MX536AJCWE [MAXIM]

True RMS-to-DC Converters; 真RMS - DC转换器
MX536AJCWE
型号: MX536AJCWE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

True RMS-to-DC Converters
真RMS - DC转换器

转换器
文件: 总12页 (文件大小:125K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0824; Rev 2; 3/96  
Tru e RMS -t o -DC Co n ve rt e rs  
5A/MX36  
Ge n e ra l De s c rip t io n  
The MX536A and MX636 are true RMS-to-DC convert-  
ers. They feature low power and are designed to accept  
____________________________Fe a t u re s  
True RMS-to-DC Conversion  
Computes RMS of AC and DC Signals  
low-level input signals from 0 to 7V  
for the MX536A  
RMS  
Wide Response:  
and 0 to 200mV  
for the MX636. Both devices accept  
RMS  
2MHz Bandwidth for V  
1MHz Bandwidth for V  
> 1V (MX536A)  
> 100mV (MX636)  
RMS  
RMS  
complex input waveforms containing AC and DC com-  
ponents. They can be operated from either a single sup-  
ply or dual supplies. Both devices draw less than 1mA  
of quiescent supply current, making them ideal for bat-  
tery-powered applications.  
Auxiliary dB Output: 60dB Range (MX536A)  
50dB Range (MX636)  
Single- or Dual-Supply Operation  
Low Power: 1.2mA typ (MX536A)  
Input and output offset, positive and negative waveform  
symmetry (DC reversal), and full-scale accuracy are  
laser trimmed, so that no external trims are required to  
achieve full rated accuracy.  
800µA typ (MX636)  
Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-55°C to +125°C  
PIN-PACKAGE  
Dice**  
MX536AJC/D  
MX536AJCWE  
MX536AJD  
MX536AJH  
MX536AJN  
MX536AJQ*  
MX536AKCWE  
MX536AKD  
MX536AKH  
MX536AKN  
MX536AKQ*  
MX536ASD  
________________________Ap p lic a t io n s  
Digital Multimeters  
16 Wide SO  
14 Ceramic  
10 TO-100  
Battery-Powered Instruments  
Panel Meters  
14 Plastic DIP  
14 CERDIP  
16 Wide SO  
14 Ceramic  
10 TO-100  
Process Control  
P in Co n fig u ra t io n s  
14 Plastic DIP  
14 CERDIP  
14 Ceramic  
TOP VIEW  
I
OUT  
10  
R
BUF IN  
9
6
L
1
4
Ordering Information continued at end of data sheet.  
* Maxim reserves the right to ship ceramic packages in lieu of  
CERDIP packages.  
BUF OUT  
8
7
COMMON 2  
3
MX536A  
MX636B  
** Dice are specified at T = +25°C.  
A
+V  
S
dB  
C
AV  
V
IN  
_________Typ ic a l Op e ra t in g Circ u it s  
5
-V  
S
C
AV  
TO-100  
V
+V  
V
IN  
1
+V  
S
IN  
S
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
ABSOLUTE  
VALUE  
14  
13  
12  
11  
10  
9
N.C.  
N.C.  
2
3
4
5
6
7
-V  
S
N.C.  
-V  
S
SQUARER  
DIVIDER  
C
AV  
N.C.  
MX536A  
MX636  
dB  
BUF OUT  
BUF IN  
COMMON  
CURRENT  
MIRROR  
R
L
V
OUT  
8
I
OUT  
BUF  
8
DIP  
Pin Configurations continued at end of data sheet.  
Typical Operating Circuits continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Tru e RMS -t o -DC Co n ve rt e rs  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage: Dual Supplies (MX536A)............................±18V  
(MX636) .............................±12V  
Output Short-Circuit Duration ........................................Indefinite  
Operating Temperature Ranges  
Single Supply (MX536A)...........................+36V  
(MX636) .............................+24V  
Input Voltage (MX536A).......................................................±25V  
(MX636).........................................................±12V  
Power Dissipation (Package)  
Commercial (J, K) ...............................................0°C to +70°C  
