MX7534TD [MAXIM]

Microprocessor-Compatible, 14-Bit DACs; 微处理器兼容, 14位DAC
MX7534TD
型号: MX7534TD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Microprocessor-Compatible, 14-Bit DACs
微处理器兼容, 14位DAC

微处理器
文件: 总16页 (文件大小:144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1116; Rev 1; 11/96  
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
4/MX735  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
14-Bit Monotonic Over Full Temperature Range  
Full 4-Quadrant Multiplication  
The MX7534/MX7535 are high-performance, CMOS,  
monolithic, 14-bit digital-to-analog converters (DACs).  
Wafer-level, laser-trimmed, thin-film resistors and tempera-  
ture-compensated NMOS switches assure operation over  
the full operating temperature range with exceptional lin-  
ear and gain stability.  
µP-Compatible, Double-Buffered Inputs  
Exceptionally Low Gain Tempco (2.5ppm/°C)  
Low Output Leakage (<20nA) Over Temp.  
Low Power Consumption  
The MX7534 accepts right-justified data in two bytes from  
an 8-bit bus, while the MX7535 operates with a 14-bit data  
bus with separate MS-byte and LS-byte select controls. In  
addition, all digital inputs are compatible with both TTL and  
5V CMOS-logic levels. The MX7534/MX7535 are intended  
for unipolar operation, but may be operated as bipolar  
DACs with additional external components. Both devices  
are protected against CMOS latchup, and neither requires  
the use of external Schottky protection diodes.  
TTL and CMOS Compatible  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE PIN-PACKAGE INL (LSBs)  
MX7534KN  
MX7534JN  
MX7534KCWP  
MX7534JCWP  
MX7534KP  
MX7534JP  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-25°C to +85°C  
-25°C to +85°C  
-25°C to +85°C  
-25°C to +85°C  
20 Plastic DIP  
20 Plastic DIP  
20 SO  
±1  
±2  
±1  
±2  
±1  
±2  
±2  
±1  
±2  
±1  
±2  
±1  
±2  
±1  
±2  
±1  
±2  
20 SO  
The MX7534 is available in 20-pin narrow (0.3") DIP, wide  
SO, or PLCC packages. The MX7535 is available in  
28-pin, 600 mil wide DIP, wide SO, or PLCC packages.  
20 PLCC  
20 PLCC  
MX7534J/D  
MX7534BQ  
MX7534AQ  
MX7534BD  
MX7534AD  
Dice*  
20 CERDIP  
20 CERDIP  
20 Ceramic SB  
20 Ceramic SB  
20 SO  
________________________Ap p lic a t io n s  
Machine and Motion Control Systems  
Automatic Test Equipment  
Digital Audio  
MX7534KEWP -40°C to +85°C  
MX7534JEWP -40°C to +85°C  
20 SO  
µP-Controlled Calibration Circuitry  
Programmable-Gain Amplifiers  
Digitally Controlled Filters  
MX7534TQ  
MX7534SQ  
MX7534TD  
MX7534SD  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
20 CERDIP  
20 CERDIP  
20 Ceramic SB  
20 Ceramic SB  
Programmable Power Supplies  
Ordering Information continued at end of data sheet.  
*Dice are tested at +25°C, DC parameters only.  
_________________P in Co n fig u ra t io n s  
_______________Fu n c t io n a l Dia g ra m s  
TOP VIEW  
REF  
RFB  
1
2
3
4
5
6
7
8
9
20  
19  
V
SS  
V
DD  
19  
MX7534  
V
DD  
2
3
RFB  
IOUT  
1
IOUT  
AGNDS  
AGNDF  
DGND  
D7  
18 CS  
14-BIT DAC  
REF  
4
5
17 WR  
AGNDS  
AGNOF  
14  
MX7534  
DAC REGISTER  
A0  
A1  
D0  
D1  
16  
15  
14  
13  
8
6
MS  
15  
16  
18  
17  
LS  
A1  
CONTROL  
LOGIC  
INPUT  
INPUT  
A0  
CS  
REGISTER  
REGISTER  
D6  
D5  
12 D2  
11 D3  
WR  
D4 10  
6
20  
SS  
7–14  
D7D0  
DGND  
V
DIP/SO/PLCC/Ceramic SB  
Functional diagrams continued at end of data sheet.  
MX7535 at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to DGND ............................................................-0.3V, +17V  
to AGND .............................................................-15V, +0.3V  
28-Pin PLCC (derate 10.53mW/°C above +70°C) .........842mW  
20-Pin CERDIP (derate 11.11mW/°C above +70°C)......889mW  
28-Pin CERDIP (derate 16.67mW/°C above +70°C)........1.33W  
20-Pin Ceramic SB  
(derate 11.76mW/°C above +70°C).............................941mW  
28-Pin Ceramic SB  
V
SS  
REF to AGND (MX7534) ......................................................±25V  
REFS to AGND (MX7535) ....................................................±25V  
REFF to AGND (MX7535) ....................................................±25V  
RFB to AGND.......................................................................±25V  
Digital Input Voltage to DGND.........................-0.3V, V + 0.3V  
(derate 20.00mW/°C above +70°C)................................1.6W  
Operating Temperature Ranges  
DD  
IOUT to DGND.................................................-0.3V, V + 0.3V  
DD  
AGND to DGND...............................................-0.3V, V + 0.3V  
MX753_J/K............................................................0°C to +70°C  
MX753_A/B ........................................................-25°C to +85°C  
MX753_EW_.......................................................-40°C to +85°C  
MX753_S/T.......................................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
Continuous Power Dissipation (T = +70°C)  
A
20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW  
28-Pin Plastic DIP (derate 14.29mW/°C above +70°C)......1.14W  
