MX7705EPE+ [MAXIM]

暂无描述;
MX7705EPE+
型号: MX7705EPE+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

文件: 总34页 (文件大小:662K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3051; Rev 0; 10/03  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
General Description  
Features  
The MX7705 low-power, 2-channel, serial-output ana-  
log-to-digital converter (ADC) includes a sigma-delta  
modulator with a digital filter to achieve 16-bit resolution  
with no missing codes. This ADC is pin compatible and  
software compatible with the AD7705. The MX7705 fea-  
tures an on-chip input buffer and programmable-gain  
amplifier (PGA). The device offers an SPI-/QSPI-/  
MICROWIRE-compatible serial interface.  
The MX7705 operates from a single 2.7V to 5.25V supply.  
The operating supply current is 320µA (typ) with a 3V  
supply. Power-down mode reduces the supply current to  
2µA (typ).  
Pin Compatible and Software Compatible with the  
AD7705  
16-Bit Sigma-Delta ADC  
Two Fully Differential Input Channels  
0.003% Integral Nonlinearity with No Missing Codes  
Interface with Schmitt Triggers on Inputs  
Internal Analog Input Buffers  
PGA from 1 to 128  
Single (2.7V to 3.6V) or (4.75V to 5.25V) Supply  
Self-calibration and system calibration allow the MX7705  
to correct for gain and offset errors. Excellent DC perfor-  
mance ( 0.003ꢀ ꢁSR IꢂN) and low noise (650nV) maꢃe  
the MX7705 ideal for measuring low-frequency signals  
with a wide dynamic range. The device accepts fully dif-  
ferential bipolar/unipolar inputs. An internal input buffer  
allows for input signals with high source impedances. An  
on-chip digital filter, with a programmable cutoff and out-  
put data rate, processes the output of the sigma-delta  
modulator. The first notch frequency of the digital filter is  
chosen to provide 150dB rejection of common-mode  
50Hz or 60Hz noise and 98dB rejection of normal-mode  
50Hz or 60Hz noise. A PGA and digital filtering allow sig-  
nals to be directly acquired with little or no signal-condi-  
tioning requirements.  
Low Power  
1mW (max), 3V Supply  
2µA (typ) Power-Down Current  
SPI-/QSPI-/MICROWIRE-Compatible 3-Wire Serial  
Interface  
16-Pin PDIP, SO, and TSSOP Packages  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
16 PDIP  
MX7705EPE*  
MX7705EWE*  
MX7705EUE  
The MX7705 is available in 16-pin PDIP, SO, and  
TSSOP pacꢃages.  
16 WIDE SO  
16 TSSOP  
Applications  
*Future product—contact factory for availability.  
Industrial Instruments  
Weigh Scales  
Strain-Gauge Measurements  
Noop-Powered Systems  
ꢁlow and Gas Meters  
Medical Instrumentation  
Pressure Transducers  
Thermocouple Measurements  
RTD Measurements  
Pin Configuration  
TOP VIEW  
SCLK  
1
2
3
4
5
6
7
8
16 GND  
15  
CLKIN  
V
DD  
CLKOUT  
CS  
14 DIN  
MX7705  
13 DOUT  
12 DRDY  
11 AIN2-  
10 REF-  
RESET  
AIN2+  
AIN1+  
AIN1-  
9
REF+  
PDIP/SO/TSSOP  
SPI/QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
ABSOLUTE MAXIMUM RATINGS  
DD  
All Other Pins to GꢂD.................................-0.3V to (V  
Maximum Current Input into Any Pin ..................................50mA  
V
to GꢂD..............................................................-0.3V to +6V  
Operating Temperature Range ..........................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Junction Temperature......................................................+150°C  
Nead Temperature (soldering, 10s) .................................+300°C  
+ 0.3V)  
DD  
Continuous Power Dissipation (T = +70°C)  
A
PDIP (derate 10.5mW/°C above +70°C)......................842mW  
TSSOP (derate 9.4mW/°C above +70°C) ....................755mW  
Wide SO (derate 9.5mW/°C above +70°C)..................762mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 3V or 5V, GꢂD = 0, V  
= 1.225V for V  
= 3V and V  
= 2.5V for V  
= 5V, V  
= GꢂD, external f  
=
CNKIꢂ  
DD  
REꢁ+  
DD  
REꢁ+  
DD  
REꢁ-  
2.4576MHz, CNKDIV bit = 0, C  
to GꢂD = 0.1µꢁ, C  
- to GꢂD = 0.1µꢁ, T = T  
to T  
, unless otherwise noted.)  
