-25  
26  
LX  
OUT  
DL  
Switching Node. Leave unconnected; do not connect any external components to the LX pin.  
Regulator Output Pin. Connect a capacitor from OUT to PGND.  
Gate Drive for Low-Side MOSFET. Do not connect any external components to the DL pin.  
MODE Pin Configures the Part to Operate in PWM, PFM, or DCM Modes of Operation. Leave MODE  
unconnected for PFM operation (pulse skipping at light loads). Connect MODE to SGND for  
MODE/  
SYNC  
29  
constant frequency PWM operation at all loads. Connect MODE to V  
for DCM operation.  
CC  
The device can be synchronized to an external clock using this pin. See the Mode Selection (MODE)  
section for more details.  
EP1, EP2,  
EP3  
Exposed Pad. Create a large copper plane below the module connecting EP1, EP2, and EP3 to  
improve heat dissipation capability. PGND and SGND are shorted through this plane.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Functional Diagrams  
Internal Diagram  
MAXM17536  
IN  
LDO  
V
CC  
SELECT  
1µF  
1µF  
2.2µF  
INLDO  
EXTVCC  
BST  
4.7Ω  
3.32MΩ  
LDO  
0.1µF  
0.1µF  
CURRENT-SENSE  
LOGIC  
LX  
SGND  
4.7µH  
EN/UVLO  
OUT  
PEAK  
CURRENT-  
MODE  
1.215V  
0.22µF  
CONTROLLER  
HICCUP  
PGND  
DL  
RT  
4.7Ω  
OSCILLATOR  
CF  
FB  
MODE  
SELECTION  
LOGIC  
MODE/  
SYNC  
ERROR AMPLIFIER/  
LOOP COMPENSATION  
SLOPE  
COMPENSATION  
V
CC  
SWITCHOVER  
LOGIC  
RESET  
5μA  
SS  
FB  
RESET  
LOGIC  
HICCUP  
EN/UVLO  
Maxim Integrated  
14  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
PFM-Mode Operation  
Detailed Description  
The PFM mode of operation disables negative inductor  
current and additionally skips pulses at light loads for high  
efficiency. In PFM mode, the inductor current is forced to  
a fixed peak of 2A (typ) every clock cycle until the output  
rises to 102.3% of the nominal voltage. Once the output  
reaches 102.3% of the nominal voltage, both the high-  
side and low-side FETs are turned off and the device  
enters hibernate operation until the load discharges the  
output to 101.1% of the nominal voltage. Most of the  
internal blocks are turned off in hibernate operation to  
minimize quiescent current. After the output falls below  
101.1% of the nominal voltage, the device comes out  
of hibernate operation, turns on all internal blocks, and  
again commences the process of delivering pulses  
of energy to the output until it reaches 102.3% of the  
nominal output voltage. The advantage of the PFM  
mode is higher efficiency at light loads because of lower  
quiescent current drawn from the supply. The disadvantage  
is that the output-voltage ripple is higher compared to  
PWM or DCM modes of operation and switching frequency  
is not constant at light loads.  
The MAXM17536 is a high-efficiency, high-voltage,  
synchronous step-down module with dual-integrated  
MOSFETs that operates over a 4.5V to 60V input, and  
supports a programmable output voltage from 0.9V to  
12V, delivering up to 4A current. Built-in compensation  
for the entire output-voltage range eliminates the need  
for external components. The feedback (FB) regulation  
accuracy over -40°C to +125°C is ±1.5%.  
The device features a peak-current-mode control  
architecture. An internal transconductance-error amplifier  
produces an integrated error voltage at an internal node  
that sets the duty cycle using a PWM comparator, a high-  
side current-sense amplifier, and a slope-compensation  
generator. At each rising edge of the clock, the high-  
side MOSFET turns on and remains on until either the  
appropriate or maximum duty cycle is reached, or the peak  
current limit is detected. During the high-side MOSFET’s  
on-time, the inductor current ramps up. During the second  
half of the switching cycle, the high-side MOSFET turns  
off and the low-side MOSFET turns on. The inductor  
releases the stored energy as its current ramps down  
and provides current to the output. The device features a  
MODE/SYNC pin that can be used to operate the device  
in PWM, PFM, or DCM control schemes and to synchronize  
the switching frequency to an external clock. The device  
integrates adjustable-input undervoltage lockout,  
adjustable soft-start, open-drain RESET, auxiliary  
bootstrap LDO, and DL-to-OUT short-detection features.  
DCM-Mode Operation  
DCM mode of operation features constant frequency  
operation down to lighter loads than PFM mode, by not  
skipping pulses but only disabling negative inductor  
current at light loads. DCM operation offers efficiency  
