MAXM17900AMB [MAXIM]

4V to 24V, 100mA, Compact Step-Down Power Module;
MAXM17900AMB
型号: MAXM17900AMB
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

4V to 24V, 100mA, Compact Step-Down Power Module

文件: 总17页 (文件大小:1224K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
General Description  
Benefits and Features  
Easy to Use  
The Himalaya series of voltage regulator ICs and power  
modules enable cooler, smaller, and simpler power-  
supply solutions. The MAXM17900 is a high-efficiency,  
synchronous, step-down DC-DC power module with inte-  
grated controller, MOSFETs, compensation components,  
and inductor that operates over a wide input voltage  
range. The module operates from 4V to 24V input voltage  
and delivers up to 100mA output current over a program-  
mable output voltage from 0.9V to 5.5V. The module sig-  
nificantly reduces design complexity, manufacturing risks  
and offers a true plug-and-play power supply solution,  
reducing the time-to-market.  
• Wide 4V to 24V Input  
• Adjustable 0.9V to 5.5V Output  
• ±1.75% Feedback-Voltage Accuracy  
• Up to 100mA Output Current Capability  
• Internally Compensated  
• All Ceramic Capacitors  
High Efficiency  
• Fixed-Frequency PWM  
• Pulse Frequency Modulation (PFM) Mode to  
Enhance Light-Load Efficiency  
Shutdown Current as Low as 1.2μA (typ)  
The MAXM17900 employs peak-current-mode control  
architecture. To reduce input inrush current, the device  
offers a soft-start feature including a default soft-start time  
of 5.1ms.  
Flexible Design  
• Programmable Soft-Start and Prebias Startup  
• Open-Drain Power Good Output (RESET Pin)  
• Programmable EN/UVLO Threshold  
The MAXM17900 is available in a low profile, compact  
10-pin 2.6mm x 3mm x 1.5mm uSLIC™ package.  
Rugged  
• Complies with CISPR22 (EN55022) Class B  
Conducted and Radiated Emissions  
• Passes Drop, Shock, and Vibration Standards–  
JESD22-B103, B104, B111  
Applications  
Industrial Sensors and Encoders  
4mA–20mA Current-Loop Powered Sensors  
LDO Replacement  
HVAC and Building Control  
Battery-Powered Equipment  
Robust Operation  
• Hiccup Overcurrent Protection  
• Overtemperature Protection  
• -40°C to +125°C Ambient Operating Temperature /  
-40°C to +150°C Junction Temperature  
uSLIC is a trademark of Maxim Integrated Products, Inc.  
Ordering Information appears at end of data sheet.  
Typical Application Circuit  
MAXM17900  
V
12V  
V
OUT  
5V, 100mA  
IN  
IN  
OUT  
C
10µF  
OUT  
C
2.2µF  
IN  
EN/UVLO  
R1  
261k  
GND  
RESET  
RT/SYNC  
LX  
MODE  
FB  
SS  
R3  
69.8kΩ  
R2  
49.9kΩ  
C
= 2.2µF: C2012X7R1H225K125AC  
IN  
C
= 10µF: GRM21BR70J106K  
OUT  
19-100210; Rev 3; 11/20  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
Absolute Maximum Ratings  
IN, EN/UVLO to GND............................................-0.3V to +29V  
LX to GND.......................................................-0.3V to IN +0.3V  
OUT to GND............................................................-0.3V to +7V  
RT/SYNC, SS, FB, MODE to GND.........................-0.3V to +6V  
RESET...................................................................-0.3V to +18V  
Output Short-Circuit Duration....................................Continuous  
Junction Temperature (Note 1)........................................+150°C  
Storage Temperature Range............................ -55°C to +125°C  
Lead Temperature (soldering, 10s) .................................+260°C  
Soldering Temperature (reflow).......................................+260°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Note 1: Junction temperature greater than +125°C degrades operating lifetimes  
Package Information  
PACKAGE TYPE: 10-PIN uSLIC  
Package Code  
M102A3+1  
21-100094  
90-100027  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
30.6°C/W  
JA  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistance measured on Evaluation Board, Natural convection. For detailed information on package thermal consid-  
erations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
Electrical Characteristics  
(V = 12V, V  
= 0V, V = 0.85V, V  
= 1.5V, RT/SYNC = 69.8kΩ, LX = SS = RESET = unconnected, MODE = GND; T = -40°C  
IN  
GND  
FB  
EN/UVLO  
A
to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to GND, unless otherwise noted) (Note 2)  
A
PARAMETER  
INPUT SUPPLY (IN)  
Input Voltage Range  
Input Shutdown Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
4
24  
V
IN  
I
V
= 0V, T = +25°C  
0.67  
1.2  
2.25  
µA  
IN-SH  
EN/UVLO  
A
V
V
= Normal switching, V  
= 0V,  
MODE  
FB  
I
800  
30  
1100  
1950  
110  
Q-PWM  
= 3.3V  
OUT  
Input Supply Current  
µA  
I
V
MODE  
= unconnected  