REꢁ+  
REꢁ  
A
MIꢂ  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY  
Resolution (No Missing Codes)  
Output Noise  
16  
Bits  
µV  
Tables 1, 3  
Integral Nonlinearity  
Unipolar Offset Error  
Unipolar Offset Drift  
Bipolar Zero Error  
INL  
Gain = 1, unbuffered  
After calibration  
(Note 2)  
±±0±±3 %FSR  
(Note 1)  
±05  
µV  
µV/°C  
µV  
After calibration  
Gain = 1 to 4  
(Note 1)  
±05  
Bipolar Zero Drift (Note 2)  
µV/°C  
Gain = 8 to 128  
After calibration  
(Notes 2, 4)  
±01  
Positive Full-Scale Error  
Full-Scale Drift  
(Notes 1, 3)  
±05  
µV  
µV/°C  
µV  
Gain Error  
After calibration  
(Notes 1, 5)  
ppm of  
FSR/°C  
Gain Drift  
(Notes 2, 6)  
±05  
Bipolar Negative Full-Scale Error  
After calibration  
Gain = 1 to 4  
±±0±±3  
1
%FSR  
Bipolar Negative Full-Scale Drift  
(Note 2)  
µV/°C  
Gain = 8 to 128  
±06  
ANALOG INPUTS (AIN1+, AIN1-, AIN2+, AIN2-)  
V
GAIN  
/
REF  
Unipolar input range  
Bipolar input range  
Unbuffered  
±
AIN Differential Input Voltage  
Range (Note 7)  
V
-V  
/
V
GAIN  
/
REF  
REF  
GAIN  
GND -  
3±mV  
V
+
DD  
3±mV  
AIN Absolute Input Voltage  
Range (Note 8)  
V
GND +  
5±mV  
V
105V  
-
DD  
Buffered  
AIN DC Leakage Current  
Unselected input channel  
1
nA  
2
_______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V or 5V, GND = ±, V  
= 10225V for V  
= 3V and V  
= 205V for V  
= 5V, V  
= GND, external f  
=
DD  
REF+  
DD  
REF+  
DD  
REF-  
CLKIN  
204576MHz, CLKDIV bit = ±, C  
to GND = ±01µF, C  
- to GND = ±01µF, T = T  
to T  
, unless otherwise noted0)  
MAX  
REF+  
REF  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
34  
MAX  
UNITS  
Gain = 1  
Gain = 2  
Gain = 4  
38  
AIN Input Capacitance  
AIN Input Sampling Rate  
pF  
45  
Gain = 8 to 128  
6±  
f
/
CLKIN  
64  
f
s
Gain = 1 to 128  
MHz  
Gain = 1  
Gain = 2  
Gain = 4  
96  
1±5  
11±  
13±  
1±5  
11±  
12±  
13±  
V
V
= 5V  
= 3V  
DD  
DD  
Gain = 8 to 128  
Gain = 1  
Input Common-Mode Rejection  
CMR  
dB  
Gain = 2  
Gain = 4  
Gain = 8 to 128  
For filter notches of 25Hz, 5±Hz,  
±±0±2 × f  
Normal-Mode 5±Hz Rejection  
Normal-Mode 6±Hz Rejection  
Common-Mode 5±Hz Rejection  
Common-Mode 6±Hz Rejection  
98  
98  
dB  
dB  
dB  
dB  
NOTCH  
For filter notches of 2±Hz, 6±Hz,  
±±0±2 × f  
NOTCH  
For filter notches of 25Hz, 5±Hz,  
±±0±2 × f  
15±  
15±  
NOTCH  
For filter notches of 2±Hz, 6±Hz,  
±±0±2 × f  
NOTCH  
EXTERNAL REFERENCE (REF+, REF-)  
V
V
= 4075V to 5025V  
= 207V to 306V  
10±  
10±±  
GND  
305  
DD  
DD  
REF Differential Input Voltage  
Range (Note 9)  
V
V
REF  
1075  
REF Absolute Input Voltage Range  
REF Input Capacitance  
V
V
DD  
Gain = 1 to 128  
1±  
pF  
f
/
CLKIN  
64  
REF Input Sampling Rate  
f
s
MHz  
DIGITAL INPUTS (DIN, SCLK, CS, RESET)  
Input High Voltage  
V
2
V
V
IH  
V
V
= 4075V to 5025V  
= 207V to 306V  
±08  
±04  
DD  
DD  
Input Low Voltage  
V
IL  
DIN, CS, RESET  
25±  
5±±  
Input Hysteresis  
V
mV  
HYST  
SCLK  
Input Current  
I
±1  
µA  
pF  
IN  
Input Capacitance  
5
_______________________________________________________________________________________  
3
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V or 5V, GND = ±, V  
= 10225V for V  
= 3V and V  
= 205V for V  
= 5V, V  
= GND, external f  
=
CLKIN  
DD  
REF+  
DD  
REF+  
DD  
REF-  
204576MHz, CLKDIV bit = ±, C  
to GND = ±01µF, C  
- to GND = ±01µF, T = T  
to T  
, unless otherwise noted0)  
MAX  
REF+  
REF  
A
MIN  
PARAMETER  
CLKIN INPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
V
= 4075V to 5025V  
= 207V to 306V  
= 4075V to 5025V  
= 207V to 306V  
305  
205  
DD  