Military (S)......................................................-55°C to +125°C  
Storage Temperature Range .............................-55°C to +150°C  
Lead Temperature (soldering, 10sec)................................300°C  
Plastic DIP (derate 12mW/°C above +75°C) ...............450mW  
Small Outline (derate 10mW/°C above +75°C)............400mW  
Ceramic (derate 10mW/°C above +75°C) ...................500mW  
TO-100 metal can (derate 7mW/°C above +75°C) ......450mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
5A/MX36  
ELECTRICAL CHARACTERISTICS—MX536A  
(T = +25°C, +V = +15V, -V = -15V, unless otherwise noted.)  
A
S
S
PARAMETER  
CONDITIONS  
MIN  
TYP  
= [avg. (V )2] 1/  
IN  
MAX  
UNITS  
ms/µF C  
Transfer Equation  
V
OUT  
2
Averaging Time Constant  
Figure 3  
25  
AV  
CONVERSION ACCURACY  
MX536AJ, AS  
MX536AK  
±5 ±0.5  
±2 ±0.2  
mV ±% of  
Reading  
Total Error, Internal Trim (Note 1)  
MX536AJ  
MX536AK  
MX536AS  
MX536AS  
±0.1 ±0.01  
±0.05 ±0.005  
±0.1 ±0.005  
±0.03 ±0.005  
T
to +70°C  
MIN  
mV ±% of  
Reading/°C  
Total Error vs. Temperature  
+70°C to +125°C  
mV ±% of  
Reading/V  
Total Error vs. Supply  
±0.1 ±0.01  
MX536AJ, AS  
MX536AK  
±0.2  
±0.1  
% of  
Reading  
Total Error vs. DC Reversal  
MX536AJ, AS  
MX536AK  
±3 ±0.3  
±2 ±0.1  
Total Error, External Trim  
(Note 1)  
mV ±% of  
Reading  
ERROR vs. CREST FACTOR (Note 2)  
Crest Factor 1 to 2  
Specified Accuracy  
% of  
Reading  
Additional Error  
Crest Factor = 3  
Crest Factor = 7  
-0.1  
-1.0  
FREQUENCY RESPONSE (Note 3)  
V
= 10mV  
= 100mV  
= 1V  
5
IN  
Bandwidth for 1%  
Additional Error (0.09dB)  
V
IN  
45  
kHz  
V
IN  
120  
90  
V
IN  
= 10mV  
= 100mV  
= 1V  
kHz  
±3dB Bandwidth  
V
IN  
450  
2.3  
V
IN  
MHz  
2
_______________________________________________________________________________________  
Tru e RMS -t o -DC Co n ve rt e rs  
5A/MX36  
ELECTRICAL CHARACTERISTICS—MX536A (continued)  
(T = +25°C, +V = +15V, -V = -15V, unless otherwise noted.)  
A
S
S
PARAMETER  
CONDITIONS  
MIN  
TYP  
0 to 7  
0 to 2  
MAX  
UNITS  
INPUT CHARACTERISTICS  
V
RMS  
±15V Supplies  
Continuous RMS Peak Transient  
±20  
V
PK  
Input Signal Range  
V
RMS  
±5V Supplies  
Continuous RMS Peak Transient  
±7  
±25  
20.00  
±2  
V
PK  
Safe Input  
All Supplies  
V
PK  
Input Resistance  
13.33  
16.7  
0.8  
k  
MX536AJ, AS  
MX536AK  
Input Offset Voltage  
mV  
0.5  
±1  
OUTPUT CHARACTERISTICS  
MX536AJ  
±1  
±2  
±1  
±2  
T
A
= +25°C  
MX536AK  
±0.5  
mV  
MX536AS  
Offset Voltage  
MX536AJ, AK  
MX536AS  
±0.1  
T
= T  
to T  
MAX  
mV/°C  
mV/V  
V
A
MIN  
±0.2  
MX536AJ, AK  
MX536AS  
±0.1  
±0.2  
12.5  
Supply Voltage  
±15V Supplies  
±5V Supplies  
Source  
0 to 11  
0 to 2  
5
Output Voltage Swing  
Output Current  
mA  
µA  
mA  
Sink  
-130  
Short Circuit Current  
Output Resistance  
dB OUTPUT  
20  
0.5  
MX536AJ  
MX536AK  
MX536AS  
±0.4  
±0.2  
±0.5  
-3  
±0.6  
±0.3  
±0.6  
V
= 7mV to 7V  
,
IN  
RMS  
Error  
dB  
0dB = 1V  
RMS  
Scale Factor  
mV/dB  
% of  
Reading/°C  
Scale Factor TC (Uncompensated)  
0.33  
20  
I
0dB = 1V  
5
1
80  
µA  
µA  
RMS  
REF  
I
Range  
100  
REF  
I
TERMINAL  
OUT  
I
Scale Factor  
Scale Factor Tolerance  
40  
±10  
25  
µA/V  
RMS  
OUT  
I
±20  
30  
%
OUT  
Output Resistance  
20  
kΩ  
-V to  
S
Voltage Compliance  
V
(+V - 2.5)  
S
_______________________________________________________________________________________  
3
