MX674ALEWI+T [MAXIM]

ADC, Successive Approximation, 12-Bit, 1 Func, Parallel, Word Access, BICMOS, PDSO28, SO-28;
MX674ALEWI+T
型号: MX674ALEWI+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 12-Bit, 1 Func, Parallel, Word Access, BICMOS, PDSO28, SO-28

信息通信管理 光电二极管 转换器
文件: 总18页 (文件大小:1427K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2765; Rev 3; 8/11  
E V A L U A T I O N K I T A V A I L A B L E  
General Description  
Features  
The MAX174/MX574A/MX674A are complete 12-bit  
analog-to-digital converters (ADCs) that combine high  
speed, low-power consumption, and on-chip clock and  
voltage reference. The maximum conversion times are  
8µs (MAX174), 15µs (MX674A), and 25µs (MX574A).  
Maxim’s BiCMOS construction reduces power dissipa-  
tion 3 times (150mW) over comparable devices. The  
internal buried zener reference provides low-drift and  
low-noise performance. External component require-  
ments are limited to only decoupling capacitors and fixed  
resistors. The versatile analog input structure allows for  
0 to +10V or 0 to +20V unipolar or ±5V or ±10V bipolar  
input ranges with pin strapping.  
S Complete ADC with Reference and Clock  
S 12-Bit Resolution and Linearity  
S No Missing Codes Over Temperature  
S 150mW Power Dissipation  
S 8µs (MAX174), 15µs (MX674A), and 25µs (MX574A)  
Max Conversion Times  
S Precision Low TC Reference: 10ppm/NC  
S Monolithic BiCMOS Construction  
S 150ns Maximum Data Access Time  
Applications  
The MAX174/MX574A/MX674A use standard micropro-  
cessor interface architectures and can be interfaced to  
8-, 12-, and 16-bit wide buses. Three-state data outputs  
are controlled by CS, CE, and R/C logic inputs.  
Digital Signal Processing  
High-Accuracy Process Control  
High-Speed Data Acquisition  
Electro-Mechanical Systems  
Ordering Information appears at end of data sheet.  
Functional Diagram  
V
R
DGND  
15  
V
V
BIPOFF  
12  
10V  
20V  
L
CC  
7
EE  
IN  
IN  
1
11  
13  
14  
5kI  
2R  
9.950kI  
10  
REFIN  
5kI  
12-BIT  
DAC  
9
8
AGND  
12  
SAR  
+10V  
REF  
REFOUT  
2
3
4
12/8  
CS  
CLOCK  
AND  
CONTROL  
LOGIC  
4
4
4
MAX174  
MX574A  
MX674A  
LOW  
NIBBLE  
MIDDLE  
NIBBLE  
HIGH  
NIBBLE  
A0  
16  
D0  
19 20  
D3 D4  
23 24  
D7 D8  
27  
28  
6
5
D11  
STS CE R/C  
For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX174.related.  
����������������������������������������������������������������� Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
ABSOLUTE MAXIMUM RATINGS  
V
V
V
to DGND..............................................................0 to 16.5V  
to DGND...............................................................0 to 16.5V  
to DGND......................................................................0 to 7V  
Power Dissipation (any package) to +75NC .................1000mW  
Derates above +75NC ..............................................10mW/NC  
Operating Temperature Ranges  
CC  
EE  
L
MAX174_C, MX_74AJ/K/L...................................... 0 to +70NC  
MAX174_E, MX_74AJE/KE/LE ........................ -40NC to +85NC  
MAX174_M, MX_74AS/T/U............................ -55NC to +125NC  
Storage Temperature Range............................ -55NC to +160NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow)  
DGND to AGND ................................................................... Q1V  
Control Inputs to DGND  
(CE, CS, A0, 12/8, R/C) ........................ -0.3V to (V  
+ 0.3V)  
CC  
Digital Output Voltage to DGND  
(DB11–DB0, STS)..................................... -0.3V to (V + 0.3V)  
L
Analog Inputs to AGND (REFIN, BIPOFF, 10V )........... Q16.5V  
IN  
PDIP, Wide SO.............................................................+260NC  
PLCC............................................................................+245NC  
20V to AGND................................................................... Q24V  
IN  
REFOUT................................... Indefinite short to V  
or AGND  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX174  
(V = +5V, V = +15V or +12V, V = -15V or -12V, T = +25NC, unless otherwise noted.)  
L
EE  
EE  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ACCURACY  
Resolution  
12  
Bits  
RES  
INL  
MAX174A/B  
MAX174C  
±1/2  
±1  
T
T
= +25°C  
A
A
Integral Nonlinearity  
MAX174AC/BC  
±1/2  
±3/4  
±1  
LSB  
= T  
to T  
MAX174AE/BE/AM/BM  
MAX174C  
MIN  
MAX  
Differential Nonlinearity  
12 bits, no missing codes over temperature  
±1  
LSB  
LSB  
DNL  
MAX174A/B  
MAX174C  
MAX174A  
±1  
Unipolar Offset Error (Note 1)  
±2  
±3  
Bipolar Offset Error (Notes 2, 3)  
Full-Scale Calibration Error (Note 3)  
LSB  
%
MAX174B/C  
±4  
±0.25  
TEMPERATURE COEFFICIENTS (Using Internal Reference) (Notes 2, 3, 4)  
MAX174A/B  
±1  
±2  
±1  
±2  
±1  
±2  
±4  
Unipolar Offset Change  
MAX174C  
LSB  
LSB  
MAX174AC/BC  
MAX174CC  
Bipolar Offset Change  
MAX174AE/AM  
MAX174BE/BM  
MAX174CE/CM  
����������������������������������������������������������������� Maxim Integrated Products  
2
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
ELECTRICAL CHARACTERISTICS—MAX174 (continued)  
(V = +5V, V = +15V or +12V, V = -15V or -12V, T = +25NC, unless otherwise noted.)  
L
EE  
EE  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX174AC  
MAX174BC  
MAX174CC  
MAX174AE  
MAX174BE  
MAX174CE  
MAX174AM  
MAX174BM  
MAX174CM  
±2 (10)  
±5 (27)  
±± (50)  
±7 (1±)  
±10 (38)  
±20 (75)  
±5 (12)  
±10 (25)  
±20 (50)  
LSB  
(ppm/°C  
Full-Scale Calibration Change  
INTERNAL REFERENCE  
MAX174A  
MAX174B/C  
±.±8  
±.±7  
10.00  
10.00  
10.02  
10.03  
Output Voltage  
No load  
V
Available for external loads, in addition to  
REFIN and BIPOFF load  
Output Current (Note 5)  
2
mA  
ELECTRICAL CHARACTERISTICS—MX574A, MX674A  
(V = + 5V, V = +15V or +12V, V = -15V or -12V, T = +25NC, unless otherwise noted.)  
L
EE  
EE  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ACCURACY  
Resolution  
12  
Bits  
RES  
INL  
MX574AK/L/T/U,  
MX674AK/L/T/U  
±1/2  
T
T
= +25°C  
A
A
MX574AJ/S, MX674AJ/S  
MX574AK/L/KE/LE  
±1  
±1/2  
±1/2  
±3/4  
±1  
Integral Nonlinearity  
LSB  
MX674AK/L/KE/LE  
= T  
to T  
MAX  
MIN  
MX574AT/U, MX674AT/U  
MX574AJ/S, MX674AJ/S  
Differential Nonlinearity  
12 bits, no missing codes over temperature  
MX574AK/L/T/U, MX674AK/L/T/U  
MX574AJ/S, MX674AJ/S  
±1  
LSB  
LSB  
DNL  
±1  
Unipolar Offset Error (Note 1)  
±2  
MX574AL/U, MX674AL/U  
±3  
Bipolar Offset Error (Notes 2, 3)  
LSB  
%
MX574AJ/K/S/T, MX674AJ/K/S/T  
MX574AL/U  
±4  
±0.125  
±0.25  
Full-Scale Calibration Error  
(Note 3)  
MX574AJ/K/S/T, MX674A  
TEMPERATURE COEFFICIENTS (Using Internal Reference) (Notes 2, 3, 4)  
MX574AK/L/T/U, MX674AK/L/T/U  
Unipolar Offset Change  
±1  
±2  
LSB  
MX574AJ/S, MX674AJ/S  
����������������������������������������������������������������� Maxim Integrated Products  
3
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
ELECTRICAL CHARACTERISTICS—MX574A, MX674A (continued)  
(V = + 5V, V = +15V or +12V, V = -15V or -12V, T = +25NC, unless otherwise noted.)  
L
EE  