DD  
DD  
DD  
CLKIN Input High Voltage  
V
V
CLKINH  
±08  
±04  
CLKIN Input Low Voltage  
CLKIN Input Current  
V
V
CLKINL  
I
±1±  
µA  
CLKIN  
DIGITAL OUTPUTS (DOUT, DRDY, CLKOUT)  
DOUT and DRDY,  
= 8±±µA  
±04  
±04  
±04  
±04  
I
SINK  
V
V
V
V
= 5V  
= 3V  
= 5V  
= 3V  
DD  
DD  
DD  
DD  
CLKOUT,  
= 1±µA  
I
SINK  
Output Voltage Low  
V
V
OL  
DOUT and DRDY,  
= 1±±µA  
I
SINK  
CLKOUT,  
= 1±µA  
I
SINK  
DOUT and DRDY,  
40±  
40±  
I
= 2±±µA  
SOURCE  
CLKOUT,  
I
= 1±µA  
SOURCE  
Output Voltage High  
V
V
OH  
DOUT and DRDY,  
V
-
DD  
I
= 1±±µA  
±06V  
SOURCE  
CLKOUT,  
V
-
DD  
I
= 1±µA  
±06V  
SOURCE  
Tri-State Leakage Current  
Tri-State Output Capacitance  
SYSTEM CALIBRATION  
I
DOUT only  
DOUT only  
±1±  
µA  
pF  
L
C
9
OUT  
-10±5 ×  
10±5 ×  
GAIN = selected PGA gain (1 to 128)  
(Note 1±)  
Full-Scale Calibration Range  
Offset Calibration Range  
Input Span  
V
/
V
/
V
V
V
REF  
REF  
GAIN  
GAIN  
-10±5 ×  
10±5 ×  
GAIN = selected PGA gain (1 to 128)  
(Note 1±)  
V
/
V
/
REF  
REF  
GAIN  
GAIN  
±08 ×  
201 ×  
GAIN = selected PGA gain (1 to 128)  
(Notes 1±, 11)  
V
/
V
/
REF  
REF  
GAIN  
GAIN  
4
_______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V or 5V, GND = ±, V  
= 10225V for V  
= 3V and V  
= 205V for V  
= 5V, V  
= GND, external f  
=
DD  
REF+  
DD  
REF+  
DD  
REF-  
CLKIN  
204576MHz, CLKDIV bit = ±, C  
to GND = ±01µF, C  
- to GND = ±01µF, T = T  
to T  
, unless otherwise noted0)  
MAX  
REF+  
REF  
A
MIN  
PARAMETER  
POWER REQUIREMENTS  
Power-Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
207±  
5025  
±045  
V
DD  
Unbuffered  
=1MHz,  
gain =1 to 128  
V
V
= 5V  
= 3V  
DD  
DD  
f
CLKIN  
±032  
±07  
Buffered,  
V
V
V
= 5V  
= 3V  
= 5V,  
DD  
DD  
DD  
f
=1MHz,  
CLKIN  
±06  
gain =1 to 128  
±06  
±085  
±04  
±06  
±09  
103  
±07  
101  
gain = 1 to 4  
V
= 5V,  
DD  
gain = 8 to 128  
Unbuffered,  
f
= 204576MHz  
CLKIN  
V
= 3V,  
DD  
mA  
gain = 1 to 4  
Power-Supply Current (Note 12)  
I
DD  
V
= 3V,  
DD  
gain = 8 to 128  
V
= 5V,  
DD  
gain = 1 to 4  
V
= 5V,  
DD  
gain = 8 to 128  
Buffered,  
= 204576MHz  
V
= 3V,  
DD  
f
CLKIN  
gain = 1 to 4  
V
= 3V,  
DD  
gain = 8 to 128  
V
V
= 5V  
= 3V  
16  
8
DD  
DD  
Power-down mode  
(Note 13)  
µA  
dB  
V
V
= 4075V to 5025V  
= 207V to 306V  
(Note 14)  
(Note 14)  
DD  
DD  
Power-Supply Rejection Ratio  
PSRR  
EXTERNAL CLOCK TIMING SPECIFICATIONS  
CLKIN Frequency  
Duty Cycle  
f
(Note 15)  
4±±  
4±  
25±±  
6±  
kHz  
%
CLKIN  
_______________________________________________________________________________________  
5
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
TIMING CHARACTERISTICS  
(V  
= 3V or 5V, GND = ±, V  
= 10225V for V  
= 3V and V  
= 205V for V  
= 5V, V  
= GND, external f  
=
CLKIN  
DD  
REF+  
DD  
REF+  
DD  
REF-  
204576MHz, CLKDIV bit = ±, C  
(Figures 8, 9)  
to GND = ±01µF, C  
- to GND = ±01µF, T = T  
to T  
, unless otherwise noted0) (Note 16)  
REF+  
REF  
A
MIN  
MAX  
PARAMETER  
DRDY High Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
5±± /  
CLKIN  
1±±  
s
f
Reset Pulse-Width Low  
ns  
ns  
ns  
DRDY Fall to CS Fall Setup Time  
CS Fall to SCLK Rise Setup Time  
t
t
±
12±  
±
1
2
V
V
= 4075V to 5025V  
= 207V to 306V  
8±  
DD  
DD  
SCLK Fall to DOUT Valid Delay  
t
3
ns  
±
1±±  
SCLK Pulse-Width High  
t
t
t
1±±  
1±±  
±
ns  
ns  
ns  
4
5
6
SCLK Pulse-Width Low  
CS Rise to SCLK Rise Hold Time  
V
V
= 4075V to 5025V  
= 207V to 306V  
6±  
DD  
DD  
Bus Relinquish Time After SCLK  
Rising Edge  
t
ns  
7
1±±  
1±±  
SCLK Fall to DRDY Rise Delay  