Tru e RMS -t o -DC Co n ve rt e rs  
ELECTRICAL CHARACTERISTICS—MX536A (continued)  
(T = +25°C, +V = +15V, -V = -15V, unless otherwise noted.)  
A
S
S
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BUFFER AMPLIFIER  
-V to  
(+V - 2.5)  
S
S
Input and Output Voltage Range  
V
Input Offset Voltage  
Input Bias Current  
Input Resistance  
R
= 25kΩ  
±0.5  
20  
108  
±4  
mV  
nA  
S
300  
Source  
Sink  
+5  
mA  
µA  
Output Current  
-130  
Short-Circuit Current  
Small-Signal Bandwidth  
Slew Rate (Note 4)  
20  
1
mA  
MHz  
V/µs  
5A/MX36  
5
ELECTRICAL CHARACTERISTICS—MX636  
(T = +25°C, +V = +3V, -V = -5V, unless otherwise noted.)  
A
S
S
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Transfer Equation  
V
OUT  
= [avg. (V )2]1/2  
IN  
Averaging Time Constant  
Figure 3  
25  
ms/µF C  
AV  
CONVERSION ACCURACY  
MX636J  
MX636K  
MX636J  
MX636K  
±0.5 ±1.0  
±0.2 ±0.5  
Total Error, Internal Trim  
(Notes 5, 6)  
mV ±% of  
Reading  
±0.1 ±0.01  
±0.1 ±0.005  
Total Error vs. Temperature  
(0°C to +70°C)  
mV ±% of  
Reading/°C  
mV ±% of  
Reading/V  
Total Error vs. Supply  
±0.1 ±0.01  
MX636J  
MX636K  
±0.2  
±0.1  
±% of  
Reading  
Total Error vs. DC Reversal  
V
IN  
= 200mV  
MX636J  
MX636K  
±0.3 ±0.1  
±0.1 ±0.1  
Total Error, External Trim  
(Note 5)  
mV ±% of  
Reading  
ERROR vs. CREST FACTOR (Note 3)  
Crest Factor 1 to 2  
Crest Factor = 3  
Crest Factor = 6  
FREQUENCY RESPONSE (Notes 6, 8)  
Specified Accuracy  
±% of  
Reading  
Additional Error  
-0.2  
-0.5  
V
= 10mV  
14  
90  
IN  
Bandwidth for 1%  
Additional Error (0.09dB)  
V
IN  
= 100mV  
= 200mV  
= 10mV  
kHz  
V
IN  
130  
100  
900  
1.5  
V
IN  
kHz  
±3dB Bandwidth  
V
IN  
= 100mV  
= 200mV  
V
IN  
MHz  
4
_______________________________________________________________________________________  
Tru e RMS -t o -DC Co n ve rt e rs  
5A/MX36  
ELECTRICAL CHARACTERISTICS—MX636 (continued)  
(T = +25°C, +V = +3V, -V = -5V, unless otherwise noted.)  
A
S
S
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
mV  
INPUT CHARACTERISTICS  
Continuous RMS, All Supplies  
0 to 200  
RMS  
+3V, -5V Supplies  
±2.8  
±2  
Input Signal Range  
Peak Transient  
All Supplies  
±2.5V Supplies  
±5V Supplies  
V
PK  
±5  
Safe Input  
±12  
8.00  
±0.5  
±0.2  
V
PK  
Input Resistance  
5.33  
6.7  
kΩ  
MX636J  
MX636K  
Input Offset Voltage  
mV  
OUTPUT CHARACTERISTICS (Note 5)  
MX636J  
MX636K  
±0.5  
±0.2  
T
= +25°C  
mV  
A
Offset Voltage  
T
A
= T  
to T  
MAX  
±10  
µV/°C  
mV/V  
MIN  
With Supply Voltage  
+3V, -5V Supplies  
±0.1  
0 to 1  
0 to 1  
8
Output Voltage Swing  
V
±5V to ±16.5V Supplies  
1.4  
10  
Output Resistance  
12  
kΩ  
dB OUTPUT  
MX636J  
MX636K  
±0.3  
±0.1  
-3  
±0.5  
±0.2  
Error  
7mV V 300mV  
dB  
IN  
Scale Factor  
Scale Factor Tempco  
mV/dB  
%/°C  
dB/°C  
µA  
+0.33  
-0.033  
4
I
0dB = 1V  
2
1
8
RMS  
REF  
I
Range  
50  
µA  
REF  
I
TERMINAL  
OUT  
I
Scale Factor  
Scale Factor Tolerance  
100  
±10  
10  
µA/V  
RMS  
OUT  
I
-20  
8
+20  
12  
%
OUT  
Output Resistance  
kΩ  
-V to  
(+V - 2.0)  
S
S
Voltage Compliance  
V
BUFFER AMPLIFIER  
Input and Output Voltage Range  
-V to  
(+V - 2)  
S
S
V
MX636J  
MX636K  
±0.8  
±0.5  
100  
108  
±2  
±1  
Input Offset Voltage  
R
= 10kΩ  
mV  
S
Input Current  
300  
nA  
Input Resistance  
Source  
Sink  
+5  
mA  
µA  
Output Current  
-130  
Short-Circuit Current  
Small-Signal Bandwidth  
Slew Rate (Note 9)  