EE  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
±1  
UNITS  
MX574AK/L, MX674AK/L  
MX574AJ, MX674AJ  
±2  
Bipolar Offset Change  
MX574AU/LE, MX674AU/LE  
MX574AT/KE, MX674AT/KE  
MX574AS/JE, MX674AS/JE  
MX574AL, MX674AL  
±1  
LSB  
±2  
±4  
±2 (10)  
±5 (27)  
±± (50)  
±7 (1±)  
±10 (38)  
±20 (75)  
±5 (12)  
±10 (25)  
±20 (50)  
MX574AK, MX674AK  
MX574AJ, MX674AJ  
MX574ALE, MX674ALE  
MX574AKE, MX674AKE  
MX574AJE, MX674AJE  
MX574AU, MX674AU  
MX574AT, MX674AT  
LSB  
(ppm/°C  
Full-Scale Calibration Change  
MX574AS, MX674AS  
INTERNAL REFERENCE  
MX574AL/U  
±.±±  
±.±8  
±.±7  
10.00  
10.00  
10.00  
10.01  
10.02  
10.03  
Output Voltage  
No load  
MX574AJ/K/S/T, MX674AL/U  
MX674AJ/K/S/T  
V
Available for external loads, in addition to  
REFIN and BIPOFF load  
Output Current (Note 5)  
2
mA  
ELECTRICAL CHARACTERISTICS—MAX174/MX574/MX674A  
(V = +5V, V  
= +15V or +12V, V = -15V or -12V, T = +25NC, unless otherwise noted.)  
L
CC  
EE  
A
PARAMETER  
ANALOG INPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Using 10V input  
Using 20V input  
Using 10V input  
Using 20V input  
10V input  
±5  
±10  
+10  
+20  
7
Bipolar Input Range  
Unipolar Input Range  
Input Impedance  
V
V
0
0
3
6
5
kW  
20V input  
10  
14  
POWER-SUPPLY REJECTION (Max Change in Full-Scale Calibration)  
MAX174A/B, MX_74AK/L/TU  
MAX174C, MX_74AJ/S  
±1/8  
±1/8  
±1/8  
±1  
±2  
15V ±1.5V or  
12V ±0.6V  
V
Only  
LSB  
CC  
V
Only  
15V ±1.5V or 12V ±0.6V  
5V ±0.5V  
±1/2  
LSB  
LSB  
EE  
V Only  
L
±1/8  
±1/2  
LOGIC INPUTS  
Input Low Voltage  
Input High Voltage  
V
V
0.8  
V
V
CS, CE, R/C, A0, 12/8  
CS, CE, R/C, A0, 12/8  
IL  
2.0  
IH  
����������������������������������������������������������������� Maxim Integrated Products  
4
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
ELECTRICAL CHARACTERISTICS—MAX174/MX574/MX674A (continued)  
(V = +5V, V  
= +15V or +12V, V = -15V or -12V, T = +25NC, unless otherwise noted.)  
EE A  
L
CC  
PARAMETER  
Input Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µA  
I
±5  
CS, CE, R/C, A0, 12/8, V = 0 to V  
IN  
IN  
L
Input Capacitance  
C
7
pF  
CS, CE, R/C, A0, 12/8  
IN  
LOGIC OUTPUTS  
Output Low Voltage  
V
DB11–DB0, STS  
DB11–DB0, STS  
DB11–DB0, STS  
DB11–DB0  
I
I
= 1.6mA  
0.4  
V
V
OL  
SINK  
Output High Voltage  
V
= 500µA  
4
OH  
SOURCE  
Floating State Leakage Current  
Floating State Output Capacitance  
CONVERSION TIME  
I
V
= 0 to V  
L
±10  
µA  
pF  
LKG  
OUT  
C
8
OUT  
MX574A  
MX674A  
MAX174  
MX574A  
MX674A  
MAX174  
15  
±
20  
12  
7
25  
15  
8
12-Bit Cycle  
t
µs  
µs  
CONV  
CONV  
6
10  
6
14  
8
18  
11  
6
8-Bit Cycle  
t
4
5
POWER REQUIREMENTS  
V
Operating Range  
11.4  
4.5  
16.5  
5.5  
-16.5  
5
V
V
CC  
V Operating Range  
L
V
Operating Range  
-11.4  
V
EE  
V
Supply Current (Note 5)  
I
3
3
mA  
mA  
mA  
mW  
CC  
CC  
V Supply Current (Note 5)  
I
8
L
L
V
Supply Current (Note 5)  
I
6
10  
EE  
EE  
Power Dissipation (Note 5)  
P
V
= +15V and V = -15V  
150  
265  
D
CC  
EE  
Note 1: Adjustable to zero.  
Note 2: With 50ω fixed resistor from REFOUT to BIPOFF. Adjustable to zero.  
Note 3: With 50ω fixed resistor from REFOUT to REFIN. Adjustable to zero.  
Note 4: Maximum change in specification from T = +25°C to T  
Note 5: External load current should not change during a conversion. For Q12V supply operation, REFOUT need not be buffered  
or T = +25°C to T  
.
A
MIN  
A
MAX  
except when external load in addition to REFIN and BIPOFF inputs have to be driven.  
����������������������������������������������������������������� Maxim Integrated Products  
5
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
TIMING CHARACTERISTICS—MAX174/MX574A/MX674A (Note 6)  
(V = +5V, V  
= +15V or +12V, V = -15V or -12V.)  
EE  
L
CC  
T
T
= -40°C TO +85°C  
= 0°C TO +70° C  
A
T
= +25°C  
T = -55°C TO +125°C  
A
A
PARAMETER  
SYMBOL CONDITIONS  
UNITS  
A
MIN TYP MAX MIN TYP MAX  
MIN  
TYP MAX  
CONVERT START TIMING—FULL CONTROL MODE  
STS Delay from CE  
CE Pulse Width  
t
t
C = 50pF  
100  
15  
200  
250  
320  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DSC  
L
50  
50  
50  
50  
50  
0
50  
50  
50  
50  
50  
0
50  
50  
50  
50  
50  
0
HEC  
t
CS to CE Setup  
SSC  
t
CS Low During CE High  
R/C to CE Setup  
HSC  
t
SRC  
HRC  
t
R/C Low During CE High  
A0 to CE Setup  
t
SAC  
A0 Valid During CE High  
t
50  
50  
50  
HAC  
READ TIMING—FULL CONTROL MODE  
Access Time (From CE)  
Data Valid After CE Low  
Output Float Delay  
t
t
C = 100pF  
L
60  
40  
120  
75  
150  
100  
200  
120  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DD  
HD  
25  
20  
15  
t
HL  
t
t
50  
0
50  
0
50  
0
CS to CE Setup  
R/C to CE Setup  
A0 to CE Setup  
SSR  
SRR  
SAR  
t
t
50  
0
50  
0
50  
0
CS Valid After CE Low  
R/C High After CE Low  
A0 Valid After CE Low  
STAND-ALONE MODE  
Low R/C Pulse Width  
STS Delay from R/C  
HSR  
HRR  
HAR  
t
t
0
0
0
0
0
0
t
50  
15  
115  
40  
50  
20  
50  
ns  
ns  
ns  
HRL  
t
200  
250  
320  
DS  
t
25  
300  
30  
15  
300  
30  
Data Valid After R/C Low  
HDR  
MX574A  
MX674A  
MAX174  
600 1000 300  
1000  
600  
1000  
600  
STS Delay After Data Valid  
t
320  
140  
600  
300  
30  
30  
ns  
HS  
30  
300  
30  
400  
t
t
150  
150  
200  
ns  
ns  
High R/C Pulse Width  
HRH  
DDR  
Data Access Time  
C = 100pF  
60  
120  
150  
200  
L
Note 6: Timing specifications guaranteed by design. All input control signals specified with t = t = 5ns (10% to ±0% of +5V) and  
R
F
timed from a voltage level of +1.6V. See loading circuits in Figures 1 and 2.  
����������������������������������������������������������������� Maxim Integrated Products  
6
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
+5V  
+5V  
3kI  
3kI  
DN  
DN  
DN  
DN  
3kI  
100pF  
100pF  
3kI  
100pF  
100pF  
LOGIC 1 TO HIGH - Z  
LOGIC 0 TO HIGH - Z  
HIGH-Z TO LOGIC 1  
HIGH-Z TO LOGIC 1  
Figure 1. Load Circuit for Access Time Test  
Figure 2. Load Circuit for Output Float Delay Test  
Pin Configurations  
TOP VIEW  
+
V
L
1
2
3
4
5
6
7
8
9
28 STS  
27 D11  
26 D10  
25 D9  
24 D8  
23 D7  
22 D6  
21 D5  
20 D4  
19 D3  
18 D2  
17 D1  
16 D0  
15 DGND  
TOP VIEW  
12/8  
CS  
4
3
2
1
28 27 26  
A0  
5
6
7
8
9
R/C  
CE  
25 D9  
24 D8  
R/C  
CE  
MAX174  
MX574A  
MX674A  
V
CC  
D7  
23  
V
CC  
MAX174  
MX574A  
MX674A  
REFOUT  
AGND  
22 D6  
REFOUT  
AGND  
D5  
D4  
D3  
21  
20  
19  
REFIN 10  
REFIN 10  
11  
V
11  
EE  
V
EE  
12 13 14 15 16 17 18  
BIPOFF 12  
10VIN 13  
20VIN 14  
PLCC  
DIP/SO  
Pin Description  
PIN  
1
NAME  
FUNCTION  
V
L
Logic Supply, +5V  
2
Data Mode Select Input  
12/8  
3
CS  
Chip-Select Input. Must be low to select device.  
Byte Address/Short-Cycle Input. When starting a conversion, controls number of bits converted (low = 12  
bits, high = 8 bits). When reading data, if 12/8 = low, enables low byte (A0 = high) or high byte (A0 = low).  
4
5
A0  
Read/Convert Input. When high, the device will be in the data-read mode. When low, the device will  
be in the conversion start mode.  
R/C  
