MCP3428-EMF [MAXIM]

16-Bit, Multi-Channel Analog-to-Digital Converter with I2C Interface and On-Board Reference; 16位,多通道模拟数字转换器,带有I2C接口,并板载参考
MCP3428-EMF
型号: MCP3428-EMF
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

16-Bit, Multi-Channel Analog-to-Digital Converter with I2C Interface and On-Board Reference
16位,多通道模拟数字转换器,带有I2C接口,并板载参考

转换器
文件: 总56页 (文件大小:944K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP3426/7/8  
16-Bit, Multi-Channel ΔΣ Analog-to-Digital Converter with  
I2C™ Interface and On-Board Reference  
Features  
Description  
• 16-bit ΔΣ ADC with Differential Inputs:  
- 2 channels: MCP3426 and MCP3427  
- 4 channels: MCP3428  
The MCP3426, MCP3427 and MCP3428 devices  
(MCP3426/7/8) are the low noise and high accuracy  
16 Bit Delta-Sigma Analog-to-Digital (ΔΣ A/D) Con-  
verter family members of the MCP342X series from  
Microchip Technology Inc. These devices can convert  
analog inputs to digital codes with up to 16 bits of reso-  
lution.  
• Differential Input Full Scale Range: -VREF to  
+VREF  
• Self Calibration of Internal Offset and Gain per  
Each Conversion  
The MCP3426 and MCP3427 devices have two  
differential input channels and the MCP3428 has four  
differential input channels. All electrical properties of  
these three devices are the same except the  
differences in the number of input channels and I2C  
address bit selection options.  
• On-Board Voltage Reference (VREF):  
- Accuracy: 2.048V ± 0.05%  
- Drift: 15 ppm/°C  
• On-Board Programmable Gain Amplifier (PGA):  
- Gains of 1,2, 4 or 8  
These devices can output analog-to-digital conversion  
results at rates of 15 (16-bit mode), 60 (14-bit mode), or  
240 (12-bit mode) samples per second depending on  
the user controllable configuration bit settings using the  
two-wire I2C serial interface. During each conversion,  
the device calibrates offset and gain errors  
automatically. This provides accurate conversion  
results from conversion to conversion over variations in  
temperature and power supply fluctuation.  
• INL: 10 ppm of Full Scale Range  
• Programmable Data Rate Options:  
- 15 SPS (16 bits)  
- 60 SPS (14 bits)  
- 240 SPS (12 bits)  
• One-Shot or Continuous Conversion Options  
• Low Current Consumption (VDD= 3V):  
- Continuous Conversion: 135 µA typical  
The device has an on-board 2.048V reference voltage,  
which enables an input range of ± 2.048V differentially  
(full scale range = 4.096/PGA).  
- One-Shot Conversion with 1 SPS:  
- 9 µA typical for 16 bit mode  
- 2.25 µA typical for 14 bit mode  
- 0.56 µA typical for 12 bit mode  
The user can select the gain of the on-board  
programmable gain amplifier (PGA) using the  
configuration register bits (gain of x1, x2, x4, or x8).  
This allows the MCP3426/7/8 devices to convert a very  
weak input signal with high resolution.  
• On-Board Oscillator  
• I2CInterface:  
- Standard, Fast and High Speed Modes  
- User configurable two external address  
selection pins for MCP3427 and MCP3428  
The MCP3426/7/8 devices have two conversion  
modes: (a) One-Shot Conversion mode and  
(b) Continuous Conversion mode. In the One-Shot  
conversion mode, the device performs a single  
• Single Supply Operation: 2.7V to 5.5V  
• Extended Temperature Range: -40°C to +125°C  
conversion and enters  
a
low current standby  
Typical Applications  
(shutdown) mode automatically until it receives another  
conversion command. This reduces current  
consumption greatly during idle periods. In continuous  
conversion mode, the conversion takes place  
continuously at the configured conversion speed. The  
device updates its output buffer with the most recent  
conversion data.  
• Portable Instrumentation and Consumer Goods  
Temperature Sensing with RTD, Thermistor, and  
Thermocouple  
• Bridge Sensing for Pressure, Strain, and Force  
• Weigh Scales and Battery Fuel Gauges  
• Factory Automation Equipment  
The devices operate from a single 2.7V to 5.5V power  
supply and have a two-wire I2C compatible serial  
interface for a standard (100 kHz), fast (400 kHz), or  
high-speed (3.4 MHz) mode.  
© 2009 Microchip Technology Inc.  
DS22226A-page 1  
MCP3426/7/8  
The I2C address bits for the MCP3427 and MCP3428  
are selected by using two external I2C address  
selection pins (Adr0 and Adr1). The user can configure  
the device to one of eight available addresses by  
The MCP3426 is available in 8-pin SOIC, DFN, and  
MSOP packages. The MCP3427 is available in 10-pin  
DFN, and MSOP packages. The MCP3428 is available  
in 14-pin SOIC and TSSOP packages.  
connecting these two address selection pins to VDD  
V
,
SS or float. The I2C address bits of the MCP3426 are  
programmed at the factory during production.  
Package Types  
MSOP, SOIC  
MSOP  
SOIC, TSSOP  
14  
CH1+  
CH1-  
1
2
3
4
5
6
7
CH1+  
CH4-  
10  
9
Adr1  
1
2
3
4
5
CH1+  
CH1-  
8
CH2-  
1
CH1-  
13  
12  
Adr0  
SCL  
SDA  
CH4+  
CH3-  
7
6
5
CH2+  
2
3
4
8
V
SS  
CH2+  
CH2-  
V
V
DD  
SS  
CH2+  
CH2-  
7
6
SCL  
11  
10  
SDA  
CH3+  
Adr1  
V
DD  
V
SS  
9
8
V
Adr0  
SCL  
DD  
SDA  
MCP3426  
2x3 DFN *  
MCP3427  
3x3 DFN *  
CH1+  
CH1-  
CH2-  
CH1+  
CH1-  
Adr1  
1
2
8
7
1
10  
9
CH2+  
Adr0  
2
EP  
9
EP  
11  
VDD  
VSS  
V
SCL  
SDA  
VDD  
3
4
6
5
3
4
5
8
7
6
SS  
SDA  
SCL  
CH2+  
CH2-  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
MCP3426 Functional Block Diagram  
VDD  
VSS  
Voltage Reference  
(2.048V)  
MCP3426  
VREF  
CH1+  
SCL  
SDA  
I2C  
Interface  
ΔΣ ADC  
Converter  
CH1-  
CH2+  
CH2-  
PGA  
Gain = 1, 2, 4, or 8  
Clock  
Oscillator  
DS22226A-page 2  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
MCP3427 Functional Block Diagram  
VDD  
VSS  
MCP3427  
Adr1  
Adr0  
Voltage Reference  
(2.048V)  
VREF  
CH1+  
SCL  
I2C  
ΔΣ ADC  
Converter  
CH1-  
PGA  
Interface  
SDA  
CH2+  
CH2-  
Gain = 1, 2, 4, or 8  
Clock  
Oscillator  
MCP3428 Functional Block Diagram  
VDD  
VSS  
MCP3428  
CH1+  
Adr1  
Adr0  
Voltage Reference  
(2.048V)  
CH1-  
VREF  
CH2+  
SCL  
SDA  
I2C  
CH2-  
ΔΣ ADC  
Converter  
PGA  
Interface  
CH3+  
CH3-  
Gain = 1, 2, 4, or 8  
Clock  
Oscillator  
CH4+  
CH4-  
© 2009 Microchip Technology Inc.  
DS22226A-page 3  
MCP3426/7/8  
NOTES:  
DS22226A-page 4  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
†Notice: Stresses above those listed under “Maximum Rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
VDD...................................................................................7.0V  
All inputs and outputs ............. ..........VSS –0.4V to VDD+0.4V  
Differential Input Voltage ...................................... |VDD - VSS  
|
Output Short Circuit Current ................................Continuous  
Current at Input Pins ....................................................±2 mA  
Current at Output and Supply Pins ............................±10 mA  
Storage Temperature ....................................-65°C to +150°C  
Ambient Temp. with power applied ...............-55°C to +125°C  
ESD protection on all pins ................ ≥ 6 kV HBM, 400V MM  
Maximum Junction Temperature (TJ)..........................+150°C  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all parameters apply for TA = -40°C to +85°C, VDD = +5.0V, VSS = 0V,  
CHn+ = CHn- = VREF/2, VINCOM = VREF /2. All ppm units use 2*VREF as differential full scale range.  
Parameters  
Analog Inputs  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Differential Full Scale Input  
Voltage Range  
FSR  
±2.048/PGA  
V
VIN = [CHn+ - CHn-]  
Maximum Input Voltage Range  
Differential Input Impedance  
VSS-0.3  
VDD+0.3  
V
(Note 1)  
ZIND (f)  
ZINC (f)  
2.25/PGA  
MΩ  
During normal mode operation  
(Note 2)  
Common Mode input  
Impedance  
25  
MΩ  
PGA = 1, 2, 4, 8  
System Performance  
Resolution and No Missing  
Codes  
(Effective Number of Bits)  
(Note 3)  
12  
14  
16  
Bits  
Bits  
Bits  
DR = 240 SPS  
DR = 60 SPS  
DR = 15 SPS  
Data Rate  
(Note 4)  
DR  
176  
44  
11  
240  
60  
328  
82  
SPS  
SPS  
SPS  
12 bits mode  
14 bits mode  
16 bits mode  
15  
20.5  
Output Noise  
2.5  
µVRMS TA = +25°C, DR =15 SPS,  
PGA = 1, VIN+ = VIN- = GND  
Integral Non-Linearity  
INL  
10  
ppm of DR = 15 SPS  
FSR  
(Note 5)  
Internal Reference Voltage  
Gain Error (Note 6)  
VREF  
2.048  
0.1  
V
%
PGA = 1, DR = 15 SPS  
PGA Gain Error Match (Note 6)  
Gain Error Drift (Note 6)  
0.1  
%
Between any 2 PGA settings  
15  
ppm/°C PGA=1, DR=15 SPS  
Note 1: Any input voltage below or greater than this voltage causes leakage current through the ESD diodes at the input pins.  
This parameter is ensured by characterization and not 100% tested.  
2: This input impedance is due to 3.2 pF internal input sampling capacitor.  
3: This parameter is ensured by design and not 100% tested.  
4: The total conversion speed includes auto-calibration of offset and gain.  
5: INL is the difference between the endpoints line and the measured code at the center of the quantization band.  
6: Includes all errors from on-board PGA and VREF  
.
7: This parameter is ensured by characterization and not 100% tested.  
8: MCP3427 and MCP3428 only.  
9: Addr_Float voltage is applied at address pin.  
10: No voltage is applied at address pin (left “floating”).  
© 2009 Microchip Technology Inc.  
DS22226A-page 5  
MCP3426/7/8  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for TA = -40°C to +85°C, VDD = +5.0V, VSS = 0V,  
CHn+ = CHn- = VREF/2, VINCOM = VREF /2. All ppm units use 2*VREF as differential full scale range.  
Parameters  
Offset Error  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
VOS  
30  
µV  
PGA = 1  
DR = 15 SPS  
Offset Drift vs. Temperature  
Common-Mode Rejection  
50  
105  
110  
5
nV/°C  
dB  
at DC and PGA =1,  
dB  
at DC and PGA =8, TA = +25°C  
Gain vs. VDD  
ppm/V TA = +25°C, VDD = 2.7V to 5.5V,  
PGA = 1  
Power Supply Rejection at DC  
Input  
100  
dB  
TA = +25°C, VDD = 2.7V to 5.5V,  
PGA = 1  
Power Requirements  
Voltage Range  
VDD  
IDDA  
2.7  
5.5  
180  
V
Supply Current during  
Conversion  
145  
135  
0.3  
µA  
µA  
µA  
VDD = 5.0V  
VDD = 3.0V  
VDD = 5.0V  
Supply Current during Standby  
Mode  
IDDS  
1
I2C Digital Inputs and Digital Outputs  
High level input voltage  
Low level input voltage  
Low level output voltage  
VIH  
0.7VDD  
VDD  
0.3VDD  
0.4  
V
V
V
V
at SDA and SCL pins  
at SDA and SCL pins  
IOL = 3 mA  
VIL  
VOL  
Hysteresis of Schmidt Trigger  
VHYST  
0.05VDD  
fSCL = 100 kHz  
for inputs (Note 7)  
Supply Current when I2C bus  
line is active  
IDDB  
10  
µA  
Device is in standby mode while  
I2C bus is active  
Input Leakage Current  
IILH  
IILL  
Logic Status of I2C Address Pins (Note 8)  
-1  
1
µA  
µA  
VIH = 5.5V  
VIL = GND  
Adr0 and Adr1 Pins  
Adr0 and Adr1 Pins  
Adr0 and Adr1 Pins  
Addr_Low  
VSS  
0.2VDD  
VDD  
V
V
V
The device reads logic low.  
The device reads logic high.  
Addr_High 0.75VDD  
Addr_Float 0.35VDD  
0.6VDD  
Read pin voltage if voltage is  
applied to the address pin.  
(Note 9)  
V
DD/2  
Device outputs float output  
voltage (VDD/2) on the address  
pin, if left “floating”. (Note 10)  
Pin Capacitance and I2C Bus Capacitance  
Pin capacitance  
I2C Bus Capacitance  
CPIN  
Cb  
4
10  
pF  
pF  
400  
Note 1: Any input voltage below or greater than this voltage causes leakage current through the ESD diodes at the input pins.  
This parameter is ensured by characterization and not 100% tested.  
2: This input impedance is due to 3.2 pF internal input sampling capacitor.  
3: This parameter is ensured by design and not 100% tested.  
4: The total conversion speed includes auto-calibration of offset and gain.  
5: INL is the difference between the endpoints line and the measured code at the center of the quantization band.  
6: Includes all errors from on-board PGA and VREF  
.
7: This parameter is ensured by characterization and not 100% tested.  
8: MCP3427 and MCP3428 only.  
9: Addr_Float voltage is applied at address pin.  
10: No voltage is applied at address pin (left “floating”).  