20  
1
mA  
MHz  
V/µs  
5
_______________________________________________________________________________________  
5
Tru e RMS -t o -DC Co n ve rt e rs  
ELECTRICAL CHARACTERISTICS—MX636 (continued)  
(T = +25°C, +V = +3V, -V = -5V, unless otherwise noted.)  
A
S
S
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
Rated Performance  
Dual Supplies  
+3/-5  
V
V
+2/-2.5  
+5  
±16.5  
+24  
1
Single Supply  
V
Quiescent Current (Note 10)  
0.8  
mA  
Note 1: Accuracy is specified for 0 to 7V  
, DC or 1kHz sine-wave input with the MX536A connected as in Figure 2.  
RMS  
Note 2: Error vs. crest factor is specified as an additional error for 1V  
rectangular pulse stream, pulse width = 200µs.  
RMS  
Note 3: Input voltages are expressed in volts RMS, and error as % of reading.  
Note 4: With 2kexternal pull-down resistor.  
Note 5: Accuracy is specified for 0 to 200mV, DC or 1kHz sine-wave input. Accuracy is degraded at higher RMS signal levels.  
Note 6: Measured at pin 8 of DIP and SO (I ), with pin 9 tied to COMMON.  
OUT  
5A/MX36  
Note 7: Error vs. crest factor is specified as an additional error for 200mV  
rectangular pulse input, pulse width = 200µs.  
RMS  
Note 8: Input voltages are expressed in volts RMS.  
Note 9: With 10kexternal pull-down resistor from pin 6 (BUF OUT) to -V .  
S
Note 10: With BUF input tied to COMMON.  
The dB output is obtained by the voltage at the emitter  
of Q3, which is proportional to the -log V . The emitter  
IN  
follower Q5 buffers and level shifts this voltage so that  
the dB output is zero when the externally set emitter  
_______________De t a ile d De s c rip t io n  
The MX536A/MX636 uses an implicit method of RMS  
computation that overcomes the dynamic range as well  
as other limitations inherent in a straightforward compu-  
tation of the RMS. The actual computation performed  
by the MX536A/MX636 follows the equation:  
current for Q5 approximates I .  
3
S t a n d a rd Co n n e c t io n  
(Fig u re 2 )  
The standard RMS connection requires only one exter-  
2
V
RMS  
= Avg. [V /V  
]
IN  
RMS  
The input voltage, V , applied to the MX536A/MX636 is  
IN  
na l c omp one nt, C . In this c onfig ura tion the  
AV  
processed by an absolute-value/voltage to current con-  
verter that produces a unipolar current I (Figure 1).  
1
MX536A/MX636 measures the RMS of the AC and DC  
levels present at the input, but shows an error for low-  
This current drives one input of a squarer/divider that  
frequency inputs as a function of the C  
filter capaci-  
AV  
produces a current I that has a transfer function:  
4
tor. Figure 3 gives practical values of C  
for various  
AV  
2
I
1
I
3
values of averaging error over frequency for the stan-  
d a rd RMS c onne c tions (no p os t filte ring ). If a 3µF  
capacitor is chosen, the additional error at 100Hz will  
be 1%. If the DC error can be rejected, a capacitor  
should be connected in series with the input, as would  
typically be the case in single-supply operation.  
I =  
4
The current I drives the internal current mirror through  
4
a lowpass filter formed by R1 and an external capaci-  
tor, C . As long as the time constant of this filter is  
AV  
greater than the longest period of the input signal, I is  
4
averaged. The current mirror returns a current, I , to the  
3
The input and output signal ranges are a function of the  
supply voltages. Refer to the electrical characteristics for  