DIN to SCLK Setup Time  
DIN to SCLK Hold Time  
t
t
ns  
ns  
ns  
8
3±  
2±  
9
t
1±  
6
_______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
TIMING CHARACTERISTICS (continued)  
(V  
= 3V or 5V, GND = ±, V  
= 10225V for V  
= 3V and V  
= 205V for V  
= 5V, V  
= GND, external f  
=
CLKIN  
DD  
REF+  
DD  
REF+  
DD  
REF-  
204576MHz, CLKDIV bit = ±, C  
(Figures 8, 9)  
to GND = ±01µF, C  
- to GND = ±01µF, T = T  
to T  
, unless otherwise noted0) (Note 16)  
MAX  
REF+  
REF  
A
MIN  
Note 1: These errors are in the order of the conversion noise shown in Tables 1 and 30 This applies after calibration at the given  
temperature0  
Note 2: Recalibration at any temperature removes these drift errors0  
Note 3: Positive full-scale error includes zero-scale errors (unipolar offset error or bipolar zero error) and applies to both unipolar  
and bipolar input ranges0  
Note 4: Full-scale drift includes zero-scale drift (unipolar offset drift or bipolar zero drift) and applies to both unipolar and bipolar  
input ranges0  
Note 5: Gain error does not include zero-scale errors0 It is calculated as (full-scale error - unipolar offset error) for unipolar ranges,  
and (full-scale error - bipolar zero error) for bipolar ranges0  
Note 6: Gain-error drift does not include unipolar offset drift or bipolar zero drift0 Effectively, it is the drift of the part if only zero-  
scale calibrations are performed0  
Note 7: The analog input voltage range on AIN+ is given with respect to the voltage on AIN- on the MX77±50  
Note 8: This common-mode voltage range is allowed, provided that the input voltage on analog inputs does not go more positive  
than (V  
+ 3±mV) or more negative than (GND - 3±mV)0 Parts are functional with voltages down to (GND - 2±±mV), but  
DD  
with increased leakage at high temperature0  
Note 9: The REF differential voltage, V  
Note 10: Guaranteed by design0  
, is the voltage on REF+ referenced to REF- (V  
= V  
- V  
0
REF-)  
REF  
REF  
REF+  
Note 11: These calibration and span limits apply, provided that the absolute voltage on the analog inputs does not exceed (V  
+
DD  
3±mV) or go more negative than (GND - 3±mV)0 The offset calibration limit applies to both the unipolar zero point and the  
bipolar zero point0  
Note 12: When using a crystal or ceramic resonator across the CLKIN and CLKOUT as the clock source for the device, the supply  
current and power dissipation varies depending on the crystal or resonator type0 Supply current is measured with the digi-  
tal inputs connected to ± or V , CLKIN connected to an external clock source, and CLKDIS = 10  
DD  
Note 13: If the external master clock continues to run in power-down mode, the power-down current typically increases to 67µA at  
3V0 When using a crystal or ceramic resonator across the CLKIN and CLKOUT as the clock source for the device, the  
clock generator continues to run in power-down mode and the power dissipation depends on the crystal or resonator type  
(see the Power-Down Modes section)0  
Note 14: Measured at DC and applied in the selected passband0 PSRR at 5±Hz exceeds 12±dB with filter notches of 25Hz or 5±Hz0  
PSRR at 6±Hz exceeds 12±dB with filter notches of 2±Hz or 6±Hz0 PSRR depends on both gain and V  
0
DD  
PSRR (dB)  
(V = 5V)  
PSRR (dB)  
(V = 3V)  
GAIN  
DD  
DD  
1
9±  
86  
2
4
78  
84  
91  
78  
85  
93  
8 to 128  
Note 15: Provide f  
whenever the MX77±5 is not in power-down mode0 If no clock is present, the device can draw higher than  
CLKIN  
specified current and can possibly become uncalibrated0  