DS22226A-page 6  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, TA = -40°C to +125°C, VDD = +5.0V, VSS = 0V.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
TA  
TA  
TA  
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
Thermal Package Resistances  
Thermal Resistance, 8L-DFN (2x3)  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 10L-DFN (3x3)  
Thermal Resistance, 10L-MSOP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
84.5  
211  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
149.5  
57  
202  
120  
100  
© 2009 Microchip Technology Inc.  
DS22226A-page 7  
MCP3426/7/8  
NOTES:  
DS22226A-page 8  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = -40°C to +85°C, VDD = +5.0V, VSS = 0V, CHn+ = CHn- = VREF/2,  
VINCOM = VREF/2.  
0.005  
0.004  
0.003  
0.002  
0.001  
0
12  
10  
8
PGA = 1  
PGA = 1  
PGA = 2  
6
PGA = 4  
PGA = 8  
4
PGA = 4  
2
PGA = 2  
3.5  
PGA = 8  
0
2.5  
3
4
4.5  
5
5.5  
-100 -75 -50 -25  
0
25  
50  
75 100  
Input Signal (% of FSR)  
V
DD (V)  
FIGURE 2-1:  
(V ).  
INL vs. Supply Voltage  
FIGURE 2-4:  
Voltage.  
Output Noise vs. Input  
DD  
0.005  
2
1.5  
1
TA = +25°C  
PGA = 1  
PGA = 8  
0.004  
0.003  
0.002  
0.001  
0
0.5  
0
2.7V  
PGA = 4  
-0.5  
-1  
PGA = 2  
-1.5  
-2  
5V  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-100 -75 -50 -25  
0
25  
50  
75 100  
Temperature (oC)  
Input Voltage (% of Full-Scale)  
FIGURE 2-2:  
INL vs. Temperature.  
FIGURE 2-5:  
Total Error vs. Input Voltage.  
0.2  
0.1  
20  
15  
10  
5
VDD = 5V  
PGA = 8  
PGA = 4  
PGA = 8  
0
PGA = 1  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
0
-5  
-10  
-15  
PGA = 2  
PGA = 2  
PGA = 1  
-20  
-25  
PGA = 4  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
FIGURE 2-3:  
Offset Error vs.  
FIGURE 2-6:  
Gain Error vs. Temperature.  
Temperature.  
© 2009 Microchip Technology Inc.  
DS22226A-page 9  
MCP3426/7/8  
Note: Unless otherwise indicated, TA = -40°C to +85°C, VDD = +5.0V, VSS = 0V, CHn+ = CHn- = VREF/2,  
VINCOM = VREF/2.  
5
4
200  
180  
160  
140  
120  
100  
80  
VDD = 5.5V  
3
2
VDD = 2.7V  
VDD = 2.7V  
1
VDD = 5.0V  
0
VDD = 5.0V  
60  
-1  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
FIGURE 2-7:  
I
vs. Temperature.  
FIGURE 2-10:  
Oscillator Drift vs.  
DDA  
Temperature.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Data Rate = 15 SPS  
VDD = 5.5V  
VDD = 5.0V  
-90  
-100  
-110  
-120  
VDD = 2.7V  
1k  
10k  
0.1  
1
10  
100  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
Input Signal Frequency (Hz)  
FIGURE 2-8:  
I
vs. Temperature.  
FIGURE 2-11:  
Frequency Response.  
DDS  
14  
VDD = 5.5V  
12  
10  
8
VDD = 5.0V  
VDD = 4.5V  
6
4
VDD = 2.7V  
2
0
-60 -40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
FIGURE 2-9:  
I
vs. Temperature.  
DDB  
DS22226A-page 10  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP3426  
PIN FUNCTION TABLE  
MCP3427 MCP3428  
Sym  
Function  
MSOP,  
SOIC  
SOIC,  
TSSOP  
DFN  
DFN  
MSOP  
1
2
1
2
1
2
1
2
1
2
CH1+  
CH1-  
CH2+  
CH2-  
VSS  
Positive Differential Analog Input Pin of Channel 1  
Negative Differential Analog Input Pin of Channel 1  
Positive Differential Analog Input Pin of Channel 2  
Negative Differential Analog Input Pin of Channel 2  
Ground Pin  
7
7
4
4
3
8
8
5
5
4
6
6
3
3
5
3
3
6
6
6
VDD  
Positive Supply Voltage Pin  
4
4
7
7
7
SDA  
SCL  
Bidirectional Serial Data Pin of the I2C Interface  
Serial Clock Pin of the I2C Interface  
5
5
8
8
8
9
9
9
9
Adr0  
Adr1  
CH3+  
CH3-  
CH4+  
CH4-  
EP  
I2C Address Selection Pin. See Section 5.3.2.  
I2C Address Selection Pin. See Section 5.3.2.  
Positive Differential Analog Input Pin of Channel 3  
Negative Differential Analog Input Pin of Channel 3  
Positive Differential Analog Input Pin of Channel 4  
Negative Differential Analog Input Pin of Channel 4  
10  
11  
10  
10  
11  
12  
13  
14  
Exposed Thermal Pad (EP); must be connected to  
VSS  
3.1  
Analog Inputs (CHn+, CHn-)  
3.2  
Supply Voltage (VDD, VSS)  
CHn+ and CHn- are differential input pins for  
channel n. The user can also connect CHn- pin to VSS  
for a single-ended operation. See Figure 6-4 for  
differential and single-ended connection examples.  
VDD is the power supply pin for the device. This pin  
requires an appropriate bypass ceramic capacitor of  
about 0.1 µF to ground to attenuate high frequency  
noise presented in application circuit board. An  
additional 10 µF capacitor (tantalum) in parallel is also  
recommended to further attenuate current spike  
noises. The supply voltage (VDD) must be maintained  
in the 2.7V to 5.5V range for specified operation.  
The maximum voltage range on each differential input  
pin is from VSS-0.3V to VDD+0.3V. Any voltage below or  
above this range will cause leakage currents through  
the Electrostatic Discharge (ESD) diodes at the input  
pins.  
VSS is the ground pin and the current return path of the  
device. The user must connect the VSS pin to a ground  
plane through a low impedance connection. If an  
analog ground path is available in the application PCB  
(printed circuit board), it is highly recommended that  
the VSS pin be tied to the analog ground path or  
isolated within an analog ground plane of the circuit  
board.  
This ESD current can cause unexpected performance  
of the device. The input voltage at the input pins should  
be within the specified operating range defined in  
Section 1.0 “Electrical Characteristics” and  
Section 4.0 “Description of Device Operation”.  
See Section 4.5 “Input Voltage Range” for more  
details of the input voltage range.  
Figure 3-1 shows the input structure of the device. The  
device uses a switched capacitor input stage at the  
front end. CPIN is the package pin capacitance and  
typically about 4 pF. D1 and D2 are the ESD diodes.  
CSAMPLE is the differential input sampling capacitor.  
© 2009 Microchip Technology Inc.  
DS22226A-page 11  
MCP3426/7/8  
VDD  
D1  
Sampling  
Switch  
VT = 0.6V  
VT = 0.6V  
RS  
SS  
CHn  
RSS  
ILEAKAGE  
(~ ±1 nA)  
CPIN  
4 pF  
CSAMPLE  
(3.2 pF)  
V
D2  
VSS  
LEGEND  
V
Rss  
CHn  
CPIN  
VT  
=
=
=
=
=
Signal Source  
ILEAKAGE  
=
=
=
=
Leakage Current at Analog Pin  
Sampling Switch  
Source Impedance  
Analog Input Pin  
SS  
Rs  
CSAMPLE  
D1, D2  
Sampling Switch Resistor  
Sample Capacitance  
Input Pin Capacitance  
Threshold Voltage  
=
ESD Protection Diode  
FIGURE 3-1:  
Equivalent Analog Input Circuit.  
3.3  
Serial Clock Pin (SCL)  
3.4  
Serial Data Pin (SDA)  
SCL is the serial clock pin of the I2C interface. The  
device acts only as a slave and the SCL pin accepts  
only external serial clocks. The input data from the  
Master device is shifted into the SDA pin on the rising  
edges of the SCL clock and output from the slave  
device occurs at the falling edges of the SCL clock. The  
SCL pin is an open-drain N-channel driver. Therefore,  
it needs a pull-up resistor from the VDD line to the SCL  
SDA is the serial data pin of the I2C interface. The SDA  
pin is used for input and output data. In read mode, the  
conversion result is read from the SDA pin (output). In  
write mode, the device configuration bits are written  
(input) though the SDA pin. The SDA pin is an  
open-drain N-channel driver. Therefore, it needs a  
pull-up resistor from the VDD line to the SDA pin.  
Except for start and stop conditions, the data on the  
SDA pin must be stable during the high period of the  
clock. The high or low state of the SDA pin can only  
change when the clock signal on the SCL pin is low.  
Refer to Section 5.3 “I2C Serial Communications”  
for more details on I2C Serial Interface communication.  
pin.  
Refer  
to  
Section 5.3  
“I2C  
Serial  
Communications” for more details on I2C Serial  
Interface communication.  
The typical range of the pull-up resistor value for SCL  
and SDA is from 5 kΩ to 10 kΩ for standard (100 kHz)  
and fast (400 kHz) modes, and less than 1 kΩ for high  
speed mode (3.4 MHz).  
3.5  
Exposed Thermal Pad (EP)  
There is an internal electrical connection between the  
Exposed Thermal Pad (EP) and the VSS pin; they must  
be connected to the same potential on the Printed  
Circuit Board (PCB).  
DS22226A-page 12  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
The threshold voltage is set at 2.2V with a tolerance of  
approximately ±5%. If the supply voltage falls below  
this threshold, the device will be held in a reset  
condition. The typical hysteresis value is approximately  
200 mV.  
4.0  
DESCRIPTION OF DEVICE  
OPERATION  
4.1  
General Overview  
The  
MCP3426/7/8  
devices  
are  
differential  
The POR circuit is shut down during the low-power  
standby mode. Once a power-up event has occurred,  
multi-channel low-power, 16-Bit Delta-Sigma A/D  
converters with an I2C serial interface. The devices  
contain an input channel selection multiplexer (mux), a  
programmable gain amplifier (PGA), an on-board  
voltage reference (2.048V), and an internal oscillator.  
the  
device  
requires  
additional  
delay  
time  
(approximately 300 µs) before a conversion takes  
place. During this time, all internal analog circuitries are  
settled before the first conversion occurs. Figure 4-1  
illustrates the conditions for power-up and power-down  
events under typical start-up conditions.  
When the device powers up (POR is set), it  
automatically resets the configuration bits to default  
settings.  
VDD  
4.1.1  
DEVICE DEFAULT SETTINGS ARE:  
2.2V  
2.0V  
300 µS  
• Conversion bit resolution: 12 bits (240 sps)  
• Input channel: Channel 1  
• PGA gain setting: x1  
• Continuous conversion  
Time  
Once the device is powered-up, the user can  
reprogram the configuration bits using I2C serial  
interface any time. The configuration bits are stored in  
the volatile memory.  
Reset Start-up  
Normal Operation  
Reset  
FIGURE 4-1:  
POR Operation.  
4.3  
Internal Voltage Reference  
4.1.2  
USER SELECTABLE OPTIONS ARE:  
The device contains an on-board 2.048V voltage  
reference. This reference voltage is for internal use  
only and not directly measurable. The specification of  
the reference voltage is part of the device’s gain and  
drift specifications. Therefore, there is no separate  
specification for the on-board reference.  
• Conversion bit resolution: 12, 14, or 16 bits  
• Input channel selection: CH1, CH2, CH3, or CH4.  
• PGA Gain selection: x1, x2, x4, or x8  
• Continuous or one-shot conversion  
In the Continuous Conversion mode, the device  
converts the inputs continuously. While in the One-Shot  
Conversion mode, the device converts the input one  
time and stays in the low-power standby mode until it  
receives another command for a new conversion.  
During the standby mode, the device consumes less  
than 1 µA maximum.  
4.4  
Analog Input Channels  
The user can select the input channel using the  
configuration register bits. Each channel can be used  
for differential or single-ended input.  
Each input channel has a switched capacitor input  
structure. The internal sampling capacitor (3.2 pF for  
PGA = 1) is charged and discharged to process a  
conversion. The charging and discharging of the input  
sampling capacitor creates dynamic input currents at  
each input pin. The current is a function of the  
differential input voltages, and inversely proportional to  
the internal sampling capacitance, sampling frequency,  
and PGA setting.  
4.2  
Power-On-Reset (POR)  
The device contains an internal Power-On-Reset  
(POR) circuit that monitors power supply voltage (VDD  
during operation. This circuit ensures correct device  
start-up at system power-up and power-down events.  
)
The device resets all configuration register bits to  
default settings as soon as the POR is set.  
The POR has built-in hysteresis and a timer to give a  
high degree of immunity to potential ripples and noises  
on the power supply. A 0.1 µF decoupling capacitor  
should be mounted as close as possible to the VDD pin  
for additional transient immunity.  
© 2009 Microchip Technology Inc.  
DS22226A-page 13  
MCP3426/7/8  
Care must be taken in setting the input voltage ranges  