20-Pin SO (derate 10.00mW/°C above +70°C)..............800mW  
28-Pin SO (derate 12.50mW/°C above +70°C).....................1W  
20-Pin PLCC (derate 10.00mW/°C above +70°C) .........800mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
4/MX735  
ELECTRICAL CHARACTERISTICS  
(V = +11.4V to +15.75V (Note 1), V  
= 10V, V  
= V  
= V = 0V, T = T  
to T , unless otherwise noted.)  
MAX  
DD  
REF  
IOUT  
AGNDS  
SS  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY  
Resolution  
14  
Bits  
LSB  
LSB  
MX753_K/B/T  
MX753_J/A/S  
±1  
±2  
±1  
Relative Accuracy  
INL  
Differential Nonlinearity  
Guaranteed Monotonic  
Measured with internal R  
includes effects of leakage  
current and gain TC  
,
FB MX753_K/B/T  
±4  
±8  
Full-Scale Error  
LSB  
MX753_J/A/S  
MX753_K/B/T  
MX753_J/A/S  
±0.5  
±0.5  
±2.5  
±5  
Gain Temperature Coefficient  
(Note 2)  
ppm/°C  
All digital  
inputs at 0V  
T
A
= +25°C  
±5  
Output Leakage Current  
I
nA  
OUT  
All digital  
inputs at 0V,  
MX753_J/K/A/B  
MX753_S/T  
±25  
T
to T  
= T  
A
MIN  
MAX  
±150  
V
SS  
= 0V  
REFERENCE INPUT  
Reference Voltage Input  
Resistance (Note 3)  
R
3.5  
2.4  
6
10  
k  
REF  
DIGITAL INPUTS  
Input High Voltage  
Input Low Voltage  
V
V
V
INH  
V
0.8  
±1  
±10  
7
INL  
T
= +25°C  
A
Digital inputs  
at 0V or V  
Input Leakage Current  
µA  
pF  
DD  
T
A
= T  
to T  
MIN MAX  
Input Capacitance (Note 2)  
C
IN  
2
_______________________________________________________________________________________  
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
4/MX735  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +11.4V to +15.75V (Note 1), V  
= 10V, V  
= V  
= V = 0V, T = T  
to T , unless otherwise noted.)  
MAX  
DD  
REF  
IOUT  
AGNDS  
SS  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Positive Supply-Voltage Range  
Negative Supply-Voltage Range  
V
For specific performance  
For specific performance  
11.4  
-200  
15.75  
-500  
3
V
DD  
V
SS  
mV  
MX7534  
MX7535  
Digital inputs at  
Positive Supply Current  
Negative Supply Current  
I
DD  
mA  
µA  
V
INH  
or V  
INL  
4
I
SS  
Digital inputs at 0V or V  
500  
DD  
Note 1: Specifications are guaranteed for V of +11.4V to +15.75V. At V = +5V, device is still functional with degraded specifications.  
DD  
DD  
Note 2: Guaranteed by design, not tested.  
Note 3: Resistors have a typical -300ppm/°C tempco.  
AC PERFORMANCE CHARACTERISTICS (Note 4)  
(V = +11.4V to +15.75V, V  
= 10V, V  
= V  
(V  
for MX7535) = V = 0V, output amplifier is AD544*,  
DD  
REF  
IOUT  
AGND AGNDS SS  
T
A
= T  
to T , unless otherwise noted.)  
MAX  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
= +25°C, to 0.003% of full-scale range,  
MIN  
TYP  
MAX  
UNITS  
T
A
Output Current Setting Time  
IOUT load = 10013pF, DAC register  
alternately loaded with all 1s and all 0s  
0.8  
1.5  
µs  
II  
Measured with V  
= 0V,  
REF  
Digital-to-Analog Glitch Impulse  
IOUT loads = 10013pF, DAC register  
alternately loaded with all 1s and all 0s  
50  
nV-sec  
mVp-p  
II  
V
REF  
= ±10V, 10kHz  
T
A
= +25°C  
3
5
Multiplying Feedthrough Error  
(Note 5)  
sine wave, DAC register  
loaded with all 0s  
T
A
= T  
to T  
MIN  
MAX  
MAX  
T
= +25°C  
±0.01  
±0.02  
260  
A
Power-Supply Rejection  
V = ±5%  
DD  
%/%  
pF  
T
A
= T  
to T  
MIN  
DAC register loaded with all 1s  
DAC register loaded with all 0s  
Output Capacitance (IOUT Pin)  
C
OUT  
130  
Output Noise Voltage Density  
(10Hz–100kHz)  
Measured between R and I  
15  
nV/Hz  
FB  
OUT  
Note 4: These characteristics are included for design guidance only, and are not subject to test.  
Note 5: Feedthrough can be further reduced by connecting the metal lid on the ceramic package to DGND.  
* AD544 is an Analog Devices part.  
_______________________________________________________________________________________  
3
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
TIMING CHARACTERISTICS (MX7534)  
(V = +11.4V to +15.75V, V  
= 10V, V  
= V  
= V = 0V, T = T  
to T , unless otherwise noted. See Figure 1a for  
MAX  
DD  
REF  
IOUT  
AGND  
SS  
A
MIN  
timing diagram.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
ns  
Address Valid to Write Setup Time  
Address Valid to Write Hold Time  
t
1
2
t
0
ns  
T
= +25°C  
60  
70  
80  
20  
20  
30  
0
A
Data Setup Time  
Data Hold Time  
t
T
A
= -25°C to +85°C  
= -55°C to +125°C  
= +25°C  
ns  
ns  
3
4
T
A
T
A
t
T
A
= -25°C to +85°C  
= -55°C to +125°C  
T
A
Chip-Select to Write-Setup Time  
Chip-Select to Write-Hold Time  
t
t
ns  
ns  
5
7
0
6
T
= +25°C  
170  
200  
240  
A
Write Pulse Width  
t
7
T
A
= -25°C to +85°C  
= -55°C to +125°C  
ns  
T
A
TIMING CHARACTERISTICS (MX7535)  
(V = +11.4V to +15.75V, V  
= 10V, V  
= V  
= V = 0V, T = T  
to T , unless otherwise noted. See Figure 1b for  
MAX  
DD  
REF  
IOUT  
AGNDS  
SS  
A
MIN  
timing diagram.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
ns  
t
1
CSMSB or CSLSB to WR Setup Time  
CSMSB or CSLSB to WR Hold Time  
t
2
0
ns  
T
= +25°C  
170  
200  
240  
170  
200  
240  
140  
160  