����������������������������������������������������������������� Maxim Integrated Products  
7
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
Pin Description (continued)  
PIN  
6
NAME  
FUNCTION  
Chip-Enable Input. Must be high to select device.  
+12V or +15V Supply  
CE  
7
V
CC  
8
REFOUT  
AGND  
+10V Reference Output  
±
Analog Ground  
10  
11  
12  
13  
14  
15  
16–27  
28  
REFIN  
Reference Input  
V
-12V or -15V Supply  
EE  
BIPOFF  
Bipolar Offset Input. Connect to REFOUT for bipolar input range.  
10V Span Input  
10V  
20V  
IN  
20V Span Input  
IN  
DGND  
D0–D11  
STS  
Digital Ground  
Three-State Data Outputs  
Status Output  
the state of R/C selects whether a conversion (R/C = 0) or  
a data read (R/C = 1) is in progress. The register control  
Detailed Description  
inputs, 12/8 and A0, select the data format and conver-  
sion length. A0 is usually tied to the LSB of the address  
bus. To perform a full 12-bit conversion, set A0 low during  
a convert start. For a shorter 8-bit conversion, A0 must be  
high during a convert start.  
Converter Operation  
The MAX174/MX574A/MX674A use a successive approx-  
imation technique to convert an unknown analog input to  
a 12-bit digital output code. The control logic provides  
easy interface to most microprocessors. Most applica-  
tions require only a few external passive components to  
perform the analog-to-digital (A/D) function.  
Output Data Format  
During a data read, A0 also selects whether the three-  
state buffers contain the 8 MSBs (A0 = 0) or the 4 LSBs  
(A0 = 1) of the digital result. The 4 LSBs are followed by  
4 trailing 0s.  
The internal voltage output DAC is controlled by a suc-  
cessive approximation register (SAR) and has an output  
impedance of 2.5kω. The analog input is connected to  
the DAC output with a 5kω resistor for the 10V input and  
10kω resistor for the 20V input. The comparator is essen-  
tially a zero-crossing detector, and its output is fed back  
to the SAR input.  
Output data is formatted according to the 12/8 pin. If  
this input is low, the output will be a word broken into  
two 8-bit bytes. This allows direct interlace to 8-bit buses  
without the need for external three-state buffers. If 12/8 is  
high, the output will be one 12-bit word. A0 can change  
state while a data-read operation is in effect.  
The SAR is set to half-scale as soon as a conversion starts.  
The analog input is compared to 1/2 of the full-scale volt-  
age. The bit is kept if the analog input is greater than half-  
scale or dropped if smaller. The next bit, bit 10, is then set  
with the DAC output either at 1/4 scale, if the most signifi-  
cant bit (MSB) is dropped, or 3/4 scale if the MSB is kept.  
The conversion continues in this manner until the least  
significant bit (LSB) is tried. At the end of the conversion,  
the SAR output is latched into the output buffers.  
To begin a conversion, the microprocessor must write  
to the ADC address. Then, since a conversion usually  
takes longer than a single clock cycle, the microproces-  
sor must wait for the ADC to complete the conversion.  
Valid data will be made available only at the end of the  
conversion, which is indicated by STS. STS can be ether  
polled or used to generate an interrupt upon completion.  
Or, the microprocessor can be kept idle by inserting the  
appropriate number of No Operation (NOP) instructions  
between the conversion-start and data-read commands.  
Digital Interface  
CE, CS, and R/C control the operation of the MAX174/  
MX574A/MX674A. While both CE and CS are asserted,  
����������������������������������������������������������������� Maxim Integrated Products  
8
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
BIPOFF  
20V  
10V  
IN  
IN  
REFIN  
5kI  
2R* -50I  
9.950kI  
R*  
DAC  
2.5kI  
5kI  
1.6kI  
REFIN  
2
SAR  
Figure 3. Analog Equivalent Circuit  
Table 1. Truth Table  
Table 2. MAX174/MX574A/MX674A Data  
Format for 8-Bit Bus  
CE  
0
A0  
X
OPERATION  
CS  
X
R/C 12/8  
D7  
D6  
D5  
D4 D3 D2 D1  
D0  
X
X
0
0
1
1
X
X
X
X
1
0
None  
None  
X
1
X
High Byte  
(A0 = 0)  
MSB D10 D±  
D8 D7 D6 D5  
D4  
1
0
0
Initiate 12-bit conversion  
Initiate 12-bit conversion  
Enable 12-bit conversion  
Enable 8 MSBs  
1
0
1
Low Byte  
(A0 = 1)  
D3  
D2  
D1  
D0  
0
0
0
0
1
0
X
1
0
0
Enable 4 LSBs + 4  
trailing 0s  
1
0
1
0
1
27 (MSB)  
26 (D10)  
25 (D9)  
24 (D8)  
23 (D7)  
22 (D6)  
21 (D5)  
20 (D4)  
19 (D3)  
18 (D2)  
17 (D1)  
16 (LSB)  
D7  
After the conversion is completed, data can be obtained  
by the microprocessor. The ADCs have the required  
logic for 8-, 12-, and 16-bit bus interfacing, which is  
determined by the 12/8 input. If 12/8 is high, the ADCs  
are configured for a 16-bit bus. Data lines D0–D11 may  
be connected to the bus as either the 12 MSBs or the 12  
LSBs. The other 4 bits must be masked out in software.  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MAX174  
MX574A  
MX674A  
For 8-bit bus operation, 12/8 is set low. The format is left  
justified, and the even address, A0 low, contains the 8  
MSBs. The odd address, A0 high, contains the 4 LSBs,  
which is followed by 4 trailing 0s. There is no need to  
use a software mask when the ADCs are connected to  
an 8-bit bus.  
HARDWIRING FOR 8-BIT DATA BUSES  
Note that the output cannot be forced to a right-justified for-  
mat by rearranging the data lines on the 8-bit bus interface.  
����������������������������������������������������������������� Maxim Integrated Products  
9
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
cannot be prematurely terminated or restarted. However,  
if the state of A0 is changed after the beginning of the  
conversion, any additional start conversion transitions  
will latch the new state of A0, possibly resulting in an  
incorrect conversion length (8 bits vs. 12 bits) for that  
conversion.  
Timing and Control  
Convert Start Timing—Full Control Mode  
R/C must be low before asserting both CE and CS. If it  
is high, a brief read operation occurs possibly resulting  
in system bus contention. To initiate a conversion, use  
either CE or CS. CE is recommended since it is shorter  
by one propagation delay than CS and is the faster input  
of the two. CE is used to begin the conversion in Figure 4.  
Read Timing—Full Control Mode  
Figure 5 illustrates the read-cycle timing. While reading  
data, access time is measured from when CE and R/C  
are both high. Access time is extended 10ns if CS is used  
to initiate a read.  
The STS output is high during the conversion indicating  
the ADC is busy. During this period, additional convert  
start commands will be ignored, so that the conversion  
t
HEC  
CE  
CE  
CS  
t
t
t
HSC  
HRC  
HAC  
t
t
HSR  
SSR  
t
t
SSC  
CS  
t
t
t
SRR  
HRR  
HAR  
SRC  
R/C  
A0  
R/C  
A0  
t
SAR  
t
SAC  
t
t
C
DSC  
STS  
STS  
t
t
t
HD, HL  
DD  
D0–D11  
HIGH IMPEDANCE  
D0–D11  
HIGH IMPEDANCE  
Figure 4. Convert Start Timing  
Figure 5. Read Timing  
���������������������������������������������������������������� Maxim Integrated Products 10  
 