so that the input voltage does not exceed the absolute  
maximum input voltage range.  
4.5  
Input Voltage Range  
The differential (VIN) and common mode voltage  
(VINCOM) at the input pins without considering PGA  
setting are defined by:  
4.6  
Input Impedance  
The device uses a switched-capacitor input stage using  
a 3.2 pF sampling capacitor. This capacitor is switched  
(charged and discharged) at a rate of the sampling  
frequency that is generated by on-board clock. The  
differential input impedance varies with the PGA  
settings. The typical differential input impedance during  
a normal mode operation is given by:  
VIN = (CHn+) (CHn-)  
(CHn+) + (CHn-)  
VINCOM = -----------------------------------------------  
2
Where:  
n
=
nth input channel (n=1, 2, 3, or 4)  
The input signal levels are amplified by the internal  
programmable gain amplifier (PGA) at the front end of  
the ΔΣ modulator.  
ZIN(f) = 2.25 MΩ /PGA  
Since the sampling capacitor is only switching to the  
input pins during a conversion process, the above input  
impedance is only valid during conversion periods. In a  
low power standby mode, the above impedance is not  
presented at the input pins. Therefore, only a leakage  
current due to ESD diode is presented at the input pins.  
The user needs to consider two conditions for the input  
voltage range: (a) Differential input voltage range and  
(b) Absolute maximum input voltage range.  
4.5.1  
DIFFERENTIAL INPUT VOLTAGE  
RANGE  
The conversion accuracy can be affected by the input  
signal source impedance when any external circuit is  
connected to the input pins. The source impedance  
adds to the internal impedance and directly affects the  
time required to charge the internal sampling capacitor.  
Therefore, a large input source impedance connected  
to the input pins can degrade the system performance,  
such as offset, gain, and Integral Non-Linearity (INL)  
errors. Ideally, the input source impedance should be  
zero. This can be achievable by using an operational  
amplifier with a closed-loop output impedance of tens  
of ohms.  
The device performs conversions using its internal  
reference voltage (VREF = 2.048V). Therefore, the  
absolute value of the differential input voltage (VIN),  
with PGA setting is included, needs to be less than the  
internal reference voltage. The device will output  
saturated output codes (all 0s or all 1s except sign bit)  
if the absolute value of the input voltage (VIN), with  
PGA setting is included, is greater than the internal  
reference voltage (VREF = 2.048V). The input full scale  
voltage range is given by:  
EQUATION 4-1:  
4.7  
Aliasing and Anti-aliasing Filter  
VREF ≤ (VIN PGA) ≤ (VREF 1LSB)  
Aliasing occurs when the input signal contains  
time-varying signal components with frequency greater  
than half the sample rate. In the aliasing conditions, the  
device can output unexpected output codes. For  
applications that are operating in electrical noise  
environments, the time-varying signal noise or high  
frequency interference components can be easily  
added to the input signals and cause aliasing. Although  
the device has an internal first order sinc filter, the filter  
response (Figure 2-11) may not give enough  
attenuation to all aliasing signal components. To avoid  
the aliasing, an external anti-aliasing filter, which can  
be accomplished with a simple RC low-pass filter, is  
typically used at the input pins. The low-pass filter cuts  
off the high frequency noise components and provides  
a band-limited input signal to the input pins.  
Where:  
VIN  
=
=
CHn+ - CHn-  
2.048V  
VREF  
If the input voltage level is greater than the above limit,  
the user can use a voltage divider and bring down the  
input level within the full scale range. See Figure 6-7 for  
more details of the input voltage divider circuit.  
4.5.2  
ABSOLUTE MAXIMUM INPUT  
VOLTAGE RANGE  
The input voltage at each input pin must be less than  
the following absolute maximum input voltage limits:  
• Input voltage < VDD+0.3V  
• Input voltage > VSS-0.3V  
4.8  
Self-Calibration  
Any input voltage outside this range can turn on the  
input ESD protection diodes, and result in input  
leakage current, causing conversion errors, or  
permanently damage the device.  
The device performs a self-calibration of offset and  
gain for each conversion. This provides reliable  
conversion results from conversion-to-conversion over  
variations in temperature as well as power supply  
fluctuations.  
DS22226A-page 14  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
Table 4-1 shows the LSB size of each conversion rate  
setting. The measured unknown input voltage is  
obtained by multiplying the output codes with LSB. See  
the following section for the input voltage calculation  
using the output codes.  
4.9  
Digital Output Codes and  
Conversion to Real Values  
4.9.1  
DIGITAL OUTPUT CODE FROM  
DEVICE  
The digital output code is proportional to the input  
voltage and PGA settings. The output data format is a  
binary two’s complement. With this code scheme, the  
MSB can be considered a sign indicator. When the  
MSB is a logic ‘0’, the input is positive. When the MSB  
is a logic ‘1’, the input is negative. The following is an  
example of the output code:  
TABLE 4-1:  
RESOLUTION SETTINGS VS.  
LSB  
Resolution Setting  
12 bits  
LSB  
1 mV  
14 bits  
16 bits  
250 µV  
62.5 µV  
(a) for a negative full scale input voltage: 100...000  
Example: (CHn+ - CHn-) PGA = -2.048V  
(b) for a zero differential input voltage: 000...000  
Example: (CHn+ - CHn-) = 0  
TABLE 4-2: EXAMPLE OF OUTPUT CODE  
FOR 16 BITS (NOTE 1, NOTE 2)  
Input Voltage:  
Digital Output Code  
[CHn+ - CHn-] • PGA  
(c) for a positive full scale input voltage: 011...111  
Example: (CHn+ - CHn-) PGA = 2.048V  
VREF  
REF - 1 LSB  
2 LSB  
0111111111111111  
0111111111111111  
0000000000000010  
0000000000000001  
0000000000000000  
1111111111111111  
1111111111111110  
1000000000000000  
1000000000000000  
The MSB (sign bit) is always transmitted first through  
the I2C serial data line. The resolution for each  
conversion is 16, 14, or 12 bits depending on the  
conversion rate selection bit settings by the user.  
V
1 LSB  
0
The output codes will not roll-over even if the input  
voltage exceeds the maximum input range. In this  
case, the code will be locked at 0111...11 for all  
voltages greater than (VREF - 1 LSB)/PGA and  
1000...00 for voltages less than -VREF/PGA.  
Table 4-2 shows an example of output codes of various  
input levels for 16-bit conversion mode. Table 4-3  
shows an example of minimum and maximum output  
codes for each conversion rate option.  
-1 LSB  
-2 LSB  
- VREF  
< -VREF  
Note 1: MSB is a sign indicator:  
0: Positive input (CHn+ > CHn-)  
1: Negative input (CHn+ < CHn-)  
2: Output data format is binary two’s  
The number of output code is given by:  
complement.  
EQUATION 4-2:  
TABLE 4-3:  
MINIMUM AND MAXIMUM  
OUTPUT CODES (NOTE)  
Number of Output Code =  
(CHn+ – CHn-)  
----------------------------------------  
= (Maximum Code + 1) × PGA ×  
2.048V  
Resolution  
Setting  
Minimum Maximum  
Data Rate  
Where:  
Code  
Code  
See Table 4-3 for Maximum Code  
12  
14  
16  
240 SPS  
60 SPS  
15 SPS  
-2048  
-8192  
2047  
8191  
The LSB of the data conversion is given by:  
-32768  
32767  
Note:  
Maximum n-bit code = 2N-1 - 1  
EQUATION 4-3:  
Minimum n-bit code = -1 x 2N-1  
2 × VREF  
LSB = --------------------- = --------------------------  
2 × 2.048V  
2N 2N  
Where:  
N
=
Resolution, which is programmed in  
the Configuration Register: 12, 14,  
or 16.  
© 2009 Microchip Technology Inc.  
DS22226A-page 15  
MCP3426/7/8  
4.9.2  
CONVERTING THE DEVICE  
OUTPUT CODE TO INPUT SIGNAL  
VOLTAGE  
EQUATION 4-4:  
CONVERTING OUTPUT  
CODES TO INPUT  
VOLTAGE  
When the user gets the digital output codes from the  
device as described in Section 4.9.1 “Digital output  
code from device”, the next step is converting the  
digital output codes to a measured input voltage.  
Equation 4-4 shows an example of converting the  
output codes to its corresponding input voltage.  
If MSB = 0 (Positive Output Code):  
Input Voltage = (Output Code) •  
LSB  
PGA  
-----------  
If MSB = 1 (Negative Output Code):  
LSB  
PGA  
(2s complement of Output Code)  
-----------  
Input Voltage =  
If the sign indicator bit (MSB) is ‘0’, the input voltage  
is obtained by multiplying the output code with the LSB  
and divided by the PGA setting.  
Where:  
LSB  
2’s complement  
=
=
See Table 4-1  
1’s complement + 1  
If the sign indicator bit (MSB) is ‘1’, the output code  
needs to be converted to two’s complement before  
multiplied by LSB and divided by the PGA setting.  
Table 4-4 shows an example of converting the device  
output codes to input voltage.  
TABLE 4-4:  
EXAMPLE OF CONVERTING OUTPUT CODE TO VOLTAGE (WITH 16 BIT SETTING)  
Input Voltage  
[CHn+ - CHn-] PGA]  
Digital Output Code  
MSB  
Example of Converting Output Codes to Input Voltage  
VREF  
0111111111111111  
(214+213+212+211+210+29+28+27+26+25+24+23+22+21+20)x  
LSB(62.5μV)/PGA = 2.048 (V) for PGA = 1  
0
VREF - 1 LSB  
2 LSB  
0111111111111111  
0000000000000010  
0000000000000001  
0000000000000000  
1111111111111111  
1111111111111110  
1000000000000000  
1000000000000000  
(214+213+212+211+210+29+28+27+26+25+24+23+22+21+20)x  
LSB(62.5μV)/PGA = 2.048 (V) for PGA = 1  
(0+0+0+0+0+0+0+0+0+0+0+0+0+21+0)x LSB(62.5μV)/PGA  
= 125 V) for PGA = 1  
(0+0+0+0+0+0+0+0+0+0+0+0+0+0+20)x LSB(62.5μV)/PGA  
= 62.5 (μV)for PGA = 1  
0
0
0
0
1
1
1
1
1 LSB  
0
(0+0+0+0+0+0+0+0+0+0+0+0+0+0+0)x LSB(62.5μV)/PGA  
= 0 V (V) for PGA = 1  
-(0+0+0+0+0+0+0+0+0+0+0+0+0+0+20)x LSB(62.5μV)/  
PGA = - 62.5 (μV)for PGA = 1  
-(0+0+0+0+0+0+0+0+0+0+0+0+0+21+0)x LSB(62.5μV)/  
PGA = - 125 (μV)for PGA = 1  
-(215+0+0+0+0+0+0+0+0+0+0+0+0+0+0) x LSB(62.5μV)/  
PGA = - 2.048 (V) for PGA = 1  
-(215+0+0+0+0+0+0+0+0+0+0+0+0+0+0) x LSB(62.5μV)/  
-1 LSB  
-2 LSB  
- VREF  
-VREF  
PGA = - 2.048 (V) for PGA = 1  
Note:  
MSB = sign bit (1: “-”, 0: “+”)  
DS22226A-page 16  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
5.1.2  
ONE-SHOT CONVERSION MODE  
(O/C BIT = 0)  
5.0  
5.1  
USING THE DEVICES  
Operating Modes  
Once the One-Shot Conversion (single conversion)  
Mode is selected, the device performs only one  
conversion, updates the output data register, clears the  
data ready flag (RDY = 0), and then enters a low power  
standby mode. A new One-Shot Conversion is started  
again when the device receives a new write command  
with RDY = 1.  
The user operates the device by setting up the device  
configuration register using a write command (see  
Figure 5-3) and reads the conversion data using a read  
command (see Figure 5-4 ). The device operates in two  
modes: (a) Continuous Conversion Mode or  
(b) One-Shot Conversion Mode (single conversion).  
This mode selection is made by setting the O/C bit in  
the Configuration Register. Refer to Section 5.2  
“Configuration Register” for more information.  
• When writing configuration register:  
- The RDY bit needs to be set to begin a new  
conversion in one-shot mode.  
• When reading conversion data:  
5.1.1  
CONTINUOUS CONVERSION  
MODE (O/C BIT = 1)  
- RDY bit = 0means the latest conversion  
result is ready.  
The device performs a Continuous Conversion if the  
O/C bit is set to logic “high”. Once the conversion is  
completed, RDY bit is toggled to ‘0and the result is  
placed at the output data register. The device  
immediately begins another conversion and overwrites  
the output data register with the most recent result.  
The device clears the data ready flag (RDY bit = 0)  
when the conversion is completed. The device sets the  
ready flag bit (RDY bit = 1), if the latest conversion  
result has been read by the Master.  
- RDY bit = 1means the conversion result is  
not updated since the last reading. A new  
conversion is under processing and the RDY  
bit will be cleared when the new conversion is  
done.  
This One-Shot Conversion Mode is highly  