Note 16: All input signals are specified with t = t = 5ns (1±% to 9±% of V ) and timed from a voltage level of 106V0  
r
f
DD  
_______________________________________________________________________________________  
7
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Table 1. Output RMS Noise vs. Gain and Output Data Rate (V  
= 5V)  
DD  
TYPICAL OUTPUT RMS NOISE (µV)  
GAIN  
FILTER FIRST  
NOTCH AND  
-3dB FREQUENCY  
OUTPUT DATA RATE  
1
2
4
8
16  
32  
64  
128  
BUFFERED (f  
2±Hz  
= 1MHz)  
CLKIN  
5024Hz  
6055Hz  
2602Hz  
5204Hz  
4044  
5011  
2028  
2079  
1029  
1055  
±079  
±092  
±07±  
±081  
±07±  
±08±  
±064  
±073  
2025  
9014  
±063  
±074  
2024  
9022  
25Hz  
1±±Hz  
2±±Hz  
1±2035  
586093  
49059  
272083  
230±4  
224079  
11078  
7±078  
6032  
3063  
33094  
17057  
UNBUFFERED (f  
2±Hz  
= 1MHz)  
CLKIN  
5024Hz  
6055Hz  
2602Hz  
5204Hz  
4032  
5016  
205±  
2085  
1035  
1063  
±081  
±096  
±073  
±083  
±07±  
±081  
±064  
±074  
2022  
8095  
±064  
±074  
2023  
90±8  
25Hz  
1±±Hz  
1±5078  
52606±  
49086  
26±051  
24067  
132016  
12016  
67025  
6042  
308±  
2±±Hz  
340±9  
1802±  
BUFFERED (f  
5±Hz  
= 2.4576MHz)  
CLKIN  
1301Hz  
3053  
4041  
1086  
2023  
10±9  
1029  
±073  
±083  
±072  
±079  
±071  
±077  
±067  
±072  
2032  
9043  
±066  
±073  
2035  
904±  
6±Hz  
15072Hz  
6505Hz  
131Hz  
25±Hz  
5±±Hz  
99066  
6±8086  
46085  
288039  
16098  
11±08±  
12048  
67051  
6038  
3078  
36075  
17098  
UNBUFFERED (f  
5±Hz  
= 2.4576MHz)  
CLKIN  
1301Hz  
15072Hz  
6505Hz  
131Hz  
3065  
4056  
1094  
2041  
1017  
1032  
±079  
±087  
±07±  
±08±  
±069  
±079  
±066  
±071  
2036  
908±  
±065  
±074  
2036  
9044  
6±Hz  
25±Hz  
1±1056  
5560±6  
49064  
278091  
25039  
142088  
12092  
74078  
6065  
3069  
5±±Hz  
35041  
18099  
8
_______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Table 2. Peak-to-Peak Resolution vs. Gain and Output Data Rate (V  
= 5V)  
DD  
TYPICAL PEAK-TO-PEAK RESOLUTION (BITS)  
GAIN  
FILTER FIRST  
NOTCH AND  
-3dB FREQUENCY  
OUTPUT DATA RATE  
1
2
4
8
16  
32  
64  
128  
BUFFERED (f  
2±Hz  
= 1MHz)  
CLKIN  
5024Hz  
6055Hz  
2602Hz  
5204Hz  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
12  
1±  
15  
15  
12  
1±  
14  
14  
12  
1±  
13  
13  
11  
9
25Hz  
1±±Hz  
2±±Hz  
UNBUFFERED (f  
2±Hz  
= 1MHz)  
CLKIN  
5024Hz  
6055Hz  
2602Hz  
5204Hz  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
12  
1±  
15  
15  
12  
1±  
14  
14  
12  
1±  
13  
13  
11  
9
25Hz  
1±±Hz  
2±±Hz  
BUFFERED (f  
5±Hz  
= 2.4576MHz)  
CLKIN  
1301Hz  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
13  
11  
16  
16  
12  
1±  
16  
16  
12  
1±  
15  
15  
12  
1±  
14  
14  
12  
1±  
13  
13  
11  
9
6±Hz  
15072Hz  
6505Hz  
25±Hz  
5±±Hz  
131Hz  
UNBUFFERED (f  
5±Hz  
= 2.4576MHz)  
1301Hz  
CLKIN  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
12  
1±  
15  
15  
12  
1±  
14  
14  
12  
1±  
13  
13  
11  
9
6±Hz  
15072Hz  
6505Hz  
25±Hz  
5±±Hz  
131Hz  
_______________________________________________________________________________________  
9
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Table 3. Output RMS Noise vs. Gain and Output Data Rate (V  
= 3V)  
DD  
TYPICAL OUTPUT RMS NOISE (µV)  
GAIN  
FILTER FIRST  
NOTCH AND  
-3dB FREQUENCY  
OUTPUT DATA RATE  
1
2
4
8
16  
32  
64  
128  
BUFFERED (f  
2±Hz  
= 1MHz)  
CLKIN  
5024Hz  
6055Hz  
2602Hz  
5204Hz  
3052  
4024  
1084  
2023  
2019  
1019  
±073  
±084  
±066  
±074  
±062  
±069  
2023  
8076  
±062  
±069  
107±  
407±  
±062  
±069  
1069  
407±  
25Hz  
1±±Hz  
2±±Hz  
5±036  
2680±2  
25012  
175098  
120±6  
65077  