 
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
Stand-Alone Operation  
For systems which do not use or require full bus interfac-  
t
HRL  
ing, the MAX174/MX574A/MX674A can be operated in  
a stand-alone mode directly linked through dedicated  
input ports.  
R/C  
STS  
t
t
C
DS  
When configured in the stand-alone mode, conversion is  
controlled by R/C. In addition, CS and A0 are wired low;  
CE and 12/8 are wired high. To enable the three-state  
buffers, set R/C low. A conversion starts when R/C is set  
high. This allows either a high- or a low-pulse control sig-  
nal. Shown in Figure 6 is the operation with a low pulse. In  
this mode, the outputs, in response to the falling edge of  
R/C, are forced into the high-impedance state and return  
to valid logic-levels after the conversion is complete. The  
STS output goes high following the R/C falling edge and  
returns low when the conversion is complete.  
t
t
HS  
HDR  
HIGH IMPEDANCE  
D0–11  
Figure 6. Low Pulse for R//C in Stand-Alone Mode  
t
HRH  
A high-pulse conversion initiation is illustrated in Figure 7.  
When R/C is high, the data lines are enabled. The next con-  
version starts with the falling edge of R/C. The data lines  
return and remain in high impedance state until another  
R/C high pulse.  
R/C  
t
DS  
STS  
t
HDR  
Analog Considerations  
t
DDR  
HIGH IMPEDANCE  
Application Hints  
D0–11  
Physical Layout  
For best system performance, PCBs should be used for  
the MAX174/MX574A/MX674A. Wirewrap boards are not  
recommended. The layout of the board should ensure  
that digital and analog signal lines are kept separated  
from each other as much as possible. Care should be  
taken not to run analog and digital lines parallel to each  
other or digital lines underneath the MAX174/MX574A/  
MX674A.  
Figure 7. High Pulse for R//C in Stand-Alone Mode  
ANALOG SUPPLY  
GND  
DIGITAL SUPPLY  
-15V  
+15V  
+5V  
GND  
Grounding  
The recommended power-supply grounding practice is  
shown in Figure 8. The ground reference point for the on-  
chip reference is AGND. It should be connected directly  
to the analog reference point of the system. The analog  
and digital grounds should be connected together at the  
package in order to gain all of the accuracy possible  
from the MAX174/MX574A/MX674A in high digital noise  
environments. In situations permitting, they can be con-  
nected to the most accessible ground-reference point.  
The preference is analog power return.  
V
GND  
V
CC  
V
AGND  
V
V
L
DGND  
+5V DGND  
EE  
EE  
CC  
S/H AND  
ANALOG  
CIRCUITRY  
DIGITAL  
CIRCUITRY  
MAX174  
MX574A  
MX674A  
Figure 8. Power-Supply Grounding Practice  
���������������������������������������������������������������� Maxim Integrated Products 11  
 