guaranteed performance. The buffer amplifier can be  
used either for lowering the output impedance of the cir-  
cuit, or for other applications such as buffering high-  
impedance input signals. The MX536A/MX636 can be  
used in current output mode by disconnecting the inter-  
square/divider to complete the circuit. The current I is  
4
2
then a function of the average of (I /I ), which is equal  
1
4
to I  
.
RMS  
1
The current mirror also produces a 2 · I output current,  
4
I
, that can be used directly or converted to a volt-  
OUT  
age using resistor R2 and the internal buffer to provide  
a low-impedance voltage output. The transfer function  
for the MX536A/MX636 is:  
nal load resistor, R , from ground. The current output is  
L
available at pin 8 (pin 10 on the H” package) with a  
nominal scale of 40µA/V  
input for the MX536A and  
RMS  
V
OUT  
= 2 · R2 · I = V  
RMS IN  
100µA/V  
input for the MX636. The output is positive.  
RMS  
6
_______________________________________________________________________________________  
Tru e RMS -t o -DC Co n ve rt e rs  
5A/MX36  
CURRENT MIRROR  
+V  
S
14  
COM  
10  
MX536A  
0.4mA  
F.S.  
R1  
25k  
R2  
R
L
0.2mA  
F.S.  
I
3
C
AV  
I
OUT 8  
9
4
25k  
I
4
dB  
ABSOLUTE VALUE/  
VOLTAGE-CURRENT  
CONVERTER  
OUT  
I
REF  
A3  
5
I
1
-1  
V
IN  
R
R4  
Q1  
Q2  
50k  
Q3  
BUFF  
IN  
V
IN  
BUFFER  
A4  
BUFF  
OUT  
1
7
A1  
Q4  
6
Q5  
12k  
A2  
R3  
25k  
ONE-QUADRANT  
SQUARER/DIVIDER  
25k  
12k  
-V  
S
3
Figure 1. MX536A Simplified Schematic  
C
AV  
10  
V
+V  
S
IN  
9
1
2
3
4
5
6
7
ABSOLUTE  
VALUE  
1
14  
13  
12  
11  
10  
9
BUF  
V
OUT  
CURRENT  
MIRROR  
8
7
2
MX536A  
MX636  
-V  
SQUARER  
DIVIDER  
S
SQUARER  
DIVIDER  
+V  
S
3
CURRENT  
MIRROR  
ABSOLUTE  
VALUE  
V
OUT  
4
V
IN  
6
BUF  
8
5
C
AV  
-V  
S
Figure 2. MX536A/MX636 Standard RMS Connection  
_______________________________________________________________________________________  
7
Tru e RMS -t o -DC Co n ve rt e rs  
C
AV  
100  
10  
V
IN  
+V  
S
1
2
3
4
5
6
7
ABSOLUTE  
VALUE  
14  
13  
12  
11  
10  
9
10  
1
R1  
-V  
SQUARER  
DIVIDER  
S
1
0.1  
0.65  
+V  
S
1%  
CURRENT  
MIRROR  
0.1%  
R2  
R3  
0.22  
0.1  
V
OUT  
0.01  
BUF  
1
10  
60 100  
1k  
8
R4  
FREQUENCY (Hz)  
5A/MX36  
Figure 3. Lower Frequency for Stated % of Reading Error and  
Settling Time for Circuit shown in Figure 2  
-V  
S
MX536A MX636  
R1 500  
R2 365Ω  
R3 750kΩ  
R4 50kΩ  
200Ω  
154Ω  
470kΩ  
500kΩ  
Hig h -Ac c u ra c y Ad ju s t m e n t s  
The accuracy of the MX536A/MX636 can be improved  
by the addition of external trims as shown in Figure 4.  
R4 trims the offset. The input should be grounded and  
R4 adjusted to give zero volts output from pin 6. R1 is  
trimmed to give the correct value for either a calibrated  
DC input or a calibrated AC signal. For example: 200mV  
DC input should give 200mV DC output; a ±200mV  
peak-to-peak sine-wave should give 141mV DC output.  
MX536A  
MX636  
Figure 4. Optional External Gain and Output Offset Trims  
C
AV  
C2  
+V  
S
V
IN  
1
2
3
4
5
6
7
ABSOLUTE  
VALUE  
14  
13  
12  
11  
10  
9
S in g le -S u p p ly Op e ra t io n  
Both the MX536A and the MX636 can be used with a  
single supply down to +5V (Figure 5). The major limita-  
tion of this connection is that only AC signals can be  
measured, since the differential input stage must be  
biased off ground for proper operation. The load resis-  