performance that lies between PWM and PFM modes  
Linear Regulator  
The MAXM17536 has two internal low-dropout (LDO)  
regulators that powers V . During power-up, when  
the EN/UVLO pin voltage is above the true shutdown  
Mode Selection (MODE)  
The logic state of the MODE/SYNC pin is latched when  
CC  
V
CC  
and EN/UVLO voltages exceed the respective UVLO  
rising thresholds and all internal voltages are ready to  
allow LX switching. If the MODE/SYNC pin is open at  
power-up, the device operates in PFM mode at light  
loads. If the MODE/SYNC pin is grounded at power-up,  
the device operates in constant-frequency PWM mode  
at all loads. Finally, if the MODE/SYNC pin is connected  
voltage (0.8V), then the V  
is powered from INLDO.  
CC  
When V  
voltage is above the V  
UVLO threshold  
CC  
CC  
and EXTVCC voltage is greater than 4.7V (typ) the V  
is powered from EXTVCC LDO. Only one of the two LDOs  
is in operation at a time depending on the voltage level  
present at EXTVCC. Powering V  
increases efficiency at higher input voltages. EXTVCC  
voltage should not exceed 24V.  
CC  
from EXTVCC  
CC  
to V  
at power-up, the device operates in constant  
CC  
frequency DCM mode at light loads. State changes on the  
MODE/SYNC pin are ignored during normal operation.  
Typical V  
output voltage is 5V. Internally V  
is  
CC  
CC  
PWM-Mode Operation  
bypassed with a 2.2μF ceramic capacitor to PGND. See  
the Electrical Characteristics table for the current limit  
details for both the regulators. In applications where the  
buck converter output is connected to the EXTVCC pin,  
if the output is shorted to ground, then the transfer from  
EXTVCC LDO to INLDO happens seamlessly without any  
impact on the normal functionality.  
In PWM mode, the inductor current is allowed to go  
negative. PWM operation provides constant frequency  
operation at all loads, and is useful in applications  
sensitive to changes in switching frequency. However,  
the PWM mode of operation gives lower efficiency at light  
loads compared to PFM and DCM modes of operation.  
Maxim Integrated  
15  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Setting the Switching Frequency (RT)  
External Frequency Synchronization (SYNC)  
The switching frequency of the MAXM17536 can be  
programmed from 100kHz to 2.2MHz by using a resistor  
connected from RT to SGND. The switching frequency  
The internal oscillator of the MAXM17536 can be  
synchronized to an external clock signal on the MODE/  
SYNC pin. The external synchronization clock frequency  
(f ) is related to the resistor connected at the RT pin  
SW  
must be between 1.1 x f  
and 1.4 x f , where f  
is the  
SW  
SW  
SW  
(R ) by the following equation:  
frequency programmed by the RT resistor. When an  
external clock is applied to the MODE/SYNC pin, the  
internal oscillator frequency changes to the external  
clock frequency (from the original frequency based on  
the RT setting) after detecting 16 external clock edges.  
The converter operates in PWM mode during synchro-  
nization operation. When the external clock is applied  
to the MODE/SYNC pin, the mode of operation changes  
to PWM from the initial state of PFM/DCM. When the  
external clock is removed on-the-fly then the internal  
oscillator frequency changes to the RT set frequency and  
the converter still continues to operate in PWM mode.  
The minimum external clock pulse-width high should be  
greater than 50ns. See the MODE/SYNC section in the  
Electrical Characteristics table for details.  
RT  
3
19 × 10  
R
− 1.7  
RT  
f
SW  
where R is in kΩ and f  
is in kHz. Leaving the RT pin  
RT  
SW  
open causes the device to operate at the default switching  
frequency of 450kHz. See the Electrical Characteristics  
table for RT resistor value recommendations for a few  
common frequencies.  
Operating Input-Voltage Range  
The minimum and maximum operating input voltages for  
a given output voltage should be calculated as follows:  
DL-to-OUT Short Detection  
V
+ (I  
× 0.076)  
9  
OUT  
OUT(MAX)  
V
=
+ (I  
× 0.04)  
OUT(MAX)  
In the MAXM17536, DL and OUT pins are adjacent to  
each other. To prevent damage to the low-side FET in  
case the DL pin is shorted to the OUT pins, the DL-to-  
OUT short detection feature has been implemented. If the  
MAXM17536 detects that the DL pin is shorted to the OUT  
pins before startup, the startup sequence is not initiated  
and output voltage is not soft-started.  
IN(MIN)  
1(f  
× 230×10  
)
SW(MAX)  
V
OUT  
× t  
V
=
IN MAX  
(
)
f
SW MAX  