 
 
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
When using the 20V as the analog input, load capaci-  
IN  
Power-Supply Bypassing  
The MAX174/MX574A/MX674A power supplies must be  
filtered, well regulated, and free from high-frequency  
noise, or unstable output codes will result. Unless great  
care is taken in filtering any switching spikes present in  
the output, switching power supplies is not suggested for  
applications requiring 12-bit resolution. Take note that a  
few millivolts of noise converts to several error counts in  
a 12-bit ADC.  
tance on the 10V pin must be minimized. Especially on  
IN  
the faster MAX174, leave the 10V pin open to minimize  
IN  
capacitance and to prevent linearity errors caused by  
inadequate settling time.  
The amplifier driving the analog input must have low  
enough DC output impedance for low full-scale error.  
Furthermore, low AC output impedance is also required  
since the analog input current is modulated at the clock  
rate during the conversion. The output impedance of an  
amplifier is the open-loop output impedance divided by  
the loop gain at the frequency of interest.  
All power-supply pins should use supply decoupling capac-  
itors connected with short lead length to the pins, as shown  
in Figure ±. The V  
and V pins should be decoupled  
CC  
EE  
directly to AGND. A 4.7µF tantalum type in parallel with a  
0 1µF disc ceramic type is a suitable decoupling.  
MX574A and MX674A—The approximate internal clock  
rate is 600kHz and 1MHz, respectively, and amplifiers  
like the MAX400 can be used to drive the input.  
Internal Reference  
The MAX174/MX574A/MX674A have an internal buried  
zener reference that provides a 10V, low-noise and low-  
temperature drift output. An external reference voltage  
can also be used for the ADC. When using ±15V sup-  
plies, the internal reference can source up to 2mA in  
addition to the BIPOFF and REFIN inputs over the entire  
operating temperature range. With ±12V supplies, the  
reference can drive the BIPOFF and REFIN inputs over  
temperature, but it CANNOT drive an additional load.  
MAX174—The internal clock rate is 2MHz and faster  
amplifiers like the OP-27, AD711, or OP-42 are required.  
Track-and-Hold Interface  
The analog input to the ADC must be stable to within  
1/2 LSB during the entire conversion for specified 12-bit  
accuracy. This limits the input signal bandwidth to a  
couple of hertz for sinusoidal inputs even with the faster  
MAX174. For higher bandwidth signals, a track-and-hold  
amplifier should be used.  
Driving the Analog Input  
The STS output may be used to provide the Hold signal  
to the track-and-hold amplifier. However, since the A/D’s  
DAC is switched at approximately the same time as the  
conversion is initiated, the switching transients at the out-  
put of the T/H caused by the DAC switching may result in  
code dependent errors. It is recommended that the Hold  
signal to the T/H amplifier precede a conversion or be  
coincident with the conversion start.  
The input leads to AGND and 10V or 20V should be  
IN  
IN  
as short as possible to minimize noise pick up. If long  
leads are needed, use shielded cables.  
+5V  
V
L
C
C
1
4
The first bit decision by the A/D is made approximately  
1.5 clock cycles after the start of the conversion. This is  
2.5µs, 1.5µs, and 0.8µs for the MX574A, MX674A, and  
MAX174, respectively. The T/H hold settling time must  
be less than this time. For the MX574A and MX674A, the  
AD585 sample-and-hold is recommended (Figure 10).  
For the MAX174, a faster T/H amplifier, like the HA5320  
or HA5330, should be used (Figure 11).  
DIGITAL  
GROUND  
DGND  
MAX174  
MX574A  
MX674A  
RECOMMENDED  
V
+12V/15V  
CC  
C
C
C
C
5
6
2
3
ANALOG  
GROUND  
AGND  
Input Configurations  
The MAX174/MX574A/MX674A input range can be set  
using pin strapping. Table 3 shows the possible input  
ranges and ideal transition voltages. End-point errors can  
be adjusted in all ranges.  
V
EE  
-12V/15V  
C , C , C – 0.1µF CERAMIC  
1
2
4
C , C , C – 4.7µF  
4
5
6
Figure 9. Power-Supply Bypassing  
���������������������������������������������������������������� Maxim Integrated Products 12  
 