180  
20  
A
t
T
A
= -25°C to +85°C  
= -55°C to +125°C  
= +25°C  
ns  
ns  
ns  
ns  
LDAC Pulse Width  
Write Pulse Width  
Data-Setup Time  
Data-Hold Time  
3
T
A
T
A
t
4
t
5
t
6
T
A
= -25°C to +85°C  
= -55°C to +125°C  
= +25°C  
T
A
T
A
T
A
= -25°C to +85°C  
= -55°C to +125°C  
= +25°C  
T
A
T
A
T
= -25°C to +85°C  
= -55°C to +125°C  
20  
A
T
A
30  
4
_______________________________________________________________________________________  
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
4/MX735  
__________P in De s c rip t io n (MX7 5 3 4 )  
__________P in De s c rip t io n (MX7 5 3 5 )  
PIN  
1
NAME  
REFS  
REFF  
FUNCTION  
Reference Voltage Sense  
Reference Voltage Force  
PIN  
NAME  
FUNCTION  
REF  
Reference Input to DAC  
1
2
Feedback Resistor. Used to close the  
loop around an external op amp.  
2
3
RFB  
Feedback Resistor. Used to close the  
loop around an external op amp.  
3
4
RFB  
IOUT  
Current Output  
IOUT  
Current Output  
Analog Ground Sense. Reference  
point for external circuitry. AGNDS  
should carry minimum current.  
4
AGNDS  
Analog Ground Sense. Reference  
point for external circuitry. This pin  
should carry minimum current.  
5
AGNDS  
Analog Ground Force. Carries current  
from internal analog ground connec-  
tions. AGNDS and AGNDF are tied  
together internally.  
Analog Ground Force. Carries current  
from internal analog ground  
connections. AGNDS and AGNDF  
are tied together internally.  
5
AGNDF  
6
AGNDF  
6
DGND  
D7  
Digital Ground  
7
Data Bit 7  
7
DGND  
D13  
D12  
D11  
D10  
D9  
Digital Ground  
Data Bit 13 (MSB)  
Data Bit 12  
Data Bit 11  
Data Bit 10  
Data Bit 9  
8
D6  
Data Bit 6  
8
9
D5  
Data Bit 5 or Data Bit 13 (MSB)  
Data Bit 4 or Data Bit 12  
Data Bit 3 or Data Bit 11  
Data Bit 2 or Data Bit 10  
Data Bit 1 or Data Bit 9  
Data Bit 0 (LSB) or Data Bit 8  
Address Input 1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
D4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
D3  
D2  
D1  
D8  
Data Bit 8  
D0  
D7  
Data Bit 7  
A1  
D6  
Data Bit 6  
A0  
Address Input 0  
D5  
Data Bit 5  
Write Input. Active low.  
Chip-Select Input. Active low.  
+12V to +15V Supply-Voltage Input  
WR  
CS  
D4  
Data Bit 4  
D3  
Data Bit 3  
V
DD  
D2  
Data Bit 2  
D1  
Data Bit 1  
Bias pin for high-temperature,  
low-leakage configuration  
20  
V
SS  
D0  
Data Bit 0 (LSB)  
Chip-Select Most Significant Byte.  
Active low.  
22  
23  
24  
CSMSB  
LDAC  
Asynchronous Load DAC Input.  
Active low.  
Chip-Select Least Significant Byte.  
Active low.  
CSLSB  
WR  
25  
26  
Write Input. Active low.  
V
DD  
+12V to +15V Supply-Voltage Input  
Bias pin for high-temperature,  
low-leakage configuration  
27  
28  
V
SS  
N.C.  
No Connection. Not internally connected.  
_______________________________________________________________________________________  
5
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
t
1
t
2
t
1
t
2
5V  
0V  
CSMSB  
CSLSB  
LDAC  
t
1
A0,A1  
t
2
t
3
t
4
5V  
0V  
5V  
0V  
t
3
5V  
0V  
DATA  
CS  
t
5
t
6
5V  
0V  
t
4
t
4
5V  
0V  
WR  
t
7
5V  
0V  
t
6
t
6
t
5
t
5
WR  
5V  
0V  
DATA  
NOTES:  
1) ALL INPUT-SIGNAL RISE AND FALL TIMES ARE MEASURED FROM 10% TO 90%  
OF +5V. t = t = 20ns.  
4/MX735  
NOTES:  
1) ALL INPUT-SIGNAL RISE AND FALL TIMES ARE MEASURED FROM 10% TO 90%  
OF +5V. t = t = 20ns.  
R
F
V + V  
IH  
IL  
2) TIMING MEASUREMENT REFERENCE LEVEL IS  
R
F
2
V + V  
IH  
IL  
2) TIMING MEASUREMENT REFERENCE LEVEL IS  
3) IF LDAC IS ACTIVATED PRIOR TO THE RISING EDGE OF WR, THEN IT MUST  
STAY LOW FOR t OR LONGER AFTER WR GOES HIGH.  
3
2
Figure 1a. MX7534 Timing Diagram  
Figure 1b. MX7535 Timing Diagram  
g(V ,N) is the Thevenin equivalent voltage generator  
REF  
_______________De t a ile d De s c rip t io n  
due to the reference input voltage, V , and the trans-  
REF  
Dig it a l-t o -An a lo g S e c t io n  
fer function of the R-2R ladder, N.  
The basic MX7534/MX7535 digital-to-analog converter  
(DAC) circuit consists of a laser-trimmed, thin-film,  
11-bit R-2R resistor array, a 3-bit segmented resistor  
array, and NMOS current switches, as shown in Figure  
2. The three MSBs are decoded to drive switches A–G  
of the segmented array, and the remaining bits drive  
switches S0–S10 of the R-2R array.  
Dig it a l S e c t io n  
All digital inputs are both TTL and 5V CMOS logic compat-  
ible. The digital inputs are protected from electrostatic dis-  
charge (ESD) with typical input currents of less than 1nA.  
To minimize power-supply currents, keep digital input volt-  
ages as close to 0V and 5V logic levels as possible.  
Binary weighted currents are switched to either AGNDF  
__________Ap p lic a t io n s In fo rm a t io n  
or I , depending on the status of each input bit. The  
OUT  
Un ip o la r Op e ra t io n (2 -Qu a d ra n t  
Mu lt ip lic a t io n )  
Figures 4a and 4b show the circuit diagram for unipolar  
binary operation. With an AC input, the circuit performs  
2-quadrant multiplication. The code table for Figure 4 is  
given in Table 2.  
R-2R ladder current is one-eighth of the total reference  