ON MIN  
( )  
(
)
where,  
Overcurrent Protection  
V
OUT  
= Steady-state output voltage,  
The MAXM17536 is provided with a robust overcurrent  
protection (OCP) scheme that protects the modules under  
overload and output short-circuit conditions. A cycle-by-  
cycle peak current limit turns off the high-side MOSFET  
whenever the high-side switch current exceeds an internal  
limit of 7.8A (typ). The module enters hiccup mode of  
operation, either if one occurrence of the runaway current  
limit 8.8A (typ), or if the FB node goes below 64.5% of its  
nominal regulation threshold after soft-start is complete.  
In hiccup mode, the module is protected by suspending  
switching for a hiccup timeout period of 32,768 switching  
cycles. Once the hiccup timeout period expires, soft-start  
is attempted again. Hiccup mode of operation ensures low  
power dissipation under output overload or short-circuit  
conditions. Note that when soft-start is attempted under  
overload condition, if feedback voltage does not exceed  
64.5% of desired output voltage, the device switches at  
half the programmed switching frequency.  
I
f
t
= Maximum load current,  
OUT(MAX)  
= Maximum switching frequency,  
SW(MAX)  
= Worst-case minimum switch on-time (160ns).  
ON(MIN)  
Also, for duty cycle > 0.5:  
6  
V
= (4.04× V  
) (35×10 × f  
)
SW  
IN(MIN)  
OUT  
where f  
is the switching frequency in Hz.  
SW  
Choose the greater of the two V  
the above equations as the minimum operating input voltage.  
values obtained from  
IN(MIN)  
The Component Selection Table, Table 1 provides the  
operating input-voltage range and the optimum switching-  
frequency range for the different selected output voltages.  
Maxim Integrated  
16  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
The MAXM17536 is designed to support a maximum load  
current of 4A. The inductor ripple current is calculated as  
follows:  
Thermal-Shutdown Protection  
Thermal shutdown protection limits total power dissipation  
in the MAXM17536. When the junction temperature of  
the device exceeds +165°C (typ), an on-chip thermal sen-  
sor shuts down the device, allowing the device to cool.  
The thermal sensor turns the device on again after the  
junction temperature cools by 10°C. Soft-start resets  
during thermal shutdown. Carefully evaluate the total  
power dissipation (see the Power Dissipation section)  
to avoid unwanted triggering of the thermal shutdown in  
normal operation.  
V
V  
0.071×I  
V
+ 0.051×I  
OUT OUT  
IN  
OUT  
L × f  
OUT  
I =  
×
V
0.02×I  
OUT  
SW  
IN  
where:  
V
V
= Steady-state output voltage  
OUT  
= Operating input voltage  
= Switching frequency  
IN  
f
SW  
Applications Information  
L = Power module output inductance (4.7µH ±20%)  
= Required output (load) current  
Input-Capacitor Selection  
I
OUT  
The input-filter capacitor reduces peak currents drawn  
from the power source and reduces noise and voltage  
ripple on the input caused by the circuit’s switching.  
The following condition should be satisfied at the desired  
load current, I  
:
OUT  
I  
The input capacitor RMS current requirement (I  
defined by the following equation:  
) is  
I
+
< 7.15  
RMS  
OUT  
2
RESET Output  
V
× V  
(
− V  
OUT  
IN  
OUT  
)
The MAXM17536 includes a comparator to monitor the  
output voltage. The open-drain RESET output requires  
an external pullup resistor. RESET goes high (high  
impedance) 1024 switching cycles after the regulator  
output increases above 95.5% of the designed  
nominal regulated voltage. RESET goes low when the  
regulator output voltage drops to below 92.5% of the  
nominal regulated voltage. RESET also goes low during  
thermal shutdown.  
I
=
I
×
RMS  
OUT MAX  
(
)
V
IN  
where, I  
is the maximum load current. I  
RMS  
a maximum value when the input voltage equals twice  
the output voltage (V = 2 x V ), so I  
has  
OUT(MAX)  
=
RMS(MAX)  
IN  
OUT  
I
/2. Choose an input capacitor that exhibits less  
OUT(MAX)  
than a +10°C temperature rise at the RMS input current  
for optimal long-term reliability. Use low-ESR ceramic  
capacitors with high ripple-current capability at the input.  
X7R capacitors are recommended in industrial applications  
Prebiased Output  
When the MAXM17536 starts into a prebiased output,  
both the high-side and the low-side switches are turned  
off so that the converter does not sink current from the  
output. High-side and low-side switches do not start  
switching until the PWM comparator commands the first  