recommended for low power operating applications  
where the conversion result is needed by request on  
demand. During the low current standby mode, the  
device consumes less than 1 µA maximum (or 300 nA  
typical). For example, if the user collects 16-bit  
• When writing configuration register:  
- Setting RDY bit in continuous mode does not  
affect anything.  
conversion data once  
a
second in One-Shot  
Conversion mode, the device draws only about one-  
fifteenth of the operating currents for the continuous  
conversion mode. In this example, the device  
• When reading conversion data:  
- RDY bit = 0 means the latest conversion  
result is ready.  
consumes  
approximately  
9 µA  
(135 µA  
/
15 SPS = 9 µA), when the device performs only one  
conversion per second (1 SPS) in 16-bit conversion  
mode with 3V power supply.  
- RDY bit = 1 means the conversion result is  
not updated since the last reading. A new  
conversion is under processing and the RDY  
bit will be cleared when the new conversion  
result is ready.  
© 2009 Microchip Technology Inc.  
DS22226A-page 17  
MCP3426/7/8  
The user can rewrite the configuration byte any time  
during the device operation. Register 5-1 shows the  
configuration register bits.  
5.2  
Configuration Register  
The device has an 8-bit wide configuration register to  
select for: input channel, conversion mode, conversion  
rate, and PGA gain. This register allows the user to  
change the operating condition of the device and check  
the status of the device operation.  
REGISTER 5-1:  
CONFIGURATION REGISTER  
R/W-1  
RDY  
R/W-0  
C1  
R/W-0  
C0  
R/W-1  
O/C  
1 *  
R/W-0  
S1  
R/W-0  
S0  
R/W-0  
G1  
R/W-0  
G0  
1 *  
0 *  
0 *  
0 *  
0 *  
0 *  
0 *  
bit 7  
bit 0  
* Default Configuration after Power-On Reset  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
RDY: Ready Bit  
This bit is the data ready flag. In read mode, this bit indicates if the output register has been updated  
with a latest conversion result. In One-Shot Conversion mode, writing this bit to “1” initiates a new  
conversion.  
Reading RDY bit with the read command:  
1= Output register has not been updated.  
0= Output register has been updated with the latest conversion result.  
Writing RDY bit with the write command:  
Continuous Conversion mode: No effect  
One-Shot Conversion mode:  
1= Initiate a new conversion.  
0= No effect.  
bit 6-5  
C1-C0: Channel Selection Bits  
00 = Select Channel 1 (Default)  
01 = Select Channel 2  
10 = Select Channel 3 (MCP3428 only, treated as “00” by the MCP3426/MCP3427)  
11 = Select Channel 4 (MCP3428 only, treated as “01” by the MCP3426/MCP3427)  
bit 4  
O/C: Conversion Mode Bit  
1= Continuous Conversion Mode (Default). The device performs data conversions continuously.  
0= One-Shot Conversion Mode. The device performs a single conversion and enters a low power  
standby mode until it receives another write or read command.  
bit 3-2  
bit 1-0  
S1-S0: Sample Rate Selection Bit  
00 = 240 SPS (12 bits) (Default)  
01 = 60 SPS (14 bits)  
10 = 15 SPS (16 bits)  
G1-G0: PGA Gain Selection Bits  
00 = x1 (Default)  
01 = x2  
10 = x4  
11 = x8  
DS22226A-page 18  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
I2C Serial Communications  
If the configuration byte is read repeatedly by clocking  
continuously after reading the data bytes (i.e., after the  
4th byte in the 16-bit conversion mode), the state of the  
RDY bit indicates whether the device is ready with new  
conversion result. When the Master finds the RDY bit is  
cleared, it can send a not-acknowledge (NAK) bit and  
a stop bit to exit the current read operation and send a  
new read command for the latest conversion data.  
Once the conversion data has been read, the ready bit  
toggles to ‘1’ until the next new conversion data is  
ready. The conversion data in the output register is  
overwritten every time a new conversion is completed.  
5.3  
The device communicates with the Master  
(microcontroller) through a serial I2C (Inter-Integrated  
Circuit) interface and support standard (100 kbits/sec),  
fast (400 kbits/sec) and high-speed (3.4 Mbits/sec)  
modes. The serial I2C is a bidirectional 2-wire data bus  
communication protocol using open-drain SCL and  
SDA lines.  
The device can only be addressed as a slave. Once  
addressed, it can receive configuration bits with a write  
command or transmit the latest conversion results with  
a read command. The serial clock pin (SCL) is an input  
only and the serial data pin (SDA) is bidirectional. The  
Master starts communication by sending a START bit  
and terminates the communication by sending a STOP  
bit. In read mode, the device releases the SDA line  
after receiving NAK and STOP bits.  
Figure 5-3 shows an example of writing configuration  
register, and Figure 5-4 shows an example of reading  
conversion data. The user can rewrite the configuration  
byte any time for a new setting. Table 5-1 and Table 5-  
2 show the examples of the configuration bit operation.  
TABLE 5-1:  
WRITE CONFIGURATION BITS  
Operation  
An example of a hardware connection diagram is  
shown in Figure 6-1. More details of the I2C bus  
characteristic is described in Section 5.6 “I2C Bus  
Characteristics”.  
R/W O/C RDY  
0
0
0
No effect if all other bits remain  
the same - operation continues  
with the previous settings.  
2
5.3.1  
I C DEVICE ADDRESSING  
0
0
0
0
1
1
1
0
1
Initiate One-Shot Conversion.  
Initiate Continuous Conversion.  
Initiate Continuous Conversion.  
The first byte after the START bit is always the address  
byte of the device, which includes the device code (4  
bits), address bits (3 bits), and R/W bit. The device  
code for the devices is 1101, which is programmed at  
the factory. The I2C address bits (A2, A1, A0 bits) are  
as follows:  
TABLE 5-2:  
READ CONFIGURATION BITS  
Operation  
• MCP3426: Programmed at factory  
R/W O/C RDY  
• MCP3427 and MCP3428: Progammed by the  
user. It is determined by the logic status of the two  
external address selection pins on the user’s  
application board (Adr0 and Adr1 pins). The  
Master must know the Adr0 and Adr1 pin  
conditions before sending read or write command.  
See Section 5.3.2 “Device Address Bits (A2,  
A1, A0) and Address Selection Pins (MCP3427  
and MCP3428)” for more details  
1
1
1
1
0
0
1
1
0
1
0
1
New conversion result in One-  
Shot conversion mode has just  
been read. The RDY bit remains  
low until set by a new write  
command.  
One-Shot Conversion is in prog-  
ress. The conversion result is not  
updated yet. The RDY bit stays  
high until the current conversion  
is completed.  
Figure 5-1 shows the details of the address byte.  
The three I2C address bits allow up to eight devices on  
the same I2C bus line. The (R/W) bit determines if the  
Master device wants to read the conversion data or  
write to the Configuration register. If the (R/W) bit is set  
(read mode), the device outputs the conversion data in  
the following clocks. If the (R/W) bit is cleared (write  
mode), the device expects a configuration byte in the  
following clocks. When the device receives the correct  
address byte, it outputs an acknowledge bit after the  
R/W bit.  
New conversion result in  
Continuous Conversion mode  
has just been read. The RDY bit  
changes to high after reading the  
conversion data.  
The conversion result in  
Continuous Conversion mode  
was already read. The next new  
conversion data is not ready. The  
RDY bit stays high until a new  
conversion is completed.  
© 2009 Microchip Technology Inc.  
DS22226A-page 19  
MCP3426/7/8  
It is recommended to issue a General Call Reset or  
General Call Latch command once after the device  
has powered up. This will ensure that the device reads  
the address pins in a stable condition, and avoid  
latching the address bits while the power supply is  
ramping up. This might cause inaccurate address pin  
detection.  
Acknowledge bit  
Read/Write bit  
Start bit  
Address  
R/W ACK  
Address Byte  
When the address pin is left “floating”:  
Address Byte:  
When the address pin is left “floating”, the address pin  
momentarily outputs a short pulse with an amplitude of  
about VDD/2 during the latch event. The device also  
latches this pin voltage at the same time.  
Device Code  
Address Bits (Note 1)  
1
1
1
0
A2 A1  
A0  
If the “floating” pin is connected to a large parasitic  
capacitance (> 20 pF) or to a long PCB trace, this short  
floating voltage output can be altered. As a result, the  
device may not latch the pin correctly.  
Note 1: MCP3427 and MCP3428: Configured by  
the user. See Table 5-4 for address bit  
configurations.  
2: MCP3426: Programmed at the factory  
during production.  
It is strongly recommended to keep the “floating” pin  
pad as short as possible in the customer application  
PCB and minimize the parasitic capacitance to the pin  
as small as possible (< 20 pF).  
FIGURE 5-1:  
5.3.2  
Address Byte.  
Figure 5-2 shows an example of the Latch voltage  
output at the address pin when the address pin is left  
“floating”. The waveform at the Adr0 pin is captured by  
using an oscilloscope probe with 15 pF of capacitance.  
The device latches the floating condition immediately  
after the General Call Latch command.  
DEVICE ADDRESS BITS (A2, A1, A0)  
AND ADDRESS SELECTION PINS  
(MCP3427 AND MCP3428)  
The MCP3427 and MCP3428 have two external  
device address pins (Adr1, Adr0). These pins can be  
set to a logic high (or tied to VDD), low (or tied to VSS),  
or left floating (not connected to anything, or tied to  
VDD/2), These combinations of logic level using the  
two pins allow eight possible addresses. Table 5-3  
shows the device address depending on the logic  
status of the address selection pins.  
Float waveform (output)  
a
t address pin  
The device samples the logic status of the Adr0 and  
Adr1 pins in the following events:  
SCL  
SDA  
(a) Device power-up.  
(b) General Call Reset  
(See Section 5.4 “General Call”).  
(c) General Call Latch  
(See Section 5.4 “General Call”).  
FIGURE 5-2:  
Command and Voltage Output at Address Pin  
Left “Floating” (MCP3427 and MCP3428).  
General Call Latch  
The device samples the logic status (address pins)  
during the above events, and latches the values until a  
new latch event occurs. During normal operation (after  
the address pins are latched), the address pins are  
internally disabled from the rest of the internal circuit.  
DS22226A-page 20  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
TABLE 5-3:  
ADDRESS BITS VS. ADDRESS  
SELECTION PINS FOR  
(MCP3427 AND MCP3428  
ONLY) (NOTE 1, 2, 3)  
5.3.3  
WRITING A CONFIGURATION BYTE  
TO THE DEVICE  
When the Master sends an address byte with the R/W  
bit low (R/W = 0), the device expects one configuration  
byte following the address. Any byte sent after this  
second byte will be ignored. The user can change the  
operating mode of the device by writing the  
configuration register bits.  
I2C Device  
Address Bits  
Logic Status of Address  
Selection Pins  
A2  
A1  
A0  
Adr0 Pin  
Adr1 Pin  
0
0
0
1
1
1
0
1
0
0
0
1
0
0
1
1
1
0
0
1
0
0
1
0
1
1
0
0 (Addr_Low)  
0 (Addr_Low)  
0 (Addr_Low)  
0 (Addr_Low)  
Float  
If the device receives a write command with a new  
configuration setting, the device immediately begins a  
new conversion and updates the conversion data.  
1 (Addr_High)  
1 (Addr_High) 0 (Addr_Low)  
1 (Addr_High) Float  
1 (Addr_High) 1 (Addr_High)  
Float  
Float  
Float  
0 (Addr_Low)  
1 (Addr_High)  
Float  
Note 1: Float: (a) Leave pin without connecting to  
anything (left floating), or (b) apply  
Addr_Float voltage.  
2: The user can tie the pins to VSS or VDD  
:
- Tie to VSS for Addr_Low  
- Tie to VDD for Addr_High  
3: See Addr_Low, Addr_High, and  
Addr_Float parameters in Electrical  
Characteristics Table.  
1
1
9
9
SCL  
SDA  
1
1
1
A2 A1 A0  
R/W  
C1 C0  
S1 S0 G1 G0  
0
Start Bit by  
Master  
ACK by  
MCP3426/7/8  
Stop Bit by  
Master  
ACK by  
MCP3426/7/8  
O/C  
RDY  
(a) One-Shot Mode: 1  
(b) Continuous Mode: not effected  