60±4  
3038  
34089  
16073  
UNBUFFERED (f  
2±Hz  
= 1MHz)  
CLKIN  
5024Hz  
6055Hz  
2602Hz  
5204Hz  
3058  
4016  
1092  
2027  
1013  
1027  
±072  
±083  
±066  
±074  
±064  
±07±  
±07±  
8047  
±061  
±069  
1066  
4066  
±062  
±067  
1063  
4068  
25Hz  
1±±Hz  
5±048  
256043  
23089  
135078  
1201±  
65062  
509±  
3026  
2±±Hz  
33018  
16065  
BUFFERED (f  
5±Hz  
= 2.4576MHz)  
CLKIN  
1301Hz  
2084  
3027  
1068  
1084  
20±±  
1012  
±071  
±078  
±067  
±075  
±065  
±07±  
2032  
902±  
±063  
±068  
1064  
5016  
±061  
±067  
1066  
4092  
6±Hz  
15072Hz  
6505Hz  
25±Hz  
5±±Hz  
4709±  
2810±3  
24043  
1±4019  
12056  
69058  
6048  
3045  
131Hz  
34059  
17044  
UNBUFFERED (f  
5±Hz  
= 2.4576MHz)  
1301Hz  
CLKIN  
30±4  
3035  
1074  
108±  
10±3  
1013  
±072  
±081  
±064  
±073  
±064  
±069  
2022  
9055  
±062  
±067  
1068  
409±  
±063  
±068  
1065  
5018  
6±Hz  
15072Hz  
6505Hz  
25±Hz  
49063  
279013  
23082  
134082  
130±3  
69047  
6023  
3042  
5±±Hz  
131Hz  
35042  
17047  
10 ______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Table 4. Peak-to-Peak Resolution vs. Gain and Output Data Rate (V  
= 3V)  
DD  
TYPICAL PEAK-TO-PEAK RESOLUTION (BITS)  
GAIN  
FILTER FIRST  
NOTCH AND  
-3dB FREQUENCY  
OUTPUT DATA RATE  
1
2
4
8
16  
32  
64  
128  
BUFFERED (f  
2±Hz  
= 1MHz)  
CLKIN  
5024Hz  
6055Hz  
2602Hz  
5204Hz  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
12  
1±  
15  
15  
12  
1±  
14  
14  
12  
1±  
13  
13  
12  
1±  
12  
12  
11  
9
25Hz  
1±±Hz  
2±±Hz  
UNBUFFERED (f  
2±Hz  
= 1MHz)  
CLKIN  
5024Hz  
6055Hz  
2602Hz  
5204Hz  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
12  
1±  
15  
15  
12  
1±  
14  
14  
14  
1±  
13  
13  
12  
1±  
12  
12  
11  
9
25Hz  
1±±Hz  
2±±Hz  
BUFFERED (f  
5±Hz  
= 2.4576MHz)  
CLKIN  
1301Hz  
16  
16  
12  
1±  
16  
16  
12  
11  
16  
16  
12  
1±  
16  
16  
12  
1±  
15  
15  
12  
1±  
14  
14  
12  
1±  
13  
13  
11  
1±  
12  
12  
11  
9
6±Hz  
15072Hz  
6505Hz  
131Hz  
25±Hz  
5±±Hz  
UNBUFFERED (f  
5±Hz  
= 2.4576MHz)  
CLKIN  
1301Hz  
15072Hz  
6505Hz  
131Hz  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
12  
1±  
16  
16  
12  
1±  
15  
15  
12  
1±  
14  
14  
12  
1±  
13  
13  
11  
1±  
12  
12  
11  
9
6±Hz  
25±Hz  
5±±Hz  
Typical Operating Characteristics  
(V  
= 3V or 5V, V  
= 10225V for V  
= 3V, V  
= 205V for V  
= 5V, V  
- = GND, T = +25°C, unless otherwise noted0)  
DD  
REF+  
DD  
REF+  
DD  
REF  
A
OFFSET ERROR vs. SUPPLY VOLTAGE (3V)  
TYPICAL OUTPUT NOISE  
HISTOGRAM OF TYPICAL OUTPUT NOISE  
0.0015  
0.0010  
0.0005  
0
32776  
32774  
32772  
32770  
32768  
32766  
32764  
32762  
32760  
32758  
32756  
400  
V
= 5V, V = 2.5V  
REF  
V
V
= 5V,  
= 2.5V  
GAIN = 128  
ODR = 60Hz  
RMS NOISE = 1.3µV  
DD  
DD  
REF  
V
= 3V  
DD  
GAIN = 128  
ODR = 60Hz  
RMS NOISE = 1.3µV  
300  
200  
100  
0
-0.0005  
-0.0010  
-0.0015  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
SUPPLY VOLTAGE (V)  
0
400  
800  
1200  
1600  
2000  
READING NUMBER  
CODE  
______________________________________________________________________________________ 11  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Typical Operating Characteristics (continued)  
(V  
= 3V or 5V, V  
= 10225V for V  
= 3V, V  
= 205V for V  
= 5V, V  
- = GND, T = +25°C, unless otherwise noted0)  
REF A  
DD  
REF+  
DD  
REF+  
DD  
OFFSET ERROR vs. SUPPLY VOLTAGE (5V)  
OFFSET ERROR vs. TEMPERATURE  
GAIN ERROR vs. SUPPLY VOLTAGE (3V)  
0.003  
0.002  
0.001  
0
0.003  
0.0015  
0.0010  
0.0005  
0
V
= 5V  
V
DD  
= 3V  
DD  