62  
Q-PFM  
MODULE OUTPUT PIN (OUT)  
Output Line Regulation  
Accuracy  
V
= 4V to 24V, V  
= 0  
= 3.3V,  
IN  
OUT  
0.1  
0.3  
mV/V  
I
LOAD  
Output Load Regulation  
Accuracy  
Tested with I  
= 0A and 100mA  
OUT  
= 3.3V  
mV/mA  
V
OUT  
ENABLE/UVLO (EN/UVLO)  
V
V
V
V
rising  
falling  
1.2  
1.1  
1.25  
1.15  
0.72  
1.3  
1.2  
ENR  
EN/UVLO  
EN/UVLO  
EN/UVLO  
V
EN/UVLO Threshold  
V
ENF  
V
falling, true shutdown  
= 1.3V, T = +25°C  
EN-TRUESD  
I
EN/UVLO Leakage Current  
V
-100  
-1  
+100  
+1  
nA  
EN  
EN/UVLO  
A
LX  
V = (V  
+ 1V)  
GND  
V
= 0V, T = +25°C,  
EN  
A
LX  
I
LX Leakage Current  
µA  
LX-LKG  
to (V - 1V) V  
= float  
IN  
OUT  
SOFT-START (SS)  
Soft-Start Time  
t
No SS cap  
4.4  
4.7  
5.1  
5
5.8  
5.3  
ms  
µA  
SS  
I
V
= 0.4V  
SS Charging Current  
FEEDBACK (FB)  
SS  
SS  
MODE = OPEN  
MODE = GND  
0.786 0.812 0.830  
V
FB Regulation Voltage  
V
FB-REG  
0.786  
-100  
0.8  
0.814  
+120  
I
FB Input Leakage Current  
V
= 0.81V, T = 25°C  
nA  
FB  
FB  
A
CURRENT LIMIT  
I
V
Current-Limit  
100  
178  
-1  
mA  
mA  
OUT  
SOURCE-LIMIT  
MODE = OPEN  
MODE = GND  
I
V
Current-Limit  
OUT  
SINK-LIMIT  
-74  
-50  
OSCILLATOR (RT/SYNC)  
R
R
R
R
R
= 422kΩ  
= 191kΩ  
= 130kΩ  
= 69.8kΩ  
= 45.3kΩ  
85  
100  
220  
322  
600  
900  
120  
250  
350  
640  
973  
RT  
RT  
RT  
RT  
RT  
200  
295  
540  
813  
Switching Frequency  
f
kHz  
SW  
Maxim Integrated  
3  
www.maximintegrated.com  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
Electrical Characteristics (continued)  
(V = 12V, V  
= 0V, V = 0.85V, V  
= 1.5V, RT/SYNC = 69.8kΩ, LX = SS = RESET = unconnected, MODE = GND; T = -40°C  
IN  
GND  
FB  
EN/UVLO A  
to +125°C, unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to GND, unless otherwise noted) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
100  
TYP  
MAX UNITS  
Switching Frequency  
Adjustable Range  
See the Switching Frequency (RT/SYNC)  
section for details  
900  
900  
kHz  
kHz  
ns  
1.1 x  
SYNC Input Frequency  
f
SW  
SYNC Pulse Minimum  
Off-Time  
40  
V
SYNC Rising Threshold  
Hysteresis  
1
1.22  
0.18  
1.48  
SYNC-H  
V
V
0.115  
0.265  
SYNC-HYS  
Number of SYNC Pulses to  
Enable Synchronization  
1
Cycles  
MODE  
V
V
PFM Threshold  
Hysterisis  
1
1.22  
0.19  
1.48  
V
V
MODE-PFM  
MODE-HYS  
TIMING  
t
Minimum On-Time  
46  
90  
90  
94  
152  
98  
ns  
%
ON-MIN  
V
= 0.98 x V  
≤ 600kHz  
FB  
FB-REG  
f
SW  
D
Maximum Duty Cycle  
MAX  
600kHz < f  
< 900kHz,  
FB-REG  
SW  
= 0.98 x V  
87  
92  
51  
V
FB  
Hiccup Timeout  
ms  
RESET  
FB Threshold for RESET  
Rising  
V
V
V
rising  
falling  
93  
90  
95  
92  
97  
94  
%
%
FB-OKR  
FB  
FB Threshold for RESET  
Falling  
V
FB-OKF  
FB  
RESET Delay after FB  
Reaches 95% Regulation  
2.08  
0.23  
ms  
V
RESET Output Level Low  
I
= 1mA  
RESET  
RESET Output Leakage  
Current  
V
= 1.01 x V  
, T = +25°C  
1
µA  
FB  
FB-REG  
A
THERMAL SHUTDOWN  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
Temperature rising  
160  
20  
°C  
°C  
Note 2: All limits are 100% tested at +25°C. Limits over temperature are guaranteed by design.  
Maxim Integrated  
4  
www.maximintegrated.com  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
Typical Operating Characteristics  
(V = 12V, V  
= 1.5V, RT/SYNC = 69.8kΩ, T = +25°C unless otherwise noted)  
A
IN  
EN/UVLO  
EFFICIENCY vs. LOAD CURRENT  
(5V OUTPUT, PWM MODE, fSW = 600kHz)  
EFFICIENCY vs. LOAD CURRENT  
(3.3V OUTPUT, PWM MODE, fSW = 600kHz)  
LOAD AND LINE REGULATION  
(3.3V OUTPUT, PWM MODE)  
toc02  
toc03  
toc01  
3.350  
3.345  
3.340  
3.335  
3.330  
3.325  
3.320  
3.315  
3.310  
3.305  
3.300  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN = 24V  
VIN = 6V  
VIN = 24V  
VIN = 10V  
VIN = 24V  
VIN = 12V  
VIN = 12V  
VIN = 12V  
VIN = 6V  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD AND LINE REGULATION  
(5V OUTPUT, PWM MODE)  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
(3.3V OUTPUT, PFM MODE)  
(5V OUTPUT, PFM MODE)  
toc04  
toc06  
toc05  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
4.70  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN = 24V  
VIN = 10V  
VIN = 12V  
VIN = 12V  
VIN = 24V  
VIN = 12V  
VIN = 24V  
MODE = OPEN  
MODE = OPEN  
1
10  
100  
0
10 20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
1
10  
LOAD CURRENT (mA)  
100  
LOAD CURRENT (mA)  
OUTPUT VOLTAGEvs. LOAD CURRENT  
OUTPUT VOLTAGEvs. LOAD CURRENT  
SOFT-START FROM EN/UVLO  
(3.3V OUTPUT, 100mA LOAD CURRENT, PWM MODE)  
(3.3V OUTPUT, PFM MODE)  
(5V OUTPUT, PFM MODE)  
toc07  
toc08  
toc09  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
5V/div  