tor is necessary to provide output sink current. The  
input signal is coupled through C2 and the value cho-  
sen so that the desired low-frequency break point is  
obtained with the input resistance of 16.7kfor the  
MX536A and 6.7kfor the MX636.  
0.1µF  
SQUARER  
DIVIDER  
R1  
CURRENT  
MIRROR  
V
OUT  
0.1µF  
R2  
BUF  
8
R
L
10k TO 1k  
Figure 5 shows how to bias pin 10 within the range of  
the supply voltage (pin 2 on H” packages). It is critical  
that no extraneous signals are coupled into this pin. A  
capacitor connected between pin 10 and ground is  
recommended. The common pin requires less than 5µA  
of input current, and if the current flowing through resis-  
tors R1 and R2 is chosen to be approximately 10 times  
the common pin current, or 50µA, the resistor values  
can easily be calculated.  
MX536A MX636  
R1 20kΩ  
R2 10kΩ  
20kΩ  
39kΩ  
3.3µF  
MX536A  
MX636  
C2  
1µF  
Figure 5. Single-Supply Operation  
the average output approaches the RMS value of the  
input signal. The actual output differs from the ideal by  
an average (or DC) error plus some amount of ripple.  
Ch o o s in g t h e Ave ra g in g Tim e Co n s t a n t  
Both the MX536A and MX636 compute the RMS value  
of AC and DC signals. At low frequencies and DC, the  
output tracks the input exactly; at higher frequencies,  
The DC error term is a function of the value of C  
the input signal frequency. The output ripple is inverse-  
and  
AV  
8
_______________________________________________________________________________________  
Tru e RMS -t o -DC Co n ve rt e rs  
5A/MX36  
MX536A  
MX636  
10  
10  
7.5  
5
7.5  
5
2.5  
2.5  
1
0
1
0
1m  
10m  
100m  
1
10  
1m  
10m  
100m  
1
RMS INPUT LEVEL (V)  
RMS INPUT LEVEL (V)  
Figure 6a. MX536A Settling Time vs. Input Level  
Figure 6b. MX636 Settling Time vs. Input Level  
ly proportional to the value of C . Waveforms with high  
AV  
Table 1. Number of RC Time Constants  
(τ) Required for MX536A/MX636 RMS  
Converters to Settle to Within Stated % of  
Final Value  
crest factors, such as a pulse train with low duty cycle,  
should have an average time constant chosen to be at  
least ten times the signal period.  
Using a large value of C  
to remove the output ripple  
AV  
increases the settling time for a step change in the input  
signal level. Figure 3 shows the relationship between  
FOR  
FOR  
PARAMETERS  
INCREASING  
AMPLITUDES  
DECREASING  
AMPLITUDES  
C
and settling time, where 115ms settling equals 1µF  
AV  
of C . The settling time, or time for the RMS converter to  
AV  
settle to within a given percent of the change in RMS  
level, is set by the averaging time constant, which varies  
approximately 2:1 between increasing and decreasing  
input signals. For example, increasing input signals  
require 2.3 time constants to settle to within 1%, and 4.6  
time constants for decreasing signals levels.  
Basic Formulas  
-T/RC  
-T/RC  
V 1 - e  
V  
e
Settling Time  
to Within  
Stated % of  
New RMS  
Level  
4.6τ/2.0τ  
6.9τ/3.1τ  
9.2τ/4.2τ  
4.6τ/4.6τ  
6.9τ/6.9τ  
9.2τ/9.2τ  
1%  
0.1%  
0.01%  
In addition, the settling time also varies with input signal  
levels, increasing as the input signal is reduced, and  
d e c re a s ing a s the inp ut is inc re a s e d a s s hown in  
Figures 6a and 6b.  
Note: (τ) Settling Times for Linear RC Filter  
De c ib e l Ou t p u t (d B)  
The dB output of the MX536A/MX636 originates in the  
squarer/divider section and works well over a 60dB  