input current. The remaining seven-eighths of the cur-  
rent flows in the segmented resistors, dividing equally  
among these seven resistors. The input resistance at  
REF is constant; therefore, it can be driven by a voltage  
or current source of positive or negative polarity.  
The MX7534/MX7535 are optimized for unipolar output  
Capacitor C1 provides phase compensation and helps  
prevent overshoot and ringing when high-speed op  
amps are used. Note that the output polarity is the  
inverse of the reference input.  
operation (analog output from 0V to -V  
), although  
REF  
bipolar operation (analog output from +V  
to -V ) is  
REF  
REF  
possible with some added external components.  
Figure 3 shows the equivalent circuit for the two DACs.  
C
varies from about 90pF to 180pF, depending on  
OUT  
the digital code. R denotes the DACS equivalent out-  
0
p ut re s is ta nc e , whic h va rie s with the inp ut c od e .  
6
_______________________________________________________________________________________  
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
4/MX735  
R
R
R
REFS*  
REFF*  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
R/4  
G
F
E
D
C
B
A
S10  
S9  
S0  
RFB  
IOUT  
AGNDS  
AGNDF  
*NOTE: VALID FOR MX7535. IN MX7534, 0REFS AND 0REFF ARE REPLACED BY ONE PIN: REF.  
Figure 2. Simplified Circuit Diagram  
Ze ro -Offs e t Ad ju s t m e n t  
(Fig u re s 4 a a n d 4 b )  
1) Load the DAC register with all 0s.  
R/4  
RFB  
R
O
2) Adjust the offset of amplifier A1 so that V (see fig-  
0
IOUT  
ure) is at a minimum (i.e., 30µV).  
+
Ga in Ad ju s t m e n t  
(Fig u re s 4 a a n d 4 b )  
g(V , N)  
REF  
C
OUT  
I
LEAKAGE  
1) Load the DAC register with all 1s.  
16383  
AGNDS  
AGNDF  
2) Trim potentiometer R1 so that V  
= -V  
IN  
OUT  
(
)
16384  
In fixed-reference applications, adjust full scale by  
omitting R1 and R2 and trimming the reference voltage  
magnitude. In many applications, the excellent Gain  
Tempco and Gain Error specifications eliminate the  
ne e d for g a in a d jus tme nt. Howe ve r, if trims a re  
required and the DAC is to operate over a wide temper-  
ature range, use low-tempco (>300ppm/°C) resistors.  
Figure 3. Equivalent Analog Output Circuit  
Table 1. MX7534 Logic States  
WR  
CS  
A1  
A2  
FUNCTION  
X
1
X
X
Device not selected (Note 1)  
No data transfer  
1
X
X
X
Bip o la r Op e ra t io n  
(4 -Qu a d ra n t Mu lt ip lic a t io n )  
Bipolar or 4-quadrant operation is shown in Figures 5a  
and 5b. This configuration provides for offset binary  
c od ing . Ta b le 4 s hows DAC c od e s a nd the c orre -  
sponding analog outputs for Figures 5a and 5b. With  
the DAC loaded to 10 0000 0000 0000, either adjust R1  
DAC loaded directly from  
Data Bus (Note 2)  
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
MS Input Register loaded  
from Data Bus  
LS Input Register loaded  
from Data Bus  
for V  
= 0V, or omit R1 and R2 and adjust the ratio of  
OUT  
DAC Register loaded from  
Input Registers  
R5 and R6 for V  
= 0V. Adjust the amplitude of V  
OUT  
IN  
or vary the value of R7 for full-scale trimming.  
Resistors R5, R6, and R7 must be matched to 0.003%.  
Mismatch of R5 and R6 causes both offset and full-  
scale errors. For wide temperature range operation,  
use resistors of the same material so that their tempera-  
ture coefficients match and track.  
Note 1: X = Dont Care.  
Note 2: When A1 = 0 and A0 = 0, all DAC registers are trans-  
parent. By placing all 0s or all 1s on the data inputs, the  
user can load the DAC to zero or full-scale output in  
one write operation. This simplifies system calibration.  
_______________________________________________________________________________________  
7
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
R1  
20  
R2  
10Ω  
R1  
100Ω  
V
DD  
V
IN  
V
R2  
33Ω  
IN  
1
19  
2
2
1
26  
3
C1  
33pF  
C1  
33pF  
REF  
RFB  
REFF  
RFB  
REFS  
V
DD  
16  
15  
23  
22  
A0  
A1  
LDAC  
3
4
IOUT  
CSMSB  
IOUT  
A1  
18  
17  
A1  
25  
24  
MX7534  
4
MX7535  
CS  
AGNDS  
5
AGNDS  
WR  
WR  
V
O
5
AGNDF  
SS  
CSLSB  
V
O
6
AGNDF  
SS  
D7D0  
DGND  
6
V
D13–DO DGND  
8–21  
V
7–14  
20  
7
27  
ANALOG  
GROUND  
ANALOG  
GROUND  
INPUT  
DATA  
INPUT  
DATA  
Figure 4b. Unipolar Binary Operation  
Figure 4a. Unipolar Binary Operation  
4/MX735  
Gro u n d in g Co n s id e ra t io n s  
Table 2. Unipolar Binary Code Table  
Since IOUT and the output amplifier noninverting input  
are sensitive to offset voltages, connect nodes that  
must be grounded directly to a single-point ground  
through a separate, very-low-resistance path. Note that  
the output currents at IOUT and AGNDF vary with input  
code and create code-dependent error if these termi-  
nals are connected to ground (or a virtual ground)  
through a resistive path.  
BINARY NUMBER IN  
DAC REGISTER  
ANALOG OUTPUT  
(V  
OUT)  
MSB  
11  
LSB  
1111 -V  
16383  
16384  
8192  
16384  
1111  
0000  
0000  
0000  
1111  
0000  
0000  
0000  
IN  
(
(
(
)
)
)
1
2
10  
00  
00  
0000 -V  
= -  
V
IN  