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
Table 3. Input Ranges and Ideal Digital Output Codes  
ANALOG INPUT VOLTAGE (V)  
0 to +20V 5V  
DIGITAL OUTPUT  
MSB LSB  
0 to +10V  
+10.0000  
+±.±±63  
+5.0012  
+4.±±88  
+4.±±63  
+0.0012  
0.0000  
10V  
+10.0000  
+±.±±27  
+0.0024  
-0.0024  
-0.0073  
-±.±±76  
-10.0000  
+20.0000  
+1±.±±27  
+10.0024  
+±.±±76  
+±.±±27  
+0.0024  
0.0000  
+5.0000  
+4.±±63  
+0.0012  
-0.0012  
-0.0037  
-4.±±88  
-5.0000  
1111 1111 1111  
1111 1111 1110*  
1000 0000 0000*  
0111 1111 1111*  
0111 1111 1110*  
0000 0000 0000*  
0000 0000 0000  
Note 7: For unipolar input ranges, output coding is straight binary.  
Note 8: For bipolar input ranges, output coding is offset binary.  
Note 9: For 0 to + 10V or ±5V ranges, 1 LSB = 2.44mV.  
Note 10: For 0 to +20V or ±10V ranges, 1 LSB = 4.88mV.  
*The digital outputs will be flickering between the Indicated code and the indicated code plus one.  
CONTROL  
INPUTS  
+V  
HOLD  
LREF  
+15V  
4.7µF  
STS  
S
0.1µF  
AD585*  
D011  
MX574A*  
MX674A  
HOLD  
VOUT  
20V  
10V  
IN  
IN  
V
+15V  
4.7µF  
CC  
0.1µF  
0.1µF  
0.1µF  
-V  
-15V  
4.7µF  
S
0.1µF  
-V  
IN  
BIPOFF  
REFOUT  
REFIN  
V
EE  
-15V  
50I  
50I  
4.7µF  
+V  
IN  
ANALOG  
INPUT  
GND  
V
L
+5V  
4.7µF  
AGND  
DGND  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 10. MX574/MX674A to AD585 Sample-and-Hold Interface  
���������������������������������������������������������������� Maxim Integrated Products 13  
 