1st Byte:  
Address Byte  
with Write command  
2nd Byte:  
Configuration Byte  
Note:  
– Stop bit can be issued any time during writing.  
MCP3426/7/8 device code is 1101(programmed at the factory).  
– See Figure 5-1 for details in Address Byte.  
FIGURE 5-3:  
Timing Diagram For Writing To The MCP3426/7/8.  
© 2009 Microchip Technology Inc.  
DS22226A-page 21  
MCP3426/7/8  
The configuration byte follows the output data bytes.  
The device repeatedly outputs the configuration byte  
only if the Master sends clocks repeatedly after the  
data bytes.  
5.3.4  
READING OUTPUT CODES AND  
CONFIGURATION BYTE FROM THE  
DEVICE  
When the Master sends a read command (R/W = 1),  
the device outputs both the conversion data and  
configuration bytes. Each byte consists of 8 bits with  
one acknowledge (ACK) bit. The ACK bit after the  
address byte is issued by the device and the ACK bits  
after each conversion data bytes are issued by the  
Master.  
The device terminates the current outputs when it  
receives a Not-Acknowledge (NAK) with a repeated  
start or a stop bit at the end of each output byte. It is not  
required to read the configuration byte. However, the  
Master may read the configuration byte to check the  
RDY bit condition.The Master may continuously send  
clock (SCL) to repeatedly read the configuration byte  
(to check the RDY bit status).  
When the device receives a read command, it outputs  
two data bytes followed by a configuration register. In  
16-bit conversion mode, the MSB (= sign bit) of the first  
data byte is D15. In 14-bit conversion mode, the first  
two bits in the first data byte are repeated MSB bits and  
can be ignored, and the 3rd bit (D13) is the MSB (=sign  
bit) of the conversion data. In 12-bit conversion mode,  
the first four bits are repeated MSB bits and can be  
ignored. The 5th bit (D11) of the byte represents the  
MSB (= sign bit) of the conversion data. Table 5-4  
summarizes the conversion data output of each  
conversion mode.  
Figure 5-4 shows the timing diagram for reading the  
ADC conversion data.  
TABLE 5-4:  
OUTPUT CODES OF EACH RESOLUTION OPTION  
Digital Output Codes  
Conversion  
Option  
16-bits  
14-bits  
12-bits  
D15 ~ D8 (1st data byte) - D7 ~ D0 (2nd data byte) - Configuration byte. (Note 1)  
MMD13D ~ D8 (1st data byte) - D7 ~ D0 (2nd data byte) - Configuration byte. (Note 2)  
MMMMD11 ~ D8 (1st data byte) - D7 ~ D0 (2nd data byte) - Configuration byte. (Note 3)  
Note 1: D15 is MSB (= sign bit).  
2: D13 is MSB (= sign bit), M is repeated MSB of the data byte.  
3: D11 is MSB (= sign bit), M is repeated MSB of the data byte.  
DS22226A-page 22  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
FIGURE 5-4:  
Timing Diagram For Reading From The MCP3426/7/8 With 12-Bit to 16-Bit Modes.  
© 2009 Microchip Technology Inc.  
DS22226A-page 23  
MCP3426/7/8  
5.4  
General Call  
5.5  
High-Speed (HS) Mode  
The device acknowledges the general call address  
(0x00 in the first byte). The meaning of the general call  
address is always specified in the second byte. Refer  
to Figure 5-5. The device supports the following three  
general calls.  
For more information on the general call, or other I2C  
modes, refer to the Phillips I2C specification.  
The I2C specification requires that a high-speed mode  
device must be ‘activated’ to operate in high-speed  
mode. This is done by sending a special address byte  
of “00001XXX” following the START bit. The “XXXbits  
are unique to the High-Speed (HS) mode Master. This  
byte is referred to as the High-Speed (HS) Master  
Mode Code (HSMMC). The MCP3426/7/8 devices do  
not acknowledge this byte. However, upon receiving  
this code, the device switches on its HS mode filters  
and communicates up to 3.4 MHz on SDA and SCL  
bus lines. The device will switch out of the HS mode on  
the next STOP condition.  
5.4.1  
GENERAL CALL RESET  
The general call reset occurs if the second byte is  
‘00000110’ (06h). At the acknowledgement of this  
byte, the device will abort current conversion and  
perform the following tasks:  
For more information on the HS mode, or other I2C  
modes, refer to the Philips I2C specification.  
(a) Internal reset similar to a Power-On-Reset (POR).  
All configuration and data register bits are reset to  
default values.  
5.6  
I2C Bus Characteristics  
The I2C specification defines the following bus  
protocol:  
(b) Latch the logic status of external address selection  
pins (Adr0 and Adr1 pins).  
• Data transfer may be initiated only when the bus  
is not busy  
5.4.2  
GENERAL CALL LATCH (MCP3427  
AND MCP3428)  
• During data transfer, the data line must remain  
stable whenever the clock line is HIGH. Changes  
in the data line while the clock line is HIGH will be  
interpreted as a START or STOP condition  
The general call latch occurs if the second byte is  
‘00000100(04h). The device will latch the logic sta-  
tus of the external address selection pins (Adr0 and  
Adr1 pins), but will not perform a reset.  
Accordingly, the following bus conditions have been  
defined using Figure 5-6.  
5.4.3  
GENERAL CALL CONVERSION  
5.6.1  
BUS NOT BUSY (A)  
The general call conversion occurs if the second byte  
is ‘00001000(08h). All devices on the bus initiate a  
conversion simultaneously. When the device receives  
this command, the configuration will be set to the  
One-Shot Conversion mode and a single conversion  
will be performed. The PGA and data rate settings are  
unchanged with this general call.  
Both data and clock lines remain HIGH.  
5.6.2  
START DATA TRANSFER (B)  
A HIGH to LOW transition of the SDA line while the  
clock (SCL) is HIGH determines a START condition. All  
commands must be preceded by a START condition.  
START  
LSB STOP  
5.6.3  
STOP DATA TRANSFER (C)  
A LOW to HIGH transition of the SDA line while the  
clock (SCL) is HIGH determines a STOP condition. All  
operations can be ended with a STOP condition.  
S
0 0 0 0 0 0 0 0  
A
X X X X X X X X A S  
5.6.4  
DATA VALID (D)  
ACK  
ACK  
First Byte  
(General Call Address)  
Second Byte  
The state of the data line represents valid data when,  
after a START condition, the data line is stable for the  
duration of the HIGH period of the clock signal.  
Note:  
The I2C specification does not allow  
‘00000000’ (00h) in the second byte.  
The data on the line must be changed during the LOW  
period of the clock signal. There is one clock pulse per  
bit of data.  
FIGURE 5-5:  
General Call Address  
Format.  
Each data transfer is initiated with a START condition  
and terminated with a STOP condition.  
DS22226A-page 24  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
During reads, the Master (microcontroller) can  
terminate the current read operation by not providing  
an acknowledge bit (not Acknowledge (NAK)) on the  
last byte. In this case, the MCP3426/7/8 devices  
release the SDA line to allow the Master  
(microcontroller) to generate a STOP or repeated  
START condition.  
5.6.5  
ACKNOWLEDGE AND  
NON-ACKNOWLEDGE  
The Master (microcontroller) and the slave (MCP3426/  
7/8) use an acknowledge pulse (ACK) as a hand shake  
of communication for each byte. The ninth clock pulse  
of each byte is used for the acknowledgement. The  
clock pulse is always provided by the Master  
(microcontroller) and the acknowledgement is issued  
by the receiving device of the byte (Note: The  
transmitting device must release the SDA line during  
the acknowledge pulse.). The acknowledgement is  
achieved by pulling-down the SDA line “LOW” during  
the 9th clock pulse by the receiving device.  
The non-acknowledgement (NAK) is issued by  
providing the SDA line to “HIGH” during the 9th clock  
pulse.  
(A)  
(B)  
(D)  
(D)  
(C) (A)  
SCL  
SDA  
START  
STOP  
ADDRESS OR  
DATA  
CONDITION  
CONDITION  
ACKNOWLEDGE ALLOWED  
VALID TO CHANGE  
2
FIGURE 5-6:  
Data Transfer Sequence on I C Serial Bus.  
© 2009 Microchip Technology Inc.  
DS22226A-page 25  
MCP3426/7/8  
2
TABLE 5-5:  
I C SERIAL TIMING SPECIFICATIONS  
Electrical Specifications: Unless otherwise specified, all limits are specified for TA = -40 to +85°C, VDD = +2.7V to +5.0V,  
V
SS = 0V, CHn+ = CHn- = VREF/2.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Standard Mode (100 kHz)  
Clock frequency  
fSCL  
0
100  
kHz  
ns  
Clock high time  
T
4000  
4700  
HIGH  
Clock low time  
T
ns  
LOW  
SDA and SCL rise time  
SDA and SCL fall time  
START condition hold time  
T
1000  
300  
ns  
From VIL to VIH (Note 1)  
From VIH to VIL (Note 1)  
R
T
ns  
F
T
T
4000  
ns  
After this period, the first clock  
pulse is generated.  
HD:STA  
Repeated START condition  
setup time  
4700  
ns  
Only relevant for repeated Start  
condition  
SU:STA  
Data hold time  
T
T
0
3450  
ns  
ns  
ns  
ns  
ns  
(Note 3)  
HD:DAT  
SU:DAT  
SU:STO  
Data input setup time  
STOP condition setup time  
Output valid from clock  
Bus free time  
250  
4000  
0
T
T
3750  
(Note 2, Note 3)  
AA  
T
4700  
Time between START and STOP  
conditions.  
BUF  
Fast Mode (400 kHz)  
Clock frequency  
T
0
400  
kHz  
ns  
SCL  
Clock high time  
T
600  
HIGH  
Clock low time  
T
1300  
ns  
LOW  
SDA and SCL rise time  
SDA and SCL fall time  
START condition hold time  
T
20 + 0.1Cb  
20 + 0.1Cb  
600  
300  
300  
ns  
From VIL to VIH (Note 1)  
From VIH to VIL (Note 1)  
R
T
ns  
F
T
T
ns  
After this period, the first clock  
pulse is generated  
HD:STA  
Repeated START condition  
setup time  
600  
ns  
Only relevant for repeated Start  
condition  
SU:STA  
Data hold time  
T
T
0
100  
600  
0
900  
ns  
ns  
ns  
ns  
ns  
(Note 4)  
HD:DAT  
SU:DAT  
SU:STO  
Data input setup time  
STOP condition setup time  
Output valid from clock  
Bus free time  
T
T
1200  
(Note 2, Note 3)  
AA  
T
1300  
Time between START and STOP  
conditions.  
BUF  
Input filter spike suppression  
T
0
50  
ns  
SDA and SCL pins (Note 5)  
SP  
Note 1: This parameter is ensured by characterization and not 100% tested.  
2: This specification is not a part of the I2C specification. This specification is equivalent to the Data Hold Time (T  
)
HD:DAT  
plus SDA Fall (or rise) time: TAA = THD:DAT + TF (OR TR).  
3: If this parameter is too short, it can create an unintended Start or Stop condition to other devices on the bus line. If this  
parameter is too long, Clock Low time (TLOW) can be affected.  
4: For Data Input: This parameter must be longer than tSP. If this parameter is too long, the Data Input Setup (TSU:DAT) or  
Clock Low time (TLOW) can be affected.  
For Data Output: This parameter is characterized, and tested indirectly by testing TAA parameter.  
5: This parameter is ensured by characterization and not 100% tested. This parameter is not available for Standard Mode.  
DS22226A-page 26  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
2
TABLE 5-5:  
I C SERIAL TIMING SPECIFICATIONS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits are specified for TA = -40 to +85°C, VDD = +2.7V to +5.0V,  
V
SS = 0V, CHn+ = CHn- = VREF/2.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
High Speed Mode (3.4 MHz)  
Clock frequency  
fSCL  
0
3.4  
1.7  
MHz  
MHz  
ns  
Cb = 100 pF  
Cb = 400 pF  
0
Clock high time  
Clock low time  
T
60  
Cb = 100 pF, fSCL = 3.4 MHz  
Cb = 400 pF, fSCL = 1.7 MHz  
Cb = 100 pF, fSCL = 3.4 MHz  
Cb = 400 pF, fSCL = 1.7 MHz  
HIGH  
120  
160  
320  
ns  
T
ns  
LOW  
ns  
SCL rise time  
(Note 1)  
T
40  
ns  
From VIL to VIH  
Cb = 100 pF, fSCL = 3.4 MHz  
From VIL to VIH  
,
R
80  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
,
Cb = 400 pF, fSCL = 1.7 MHz  
SCL fall time  
(Note 1)  
T
From VIH to VIL,  
Cb = 100 pF, fSCL = 3.4 MHz  
F
80  
From VIH to VIL,  
Cb = 400 pF, fSCL = 1.7 MHz  
SDA rise time  
(Note 1)  
T
80  
From VIL to VIH  
Cb = 100 pF, fSCL = 3.4 MHz  
From VIL to VIH  
,
R: DAT  
160  
80  
,
Cb = 400 pF, fSCL = 1.7 MHz  
SDA fall time  
(Note 1)  
T
T
From VIH to VIL,  
Cb = 100 pF, fSCL = 3.4 MHz  
F: DATA  
160  
From VIH to VIL,  
Cb = 400 pF, fSCL = 1.7 MHz  
Data hold time  
(Note 4)  
0
0
70  
150  