IN  
1
0001 -V  
IN  
To obtain high accuracy, it is important to use a proper  
grounding technique. The two AGND pins (AGNDF‚  
AGNDS) provide flexibility in this respect. In Figures 4a  
a nd 4b , AGNDS a nd AGNDF a re s horte d tog e the r  
e xte rna lly a nd a n e xtra op a mp , A2, is not us e d .  
Volta ge -drops due to bond-wire re sista nc e a re not  
compensated for in this circuit; this could create a lin-  
earity error of approximately 0.1LSB due to bond-wire  
resistance alone. This can be eliminated by using the  
circuits shown in Figures 6a and 6b, where A2 main-  
ta ins AGNDS a t s ig na l g round p ote ntia l. By us ing  
force/sense techniques, all switch contacts on the DAC  
are kept at exactly the same potential, and any error  
caused by bond-wire resistance is eliminated.  
16384  
0000 0V  
feedthrough. The traces connecting IOUT and AGNDS  
to the inverting and noninverting op amp inputs are  
kept as short as possible. Gain trim components, R3  
and R4, are omitted.  
Ze ro -Offs e t Ad ju s t m e n t  
(Fig u re s 6 a a n d 6 b )  
1) Load DAC register with all 0s.  
2) Adjust offset of amplifier A2 for minimum potential at  
AGNDS. This potential should be 30µV with respect  
to signal ground.  
Figure 7 shows a remote voltage reference driving the  
MX7535. Op amps A2 and A3 compensate for voltage  
d rop s a long the re fe re nc e inp ut line a nd a na log  
ground line.  
3) Adjust A1s offset so that V  
is at a minimum  
OUT  
(i.e., 30µV).  
Figure 8 shows a printed circuit board (PCB) layout with  
a single output amplifier for the MX7534. The input to  
REF (Pin 1) is shielded to reduce AC feedthrough, while  
the d ig ita l inp uts a re s hie ld e d to minimize d ig ita l  
8
_______________________________________________________________________________________  
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
4/MX735  
V
IN  
V
IN  
R2 10  
R1  
20Ω  
V
DD  
R2, 33Ω  
V
R6  
20k  
DD  
R1  
100Ω  
R6  
20k  
R7  
20k  
1
19  
2
3
C1  
33pF  
C1  
33pF  
1
26  
R7  
20k  
2
REF  
RFB  
REFF REFS RFB  
16  
23  
22  
A0  
A1  
LDAC  
R5  
10k  
3
4
15  
18  
17  
R5 10k  
IOUT  
CSMSB  
IOUT  
AGNDS  
A1  
A1  
25  
24  
MX7534  
MX7535  
AGNDS  
+
CS  
+
WR  
A2  
R8, 5k,10%  
A2  
R8, 5k,10%  
4
5
+
WR  
AGNDF  
AGNDF  
CSLSB  
+
V
O
V
O
D7D0 DGND  
6
V
5
D13–D0 DGND  
SS  
V
SS  
6
20  
7
27  
7–14  
8–21  
ANALOG  
GROUND  
ANALOG  
GROUND  
INPUT  
DATA  
INPUT  
DATA  
Figure 5a. Bipolar Operation  
Figure 5b. Bipolar Operation  
Ga in Ad ju s t m e n t  
(Fig u re s 6 a a n d 6 b )  
Table 3. MX7535 Logic States  
1) Load DAC register with all 1s.  
2) Trim potentiometer R3 so that V  
CSMSB CSLSB LDAC  
WR  
0
FUNCTION  
16383  
16384  
= -  
V
IN  
OUT  
(
)
0
1
1
0
1
1
Load MS Input Register  
Load LS Input Register  
0
Lo w -Le a k a g e Co n fig u ra t io n  
Leakage current in the DAC flowing into the I line  
can cause gain, linearity, and offset errors. Leakage is  
worse at high temperatures.  
Load LS and MS Input  
Registers  
0
1
0
0
1
0
1
0
0
0
OUT  
Load DAC Register  
from Input Register  
X
0
Negatively bias V for a high-temperature, low-leakage  
SS  
configuration.  
All registers are  
transparent.  
Dyn a m ic Co n s id e ra t io n s  
1
1
1
1
X
1
No operation  
No operation  
In static or DC applications, the output amplifiers AC  
characteristics are not critical. In higher-speed applica-  
tions, where either the reference input is an AC signal  
or the DAC output must quickly settle to a new pro-  
grammed value, the output op amps AC parameters  
must be considered.  
X
X
Note: X = Dont Care.  
Table 4. Offset Binary Bipolar Code Table  
Another error source in dynamic applications is the par-  
BINARY NUMBER IN  
DAC REGISTER  
Analog Output  
(V  
asitic signal coupling from the REF terminal to I  
.
OUT  
OUT)  
This is normally a function of board layout and lead-to-  
lead package capacitance. Signals can also be inject-  
ed into the DAC outputs when the digital inputs are  
switched. This digital feedthrough depends on circuit-  
board layout and on-chip capacitive coupling. Minimize  
layout-induced feedthrough with guard traces between  
digital inputs, REF, and DAC outputs.  
MSB  
11  
LSB  
1111 +V  
8191  
8192  
1
1111  
0000  
0000  
1111  
0000  
1111  
0000  
0000  
1111  
0000  
IN  
(
(
)
)
10  
10  
01  
00  
0001 +V  
IN  
8192  
0000  
0
1
1111 -V  
IN  
(
(
)
)
8192  
8192  
8192  
0000 -V  
= -V  
IN  
IN  
_______________________________________________________________________________________  
9
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
V
DD  
V
DD  
R3  
100Ω  
R4  
33Ω  
R2  
10Ω  
C1  
33pF  
C1  
33pF  
R1  
20Ω  
1
19  
2
2
1 26 3  
V
DD  
REF  
RFB  
V
DD  
REFF REFS  
RFB  
3
A1  
+
A1  
4
5
IOUT  
+
IOUT  
V
IN  
VOLTAGE  
REFERENCE  
MX7534  
MX7535  
AGNDS  
5
R
L
V
O
AGNDS  
AGNDF  
V
O
R
L
4
AGNDF  
SS  
A2  
D7D0 DGND  
6
A2  
V
D13–D0 DGND  
7
V
SS  
6
+
+
20  
27  
7–14  
8–21  
SIGNAL  
GROUND  
INPUT  
DATA  
INPUT  
DATA  
SIGNAL  
GROUND  
ANALOG  
GROUND  
4/MX735  
NOTE: CONTROL INPUTS OMITTED FOR CLARITY.  