range. The connection for dB measurements is shown  
in Figure 10. The dB output has a temperature drift of  
0.03dB/°C, and in some applications may need to be  
c omp e ns a te d . Fig ure 10 s hows a c omp e ns a tion  
scheme. The amplifier can be used to scale the output  
for a particular application. The values used in Figure  
10 give an output of +100mV/dB.  
Us in g P o s t Filt e rs  
A post filter allows a smaller value of C , and reduces  
AV  
ripple and improves the overall settling time. The value  
of C  
should be just large enough to give the maxi-  
AV  
mum DC error at the lowest frequency of interest. The  
p os t filte r is us e d to re move e xc e s s outp ut rip p le .  
Figures 7, 8, and 9 give recommended filter connec-  
tions and values for both the MX536A and MX636.  
Table 1 lists the number of time constants required for  
the RMS section to settle to within different percentages  
of the final value for a step change in the input signal.  
_______________________________________________________________________________________  
9
Tru e RMS -t o -DC Co n ve rt e rs  
V
IN  
+V  
S
1
2
3
4
5
6
7
ABSOLUTE  
VALUE  
14  
13  
12  
11  
10  
9
V
+V  
IN  
S
1
2
3
4
5
6
7
ABSOLUTE  
VALUE  
14  
13  
12  
11  
10  
9
N.C.  
N.C.  
N.C.  
SQUARER  
DIVIDER  
-V  
S
SQUARER  
DIVIDER  
-V  
S
MX536A  
MX636  
C
AV  
+V  
S
N.C.  
C
AV  
CURRENT  
MIRROR  
COMMON  
CURRENT  
MIRROR  
dB  
R
L
V
RMS  
OUT  
BUF  
8
I
OUT  
BUF  
8
C2  
5A/MX36  
C3  
R *  
X
C2  
V
RMS  
OUT  
MX536A  
MX636  
* MX536A = 25kΩ  
MX636 = 10kΩ  
Figure 7. MX536A/MX636 with a One-Pole Output Filter  
Figure 8. MX536A/MX636 with a Two-Pole Output Filter  
Fre q u e n c y Re s p o n s e  
The MX536A/MX636 utilizes a logarithmic circuit in per-  
forming the RMS computation of the input signal. The  
bandwidth of the RMS converters is proportional to sig-  
nal level. Figures 11 and 12 represent the frequency  
R = 0  
X
PK-PK RIPPLE  
PK-PK RIPPLE  
10  
1
response of the converters from 10mV to 7V  
for the  
RMS  
(ONE POLE)  
C2 = 4.7µF  
MX536A and 1mV to 1V for the MX636, respectively.  
The dashed lines indicate the upper frequency limits for  
1%, 10%, a nd ± 3d B of re a d ing a d d itiona l e rror.  
Caution must be used when designing RMS measuring  
systems so that overload does not occur. The input  
c lip p ing le ve l for the MX636 is ± 12V, a nd for the  
DC ERROR  
(ALL FILTERS)  
PK-PK RIPPLE  
(TWO POLE)  
C2 = C3 = 4.7µF  
MX536A it is ±20V. A 7V  
signal with a crest factor  
RMS  
of 3 has a peak input of 21V.  
0.1  
10  
100  
1k  
10k  
Ap p lic a t io n in a Lo w -Co s t DVM  
A low-cost digital voltmeter (DVM) using just two inte-  
grated circuits plus supporting circuitry and LCD dis-  
play is shown in Figure 13. The MAX130 is a 3 1/2 digit  
integrating A/D converter with precision bandgap refer-  
ence. The 10Minput attenuator is AC coupled to pin  
6 of the MX636 buffer amplifier. The output from the  
MX636 is connected to the MAX130 to give a direct  
reading to the LCD display.  
FREQUENCY (Hz)  
MX536A  
ONE-POLE FILTER  
MX636  
C2  
2.2µF  
1µF  
4.7µF  
1µF  
C
AV  
TWO-POLE FILTER  
C2  
C3  
2.2µF  
2.2µF  
1µF  
4.7µF  
4.7µF  
1µF  
C
AF  
Figure 9. Performance Features of Various Filter Types for  
MX536A/MX636  
10 ______________________________________________________________________________________  
Tru e RMS -t o -DC Co n ve rt e rs  