PWM pulse, at which point switching commences. The  
output voltage is then smoothly ramped up to the target  
value in alignment with the internal reference.  
for their temperature stability. The C capacitor values  
in Table 1 are the minimum recommended values for the  
associated operating conditions.  
IN  
In applications where the source is located distant from  
the MAXM17536 input, an electrolytic capacitor should  
be added in parallel to the ceramic capacitor to provide  
necessary damping for potential oscillations caused by  
the inductance of the longer input power path and input  
ceramic capacitor.  
Maxim Integrated  
17  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Output-Capacitor Selection  
Setting the Input Undervoltage-Lockout Level  
X7R ceramic output capacitors are preferred due to their  
stability over temperature in industrial applications. The  
output capacitors are usually sized to support a step load  
of 50% of the maximum output current in the application,  
so the output-voltage deviation is contained to 3% of the  
output-voltage change. The minimum required output  
capacitance can be calculated as follows:  
The MAXM17536 offers an adjustable input undervoltage  
lockout level. Set the voltage at which MAXM17536 turns  
on. Calculate R3 as follows:  
3.32 × 1.215  
R3 =  
V
− 1.215  
(
)
INU  
where R3 is in MΩ and V  
is the voltage at which the  
INU  
MAXM17536 is required to turn on. Ensure that V  
is  
I
× t  
INU  
1
2
STEP  
RESPONSE  
OUT  
C
=
×
OUT  
higher than 0.8 x V  
.
∆ V  
OUT  
Loop Compensation  
The MAXM17536 is internally loop-compensated. Connect  
a 2.2pF capacitor from CF to FB for stable operation.  
0.33  
1
t
+
RESPONSE  
f
f
(
)
C
SW  
Typically, designs with crossover frequency (f ) less than  
C
where:  
f
/10 and less than 40kHz offers good phase margin  
SW  
I
t
= Load-current step,  
STEP  
and transient response. For other choices of f , the  
design should be carefully evaluated according to user  
requirements.  
C
= Response time of the controller,  
RESPONSE  
V
OUT  
= Allowable output-voltage deviation,  
f
C
= Target closed-loop crossover frequency,  
Adjusting Output Voltage  
f
= Switching frequency.Select f to be 1/10th of f  
if  
Set the output voltage with a resistive voltage-divider  
connected from the positive terminal of the output capacitor  
SW  
C
SW  
the swtiching frequency is less than or equal to 400kHz.  
Select f to be 40kHz if the switching frequency is more  
(V  
) to SGND (see Figure 2). Connect the center  
C
OUT  
than 400kHz.  
node of the divider to the FB pin. To choose the resistive  
voltage-divider values calculate for resistor R1, then R2.  
Soft-Start Capacitor Selection  
First, calculate resistor R1 from the output to FB as follows:  
The MAXM17536 implements adjustable soft-start operation  
to reduce inrush current. A capacitor connected from  
the SS pin to SGND programs the soft-start time. The  
selected output capacitance (C ) and the output voltage  
SEL  
(V  
) determine the minimum required soft-start  
OUT  
where:  
capacitor as follows:  
R1 is in kΩ  
−6  
C
28 × 10  
×
C
× V  
SEL OUT  
f
= Desired crossover frequency (kHz)  
SS  
C
C
= Derated value of the capacitor (µF)  
OUT  
The soft-start time (t ) is related to the capacitor  
SS  
Then, calculate resistor R2 from FB to SGND as follows:  
connected at SS (C ) by the following equation:  
SS  
R1 × 0.9  
C
R2 =  
SS  
t
=
V
− 0.9  
SS  
(
)
5.55  
OUT  
where t  
is in milliseconds and C  
is in nanofarads.  
SS  
SS  
For example, to program a 4ms soft-start time, a 22nF  
capacitor should be connected from the SS pin to SGND.  
Maxim Integrated  
18  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
V
OUT  
MAXM17536  
MAXM17536  
R
R
1
2
EN/UVLO  
SGND  
FB  
R
SGND  
3
Figure 1. Setting the Input-Undervoltage Lockout  
Figure 2. Setting the Output Voltage  
Component Selection Table  
Table 1. Selection Component Values  
V
(V)  
V
R
R
f
R
RT  
IN  
OUT  
1
2
SW  
CIN  
COUT  
(V)  
0.9  
1.2  
1.5  
1.8  
2.5  
3.3  
5
(kΩ)  
33.2  
39.2  
52.3  
71.5  
57.6  
121  
(kΩ)  
Open  
118  
(kHz)  
300  
400  
400  
400  
400  
300  
450  
750  
900  
(kΩ)  
61.9  
45.3  
45.3  
45.3  
45.3  
61.9  
Open  
24  
4.5 to 16  
4.5 to 17  
4.5 to 21  
4.5 to 26  
4.5 to 35  
4.5 to 60  
7 to 60  
4 x 4.7µF, 1206, X7R, 50V  
4 x 4.7µF, 1206, X7R, 50V  
4 x 4.7µF, 1206, X7R, 50V  
4 x 4.7µF, 1206, X7R, 50V  
4 x 4.7µF, 1206, X7R, 50V  
4 x 4.7µF, 1206, X7R, 100V  
4 x 4.7µF, 1206, X7R, 100V  
4 x 4.7µF, 1206, X7R, 100V  