NOTE: CONTROL INPUTS OMITTED FOR CLARITY.  
Figure 6a. Unipolar Binary Operation with Forced Ground  
Figure 6b. Unipolar Binary Operation with Forced Ground for  
Remote Load  
Table 5. Amplifier Performance Comparisons  
INPUT OFFSET  
INPUT BIAS  
CURRENT (I )  
B
OFFSET VOLTAGE  
SETTLING  
TO 0.003% FS  
OP AMP  
VOLTAGE (V  
)
DRIFT (TC V  
0.3µV/°C  
0.6µV/°C  
V/°C  
)
OS  
OS  
MAX400  
10µV  
2nA  
2nA  
50µs  
50µs  
5µs  
Maxim OP07  
AD554L*  
HA2620*  
25µV  
500µV  
4mV  
25pA  
35nA  
20µV/°C  
0.8µs  
* AD544L is an Analog Devices part; HA2620 is a Harris Semiconductor part.  
The MX7534/MX7535 ha ve hig h-imp e d a nc e d ig ita l  
inp uts. To minimize noise p ic kup , c onne c t the m to  
Co m p e n s a t io n  
A compensation capacitor, C1, may be needed when  
the DAC is used with a high-speed output amplifier.  
The capacitor cancels the pole formed by the DACs  
output capacitance and internal feedback resistance.  
Its value depends on the type of op amp used, but typi-  
cal values range from 10pF to 33pF. Too small a value  
causes output ringing, while excess capacitance over-  
damps the output. Minimize C1s size and improve out-  
put settling performance by keeping the PC board  
trace as short as possible and stray capacitance at  
either V  
or GND terminals when not in use. Connect  
DD  
active inputs to V  
or GND through high-value resis-  
DD  
tors (1M) to prevent static charge accumulation if  
these pins are left floating, as might be the case when  
a circuit card is left unconnected.  
Op -Am p S e le c t io n  
Input offset voltage (V ), input bias current (I ), and  
OS  
B
offset voltage drift (TC V ) are three key parameters in  
OS  
determining the choice of a suitable amplifier. To main-  
I
as small as possible.  
OUT  
tain specified accuracy with V  
of 10V, V  
should  
REF  
OS  
be less than 30µV and I should be less than 2nA.  
Op e n-loop g a in s hould b e g re a te r tha n 340,000.  
Byp a s s in g  
Place a 1µF bypass capacitor, in parallel with a 0.01µF  
B
Ma xims MAX400 ha s low V  
(10µV ma x), low I  
OS  
B
ceramic capacitor, as close to the DACs V and GND  
DD  
(2nA), and low TC V  
(0.3µV/°C max). This op amp  
OS  
pins as possible. Use a 1µF tantalum bypass capacitor  
to optimize high-frequency noise rejection. Place a  
can be used without requiring any adjustments. For  
4.7µF decoupling capacitor at V to minimize the DAC  
SS  
output leakage current.  
10 ______________________________________________________________________________________  
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
4/MX735  
V+  
V-  
PIN 1 AD544*  
V
DD  
A2  
+
2
1
26  
3
C1  
33pF  
REFF REFS  
V
DD  
RFB  
OUTPUT  
4
IOUT  
AGNDS  
C1 LOCATION  
A1  
MX7535  
+
V
0
5
R
L
AGNDF  
D13–D0 DGND  
7
V
REF  
SS  
6
V
SS  
27  
8–21  
V
DD  
INPUT  
DATA  
PIN 1 MX7534  
A3  
AGND  
DGND  
+
NOTE: CONTROL INPUTS OMITTED FOR CLARITY.  
Figure 7. Driving the MX7535 with a Remote Voltage Reference  
NOTE:  
LAYOUT IS FOR DOUBLE-SIDED  
PCB. BOLD LINE INDICATES  
TRACK ON COMPONENT SIDE.  
medium-frequency applications, the OP27 is recom-  
mended. For higher-frequency applications, the HA-  
2620 is re c omme nd e d . Howe ve r, the s e op a mp s  
require external offset adjustment (Table 5).  
*AD544 IS AN ANALOG DEVICES PART.  
Figure 8. Suggested Layout for MX7534 Incorporating Output  
Amplifier  
________Mic ro p ro c e s s o r In t e rfa c in g  
8 0 8 6 w it h MX7 5 3 5  
14-bit word is loa d e d in two byte s, using the MOV  
instruction. A further MOV loads the DAC register and  
causes the analog data to appear at the converter out-  
put. For the example given here, the appropriate DAC  
register addresses are D002, D004, and D006. Table  
6b shows the program for loading the DAC.  
The MX7534/MX7535 interface to both 8-bit and 16-bit  
processors. Figure 9a shows the 8086 16-bit processor  
interfacing to a single MX7535. In this setup, the double-  
buffering feature of the DAC is not used. AD0–AD13 of  
the 16-bit data bus are connected to the DAC data bus  
(D0–D13). The 14-bit word is written to the DAC in one  
MOV instruction, and the analog output responds imme-  
diately. In this example, the DAC address is D000. Table  
6a shows a software routine for Figure 9a.  
8 0 8 5 A w it h MX7 5 3 4  
A typical interface circuit is shown in Figure 9c. The  
DAC is treated as four memory locations addressed by  
A0 and A1. In standard operation, three of these memo-  
ry locations are used. Table 6c shows a sample pro-  
g ra m for loa d ing the DAC with a 14-b it word . The  
MX7534 has address locations 3000–3003.  
In a multiple DAC system, the double buffering of the  
DAC chips allows the user to simultaneously update all  
DACs. In Figure 10, a 14-bit word is loaded to each of  
the DACs input registers in sequence. Then, with one  
instruction to the appropriate address, CS4 (i.e., LDAC)  
is brought low, updating all the DACs simultaneously.  
The six MSBs are written into location 3001, and eight  
LSBs are written to 3002. Then, with a write instruction to  