5A/MX36  
MX536A  
MX636  
V
+V  
4.5V TO 15V  
IN  
+V  
S
S
R4  
36k  
V
IN  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
ABSOLUTE  
VALUE  
V
2.5V  
OUT  
SQUARER  
DIVIDER  
-V  
S
C1  
MX580J  
COMPENSATED  
dB OUT  
+0.1V/dB  
+V  
S
MAX400  
C2 0.1µF  
R1  
ZERO dB  
CURRENT  
MIRROR  
R3  
1k*  
GROUND  
dB OUT  
-3mV/dB  
BUF  
8
LINEAR  
RMS  
R2  
R5  
OUTPUT  
500Ω  
GAIN  
*SPECIAL TC COMP RESISTOR: +3500PPM, 1k, 1%  
Figure 10. dB Connection  
1V INPUT  
RMS  
10  
1
200m  
100m  
1%  
7V INPUT  
RMS  
10%  
200mV INPUT  
RMS  
10%  
1%  
±3dB  
100mV INPUT  
RMS  
1
±3dB  
1V INPUT  
RMS  
30mV INPUT  
RMS  
30m  
10m  
10mV INPUT  
RMS  
0.1  
100mV  
RMS  
INPUT  
1V INPUT  
RMS  
0.01  
1m  
10mV  
RMS  
INPUT  
100µ  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
Figure 11. MX536A High-Frequency Response  
Figure 12. MX636 High-Frequency Response  
______________________________________________________________________________________ 11  
Tru e RMS -t o -DC Co n ve rt e rs  
200mV  
V
IN  
D1  
IN4148  
C4  
2.2µF  
R1  
+V  
S
9M  
C3  
+V  
DD  
V+  
1
2
3
4
5
6
7
ABSOLUTE  
VALUE  
0.02µF  
14  
13  
12  
11  
10  
9
D3  
D4  
D5  
2V  
R11  
26k  
1
1N4148  
LIN  
3 ⁄ DIGIT  
2
R6  
R9  
ADC  
MAX130  
9V  
BATTERY  
1M  
R2  
900k  
500k  
0dB SET  
SQUARER  
DIVIDER  
REF HI  
R12  
R5  
47k  
1W  
10%  
1k  
dB  
20V  
V-  
6.8µF  
R14  
50k  
R10  
20k  
CURRENT  
MIRROR  
R3  
90k  
R13  
500Ω  
REF LO  
COM  
LIN  
dB  
10k  
200V  
LIN  
BUF  
SCALE SCALE  
1
8
3 ⁄  
2
10k  
IN HI  
dB  
R4  
10k  
DIGIT  
LCD  
D2  
R15  
1M  
X
C6  
0.01µF  
R7  
20k  
C7  
6.8µF  
IN4148  
LIN  
DISPLAY  
MX636  
IN LO  
COM  
dB  
Figure 13. Portable High-Z Input RMS DPM and dB Meter  
Typ ic a l Op e ra t in g  
________________Circ u it s (c o n t in u e d )  
P in Co n fig u ra t io n s (c o n t in u e d )  
TOP VIEW  
1
2
3
4
5
6
7
8
16  
15  
V
+V  
S
10  
IN  
9
1
N.C.  
-V  
N.C.  
14 N.C.  
S
V
OUT  
BUF  
CURRENT  
MIRROR  
8
7
2
13  
12  
11  
10  
9
C
AV  
MX536A  
MX636  
N.C.  
dB  
BUF OUT  
BUF IN  
N.C.  
COMMON  
SQUARER  
DIVIDER  
R
L
+V  
S
3
I
OUT  
N.C.  
ABSOLUTE  
VALUE  
4
V
IN  
6
C
AV  
5
SO  
-V  
S
___________________________________________Ord e rin g In fo rm a t io n (c o n t in u e d )  
PART  
MX636JQ*  
MX636KCWE  
MX636KD  
MX636KH  
MX636KN  
MX636KQ*  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
14 CERDIP  
PART  
MX536ASH  
MX536ASQ*  
MX636JC/D  
MX636JCWE  
MX636JD  
TEMP. RANGE  
-55°C to +125°C  
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
10 TO-100  
14 CERDIP  
Dice**  
16 Wide SO  
14 Ceramic  
10 TO-100  
16 Wide SO  
14 Ceramic  
10 TO-100  
14 Plastic DIP  
14 Plastic DIP  
14 CERDIP  
MX636JH  
MX636JN  
* Maxim reserves the right to ship ceramic packages in lieu of CERDIP packages.  
** Dice are specified at T = +25°C.  
A
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MX536AJCWE+

RMS to DC Converter, 1 Func, 0.09MHz, PDSO16, SOP-16
MAXIM

MX536AJCWE+T

RMS to DC Converter, 1 Func, 0.09MHz, PDSO16, SO-16
MAXIM

MX536AJCWE-T

暂无描述
MAXIM

MX536AJD

True RMS-to-DC Converters
MAXIM

MX536AJED

RMS-to-DC Converter
ETC

MX536AJEDD

RMS to DC Converter
MAXIM

MX536AJEJD

RMS to DC Converter
MAXIM

MX536AJEPD

RMS to DC Converter
MAXIM

MX536AJETW

RMS to DC Converter
MAXIM

MX536AJEWE

True RMS-to-DC Converters
MAXIM

MX536AJEWE+

RMS to DC Converter
MAXIM

MX536AJEWE+T

RMS to DC Converter
MAXIM