VEN/UVLO  
1V/div  
VOUT  
IOUT  
VIN = 12V  
50mA/div  
5V/div  
VIN = 12V  
VIN = 24V  
VIN = 24V  
VRESET  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
1ms/div  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
Typical Operating Characteristics (continued)  
(V = 12V, V  
= 1.5V, RT/SYNC = 69.8kΩ, T = +25°C unless otherwise noted)  
IN  
EN/UVLO  
A
SOFT-START WITH 3V PREBIAS  
(5V OUTPUT, NO LOAD )  
SOFT-START FROM EN/UVLO  
(5V OUTPUT, 100mA LOAD CURRENT, PWM MODE)  
SHUTDOWN FROM EN/UVLO  
(5V OUTPUT, 100mA LOAD CURRENT, PWM MODE)  
toc10  
toc12  
toc11  
VEN/UVLO  
5V/div  
1V/div  
5V/div  
5V/div  
2V/div  
VEN/UVLO  
VEN/UVLO  
VOUT  
IOUT  
2V/div  
VOUT  
IOUT  
50mA/div  
5V/div  
50mA/div  
5V/div  
VOUT  
VRESET  
VRESET  
5V/div  
VRESET  
1ms/div  
1ms/div  
1ms/div  
SOFT-START WITH 3V PREBIAS  
(100mA LOAD CURRENT, 5V OUTPUT, PWM MODE)  
STEADY-STATE SWITCHING WAVEFORMS  
(5V OUTPUT, 0.1A LOAD CURRENT)  
STEADY-STATE SWITCHING WAVEFORMS  
(5V OUTPUT, NO LOAD CURRENT)  
toc14  
toc15  
toc13  
VEN/UVLO  
10mV/div  
VOUT  
(AC)  
5V/div  
VOUT  
(AC)  
10mV/div  
2V/div  
VOUT  
IOUT  
100mA/div  
VRESET  
2V/div  
5V/div  
VLX  
5V/div  
VLX  
1ms/div  
2μs/div  
2μs/div  
SWITCHING FREQUENCY  
vs. INPUT VOLTAGE  
STEADY-STATE SWITCHING WAVEFORMS  
AVERAGE CURRENT LIMIT  
(5V OUTPUT, 0.02A LOAD CURRENT, PFM MODE)  
toc16  
toc17  
toc18  
240  
230  
220  
210  
200  
190  
180  
170  
160  
630  
620  
610  
600  
590  
580  
570  
560  
VOUT  
(AC)  
TEMP = 85°C  
50mV/div  
-40°C  
25°C  
85°C  
TEMP = 25°C  
5V/div  
VLX  
TEMP = -40°C  
0
5
10  
15  
20  
25  
10μs/div  
0
5
10  
15  
20  
25  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
Typical Operating Characteristics (continued)  
(V = 12V, V  
= 1.5V, RT/SYNC = 69.8kΩ, T = +25°C unless otherwise noted)  
IN  
EN/UVLO  
A
LOAD CURRENT TRANSIENT RESPONSE  
SHUTDOWN CURRENT  
vs. INPUT VOLTAGE  
(VIN = 12V, VOUT = 5V, IOUT = 0.05A TO 0.1A)  
toc19  
toc20  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
50mV/div  
(AC  
VOUT  
COUPLED)  
25°C  
TEMP = 25°C  
IOUT  
50mA/div  
0
5
10  
15  
20  
25  
100µs/div  
INPUT VOLTAGE (V)  
LOAD CURRENT TRANSIENT RESPONSE  
(PFM MODE  
LOAD CURRENT TRANSIENT RESPONSE  
(PFM MODE  
VIN = 12V, VOUT = 5V, IOUT = 25mATO 75mA)  
VIN = 12V, VOUT = 3.3V, IOUT = 20mATO 75mA)  
toc22  
toc21  
100mV/div  
(AC  
COUPLED)  
100mV/div  
(AC  
COUPLED)  
VOUT  
VOUT  
AC  
(AC)  
(
)
50mA/div  
IOUT  
50mA/div  
IOUT  
200µs/div  
200µs/div  
LOAD CURRENT TRANSIENT RESPONSE  
(VIN = 12V, VOUT = 5V, IOUT = 0A TO 0.05A)  
LOAD CURRENT TRANSIENT RESPONSE  
(VIN = 12V, VOUT = 3.3V, IOUT = 0.05ATO 0.1A)  
toc24  
toc23  
50mV/div  
(AC  
COUPLED)  
VOUT  
50mV/div  
(AC  
COUPLED)  
VOUT  
50mA/div  
IOUT  
IOUT  
50mA/div  
200µs/div  
100µs/div  
Maxim Integrated  
7  
www.maximintegrated.com  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
Typical Operating Characteristics (continued)  
(V = 12V, V  
= 1.5V, RT/SYNC = 69.8kΩ, T = +25°C unless otherwise noted)  
IN  
EN/UVLO  
A
EXTERNAL SYNCHRONIZATION WITH 900kHz  
CLOCK FREQUENCY  
LOAD CURRENT TRANSIENT RESPONSE  
(VIN = 12V, VOUT = 3.3V, IOUT = 0A TO 0.05A)  
(VIN = 12V, VOUT = 5V, IOUT = 0.1A)  
toc25  
toc26  
5V/div  
50mV/div  
(AC  
COUPLED)  
VOUT  
VLX  
2V/div  
VSYNC  
IOUT  
50mA/div  
200µs/div  
2µs/div  
OUTPUT CURRENT  
DURING STEADY-STATE SHORT  
OVERLOAD PROTECTION  
toc28  
toc27  
VOUT  
2V/div  
5V/div  
100mA/div  
IOUT  
LX  
40µs/div  
20ms/div  
BODE PLOT  
(VIN = 12V, VOUT = 3.3V, IOUT = 0.1A)  
BODE PLOT  
(VIN = 12V, VOUT = 5V, IOUT = 0.1A)  
toc30  
toc29  
40  
30  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
30  
100  
PHASE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PHASE  
20  
20  
10  
10  
0
0
GAIN  
GAIN  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
fCR = 23.2kHz,  
fCR = 28.1kHz,  
PHASE MARGIN = 67.8°  
PHASE MARGIN = 66.2°  
105  
104  
103  
105  
103  
104  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Maxim Integrated  
8  
www.maximintegrated.com  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
Pin Configuration  
TOP VIEW  
1
2
10 IN  
LX  
GND  
+
9
EN/UVLO  
MAXM17900  
MODE  
RESET  
3
4
8
7
RT/SYNC  
SS  
OUT  
5
6
FB  
(“+” INDICATES PIN 1 OF THE MODULE)  
Pin Description  
PIN NAME  
PIN #  
FUNCTION  
Switching Node. LX is high impedance when the device is in shutdown. Do not connect any external  
components to this pin.  
LX  
1
Ground. Connect GND to the power ground plane. Connect all the circuit ground connections together  
at a single point. See the PCB Layout Guidelines section.  
GND  
2
3
PFM/PWM Mode Selection Input. Connect MODE to GND to enable the fixed-frequency PWM. Leave  