3003, the full 14-bit word is loaded to the DAC register.  
8 0 8 6 w it h MX7 5 3 4  
Figure 9b shows an interface circuit to a 16-bit micro-  
processor. The bottom 8 bits (AD0–AD7) of the 16-bit  
data bus are connected to the DAC data bus. The  
______________________________________________________________________________________ 11  
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
MC6 8 0 0 0 w it h MX7 5 3 5  
Figure 11a shows an interface diagram. The following  
routine writes data to the DAC input registers and then  
outputs the data via the DAC register:  
ADDRESS BUS  
16-BIT  
LATCH  
ADDRESS  
DECODE  
CSMSB  
CSLSB  
LDAC  
ALE  
WR  
01000 MOVE.W #W,D0  
DAC d a ta , W, loa d e d  
into Data Register 0.  
8086  
MOVE.W  
D0,$E000 Da ta  
W tra ns fe rre d  
MX7535*  
WR  
between D0 and DAC  
Register.  
AD13  
AD0  
DATA BUS  
D0D13  
AD0AD15  
MOVE.B #228,D7  
TRAP #14  
Control returned to the  
System.  
*SOME CIRCUITRY OMITTED FOR CLARITY  
Monitor Program  
MC6 8 0 0 0 w it h MX7 5 3 4  
Figure 11b shows the MC68000 interface diagram. The  
following routine writes data to the DAC input registers  
and then outputs the data via the DAC register:  
Figure 9a. MX7535—8086 Interface Circuit  
4/MX735  
.A2 E003  
Ad d re s s Re g is te r 2  
loaded with E003.  
ADDRESS BUS  
A2  
A1  
01000 MOVE.W #W,D0  
DAC d a ta , W, loa d e d  
into Data Register 0.  
A1 A0  
16-BIT  
LATCH  
ADDRESS  
DECODE  
CS  
ALE  
WR  
MOVEP.W D0,$0000(A2) Da ta  
W tra ns fe rre d  
b e twe e n D0 a nd the  
DACs Input Register.  
High-ordered byte trans-  
fe rre d firs t. Me mory  
address specified using  
the a d d re s s re g is te r  
indirect plus displace-  
ment addressing mode.  
Ad d re s s us e d he re  
(E003) is odd, so data is  
transferred on the low-  
ord e r ha lf of the d a ta  
bus (D0–D7).  
MX7534*  
8086  
WR  
D0D7  
AD0AD15  
DATA BUS  
*SOME CIRCUITRY OMITTED FOR CLARITY  
Figure 9b. MX7534—8086 Interface Circuit  
MOVE.W D0,$E006  
This instruction provides  
appropriate signals to  
tra ns fe r d a ta W from  
the DAC Input Register  
to the DAC Re g is te r,  
which controls the R-2R  
ladder switches.  
A8A15  
AE  
A1 A0  
ADDRESS  
DECODE  
LATCH  
CS  
8085A  
MX7534*  
WR  
WR  
MOVE.B #228,D7  
TRAP #14  
Control returned to the  
System.  
AD0AD7  
DATA BUS  
D0D7  
Monitor Program  
Since this interfacing system uses only the lower half of  
the d a ta b us , it is a ls o s uita b le for us e with the  
MC68008, which provides the user with an 8-bit data  
bus instead of the MC68000s 16-bit bus.  
*SOME CIRCUITRY OMITTED FOR CLARITY  
Figure 9c. MX7534—8085A Interface Circuit  
12 ______________________________________________________________________________________  
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
4/MX735  
Table 6a. Sample Program for Loading the MX7535  
ASSUME DS:DACLOAD,CS:DACLOAD  
DACLOAD SEGMENT AT 000  
00  
02  
04  
07  
0B  
0E  
8CC9  
8ED9  
BF00D0  
MOV CX,CS  
MOVDS,CX  
MOVDI,#D000  
:DEFINE DATA SEGMENT REGISTER EQUAL  
:TO CODE SEGMENT REGISTER  
:LOAD DI WITH D000  
:DAC LOADED WITH WXYZ  
:CONTROL IS RETURNED TO THE MONITOR PROGRAM  
C705YZWX” MOV MEM,#YZWX  
EA0000  
00FF  
Table 6b. Sample Program for Loading the MX7534 from 8086  
ASSUME DS:DACLOAD,CS:DACLOAD  
DACLOAD SEGMENT AT 000  
00  
02  
04  
07  
0A  
0B  
0C  
0F  
10  
11  
14  
8CC9  
8ED9  
BF02D0  
C605MS”  
47  
MOV CX,CS  
MOVDS,CX  
MOVDI.#D002  
MOV MEM,#“MS”  
INC DI  
INC DI  
MOV MEM,#“LS”  
INC DI  
:DEFINE DATA SEGMENT REGISTER EQUAL  
:TO CODE SEGMENT REGISTER  
:LOAD DI WITH D002  
:DAC LOADED WITH “MS”  
47  
C605LS”  
47  
47  
C60500  
EA0000  
:LS INPUT REGISTER LOADED WITH “LS”  
INC DI  
MOV MEM,#00  
JMP MEM  
:CONTENT OF INPUT REGISTERS ARE LOADED TO THE DAC REGISTER  
:CONTROL IS RETURNED TO THE MONITOR PROGRAM  
Table 6c. Sample Program for Loading  
the MX7534 from 8085A  
MC6 8 0 9 w it h MX7 5 3 4  
Figure 13a shows an interface circuit that enables the  
MX7534 to be programmed using the MC6809 8-bit  
microprocessor. Use the 16-bit D accumulator to simplify  
data transfer. The two key processor instructions are:  
2000  
01  
26  
30  
MVIH,#30  
02  
03  
2E  
01  
MVIL,#01  
LDD  
STD  
Load D accumulator from memory  
Store D accumulator to memory  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
200D  
3E  
“MS”  
77  
2C  
3E  
“LS”  
77  
2C  
77  
CF  
MVIA,#MS”  
MOV M,A  
INR L  
MVI A#LS”  
MC6 5 0 2 w it h MX7 5 3 4  
Figure 13b shows an interface diagram for the MC6502  
using the MX7534.  
MOV M,A  
INR L  
MOV M,A  
RST I  
________________Dig it a l Fe e d t h ro u g h  
In the interface diagrams shown in Figures 9–13, the  
digital inputs of the DAC are directly connected to the  
mic rop roc e s s or b us . Eve n whe n the d e vic e is not  
selected, activity on the bus can feed through on the  
DAC output through package capacitance and appear  
as noise. To minimize noise, isolate the DACs from the  
digital bus, as shown in Figures 14a and 14b.  
Z8 0 w it h MX7 5 3 4 /MX7 5 3 5  