150  
310  
ns  
ns  
ns  
ns  
ns  
Cb = 100 pF, fSCL = 3.4 MHz  
Cb = 400 pF, fSCL = 1.7 MHz  
Cb = 100 pF, fSCL = 3.4 MHz  
Cb = 400 pF, fSCL = 1.7 MHz  
HD:DAT  
Output valid from clock  
(Notes 2 and 3)  
T
160  
AA  
START condition hold time  
T
After this period, the first clock  
pulse is generated  
HD:STA  
Repeated START condition  
setup time  
TSU:STA  
160  
ns  
Only relevant for repeated Start  
condition  
Data input setup time  
T
10  
160  
0
10  
ns  
ns  
ns  
SU:DAT  
T
SU:STO  
STOP condition setup time  
Input filter spike suppression  
T
SDA and SCL pins (Note 5)  
SP  
Note 1: This parameter is ensured by characterization and not 100% tested.  
2: This specification is not a part of the I2C specification. This specification is equivalent to the Data Hold Time (T  
)
HD:DAT  
plus SDA Fall (or rise) time: TAA = THD:DAT + TF (OR TR).  
3: If this parameter is too short, it can create an unintended Start or Stop condition to other devices on the bus line. If this  
parameter is too long, Clock Low time (TLOW) can be affected.  
4: For Data Input: This parameter must be longer than tSP. If this parameter is too long, the Data Input Setup (TSU:DAT) or  
Clock Low time (TLOW) can be affected.  
For Data Output: This parameter is characterized, and tested indirectly by testing TAA parameter.  
5: This parameter is ensured by characterization and not 100% tested. This parameter is not available for Standard Mode.  
© 2009 Microchip Technology Inc.  
DS22226A-page 27  
MCP3426/7/8  
TF  
TR  
THIGH  
TSU:STA  
SCL  
TSU:STO  
TBUF  
TSU:DAT  
TLOW  
THD:STA  
THD:DAT  
SDA  
0.7VDD  
0.3VDD  
TSP  
TAA  
2
FIGURE 5-7:  
I C Bus Timing Data.  
DS22226A-page 28  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
2
6.1.3  
I C ADDRESS SELECTION PINS  
(MCP3427 AND MCP3428)  
6.0  
BASIC APPLICATION  
CONFIGURATION  
The user can tie the Adr0 and Adr1 pins to VSS, VDD  
,
The MCP3426/7/8 devices can be used for various  
precision analog-to-digital converter applications.  
These devices operate with very simple connections to  
the application circuit. The following sections discuss  
the examples of the device connections and  
applications.  
or left floating. See more details in Section 5.3.2  
“Device Address Bits (A2, A1, A0) and Address  
Selection Pins (MCP3427 and MCP3428)”.  
MCP3428  
Input  
Input  
Signal 1  
1
2
3
4
5
6
7
CH1+  
CH1-  
CH4- 14  
Signal 4  
6.1  
Connecting to the Application  
Circuits  
13  
12  
CH4+  
CH3-  
Input  
Input  
CH2+  
CH2-  
Signal 3  
Signal 2  
11  
CH3+  
2
6.1.1  
BYPASS CAPACITORS ON V PIN  
V
I C Address  
Selection  
Pins  
Adr1 10  
SS  
DD  
V
9
DD  
Adr0  
For an accurate measurement, the application circuit  
needs a clean supply voltage and must block any noise  
signal to the MCP3426/7/8 devices. Figure 6-1 shows  
an example of using two bypass capacitors (a 10 µF  
tantalum capacitor and a 0.1 µF ceramic capacitor) on  
the VDD line of the MCP3428. These capacitors are  
helpful to filter out any high frequency noises on the  
VDD line and also provide the momentary bursts of  
extra currents when the device needs from the supply.  
These capacitors should be placed as close to the VDD  
pin as possible (within one inch). If the application  
circuit has separate digital and analog power supplies,  
the VDD and VSS of the MCP3426/7/8 devices should  
reside on the analog plane.  
C
1
SDA  
8
SCL  
C
2
TO MCU  
(MASTER)  
RP  
RP  
V
DD  
Rp is the pull-up resistor:  
5 kΩ - 10 kΩ for fSCL = 100 kHz to 400 kHz  
~700Ω for fSCL = 3.45 MHz  
C1: 0.1 µF, Ceramic capacitor  
2
6.1.2  
CONNECTING TO I C BUS USING  
PULL-UP RESISTORS  
C2: 10 µF, Tantalum capacitor  
FIGURE 6-1:  
Typical Connection.  
The SCL and SDA pins of the MCP3426/7/8 are  
open-drain configurations. These pins require a pull-up  
resistor as shown in Figure 6-1. The value of these  
pull-up resistors depends on the operating speed  
(standard, fast, and high speed) and loading  
capacitance of the I2C bus line. Higher value of pull-up  
resistor consumes less power, but increases the signal  
transition time (higher RC time constant) on the bus.  
Therefore, it can limit the bus operating speed. The  
lower value of resistor, on the other hand, consumes  
higher power, but allows higher operating speed. If the  
bus line has higher capacitance due to long bus line or  
high number of devices connected to the bus, a smaller  
pull-up resistor is needed to compensate the long RC  
time constant. The pull-up resistor is typically chosen  
between 5 kΩ and 10 kΩ ranges for standard and fast  
modes, and less than 1 kΩ for high speed mode  
depending on the presence of bus loading capacitance.  
Figure 6-2 shows an example of multiple device  
connections. The I2C bus loading capacitance  
increases as the number of device connected to the I2C  
bus line increases. The bus loading capacitance affects  
on the bus operating speed. For example, the highest  
bus operating speed for the 400 pF bus capacitance is  
1.7 MHz, and 3.4 MHz for 100 pF. Therefore, the user  
needs to consider the relationship between the  
maximum operation speed versus. the number of I2C  
devices that are connected to the I2C bus line.  
SDA SCL  
Microcontroller  
(PIC16F876)  
MCP3426  
MCP3427  
MCP3428  
MCP4725  
FIGURE 6-2:  
Connection on I C Bus.  
Example of Multiple Device  
2
© 2009 Microchip Technology Inc.  
DS22226A-page 29  
MCP3426/7/8  
6.1.4  
DEVICE CONNECTION TEST  
6.1.5  
DIFFERENTIAL AND  
SINGLE-ENDED CONFIGURATION  
The user can test the presence of the MCP3426/7/8 on  
the I2C bus line without performing an input data  
conversion. This test can be achieved by checking an  
acknowledge response from the MCP3426/7/8 after  
sending a read or write command. Here is an example  
using Figure 6-3:  
Figure 6-4 shows typical connection examples for  
differential and single-ended inputs. Differential input  
signals can be connected to the CHn+ and CHn- input  
pins, where n = the channel number (1, 2, 3, or 4). For  
the single-ended input, the input signal is applied to one  
of the input pins (typically connected to the CHn+ pin)  
while the other input pin (typically CHn- pin) is  
grounded. All device characteristics hold for the  
single-ended configuration, but this configuration loses  
one bit resolution because the input can only stand in  
positive half scale. Refer to Section 1.0 “Electrical  
a. Set the R/W bit “HIGH” in the address byte.  
b. Check the ACK pulse after sending the address  
byte.  
If the device acknowledges (ACK = 0), then the  
device is connected, otherwise it is not  
connected.  
Characteristics”  
.
c. Send STOP or START bit.  
(a) Differential Input Signal Connection:  
Excitation  
Address Byte  
Sensor  
1
1
2
1
3
0
4
5
6
7
8
1
9
SCL  
SDA  
CHn+  
Input Signal  
1 A2 A1 A0  
CHn-  
MCP342X  
Start  
Bit  
Stop  
Bit  
Address bits  
Device bits  
R/W  
(b) Single-ended Input Signal Connection:  
MCP342X  
Response  
Excitation  
R1  
2
FIGURE 6-3:  
I C Bus Connection Test.  
CHn+  
Input Signal  
Sensor  
R2  
CHn-  
MCP342X  
FIGURE 6-4:  
Differential and  
Single-Ended Input Connections.  
DS22226A-page 30  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
Therefore, the current measurement often prefers to  
use a current sensor with smaller resistance value,  
which, in turn, requires high resolution ADC device.  
6.2  
Application Examples  
The MCP3426/7/8 devices can be used for broad  
ranges of sensor and data acquisition applications.  
The device can measure the input voltage as low as  
7.8 µV range (or current in ~ µA range) with 16 bit  
resolution and PGA = 8 settings.  
Figure 6-5 shows a circuit example measuring both the  
battery voltage and current using the MCP3426 device.  
Channels 1 and 2 are measuring the voltage and the  
current, respectively.  
The MSB (= sign bit) of the output code determines the  
direction of the current, which identifies the charging or  
the discharging current.  
When the input voltage is greater than the internal  
reference voltage (VREF = 2.048V), it needs a voltage  
divider circuit to prevent the output code from being  
saturated. In the example, R1 and R2 form a voltage  
divider. The R1 and R2 are set to yield VIN to be less  
than the internal reference voltage (VREF = 2.048V).  
For the current measurement, the device measure the  
voltage across the current sensor, and converts it by  
dividing the measured voltage by a known resistance  
value. The voltage drops across the sensor is waste.  
Discharging Current  
To Load  
Current Sensor  
Charging  
Current  
To Battery  
R1  
Battery  
VBAT  
MCP3426  
VIN  
(Rechargeable)  
8
1
2
CH2-  
CH1+  
CH1-  
VDD  
SDA  
7
6
5
CH2+  
VSS  
3
4
0.1 µF  
SCL  
R2  
SCL  
10 µF  
TO MCU  
(MASTER)  
SDA  
R2  
------------------  
VIN  
=
× VBAT  
5 kΩ  
R1 + R2  
5 kΩ  
R1 and R2 = Voltage Divider  
VDD  
FIGURE 6-5:  
Battery Voltage and Charging/Discharging Current Measurement.  
© 2009 Microchip Technology Inc.  
DS22226A-page 31  
MCP3426/7/8  
Figure 6-6, shows an example of using the MCP3428  
for  
four-channel  
thermocouple  
temperature  
measurement applications.  
Thermocouple Sensor  
Isothermal Block  
Isothermal Block  
MCP9800  
MCP3428  
MCP9800  
1
2
CH1+  
CH1-  
14  
13  
12  
11  
CH4-  
SDA  
SCL  
SDA  
CH4+  
CH3-  
SCL  
3 CH2+  
CH2-  
4
CH3+  
Adr1  
Adr0  
SCL  
5 VSS  
10  
9
8
VDD  
0.1 µF  
10 µF  
VDD  
6
7
SDA  
MCP9800  
MCP9800  
SDA  
Heat  
SCL  
SCL  
SDA  
SCL  
TO MCU  
SDA  
(MASTER)  
5 kΩ  
5 kΩ  
VDD  
FIGURE 6-6:  
Four-Channel Thermocouple Applications.  
With Type  
K
thermocouple, it can measure  
EQUATION 6-1:  
temperature from 0°C to +1250°C degrees. The full  
scale output range of the Type K thermocouple is  
about 50 mV. This provides 40 µV/°C (= 50 mV/  
1250°C) of measurement resolution. Equation 6-1  
shows the measurement budget for sensor signal using  
the MCP3426/7/8 device with 16 bits and PGA = 8  
settings. With this configuration, the MCP3428 can  
detect the input signal level as low as approximately  
7.8 µV. By setting the internal PGA option to x8, the  
40 µV/°C input from the thermocouple is amplified  
internally to 320 µV/°C before the conversion takes  
place. This results in about 5 LSB output codes per  
1°C of change in temperature, with 16-bit conversion  
mode.  
Detectable Input Signal Level = 62.5μV/PGA  
= 7.8125μV for PGA = 8  
Input Signal Level after gain of 8:  
= (40μV/°C) 8 = 320μV/°C  
320μV/°C  
No. of LSB/°C = ------------------------ = 5.12 Codes/°C  
62.5μV  
Where:  
1 LSB  
=
62.5 µV with 16 bit configuration  
DS22226A-page 32  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
Equation 6-2 shows an example of calculating the  
expected number of output code with various PGA gain  
settings for Type K thermocouple output.  
EQUATION 6-2:  
EXPECTED NUMBER OF  
OUTPUT CODE FOR TYPE  
K THERMOCOUPLE  
Expected  
Number of Output Code =  
50 mV  
-----------------  
log2  
62.5μV  
-----------------  
PGA  
ln(800 PGA)  
=
-------------------------------------  
ln(2)  
= 9.6 bits for PGA = 1  
= 10.6 bits for PGA = 2  
= 11.6 bits for PGA = 4  
= 12.6 bits for PGA = 8  
Where:  
1 LSB  
=
62.5 µV with 16 Bit configuration.  
VDD  
VDD  
Pressure Sensor  
(NPP301)  
Pressure Sensor  
(NPP301)  
MCP3428  
1
2
CH1+  
CH1-  
14  
CH4-  
13  
12  
CH4+  
CH3-  
VIN  
VDD  
3 CH2+  
VIN  
CH2-  
VSS  
VDD  
SDA  
11  
10  
4
5
6
VDD  
CH3+  
Adr1  
VDD  
R1  
9
8
Adr0  
SCL  
0.1 µF  
7
R1  
R2  
R2  
Thermistor  
10 µF  
TO MCU  
(MASTER)  
Thermistor  
5 kΩ  
5 kΩ  
VDD  
R2  
------------------  
R1 + R2  
VIN  
=
× VDD  
R1 and R2 = Voltage Divider  
FIGURE 6-7:  
Example of Pressure and Temperature Measurement.  
© 2009 Microchip Technology Inc.  
DS22226A-page 33  
MCP3426/7/8  
Figure 6-7 shows an example of measuring both  
pressure and temperature. The pressure is measured  
by using NPP 301 (manufactured by GE NovaSensor),  
and temperature is measured by a thermistor. The  
pressure sensor output is 20 mV/V. This gives 100 mV  
of full scale output for VDD of 5V (sensor excitation  