MODE unconnected for light-load PFM operation.  
MODE  
Open-Drain Reset Output. Pull up RESET to an external power supply less than or equal to 16V with  
an external resistor. RESET pulls low if FB drops below 92% of its set value. RESET goes high 2ms  
after FB rises above 95% of its set value.  
RESET  
4
Module output pin. Connect a capacitor from OUT to GND. See PCB Layout Guidelines section for  
more connection details.  
OUT  
FB  
5
6
7
Output Feedback Connection. Connect FB to a resistor-divider between OUT and GND to set the  
output voltage.  
Soft-Start Capacitor Input. Connect a capacitor from SS to GND to set the soft-start time. Leave SS  
unconnected for default 5.1ms internal soft-start.  
SS  
Oscillator Timing Resistor Input. Connect a resistor from RT/SYNC to GND to program the switching  
frequency from 100kHz to 900kHz. See the Switching Frequency (RT/SYNC) section for details. An  
external pulse can be applied to RT/SYNC through a coupling capacitor to synchronize the internal  
clock to the external pulse frequency.  
RT/SYNC  
8
Active-High, Enable/Undervoltage-Detection Input. Pull EN/UVLO to GND to disable the module  
output. Connect EN/UVLO to IN for always-on operation. Connect a resistor-divider between IN, EN/  
UVLO, and GND to program the input voltage at which the module is enabled and turns on.  
EN/UVLO  
IN  
9
Power Module Input. Connect a ceramic capacitor from IN to GND for bypassing. Place the capacitor  
close to the IN and PGND pins. See Table 1 for more details.  
10  
Maxim Integrated  
9  
www.maximintegrated.com  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
Functional Diagram  
MAXM17900  
IN  
LDO  
HIGH-SIDE DRIVER  
MODE  
LX  
1.22V  
PEAK  
CURRENT-MODE  
CONTROLLER  
RT/SYNC  
EN/UVLO  
OSCILLATOR  
100µH  
OUT  
LOW-SIDE DRIVER  
1.25V  
GND  
SS  
RESET  
FB  
PGOOD LOGIC  
0.76V  
Maxim Integrated  
10  
www.maximintegrated.com  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
tion mode, turns on all internal blocks, and again com-  
mences the process of delivering pulses of energy to the  
output until it reaches 102% (typ) of the nominal output  
voltage. The device naturally exits PFM mode when the  
inductor peak current increases to a magnitude approxi-  
Detailed Description  
The MAXM17900 synchronous step-down power module  
with integrated MOSFETs and inductor, operates over a  
4V to 24V input voltage range. The module can deliver  
output current up to 100mA at output voltages of 0.9V to  
5.5V. The feedback voltage is accurate to within ±1.75%  
over -40°C to +125°C.  
mately equal to I  
.
PFM  
Enable Input (EN/UVLO) and Soft-Start (SS)  
The device uses an internally-compensated, peak cur-  
rent mode control architecture. On the rising edge of  
the internal clock, the high-side pMOSFET turns on. An  
internal error amplifier compares the feedback voltage to  
a fixed internal reference voltage and generates an error  
voltage. The error voltage is compared to a sum of the  
current-sense voltage and a slope-compensation voltage  
by a PWM comparator to set the “on-time.” During the  
on-time of the pMOSFET, the inductor current ramps up.  
For the remainder of the switching period (off-time), the  
pMOSFET is kept off and the low-side nMOSFET turns  
on. During the off-time, the inductor releases the stored  
energy as the inductor current ramps down, providing cur-  
rent to the output. Under overload conditions, the cycle-  
by-cycle current- limit feature limits inductor peak current  
by turning off the high-side pMOSFET and turning on the  
low-side nMOSFET.  
When EN/UVLO voltage increases above 1.25V (typ), the  
device initiates a soft-start sequence and the duration of  
the soft-start depends on the status of the SS pin voltage  
at the time of power-up. If the SS pin is not connected, the  
device uses a fixed 5.1ms (typ) internal soft-start to ramp  
up the internal error-amplifier reference. If a capacitor is  
connected from SS to GND, a 5μA current source charges  
the capacitor and ramps up the SS pin voltage. The SS  
pin voltage is used as a reference for the internal error  
amplifier. Such a reference ramp up allows the output  
voltage to increase monotonically from zero to the final  
set value independent of the load current.  
EN/UVLO can be used as an input voltage UVLO adjust-  
ment input. An external voltage-divider between IN and  
EN/UVLO to GND adjusts the input voltage at which  
the device turns on or off. See the Setting the Input  
Undervoltage-Lockout Level section for details. If input  
UVLO programming is not desired, connect EN/UVLO to  
IN (see the Electrical Characteristics table for EN/UVLO  