4 x 4.7µF, 1206, X7R, 100V  
12 x 47μF, 1210, X7R, 10V  
9 x 47μF, 1210, X7R, 10V  
7 x 47μF, 1210, X7R, 10V  
5 x 47μF, 1210, X7R, 10V  
5 x 47μF, 1210, X7R, 10V  
4 x 47μF, 1210, X7R, 10V  
3 x 22μF, 1210, X7R, 25V  
3 x 22μF, 1210, X7R, 25V  
3 x 22μF, 1210, X7R, 25V  
78.7  
71.5  
32.4  
45.3  
38.3  
37.4  
27.4  
174  
11 to 60  
16 to 60  
8
294  
12  
340  
19.6  
η is the efficiency of the power module at the desired  
operating conditions. See the Typical Operating  
Characteristics for the power-conversion efficiency or  
measure the efficiency to determine the total power  
Power Dissipation  
The power dissipation inside the module leads to increase  
in the junction temperature of the MAXM17536. The  
power loss inside the module at full load can be estimated  
as follows:  
dissipation. The junction temperature (T ) of the module  
J
can be estimated at any given maximum ambient  
2
temperature (T ) from the following equation:  
A
1
P
OUT  
P
= P  
1 −  
×
LOSS  
OUT  
η
1000× V  
OUT  
T = T + (θ x P )  
LOSS  
J
A
JA  
45.15 21.67  
For the MAXM17536 evaluation board, the thermal  
(1+ 0.0043× T )×  
A
V
V
IN  
resistance from junction-to-ambient (θ ) is 24°C/W.  
OUT  
JA  
Operating the module at junction temperatures greater  
than +125°C degrades operating lifetimes. An EE-SIM  
model is available for the MAXM17536 to simulate  
efficiency and power loss for the desired operating condi-  
tions.  
where:  
P
V
V
= Total output power  
= Output voltage  
OUT  
OUT  
= Input voltage  
IN  
Maxim Integrated  
19  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
A ceramic input-filter capacitor should be placed close  
PCB Layout Guidelines  
to the IN pins of the module. This eliminates as much  
trace-inductance effects as possible and gives the  
module a cleaner voltage supply.  
All connections carrying pulsed currents must be  
very short and as wide as possible. The inductance  
of these connections must be kept to an absolute  
minimum due to the high di/dt of the currents. Since  
inductance of a current carrying loop is proportional to  
the area enclosed by the loop, if the loop area is made  
very small, inductance is reduced. Additionally, small  
current-loop areas reduce radiated EMI.  
PCB layout also affects the thermal performance of  
the design. A number of thermal vias that connect to  
a large ground plane should be provided under the  
exposed pad of the part, for efficient heat dissipation.  
For a sample layout that ensures first pass success,  
refer to the MAXM17536 evaluation kit PCB layout  
available at www.maximintegrated.com.  
Typical Application Circuits  
Typical Application Circuit for 5V Output  
V
IN  
7V to 60V  
C1  
C2  
C3  
C4  
4.7µF 4.7µF 4.7µF 4.7µF  
IN  
V
OUT  
5V, 4A  
EN/UVLO  
OUT  
R3  
715kΩ  
MAXM17536  
R1  
174kΩ  
C5  
C6  
C7  
V
CC  
EXTVCC  
FB  
47µF 47µF 47µF  
DL  
C
F
BST  
LX  
RESET  
R2  
38.3kΩ  
2.2pF  
SS  
CF  
RT  
C
SS  
MODE/SYNC  
SGND  
22nF  
PGND  
C1,C2,C3,C4: GRM31CZ72A475KE11L  
C5,C6,C7: GRM32ER71A476KE15L  
Maxim Integrated  
20  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Typical Application Circuits (continued)  
Typical Application Circuit 3.3V  
V
4.5V TO 60V  
IN  
C1  
C2  
C3  
C4  
4.7µF 4.7µF 4.7µF 4.7µF  
IN  
3.3V, 4A  
C5  
V
OUT  
EN/UVLO  
OUT  
FB  
R3  
1.3MΩ  
R1  
121kΩ  
MAXM17536  
C6  
C7  
C8  
V
CC  
47µF 47µF 47µF 47µF  
DL  
C
F
BST  
LX  
R2  
RESET  
2.2pF  
45.3kΩ  
SS  
CF  
RT  
MODE/SYNC  
C
22nF  
SS  
SGND EXTVCC  
PGND  
R4  
61.9kΩ  
C1 ,C2 ,C3 ,C4: GRM31CZ72A475KE11L  
C5, C6, C7, C8: GRM32ER71A476KE15L  
Ordering Information  
PART NUMBER  
MAXM17536ALY#  
MAXM17536ALY#T  
TEMP RANGE  
PIN-PACKAGE  
-40°C to +125°C 29 SiP  
-40°C to +125°C 29 SiP  
#Denotes a RoHS-compliant device that may include lead(Pb)  
that is exempt under the RoHS requirements.  
T = Tape and reel.  
Maxim Integrated  
21  
www.maximintegrated.com  
MAXM17536  
4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down  
SiP Power Module with Integrated Inductor  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
6/19  
Initial release  
Updated Typical Application Circuit, Electrical Characteristics, Functional Diagram,  
Operating Input-Voltage Range, Power Dissipation, and Typical Application Circuit for  
3.3V Output sections; replaced TOC47 and Typical Application Circuit for 5V Output;  
updated graphics to standard; corrected typos  
1-3, 11, 14-17,  
19-21  
1
8/19  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2019 Maxim Integrated Products, Inc.  
22  