voltage). Equation 6-3 shows an example of calculating  
the number of output code for the full scale output of the  
NPP301.  
EQUATION 6-3:  
EXPECTED NUMBER OF  
OUTPUT CODE FOR  
NPP301 PRESSURE  
SENSOR  
Expected  
Number of Output Code =  
100 mV  
--------------------  
log2  
62.5μV  
-----------------  
PGA  
ln(1600 PGA)  
=
----------------------------------------  
ln(2)  
= 10.6 bits for PGA = 1  
= 11.6 bits for PGA = 2  
= 12.6 bits for PGA = 4  
= 13.6 bits for PGA = 8  
Where:  
1 LSB  
=
62.5 µV with 16 Bit configuration.  
The thermistor temperature sensor can measure the  
temperature range from -100°C to +300°C. The  
resistance of the thermistor sensor decreases as  
temperature  
increases  
(negative  
temperature  
coefficient). As shown in Figure 6-7, the thermistor (R2)  
forms a voltage divider with R1.  
The thermistor sensor is simple to use and widely used  
for the temperature measurement applications. It has  
both linear and non-linear responses over temperature  
range. R1 is used to adjust the linear region of interest  
for measurement.  
DS22226A-page 34  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
8-Lead DFN (2x3) (MCP3426)  
XXX  
YWW  
NN  
ABX  
945  
25  
Example:  
8-Lead MSOP (MCP3426)  
XXXXXX  
3426A0  
945256  
YWWNNN  
8-Lead SOIC (300 mil) (MCP3426)  
Example:  
3426A0E  
XXXXXXXX  
XXXXYYWW  
e
3
SN^^0945  
256  
NNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS22226A-page 35  
MCP3426/7/8  
Package Marking Information (Continued)  
10-Lead DFN (3x3) (MCP3427)  
Example:  
1
2
3
4
5
10  
9
1
10  
9
XXXX  
YYWW  
NNN  
3427  
0945  
256  
2
3
4
5
8
8
7
7
6
6
Example:  
10-Lead MSOP (MCP3427)  
3427E  
945256  
XXXXXX  
YWWNNN  
14-Lead SOIC (150 mil) (MCP3428)  
Example:  
MCP3428  
E/SL
XXXXXXXXXXX  
XXXXXXXXXXX  
e
3
YYWWNNN  
0945256  
14-Lead TSSOP (4.4 mm) (MCP3428)  
Example:  
XXXXXXXX  
YYWW  
MCP3428E  
0945  
NNN  
256  
DS22226A-page 36  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢗꢘꢆMꢆꢙꢚꢛꢚꢜ !ꢆ""ꢆ#ꢒꢅ$ꢆ%ꢍꢏꢑ&  
ꢑꢒꢊꢃ' 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
e
D
b
N
N
L
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
9
ꢚꢁ.ꢚꢅ/ꢕ0  
ꢚꢁꢛꢚ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ:ꢉꢃꢐꢎ%  
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
0ꢌꢄ%ꢇꢍ%ꢅꢗꢎꢃꢍ*ꢄꢉ    
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
6
ꢔꢀ  
ꢔ+  
ꢚꢁ9ꢚ  
ꢚꢁꢚꢚ  
ꢀꢁꢚꢚ  
ꢚꢁꢚ.  
ꢚꢁꢚꢏ  
ꢚꢁꢏꢚꢅꢘ,2  
ꢏꢁꢚꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
M
M
ꢚꢁꢏ.  
,
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ5ꢉꢄꢐ%ꢎ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ;ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ;ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢝ%ꢌꢝ,#ꢑꢌ ꢉ"ꢅꢂꢇ"  
ꢓꢏ  
,ꢏ  
(
5
=
ꢀꢁ+ꢚ  
ꢀꢁ.ꢚ  
ꢚꢁꢏꢚ  
ꢚꢁ+ꢚ  
ꢚꢁꢏꢚ  
ꢀꢁ..  
ꢀꢁꢜ.  
ꢚꢁ+ꢚ  
ꢚꢁ.ꢚ  
M
ꢚꢁꢒꢚ  
M
ꢑꢒꢊꢃꢉ'  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ*ꢇꢐꢉꢅ&ꢇꢋꢅꢎꢇꢆꢉꢅꢌꢄꢉꢅꢌꢊꢅ&ꢌꢊꢉꢅꢉ#ꢑꢌ ꢉ"ꢅ%ꢃꢉꢅ(ꢇꢊ ꢅꢇ%ꢅꢉꢄ" ꢁ  
+ꢁ ꢂꢇꢍ*ꢇꢐꢉꢅꢃ ꢅ ꢇ)ꢅ ꢃꢄꢐ!ꢈꢇ%ꢉ"ꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢝꢀꢏ+0  
© 2009 Microchip Technology Inc.  
DS22226A-page 37  
MCP3426/7/8  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢗꢘꢆMꢆꢙꢚꢛꢚꢜ !ꢆ""ꢆ#ꢒꢅ$ꢆ%ꢍꢏꢑ&  
ꢑꢒꢊꢃ' 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
DS22226A-page 38  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢖꢋꢌ(ꢒꢆ)"ꢄꢈꢈꢆ*ꢎꢊꢈꢋ+ꢃꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖ)ꢘꢆ%ꢖ)*ꢇ&  
ꢑꢒꢊꢃ' 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
9
ꢚꢁ>.ꢅ/ꢕ0  
7ꢆꢉꢊꢇꢈꢈꢅ:ꢉꢃꢐꢎ%  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ;ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
M
ꢚꢁꢜ.  
ꢚꢁꢚꢚ  
M
ꢚꢁ9.  
ꢀꢁꢀꢚ  
ꢚꢁꢛ.  
ꢚꢁꢀ.  
ꢔꢏ  
ꢔꢀ  
,
,ꢀ  
M
ꢒꢁꢛꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
ꢚꢁ>ꢚ  
5
ꢚꢁꢒꢚ  
ꢚꢁ9ꢚ  
2ꢌꢌ%ꢑꢊꢃꢄ%  
2ꢌꢌ%ꢅꢔꢄꢐꢈꢉ  
5ꢀ  
ꢚꢁꢛ.ꢅꢘ,2  
M
ꢚꢞ  
9ꢞ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ;ꢃ"%ꢎ  
(
ꢚꢁꢚ9  
ꢚꢁꢏꢏ  
M
M
ꢚꢁꢏ+  
ꢚꢁꢒꢚ  
ꢑꢒꢊꢃꢉ'  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢝꢀꢀꢀ/  
© 2009 Microchip Technology Inc.  
DS22226A-page 39  
MCP3426/7/8  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22226A-page 40  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ)"ꢄꢈꢈꢆ*ꢎꢊꢈꢋ+ꢃꢆꢕ)ꢑꢘꢆMꢆꢑꢄ((ꢒ,ꢐꢆꢛ !ꢜꢆ""ꢆ#ꢒꢅ$ꢆ%)*-ꢗ&  
ꢑꢒꢊꢃ' 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
9
ꢀꢁꢏꢜꢅ/ꢕ0  
7ꢆꢉꢊꢇꢈꢈꢅ:ꢉꢃꢐꢎ%  
M
ꢀꢁꢏ.  
ꢚꢁꢀꢚ  
M
M
M
ꢀꢁꢜ.  
M
ꢚꢁꢏ.  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢕ%ꢇꢄ"ꢌ$$ꢅꢅ  
ꢔꢏ  
ꢔꢀ  
,
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
>ꢁꢚꢚꢅ/ꢕ0  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ;ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
0ꢎꢇ&$ꢉꢊꢅAꢌꢑ%ꢃꢌꢄꢇꢈB  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
,ꢀ  
+ꢁꢛꢚꢅ/ꢕ0  
ꢒꢁꢛꢚꢅ/ꢕ0  
ꢚꢁꢏ.  
ꢚꢁꢒꢚ  
M
M
ꢚꢁ.ꢚ  
ꢀꢁꢏꢜ  
5
2ꢌꢌ%ꢑꢊꢃꢄ%  
2ꢌꢌ%ꢅꢔꢄꢐꢈꢉ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ;ꢃ"%ꢎ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢔꢄꢐꢈꢉꢅ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢔꢄꢐꢈꢉꢅ/ꢌ%%ꢌ&  
5ꢀ  
ꢀꢁꢚꢒꢅꢘ,2  
ꢚꢞ  
ꢚꢁꢀꢜ  
ꢚꢁ+ꢀ  
.ꢞ  
M
M
M
M
M
9ꢞ  
(
ꢚꢁꢏ.  
ꢚꢁ.ꢀ  
ꢀ.ꢞ  
.ꢞ  
ꢀ.ꢞ  
ꢑꢒꢊꢃꢉ'  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢟꢅꢕꢃꢐꢄꢃ$ꢃꢍꢇꢄ%ꢅ0ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢝꢚ.ꢜ/  
© 2009 Microchip Technology Inc.  
DS22226A-page 41  
MCP3426/7/8  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ)"ꢄꢈꢈꢆ*ꢎꢊꢈꢋ+ꢃꢆꢕ)ꢑꢘꢆMꢆꢑꢄ((ꢒ,ꢐꢆꢛ !ꢜꢆ""ꢆ#ꢒꢅ$ꢆ%)*-ꢗ&  
ꢑꢒꢊꢃ' 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
DS22226A-page 42  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
.ꢜꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢘꢆMꢆꢛꢚꢛꢚꢜ !ꢆ""ꢆ#ꢒꢅ$ꢆ%ꢍꢏꢑ&  
ꢑꢒꢊꢃ' 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
e
b
N
N
L
K
E
E2  
EXPOSED  
PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
A1  
A3  
NOTE 2  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢀꢚ  
ꢚꢁ.ꢚꢅ/ꢕ0  
ꢚꢁꢛꢚ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ:ꢉꢃꢐꢎ%  
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
0ꢌꢄ%ꢇꢍ%ꢅꢗꢎꢃꢍ*ꢄꢉ    
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ5ꢉꢄꢐ%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
6
ꢔꢀ  
ꢔ+  
ꢓꢏ  
,
ꢚꢁ9ꢚ  
ꢚꢁꢚꢚ  
ꢀꢁꢚꢚ  
ꢚꢁꢚ.  
ꢚꢁꢚꢏ  
ꢚꢁꢏꢚꢅꢘ,2  
+ꢁꢚꢚꢅ/ꢕ0  
ꢏꢁ+.  
+ꢁꢚꢚꢅ/ꢕ0  
ꢀꢁ.9  
ꢚꢁꢏ.  
ꢚꢁꢒꢚ  
M
ꢏꢁꢏꢚ  
ꢏꢁꢒ9  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ;ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ;ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢝ%ꢌꢝ,#ꢑꢌ ꢉ"ꢅꢂꢇ"  
,ꢏ  
(
5
ꢀꢁꢒꢚ  
ꢚꢁꢀ9  
ꢚꢁ+ꢚ  
ꢚꢁꢏꢚ  
ꢀꢁꢜ.  
ꢚꢁ+ꢚ  
ꢚꢁ.ꢚ  
M
=
ꢑꢒꢊꢃꢉ'  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ*ꢇꢐꢉꢅ&ꢇꢋꢅꢎꢇꢆꢉꢅꢌꢄꢉꢅꢌꢊꢅ&ꢌꢊꢉꢅꢉ#ꢑꢌ ꢉ"ꢅ%ꢃꢉꢅ(ꢇꢊ ꢅꢇ%ꢅꢉꢄ" ꢁ  
+ꢁ ꢂꢇꢍ*ꢇꢐꢉꢅꢃ ꢅ ꢇ)ꢅ ꢃꢄꢐ!ꢈꢇ%ꢉ"ꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢝꢚ>+/  
© 2009 Microchip Technology Inc.  
DS22226A-page 43  
MCP3426/7/8  
.ꢜꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢘꢆMꢆꢛꢚꢛꢚꢜ !ꢆ""ꢆ#ꢒꢅ$ꢆ%ꢍꢏꢑ&  
ꢑꢒꢊꢃ' 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
DS22226A-page 44  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
.ꢜꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢖꢋꢌ(ꢒꢆ)"ꢄꢈꢈꢆ*ꢎꢊꢈꢋ+ꢃꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕ/ꢑꢘꢆ%ꢖ)*ꢇ&  
ꢑꢒꢊꢃ' 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
A
A2  
φ
L
A1  
L1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢀꢚ  
ꢚꢁ.ꢚꢅ/ꢕ0  
7ꢆꢉꢊꢇꢈꢈꢅ:ꢉꢃꢐꢎ%  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ;ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
M
ꢚꢁꢜ.  
ꢚꢁꢚꢚ  
M
ꢚꢁ9.  
ꢀꢁꢀꢚ  
ꢚꢁꢛ.  
ꢚꢁꢀ.  
ꢔꢏ  
ꢔꢀ  
,
,ꢀ  
M
ꢒꢁꢛꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
ꢚꢁ>ꢚ  
5
ꢚꢁꢒꢚ  
ꢚꢁ9ꢚ  
2ꢌꢌ%ꢑꢊꢃꢄ%  
2ꢌꢌ%ꢅꢔꢄꢐꢈꢉ  
5ꢀ  
ꢚꢁꢛ.ꢅꢘ,2  
M
ꢚꢞ  
9ꢞ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ;ꢃ"%ꢎ  
(
ꢚꢁꢚ9  
ꢚꢁꢀ.  
M
M
ꢚꢁꢏ+  
ꢚꢁ++  
ꢑꢒꢊꢃꢉ'  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢝꢚꢏꢀ/  
© 2009 Microchip Technology Inc.  
DS22226A-page 45  
MCP3426/7/8  
.0ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ)"ꢄꢈꢈꢆ*ꢎꢊꢈꢋ+ꢃꢆꢕ)ꢂꢘꢆMꢆꢑꢄ((ꢒ,ꢐꢆꢛ !ꢜꢆ""ꢆ#ꢒꢅ$ꢆ%)*-ꢗ&  
ꢑꢒꢊꢃ' 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢀꢒ  
ꢀꢁꢏꢜꢅ/ꢕ0  
7ꢆꢉꢊꢇꢈꢈꢅ:ꢉꢃꢐꢎ%  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢕ%ꢇꢄ"ꢌ$$ꢅꢅꢟ  
M
ꢀꢁꢏ.  
ꢚꢁꢀꢚ  
M
M
M
ꢀꢁꢜ.  
M
ꢚꢁꢏ.  
ꢔꢏ  
ꢔꢀ  
,
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
>ꢁꢚꢚꢅ/ꢕ0  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ;ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
0ꢎꢇ&$ꢉꢊꢅAꢌꢑ%ꢃꢌꢄꢇꢈB  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
,ꢀ  
+ꢁꢛꢚꢅ/ꢕ0  
9ꢁ>.ꢅ/ꢕ0  
ꢚꢁꢏ.  
ꢚꢁꢒꢚ  
M
M
ꢚꢁ.ꢚ  
ꢀꢁꢏꢜ  
5
2ꢌꢌ%ꢑꢊꢃꢄ%  
2ꢌꢌ%ꢅꢔꢄꢐꢈꢉ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ;ꢃ"%ꢎ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢔꢄꢐꢈꢉꢅ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢔꢄꢐꢈꢉꢅ/ꢌ%%ꢌ&  
5ꢀ  
ꢀꢁꢚꢒꢅꢘ,2  
ꢚꢞ  
ꢚꢁꢀꢜ  
ꢚꢁ+ꢀ  
.ꢞ  
M
M
M
M
M
9ꢞ  
(
ꢚꢁꢏ.  
ꢚꢁ.ꢀ  
ꢀ.ꢞ  
.ꢞ  
ꢀ.ꢞ  
ꢑꢒꢊꢃꢉ'  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢟꢅꢕꢃꢐꢄꢃ$ꢃꢍꢇꢄ%ꢅ0ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢝꢚ>./  
DS22226A-page 46  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
ꢑꢒꢊꢃ' 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
© 2009 Microchip Technology Inc.  
DS22226A-page 47  
MCP3426/7/8  
.0ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ12ꢋ+ꢆ)2(ꢋ+ꢓꢆ)"ꢄꢈꢈꢆ*ꢎꢊꢈꢋ+ꢃꢆꢕ)1ꢘꢆMꢆ0 0ꢆ""ꢆ#ꢒꢅ$ꢆ%1))*ꢇ&  
ꢑꢒꢊꢃ' 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢀꢒ  
ꢚꢁ>.ꢅ/ꢕ0  
7ꢆꢉꢊꢇꢈꢈꢅ:ꢉꢃꢐꢎ%  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ;ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ5ꢉꢄꢐ%ꢎ  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
M
ꢚꢁ9ꢚ  
ꢚꢁꢚ.  
M
ꢀꢁꢚꢚ  
M
>ꢁꢒꢚꢅ/ꢕ0  
ꢒꢁꢒꢚ  
.ꢁꢚꢚ  
ꢚꢁ>ꢚ  
ꢀꢁꢏꢚ  
ꢀꢁꢚ.  
ꢚꢁꢀ.  
ꢔꢏ  
ꢔꢀ  
,
,ꢀ  
ꢒꢁ+ꢚ  
ꢒꢁꢛꢚ  
ꢚꢁꢒ.  
ꢒꢁ.ꢚ  
.ꢁꢀꢚ  
ꢚꢁꢜ.  
5
2ꢌꢌ%ꢑꢊꢃꢄ%  
2ꢌꢌ%ꢅꢔꢄꢐꢈꢉ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ;ꢃ"%ꢎ  
5ꢀ  
ꢀꢁꢚꢚꢅꢘ,2  
ꢚꢞ  
ꢚꢁꢚꢛ  
ꢚꢁꢀꢛ  
M
M
M
9ꢞ  
(
ꢚꢁꢏꢚ  
ꢚꢁ+ꢚ  
ꢑꢒꢊꢃꢉ'  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢝꢚ9ꢜ/  
DS22226A-page 48  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009 Microchip Technology Inc.  
DS22226A-page 49  
MCP3426/7/8  
NOTES:  
DS22226A-page 50  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
APPENDIX A: REVISION HISTORY  
Revision A (December 2009)  
• Original Release of this Document.  
© 2009 Microchip Technology Inc.  
DS22226A-page 51  
MCP3426/7/8  
NOTES:  
DS22226A-page 52  
© 2009 Microchip Technology Inc.  
MCP3426/7/8  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
-X  
/XX  
a)  
MCP3426A0-E/MC: 2-Channel ADC,  
Temperature Package  
Range  
8LD DFN package.  
MCP3426A0T-E/MC: Tape and Reel,  
2-Channel ADC,  
b)  
8LD DFN package.  
Device:  
MCP3426: 2-Channel 16-Bit ADC  
MCP3426T: 2-Channel 16-Bit ADC  
(Tape and Reel)  
MCP3427: 2-Channel 16-Bit ADC  
MCP3427T: 2-Channel 16-Bit ADC  
(Tape and Reel)  
MCP3428: 4-Channel 16-Bit ADC  
MCP3428T: 4-Channel 16-Bit ADC  
(Tape and Reel)  
c)  
d)  
MCP3426A0-E/MS: 2-Channel ADC,  
8LD MSOP package.  
MCP3426A0T-E/MS: Tape and Reel,  
2-Channel ADC,  
8LD MSOP package.  
e)  
f)  
MCP3426A0-E/SN: 2-Channel ADC,  
8LD SOIC package.  
MCP3426A0T-E/SN: Tape and Reel,  
2-Channel ADC,  
Temperature Range:  
Package:  
E
=
-40°C to +125°C  
8LD SOIC package.  
a)  
b)  
MCP3427-E/MF:  
MCP3427T-E/MF:  
2-Channel ADC,  
10LD DFN package.  
Tape and Reel,  
2-Channel ADC,  
10LD DFN package.  
2-Channel ADC,  
MC  
MS  
SN  
MF  
UN  
SL  
=
=
=
=
=
=
=
Plastic Dual Flat, No Lead (2x3 DFN), 8-lead  
Plastic Micro Small Outline (MSOP), 8-lead  
Plastic Small Outline SOIC, 8-lead  
Plastic Dual Flat, No Lead (3x3 DFN) 10-lead  
Plastic Micro Small Outline (MSOP), 10-lead  
Plastic Small Outline SOIC (150 mil Body), 14-lead  
Plastic TSSOP (4.4mm Body), 14-lead  
ST  
c)  
d)  
MCP3427-E/UN:  
MCP3427T-E/UN:  
10LD MSOP package.  
Tape and Reel,  
2-Channel ADC,  
10LD MSOP package.  
a)  
b)  
MCP3428-E/SL:  
MCP3428T-E/SL:  
4-Channel ADC,  
14LD SOIC package.  
Tape and Reel,  
4-Channel ADC,  
14LD SOIC package.  
4-Channel ADC,  
14LD TSSOP package.  
Tape and Reel,  
c)  
d)  
MCP3428-E/ST:  
MCP3428T-E/ST:  
4-Channel ADC,  
14LD TSSOP package.  
© 2009 Microchip Technology Inc.  
DS22226A-page 53  
MCP3426/7/8  
NOTES:  
DS22226A-page 54  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS22226A-page 55  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS22226A-page 56  
© 2009 Microchip Technology Inc.  