rising and falling-threshold voltages). Driving EN/UVLO  
low disables both power MOSFETs, as well as other inter-  
nal circuitry, and reduces IN quiescent current to below  
1.2μA. The SS capacitor is discharged with an internal  
pulldown resistor when EN/UVLO is low. If the EN/UVLO  
pin is driven from an external signal source, a series  
resistance of minimum 1kΩ is recommended to be placed  
between the signal source output and the EN/UVLO pin,  
to reduce voltage ringing on the line.  
Mode Selection (MODE)  
The device features a MODE pin for selecting either  
forced-PWM or PFM mode of operation. If the MODE pin  
is left unconnected, the device operates in PFM mode  
at light loads. If the MODE pin is grounded, the device  
operates in a constant-frequency forced-PWM mode at all  
loads. The mode of operation cannot be changed on-the  
fly during normal operation of the device.  
In PWM mode, the inductor current is allowed to go  
negative. PWM operation is useful in frequency-sensitive  
applications and provides fixed switching frequency at  
all loads. However, the PWM mode of operation gives  
lower efficiency at light loads compared to PFM mode of  
operation.  
Switching Frequency (RT/SYNC)  
Switching frequency of the device can be programmed  
from 100kHz to 900kHz by using a resistor connected  
from RT/SYNC to GND. The switching frequency (f  
is related to the resistor connected at the RT/SYNC pin  
)
SW  
PFM mode disables negative inductor current and addi-  
tionally skips pulses at light loads for high efficiency. In  
PFM mode, the inductor current is forced to a fixed peak  
(R ) by the following equation, where R is in kΩ and f  
T
T
SW  
is in kHz:  
of 72mA (typ) (I ) every clock cycle until the output  
PFM  
rises to 102% (typ) of the nominal voltage. Once the  
output reaches 102% (typ) of the nominal voltage, both  
high-side and low-side FETs are turned off and the device  
enters hibernation mode until the load discharges the  
output to 101% (typ) of the nominal voltage. Most of the  
internal blocks are turned off in hibernation mode to save  
quiescent current. Once the output falls below 101% (typ)  
of the nominal voltage, the device comes out of hiberna-  
42000  
R
=
T
f
SW  
The switching frequency in ranges of 130kHz to 160kHz  
and 230kHz to 280kHz are not allowed for user pro-  
gramming to ensure proper configuration of the internal  
adaptive-loop compensation scheme.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
voltage is then smoothly ramped up to the target value  
in alignment with the internal reference. Such a feature is  
useful in applications where digital integrated circuits with  
multiple rails are powered.  
External Synchronization  
The RT/SYNC pin can be used to synchronize the  
device’s internal oscillator to an external system clock.  
The external clock should be coupled to the RT/SYNC  
pin through a 47pF capacitor, as shown in Figure 1. The  
external clock logic high level should be higher than 3V,  
logic low level lower than 0.5V and the duty cycle of the  
external clock should be in the range of 10% to 70%.  
The RT resistor should be selected to set the switching  
frequency 10% lower than the external clock frequency.  
The external clock should be applied at least 500μs after  
enabling the device for proper configuration of the internal  
loop compensation.  
Operating Input-Voltage Range  
The maximum operating input voltage is determined by  
the minimum controllable on-time, while the minimum  
operating input voltage is determined by the maximum  
duty cycle and circuit voltage drops. The minimum and  
maximum operating input voltages for a given output volt-  
age should be calculated as follows:  
V
+ (I  
× 8.6)  
OUT  
OUT  
V
=
+ (I  
× 2.5)  
IN(MIN)  
OUT  
D
Reset Output (RESET)  
MAX  
The device includes an open-drain RESET output to  
monitor output voltage. RESET should be pulled up with  
an external resistor to the desired external power supply  
less than or equal to 16V. RESET goes high impedance  
2ms after the output rises above 95% of its nominal set  
value and pulls low when the output voltage falls below  
92% of the set nominal output voltage. RESET asserts  
low during the hiccup timeout period.  
f
SW  
for duty cycle, D > 0.3 : V  
> 4.8× V  
OUT  
IN(MIN)  
42000  
V
OUT  
× f  
V
=
IN(MAX)  
t
ON(MIN) SW  
where,  
V
= Steady-state output voltage  
OUT  
I
f
= Maximum load current  
OUT  
Startup Into a Pre-biased Output  
= Switching frequency (max)  
SW  
The device supports monotonic startup into a pre-biased  
output. When the module starts into a pre-biased output,  