V
V
= 5V  
= 3V  
0.002  
0.001  
0
DD  
DD  
-0.001  
-0.002  
-0.003  
-0.001  
-0.002  
-0.003  
-0.0005  
-0.0010  
-0.0015  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
GAIN ERROR vs. SUPPLY VOLTAGE (5V)  
GAIN ERROR vs. TEMPERATURE  
0.005  
0.003  
0.002  
0.001  
0
V
= 5V  
DD  
0.004  
0.003  
0.002  
0.001  
0
V
= 3V  
DD  
-0.001  
-0.002  
-0.003  
-0.004  
-0.005  
-0.001  
-0.002  
-0.003  
V
= 5V  
DD  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
12 ______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Typical Operating Characteristics (continued)  
(V  
= 3V or 5V, V  
= 10225V for V  
= 3V, V  
= 205V for V  
= 5V, V  
- = GND, T = +25°C, unless otherwise noted0)  
DD  
REF+  
DD  
REF+  
DD  
REF  
A
SUPPLY CURRENT vs. SUPPLY VOLTAGE (5V)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE (3V)  
0.65  
0.6  
A
V
= 5V  
DD  
V
= 3V  
DD  
A
B
0.55  
0.45  
0.35  
0.25  
0.5  
0.4  
0.3  
0.2  
B
C
E
C
D
D
E
4.75  
4.85  
4.95  
SUPPLY VOLTAGE (V)  
B: BUFFERED MODE C: BUFFERED MODE  
= 2.4576MHz, = 1MHz,  
5.05  
5.15  
5.25  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
SUPPLY VOLTAGE (V)  
A: BUFFERED MODE  
= 2.4576MHz,  
A: BUFFERED MODE  
= 2.4576MHz,  
B: BUFFERED MODE C: BUFFERED MODE  
= 2.4576MHz, = 1MHz,  
f
f
f
CLKIN  
GAIN = 1 TO 128  
f
f
f
CLKIN  
CLKIN  
CLKIN  
GAIN = 1 TO 4  
CLKIN  
CLKIN  
GAIN = 1 TO 4  
GAIN = 8 TO 128  
GAIN = 8 TO 128  
GAIN = 1 TO 128  
D: UNBUFFERED MODE E: UNBUFFERED MODE  
D: UNBUFFERED MODE E: UNBUFFERED MODE  
f
= 2.4576MHz, = 1MHz,  
f
f
= 2.4576MHz, = 1MHz,  
f
CLKIN  
CLKIN  
GAIN = 1 TO 128  
CLKIN  
CLKIN  
GAIN = 1 TO 128  
GAIN = 1 TO 128  
GAIN = 1 TO 128  
SUPPLY CURRENT vs. TEMPERATURE (3V)  
SUPPLY CURRENT vs. TEMPERATURE (5V)  
0.6  
0.5  
0.4  
0.3  
0.2  
0.65  
0.55  
0.45  
0.35  
0.25  
A
V
= 5V  
DD  
V
= 3V  
DD  
A
B
B
C
C
D
D
E
E
-40  
-15  
10  
TEMPERATURE (°C)  
B: BUFFERED MODE C: BUFFERED MODE  
= 2.4576MHz, = 1MHz,  
35  
60  
85  
-40  
-15  
10  
TEMPERATURE (°C)  
B: BUFFERED MODE C: BUFFERED MODE  
= 2.4576MHz, = 1MHz,  
35  
60  
85  
A: BUFFERED MODE  
= 2.4576MHz,  
GAIN = 8 TO 128  
A: BUFFERED MODE  
= 2.4576MHz,  
GAIN = 8 TO 128  
f
f
f
CLKIN  
GAIN = 1 TO 128  
f
f
f
CLKIN  
GAIN = 1 TO 128  
CLKIN  
CLKIN  
GAIN = 1 TO 4  
CLKIN  
CLKIN  
GAIN = 1 TO 4  
D: UNBUFFERED MODE E: UNBUFFERED MODE  
D: UNBUFFERED MODE E: UNBUFFERED MODE  
f
= 2.4576MHz, = 1MHz,  
f
f
= 2.4576MHz, = 1MHz,  
f
CLKIN  
CLKIN  
GAIN = 1 TO 128  
CLKIN  
CLKIN  
GAIN = 1 TO 128  
GAIN = 1 TO 128  
GAIN = 1 TO 128  
______________________________________________________________________________________ 13  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Typical Operating Characteristics (continued)  
(V  
= 3V or 5V, V  
= 10225V for V  
= 3V, V  
= 205V for V  
= 5V, V  
- = GND, T = +25°C, unless otherwise noted0)  
REF A  
DD  
REF+  
DD  
REF+  
DD  
SUPPLY CURRENT vs. f  
(3V)  
SUPPLY CURRENT vs. f  
(5V)  
CLKIN  
CLKIN  
0.6  
0.5  
0.4  
0.3  
0.2  
0.65  
V
= 3V  
V
= 5V  
DD  
DD  
B
B
A
A
0.55  
0.45  
0.35  
0.25  
C
C
D
D
E
E
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
(MHz)  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
(MHz)  
f
f
CLKIN  
CLKIN  
A: BUFFERED MODE  
CLK = 1,  
GAIN = 128  
B: BUFFERED MODE C: BUFFERED MODE  
A: BUFFERED MODE  
CLK = 1,  
GAIN = 128  
B: BUFFERED MODE C: BUFFERED MODE  
CLK = 1,  
GAIN = 1  
CLK = 0,  
CLK = 1,  
GAIN = 1  
CLK = 0,  
GAIN = 1, 128  
GAIN = 1, 128  
D: UNBUFFERED MODE E: UNBUFFERED MODE  
D: UNBUFFERED MODE  
CLK = 1,  
GAIN = 1, 128  
E: UNBUFFERED MODE  
CLK = 0,  
GAIN = 1, 128  