相关型号:

MCP3428-EMS

16-Bit, Multi-Channel Analog-to-Digital Converter with I2C Interface and On-Board Reference
MAXIM

MCP3428-ESL

16-Bit, Multi-Channel Analog-to-Digital Converter with I2C Interface and On-Board Reference
MAXIM

MCP3428-ESN

16-Bit, Multi-Channel Analog-to-Digital Converter with I2C Interface and On-Board Reference
MAXIM

MCP3428-EST

16-Bit, Multi-Channel Analog-to-Digital Converter with I2C Interface and On-Board Reference
MAXIM

MCP3428-EUN

16-Bit, Multi-Channel Analog-to-Digital Converter with I2C Interface and On-Board Reference
MAXIM

MCP3428T-E/ST

4-CH 16-BIT DELTA-SIGMA ADC, SERIAL ACCESS, PDSO14, 4.40 MM, PLASTIC, TSSOP-14
MICROCHIP

MCP3428T-EMC

16-Bit, Multi-Channel Analog-to-Digital Converter with I2C Interface and On-Board Reference
MAXIM

MCP3428T-EMF

16-Bit, Multi-Channel Analog-to-Digital Converter with I2C Interface and On-Board Reference
MAXIM

MCP3428T-EMS

16-Bit, Multi-Channel Analog-to-Digital Converter with I2C Interface and On-Board Reference
MAXIM

MCP3428T-ESL

16-Bit, Multi-Channel Analog-to-Digital Converter with I2C Interface and On-Board Reference
MAXIM

MCP3428T-ESN

16-Bit, Multi-Channel Analog-to-Digital Converter with I2C Interface and On-Board Reference
MAXIM

MCP3428T-EST

16-Bit, Multi-Channel Analog-to-Digital Converter with I2C Interface and On-Board Reference
MAXIM