both the high-side and low-side switches are turned off  
so that the module does not sink current from the output.  
High-side and low-side switches do not start switching  
until the PWM comparator commands the first PWM  
pulse, at which point switching commences. The output  
D
= Maximum duty cycle  
MAX  
t
= Worst case minimum controllable switch on-  
ON(MIN)  
time (152ns).  
Overcurrent Protection (OCP), Hiccup Mode  
The device implements a HICCUP-type overload protec-  
tion scheme to protect the inductor and internal FETs under  
output short-circuit conditions. When the overcurrent event  
occurs, the part enters hiccup mode. In this mode, the part  
is initially operated with hysteretic cycle-by-cycle peak-  
current limit that continues for a time period equal to twice  
the soft-start time. The part is then turned off for a fixed  
51ms hiccup timeout period. This sequence of hysteretic  
inductor current waveforms, followed by a hiccup timeout  
period, continues until the short/overload on the output is  
removed. Since the inductor current is bound between two  
limits, inductor current runway never happens.  
MAXM17900  
47pF  
RT/SYNC  
CLOCK  
SOURCE  
R
T
Thermal Shutdown  
V
LOGIC-HIGH  
DUTY  
Thermal shutdown limits the total power dissipation in the  
module. When the junction temperature exceeds +160°C,  
an on-chip thermal sensor shuts down the device, turns  
off the internal power MOSFETs, allowing the device  
to cool down. The device turns on after the junction  
temperature cools by approximately 20°C.  
V
LOGIC-LOW  
Figure 1. Synchronization to an External Clock  
Maxim Integrated  
12  
www.maximintegrated.com  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
Setting the Input Undervoltage-Lockout Level  
Application Information  
The device offers an adjustable input undervoltage-lock-  
out level. Set the voltage at which the device turns on with  
a resistive voltage-divider connected from IN to GND (see  
Figure 2). Connect the center node of the divider to EN/  
UVLO. Choose R1 to be 3.3MΩ max and then calculate  
R2 as follows:  
Input Capacitor Selection  
Small ceramic input capacitors are recommended. The  
input capacitor reduces peak current drawn from the  
power source and reduces noise and voltage ripple on  
the input caused by the switching circuitry. It is recom-  
mended to select the input capacitor of the module to  
keep the input-voltage ripple under 2% of the minimum  
input voltage, and to meet the maximum ripple-current  
requirements.  
1.25×R  
1
R2 =  
V
1.25  
INU  
where V  
to turn on.  
is the voltage at which the device is required  
INU  
Output Capacitor Selection  
Small ceramic X7R-grade output capacitors are recom-  
mended for the device. The output capacitor has two  
functions. It stores sufficient energy to support the output  
voltage under load transient conditions and stabilizes the  
device’s internal control loop. Usually the output capacitor  
is sized to support a step load of 50% of the maximum  
output current in the application, such that the output  
voltage deviation is less than 3%. Calculate the minimum  
required output capacitance from the following equations:  
Adjusting the Output Voltage  
The output voltage can be programmed from 0.9V to 5.5V.  
Different output voltage needs to use different switching  
frequency (see Table 1). Set the output voltage by con-  
necting a resistor-divider from output to FB to GND (see  
Figure 3). Choose R5 in the range of 25kΩ to 100kΩ and  
calculate R4 with the following equation:  
V
FREQUENCY RANGE  
MINIMUM OUTPUT  
CAPACITANCE (µF)  
OUT  
R4 = R5×  
1  
(kHZ)  
0.8  
50  
100 to 130  
160 to 230  
280 to 900  
V
V
V
OUT  
25  
V
IN  
IN  
MAXM17900  
OUT  
17  
R1  
R2  
EN/UVLO  
OUT  
It should be noted that dielectric materials used in ceramic  
capacitors exhibit capacitance loss due to DC bias lev-  
els and should be appropriately de-rated to ensure the  
required output capacitance is obtained in the application.  
GND  
Soft-Start Capacitor Selection  
Figure 2. Adjustable EN/UVLO Network  
The device offers a 5.1ms internal soft-start when the SS  
pin is left unconnected. When adjustable soft-start time is  
required, connect a capacitor from SS to GND to program  
the soft-start time. The minimum soft-start time is related  
V
OUT  
MAXM17900  
to the output capacitance (C  
) and the output voltage  
R4  
R5  
OUT  
(V  
) by the following equation:  
OUT  
FB  
t
> 0.05 x C  
x V  
OUT OUT  
SS  
where t is in milliseconds and C  
is in µF.  
OUT  
SS  
GND  
Soft-start time (t ) is related to the capacitor connected  
SS  
at SS (C ) by the following equation:  
SS  
C
= 6.25 x t  
SS  
SS  