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
CONTROL  
INPUTS  
+V  
S/H  
+15V  
4.7µF  
STS  
S
0.1µF  
D011  
HA5320*  
MAX174*  
20V  
10V  
IN  
IN  
V
+15V  
4.7µF  
CC  
VOUT  
0.1µF  
0.1µF  
0.1µF  
-V  
S
-15V  
4.7µF  
0.1µF  
-V  
IN  
BIPOFF  
REFOUT  
REFIN  
V
-15V  
EE  
50I  
50I  
4.7µF  
+V  
IN  
ANALOG  
INPUT  
GND  
V
L
+5V  
4.7µF  
AGND  
DGND  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 11. MAX174 to HA5320 Sample-and-Hold Interface  
Unipolar Input Operation  
The unipolar transfer function and input connections are  
shown in Figures 12 and 13.  
Offset and Full-Scale Adjustment  
In applications where the offset and full-scale range  
have to be adjusted, use the circuit shown in Figure 12.  
The offset should be adjusted first. Apply 1/2 LSB at the  
analog input and adjust R1 until the digital output code  
flickers between 0000 0000 0000 and 0000 0000 0001.  
To adjust the full-scale range, apply FS - 3/2 LSB at the  
analog input and adjust R2 until the output code changes  
between 1111 1111 1110 and 1111 1111 1111.  
Because all internal resistors of the MAX174/MX574A/  
MX674A are trimmed for absolute calibration, additional  
trimming is not necessary for most applications. The  
absolute accuracy for each grade is given in the speci-  
fication tables.  
If the offset trim is not needed, BIPOFF can be tied direct-  
ly to AGND. The two resistors and trimmer for BIPOFF  
can then be discarded. A 50ω ±1% metal film resistor  
should be attached between REFOUT and REFIN.  
Bipolar Input Operation  
The bipolar transfer function is shown in Figure 14, and  
input connections are shown in Figure 15. One or both  
of the trimmers can be exchanged with a 50ω ±1% fixed  
resistor if the offset and gain specifications suffice.  
For a 0 to +10V input range, the analog input is con-  
nected between AGND and 10V . For a 0 to +20V input  
IN  
range, the analog input is connected between AGND  
Offset and Full-Scale Adjustment  
To begin bipolar calibration, a signal 1/2 LSB above neg-  
ative full-scale is applied. R1 is trimmed until the digital  
output flickers between 0000 0000 0000 and 0000 0000  
0001. Next, a signal 3/2 LSB below positive full scale  
is applied. Then, R2 is trimmed until the output flickers  
between 1111 1111 1110 and 1111 1111 1111.  
and 20V . These ADCs can easily handle an input signal  
IN  
beyond the supplies. If full-scale trim is not needed, the  
gain trimmer, R2, should be swapped with a 50ω resis-  
tor. Should a 10.24V input range be selected, a 200ω  
trimmer should be inserted in series with 10V . For a full-  
IN  
scale input range of 20.48V, use a 500ω trimmer in series  
with 20V . The nominal input impedance into 10V is  
IN  
IN  
5kω and 10kω for 20V .  
IN  
���������������������������������������������������������������� Maxim Integrated Products 14  
 
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
OUTPUT CODE  
FS = 4069 LSBs  
1111 1111 1111  
1111 1111 1110  
OUTPUT CODE  
FS = 4069 LSBs  
1111 1111 1101  
1000 0000 0001  
1000 0000 0000  
1111 1111 1111  
1111 1111 1110  
1111 1111 1101  
0000 0000 0011  
0000 0000 0010  
0000 0000 0001  
0000 0000 0000  
0111 1111 1111  
FULL-SCALE  
TRANSITION  
0111 1111 1110  
0000 0000 0011  
0000 0000 0010  
0000 0000 0001  
0000 0000 0000  
0
1
2
3
FS-1 FS  
FS  
2
FS  
2
FS  
2
FS  
2
+2  
-2 -1  
0
1
2
-
-
FS  
2
FS  
2
+1  
1
-
ANALOG INPUT VOLTAGE IN LSBs  
Figure 12. Ideal Unipolar Transfer Function  
Figure 14. Ideal Bipolar Transfer Function  
GAIN  
MAX174*  
MX574A  
MX674A  
MAX174*  
MX574A  
MX674A  
GAIN  
REFOUT  
REFIN  
R
2
R
2
100I  
+12V TO +15V  
100I  
REFIN  
REFOUT  
BIPOFF  
100kI  
OFFSET  
BIPOFF  
R
1
100kI  
R
1
100I  
100I  
-12V TO -15V  
OFFSET  
0 TO +10V  
0 TO +20V  
10V  
20V  
IN  
IN  
Q5V  
10V  
20V  
IN  
ANALOG  
INPUTS  
ANALOG  
INPUTS  
Q10V  
IN  
AGND  
AGND  
*ADDITIONAL PINS OMITTED FOR CLARITY  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 15. Bipolar Input Connections  
Figure 13. Unipolar Input Connections  
���������������������������������������������������������������� Maxim Integrated Products 15  
 
 
 