相关型号:

MAXM17536ALYT

4.5V to 60V, 4A High-Efficiency, DC-DC Step-Down SiP Power Module with Integrated Inductor
MAXIM

MAXM17543ALJ+

Switching Regulator/Controller, Current-mode, 2.5A, 1800kHz Switching Freq-Max, BICMOS,
MAXIM

MAXM17543ALJ+T

DC-DC Regulated Power Supply Module,
MAXIM

MAXM17552

4V to 60V, 100mA, Compact Step-Down Power Module
MAXIM

MAXM17552AMB

4V to 60V, 100mA, Compact Step-Down Power Module
MAXIM

MAXM17552AMB+

4V to 60V, 100mA, Compact Step-Down Power Module
MAXIM

MAXM17552AMB+T

4V to 60V, 100mA, Compact Step-Down Power Module
MAXIM

MAXM17552AMBT

4V to 60V, 100mA, Compact Step-Down Power Module
MAXIM

MAXM17552_V01

4V to 60V, 100mA, Compact Step-Down Power Module
MAXIM

MAXM17623

2.9V to 5.5V, 1A Himalaya uSLIC Step-Down Power Modules
MAXIM

MAXM17623AMB

2.9V to 5.5V, 1A Himalaya uSLIC Step-Down Power Modules
MAXIM

MAXM17623AMBT

2.9V to 5.5V, 1A Himalaya uSLIC Step-Down Power Modules
MAXIM