Figure 3. Circuit for Setting the Output Voltage.  
where t is in milliseconds and C is in nF.  
SS  
SS  
Maxim Integrated  
13  
www.maximintegrated.com  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
Table 1. Component Selection Table  
V
(V)  
V
(V)  
C
f
(kHz)  
R3 (kΩ)  
191  
191  
140  
140  
105  
70  
R4 (kΩ)  
6.19  
24.9  
43.2  
61.9  
107  
R5 (kΩ)  
49.9  
C
OUT  
OUT  
IN  
IN  
SW  
0.9  
4 to 24  
4 to 24  
4 to 24  
4 to 24  
4.5 to 24  
6 to 24  
10 to 24  
10 to 24  
1 × 2.2μF 1206 50V X7R  
1 × 2.2μF 1206 50V X7R  
1 × 2.2μF 1206 50V X7R  
1 × 2.2μF 1206 50V X7R  
1 × 1μF 1206 50V X7R  
1 × 1μF 1206 50V X7R  
1 × 1μF 0805 50V X7R  
1 × 1μF 0805 50V X7R  
220  
2 × 10μF 0805 6.3V X7R  
2 × 10μF 0805 6.3V X7R  
1 × 10μF 0805 6.3V X7R  
1 × 10μF 0805 6.3V X7R  
1 × 10μF 0805 6.3V X7R  
1 × 10μF 0805 6.3V X7R  
1 × 10μF 0805 6.3V X7R  
1 × 10μF 0805 10V X7R  
1.2  
1.5  
1.8  
2.5  
3.3  
5
220  
300  
300  
400  
600  
600  
700  
49.9  
49.9  
49.9  
49.9  
158  
49.9  
70  
261  
49.9  
5.5  
60  
294  
49.9  
Transient Protection  
In applications where fast line transients or oscilla-  
tions with a slew rate in excess of 15V/µs are expect-  
ed during power-up or steady-state operation, the  
MAXM17900 should be protected with a series resistor  
that forms a low pass filter with the input ceramic capacitor  
(Figure 4). These transients can occur in conditions such  
as hot-plugging from a low-impedance source or due to  
inductive load switching and surges on the supply lines.  
4.7Ω  
IN  
MAXM17900  
C
IN  
=2.2µF  
GND  
Power Dissipation  
Ensure that the junction temperature of the devices do  
not exceed 125°C under the operating conditions speci-  
fied for the power supply. At a particular operating condi-  
tion, the power losses that lead to temperature rise of the  
device are estimated as follows:  
Figure 4. Circuit for Transient Protection  
measure the efficiency to determine the total power  
dissipation. The junction temperature (T ) of the device  
J
1
can be estimated at any ambient temperature (T ) from  
A
P
= P  
(
1)  
LOSS  
OUT  
η
the following equation:  
P
= V  
×I  
OUT OUT  
OUT  
T = T + θ ×P  
LOSS  
J
A
JA  
where P  
is the output power, η is the efficien-  
OUT  
where θ is the junction-to-ambient thermal impedance  
of the package.  
JA  
cy of power conversion. See the Typical Operating  
Characteristics for the power-conversion efficiency or  
Maxim Integrated  
14  
www.maximintegrated.com  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
Ensure that all feedback connections are short and  
PCB Layout Guidelines  
direct  
Careful PCB layout (Figure 5) is critical to achieve clean  
and stable operation. The switching power stage requires  
particular attention. Follow these guidelines for a good  
PCB layout:  
Route high-speed switching node (LX) away from the  
signal pins  
For a sample PCB layout that ensures the first-pass success,  
refer to the MAXM17900 evaluation kit data sheet.  
Place the input ceramic capacitor as close as  
possible to IN and GND pins  
V
IN  
V
OUT  
OUT  
IN  
C
MAXM17900  
IN  
R1  
R2  
R6  
C
OUT  
R4  
LX  
RESET  
EN/UVLO  
FB  
SS  
RT/SYNC  
R5  
GND  
MODE  
R3  
CIN  
V
PLANE  
IN  
GND PLANE  
+
LX  
1
2
10  
9
IN  
R1  
MAXM17900  
GND  
EN/UVLO  
RT/SYNC  
R3  
R2  
MODE  
3
4
8
RESET  
R6  
7
COUT  
SS  
OUT  
5
6
FB  
R5  
R4  
V
OUT  
PLANE  
GND PLANE  
VIAS TO BOTTOM SIDE GROUND PLANE  
Figure 5. Layout Guidelines  
Maxim Integrated  
15  
www.maximintegrated.com  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
10-pin uSLIC  
10-pin uSLIC  
MAXM17900AMB+  
MAXM17900AMB+T  
-40°C to +125°C  
-40°C to +125°C  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
16  
www.maximintegrated.com  
MAXM17900  
4V to 24V, 100mA,  
Compact Step-Down Power Module  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
12/17  
Initial release  
Updated the title, General Description, Applications, Benefits and Features,  
Absolute Maximum Ratings, and Detailed Description sections; added the MODE  
section, new TOC05–08, TOC16 and TOC21–22, and renumbered remaining  
TOCs; updated the Package Information, Electrical Characteristics, Pin Description,  
Ordering Information tables, and Table 1; Replaced the Typical Application Circuit,  
Functional Diagram, Pin Configuration, and Figure 5  
1
7/18  
1–16  
Updated the Absolute Maximum Ratings, Electrical Characteristics, Pin Description,  
and Reset Output (RESET) sections  
2
3
12/19  
11/20  
2, 4, 9, 12  
14–15  
Updated Table 1 and the PCB Layout Guidelines section  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2020 Maxim Integrated Products, Inc.  
17  