Figure 12a is an interface circuit for the Z80, using the  
MX7535. This is an example of an 8-bit processor inter-  
face for these DACs. Figure 12b shows the schematic  
for the MX7534.  
______________________________________________________________________________________ 13  
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
ADDRESS BUS  
A1A23  
ADDRESS BUS  
16-BIT  
LATCH  
ADDRESS  
DECODE  
ADDRESS  
DECODE  
AS  
CSMSB  
CSLSB  
ALE  
WR  
CSMSB  
CSLSB  
LDAC  
CS1  
CS2  
MC68000  
8086  
CS4 CS3  
LDAC  
WR  
DTACK  
MX7535*  
WR  
R/W  
MX7535*  
D0D13  
D0D15  
DATA BUS  
D0D13  
AD0AD15  
DATA BUS  
*SOME CIRCUITRY OMITTED FOR CLARITY  
CSMSB  
CSLSB  
Figure 11a. MX7535—MC68000 Interface  
LDAC  
WR  
4/MX735  
A1A23  
ADDRESS BUS  
MX7535*  
D0D13  
A1  
A2  
A0 A1  
CS  
ADDRESS  
DECODE  
AS  
MC68000  
CSMSB  
CSLSB  
DTACK  
MX7534*  
WR  
D0D7  
LDAC  
WR  
R/W  
D0D7  
DATA BUS  
MX7535*  
D0D13  
*SOME CIRCUITRY OMITTED FOR CLARITY  
*SOME CIRCUITRY OMITTED FOR CLARITY  
Figure 11b. MX7534—MC68000 Interface  
Figure 10. MX7535—8086 Interface: Multiple DAC Systems  
14 ______________________________________________________________________________________  
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
4/MX735  
A0A15  
ADDRESS BUS  
A0A15  
ADDRESS BUS  
A0 A1  
CSLSB  
CSMSB  
ADDRESS  
DECODE  
ADDRESS  
DECODE  
MREQ  
Z80  
CS  
MREQ  
Z80  
LDAC  
MX7534*  
MX7535*  
WR  
WR  
WR  
WR  
D8D13  
D0D7  
DATA BUS  
D0D7  
D8D7  
DATA BUS  
D0D7  
*SOME CIRCUITRY OMITTED FOR CLARITY  
*SOME CIRCUITRY OMITTED FOR CLARITY  
Figure 12a. MX7535—Z80 Interface  
Figure 12b. MX7534—Z80 Interface  
ADDRESS BUS  
ADDRESS BUS  
A0A15  
R/W  
A0A15  
A0 A1  
CS  
A0 A1  
R/W  
Q
ADDRESS  
DECODE  
ADDRESS  
DECODE  
CS  
E
6502  
MX7534*  
WR  
MX7534*  
2
WR  
MC6809  
D0D7  
D0D7  
D0D7  
D0D7  
DATA BUS  
DATA BUS  
*SOME CIRCUITRY OMITTED FOR CLARITY  
*SOME CIRCUITRY OMITTED FOR CLARITY  
Figure 13a. MX7534—MC6809 Interface Circuit  
Figure 13b. MX7534—6502 Interface  
ADDRESS  
DECODE  
ADDRESS  
DECODE  
A0A15  
A0A15  
A0 A1  
CS  
A1  
A0  
MICRO-  
PROCESSOR  
SYSTEM  
EN  
CSMSB  
CSLSB  
LDAC  
QUAD LATCH  
WR  
WR  
MICRO-  
PROCESSOR  
SYSTEM  
EN  
EN  
MX7534*  
D0D7  
WR  
WR  
16-BIT  
LATCH  
QUAD LATCH  
D0D7  
MX7535*  
D0D13  
EN  
D0D15  
QUAD LATCH  
*SOME CIRCUITRY OMITTED FOR CLARITY  
*SOME CIRCUITRY OMITTED FOR CLARITY  
Figure 14a. MX7534—Interface Circuit Using Latches to  
Minimize Digital Feedthrough  
Figure 14b. MX7535—Interface Circuit Using Latches to  
Minimize Digital Feedthrough  
______________________________________________________________________________________ 15  
Mic ro p ro c e s s o r-Co m p a t ib le ,  
1 4 -Bit DACs  
___Fu n c t io n a l Dia g ra m s (c o n t in u e d )  
_____P in Co n fig u ra t io n s (c o n t in u e d )  
TOP VIEW  
V
DD  
26  
MX7535  
28 N.C.  
REFS  
REFF  
1
2
3
4
5
6
7
8
9
3
4
5
6
RFB  
IOUT  
AGNDS  
AGNDF  
LDAC  
1
2
14-BIT DAC  
REFS  
REFF  
27  
26  
V
SS  
14  
V
DD  
RFB  
23  
DAC REGISTER  
IOUT  
25 WR  
8
6
AGNDS  
AGNDF  
DGND  
24 CSLSB  
23 LDAC  
LS  
INPUT  
REGISTER  
MS  
INPUT  
REGISTER  
24  
MX7535  
CSLSB  
CSMSB  
22  
21 D0 (LSB)  
20  
22  
25  
CSMSB  
WR  
(MSB) D13  
D12  
D1  
7
27  
SS  
8–21  
D13–D0  
4/MX735  
DGND  
V
19 D2  
18 D3  
17 D4  
16 D5  
D11 10  
D10 11  
D9 12  
D8 13  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
15  
D7  
14  
D6  
PART  
TEMP. RANGE PIN PACKAGE INL (LSBs)  
MX7535KN  
MX7535JN  
MX7535KCWI  
MX7535JCWI  
MX7535KP  
MX7535JP  
MX7535J/D  
MX7535BQ  
MX7535AQ  
MX7535BD  
MX7535AD  
MX7535KEWI -40°C to +85°C  
MX7535JEWI -40°C to +85°C  
MX7535TQ  
MX7535SQ  
MX7535TD  
MX7535SD  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-25°C to +85°C  
-25°C to +85°C  
-25°C to +85°C  
-25°C to +85°C  
28 Plastic DIP  
28 Plastic DIP  
28 Wide SO  
28 Wide SO  
28 PLCC  
±1  
±2  
±1  
±2  
±1  
±2  
±2  
±1  
±2  
±1  
±2  
±1  
±2  
±1  
±2  
±1  
±2  
DIP/SO/PLCC/Ceramic SB  
28 PLCC  
Dice*  
28 CERDIP  
28 CERDIP  
28 Ceramic SB  
28 Ceramic SB  
28 Wide SO  
28 Wide SO  
28 CERDIP  
28 CERDIP  
28 Ceramic SB  
28 Ceramic SB  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
*Dice are tested at +25°C, DC parameters only.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MX7534TQ

Microprocessor-Compatible, 14-Bit DACs
MAXIM

MX7535

Microprocessor-Compatible.14-Bit DACs
ETC

MX7535AD

Microprocessor-Compatible, 14-Bit DACs
MAXIM

MX7535AQ

Microprocessor-Compatible, 14-Bit DACs
MAXIM

MX7535BD

Microprocessor-Compatible, 14-Bit DACs
MAXIM

MX7535BQ

Microprocessor-Compatible, 14-Bit DACs
MAXIM

MX7535CWI

14-Bit Digital-to-Analog Converter
ETC

MX7535J/D

Microprocessor-Compatible, 14-Bit DACs
MAXIM

MX7535J/D-T

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.8us Settling Time, DIE
MAXIM

MX7535JCWI

Microprocessor-Compatible, 14-Bit DACs
MAXIM

MX7535JCWI+

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.8us Settling Time, PDSO28, SOP-28
MAXIM

MX7535JCWI+T

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.8us Settling Time, PDSO28, SOP-28
MAXIM