 
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
Ordering Information  
PIN-  
PACKAGE  
LINEARITY  
(LSB)  
TEMPCO  
(ppm/NC)  
PIN-  
PACKAGE  
LINEARITY  
(LSB)  
TEMPCO  
(ppm/NC)  
PART  
PART  
8µs Maximum Conversion Time  
TEMP RANGE: 0NC to +70NC  
TEMP RANGE: -55NC to +125NC  
MX674ASQ  
MX674ATQ  
MX674AUQ  
MX674ASD  
MX674ATD  
MX674AUD  
28 CERDIP*  
28 CERDIP*  
1
¾
¾
1
50  
25  
12  
50  
25  
12  
MAX174ACPI+  
MAX174BCPI+  
MAX174CCPI+  
MAX174ACWI+  
MAX174BCWI+  
MAX174CCWI+  
MAX174BC/D  
28 Plastic DIP  
28 Plastic DIP  
28 Plastic DIP  
28 Wide SO  
28 Wide SO  
28 Wide SO  
Dice*  
½
½
1
10  
27  
50  
10  
27  
50  
28 CERDIP*  
28 Ceramic SB  
28 Ceramic SB  
28 Ceramic SB  
½
½
1
¾
¾
25µs Maximum Conversion Time  
TEMP RANGE: 0NC to +70NC  
1/2  
TEMP RANGE: -40NC to +85NC  
MX574AJN+  
MX574AKN+  
MX574ALN+  
MX574AJCWI+  
MX574AKCWI+  
MX574ALCWI+  
MX574AJP+  
MX574AKP+  
MX574ALP+  
MX574AK/D  
28 Plastic DIP  
28 Plastic DIP  
28 Plastic DIP  
28 Wide SO  
28 Wide SO  
28 Wide SO  
28 PLCC  
1
½
½
1
50  
27  
10  
50  
27  
10  
50  
27  
10  
MAX174AEPI+  
MAX174BEPI+  
MAX174CEPI+  
MAX174AEWI+  
MAX174BEWI+  
MAX174CEWI+  
28 Plastic DIP  
28 Plastic DIP  
28 Plastic DIP  
28 Wide SO  
28 Wide SO  
28 Wide SO  
½
½
1
1±  
38  
75  
1±  
38  
75  
½
½
1
½
½
1
TEMP RANGE: -55NC to +125NC  
28 PLCC  
½
½
½
MAX174AMJI  
MAX174BMJI  
MAX174CMJ  
28 CERDIP  
28 CERDIP  
28 CERDIP  
¾
¾
12  
25  
50  
28 PLCC  
Dice*  
1/21  
TEMP RANGE: -40NC to +85NC  
15µs Maximum Conversion Time  
TEMP RANGE: 0NC to +70NC  
MX574AJEPI+  
MX574AKEPI+  
MX574ALEPI+  
MX574AJEWI+  
MX574AKEWI+  
MX574ALEWI+  
28 Plastic DIP  
28 Plastic DIP  
28 Plastic DIP  
28 Wide SO  
28 Wide SO  
28 Wide SO  
1
75  
38  
1±  
75  
38  
1±  
½
½
1
MX674AJN+  
MX674AKN+  
MX674ALN+  
MX674AJCWI+  
MX674AKCWI+  
MX674ALCWI+  
MX674AK/D  
28 Plastic DIP  
28 Plastic DIP  
28 Plastic DIP  
28 Wide SO  
28 Wide SO  
28 Wide SO  
Dice*  
1
50  
27  
10  
50  
27  
10  
½
½
1
½
½
½
½
½
TEMP RANGE: -55NC to +125NC  
MX574ASQ  
MX574ATQ  
MX574AUQ  
MX574ASD  
MX574ATD  
MX574AUD  
28 CERDIP*  
28 CERDIP*  
1
50  
25  
12  
50  
25  
12  
¾
¾
1
TEMP RANGE: -40NC to +85NC  
28 CERDIP*  
MX674AJEPI+  
MX674AKEPI+  
MX674ALEPI+  
MX674AJEWI+  
MX674AKEWI+  
MX674ALEWI+  
28 Plastic DIP  
28 Plastic DIP  
28 Plastic DIP  
28 Wide SO  
28 Wide SO  
28 Wide SO  
1
½
½
1
75  
38  
1±  
75  
38  
1±  
28 Ceramic SB  
28 Ceramic SB  
28 Ceramic SB  
¾
¾
½
½
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*Maxim reserves the right to ship Ceramic SB in lieu of CERDIP packages.  
**Consult factory for dice specifications.  
���������������������������������������������������������������� Maxim Integrated Products 16  
 
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
Chip Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE  
TYPE  
PACKAGE OUTLINE  
LAND  
PATTERN NO.  
CODE  
P28+2  
Q28+3  
W28+2  
NO.  
28 PDIP  
28 PLCC  
21-0044  
21-0049  
21-0042  
90-0235  
90-0109  
28 Wide SO  
���������������������������������������������������������������� Maxim Integrated Products 17  
MAX174/MX574A/MX674A  
Industry-Standard, Complete 12-Bit ADCs  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
3/±0  
Initial release  
Updated the Electrical Characteristics and Ordering Information. Added  
Revision History.  
1
8/11  
2–4  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
18  
©
2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MX674ALEWI-T

ADC, Successive Approximation, 12-Bit, 1 Func, Parallel, Word Access, BICMOS, PDSO28, SO-28
MAXIM

MX674ALN

Industry Standard Complete 12-Bit A/D Converters
MAXIM

MX674ALN+

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDIP28, ROHS COMPLIANT, PLASTIC, DIP-28
MAXIM

MX674ASD

Industry Standard Complete 12-Bit A/D Converters
MAXIM

MX674ASQ

Industry Standard Complete 12-Bit A/D Converters
MAXIM

MX674ASQ/883B

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, CDIP28, CERDIP-28
MAXIM

MX674ATD

Industry Standard Complete 12-Bit A/D Converters
MAXIM

MX674ATQ

Industry Standard Complete 12-Bit A/D Converters
MAXIM

MX674AUD

Industry Standard Complete 12-Bit A/D Converters
MAXIM

MX674AUQ

Industry Standard Complete 12-Bit A/D Converters
MAXIM

MX674AUQ/883B

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, CDIP28, CERDIP-28
MAXIM

MX67L12816J3TC-15

Flash, 1MX16, 150ns, PDSO56, 14 X 20 MM, PLASTIC, MO-142, TSOP1-56
Macronix