相关型号:

MAXM17900AMBT

4V to 24V, 100mA, Compact Step-Down Power Module
MAXIM

MAXM17901

4.5V to 24V, 300mA Himalaya uSLIC Step-Down Power Module
MAXIM

MAXM17901AMB

4.5V to 24V, 300mA Himalaya uSLIC Step-Down Power Module
MAXIM

MAXM17901AMBT

4.5V to 24V, 300mA Himalaya uSLIC Step-Down Power Module
MAXIM

MAXM17903

4.5V to 24V, 300mA Himalaya uSLIC Step-Down Power Module
MAXIM

MAXM17903AMB

4.5V to 24V, 300mA Himalaya uSLIC Step-Down Power Module
MAXIM

MAXM17903AMBT

4.5V to 24V, 300mA Himalaya uSLIC Step-Down Power Module
MAXIM

MAXM17904

4.5V to 24V, 300mA Himalaya uSLIC Step-Down Power Module
MAXIM

MAXM17904AMB

4.5V to 24V, 300mA Himalaya uSLIC Step-Down Power Module
MAXIM

MAXM17904AMB+

SWITCHING REGULATOR,
MAXIM

MAXM17904AMBT

4.5V to 24V, 300mA Himalaya uSLIC Step-Down Power Module
MAXIM

MAXM17905

4.5V to 24V, 300mA Himalaya uSLIC Step-Down Power Module
MAXIM