CLK = 1,  
CLK = 0,  
GAIN = 1, 128  
GAIN = 1, 128  
SUPPLY CURRENT vs. GAIN (3V)  
SUPPLY CURRENT vs. GAIN (5V)  
0.6  
0.65  
0.55  
0.45  
0.35  
0.25  
A
V
= 5V  
V
= 3V  
DD  
DD  
A
B
0.5  
0.4  
0.3  
0.2  
B
C
C
D
E
D
E
F
F
1
2
4
8
16  
GAIN  
32  
64 128  
1
2
4
8
16  
32  
64 128  
GAIN  
A: BUFFERED MODE  
CLK = 1, CLKDIV = 1,  
= 2.4576MHz  
B: BUFFERED MODE C: BUFFERED MODE  
CLK = 1, CLKDIV = 0, CLK = 0, CLKDIV = 0,  
A: BUFFERED MODE  
CLK = 1, CLKDIV = 0,  
CLKIN  
B: BUFFERED MODE C: BUFFERED MODE  
CLK = 1, CLKDIV = 1, CLK = 0, CLKDIV = 0,  
f
f
= 2.4576MHz  
f
= 1MHz  
f
= 2.4576MHz  
f
= 2.4576MHz  
f
= 1MHz  
CLKIN  
CLKIN  
CLKIN  
CLKIN  
CLKIN  
D: UNBUFFERED MODE E: UNBUFFERED MODE F: UNBUFFERED MODE  
CLK = 1, CLKDIV = 1, CLK = 1, CLKDIV = 0, CLK = 0, CLKDIV = 0,  
= 2.4576MHz = 2.4576MHz = 1MHz  
D: UNBUFFERED MODE E: UNBUFFERED MODE F: UNBUFFERED MODE  
CLK = 1, CLKDIV = 1, CLK = 1, CLKDIV = 0, CLK = 0, CLKDIV = 0,  
= 2.4576MHz = 2.4576MHz = 1MHz  
f
f
f
CLKIN  
f
f
f
CLKIN  
CLKIN  
CLKIN  
CLKIN  
CLKIN  
14 ______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Typical Operating Characteristics (continued)  
(V  
= 3V or 5V, V  
= 10225V for V  
= 3V, V  
= 205V for V  
= 5V, V  
- = GND, T = +25°C, unless otherwise noted0)  
REF A  
DD  
REF+  
DD  
REF+  
DD  
POWER-DOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE (3V)  
POWER-DOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE (5V)  
POWER-DOWN SUPPLY CURRENT  
vs. TEMPERATURE  
100  
200  
300  
250  
200  
150  
100  
50  
V
= 3V  
DD  
V
= 5V  
DD  
80  
60  
40  
20  
0
180  
160  
140  
120  
100  
V
= 5V  
DD  
V
= 3V  
DD  
0
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
SUPPLY VOLTAGE (V)  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
EXTERNAL OSCILLATOR STARTUP TIME  
MX7705 toc20  
V
DD  
5V/div  
4.9152MHz CRYSTAL  
CLKOUT  
5V/div  
CLKOUT  
5V/div  
2.4576MHz CRYSTAL  
2ms/div  
______________________________________________________________________________________ 15  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Pin Description  
PIN  
NAME  
FUNCTION  
Serial Clock Input0 Apply an external serial clock to transfer data to and from the device at data rates  
of up to 5MHz0  
1
SCLK  
Clock Input0 Connect a crystal/resonator between CLKIN and CLKOUT, or drive CLKIN externally with  
a CMOS-compatible clock source with CLKOUT left unconnected0  
2
3
CLKIN  
Clock Output0 Connect a crystal/resonator between CLKIN and CLKOUT0 When enabled, CLKOUT  
provides a CMOS-compatible, inverted clock output0 Set CLKDIS = ± in the clock register to enable  
CLKOUT0 Set CLKDIS = 1 in the clock register to disable CLKOUT to conserve power0  
CLKOUT  
Active-Low Chip-Select Input0 CS selects the active device in systems with more than one device on  
the serial bus0 Drive CS low to clock data in on DIN and to clock data out on DOUT0 When CS is high,  
DOUT is high impedance0 Connect CS to GND for 3-wire operation0  
4
CS  
5
6
RESET  
AIN2+  
AIN1+  
AIN1-  
REF+  
REF-  
Active-Low Reset Input0 Drive RESET low to reset the MX77±5 to power-on reset status0  
Channel 2 Positive Differential Analog Input  
7
Channel 1 Positive Differential Analog Input  
8
Channel 1 Negative Differential Analog Input  
Positive Differential Reference Input  
9
1±  
11  
Negative Differential Reference Input  
AIN2-  
Channel 2 Negative Differential Analog Input  
Active-Low Data-Ready Output0 DRDY goes low when a new conversion result is available in the data  
register0 When a read-operation of a full output word completes, DRDY returns high0  
12  
13  
DRDY  
Serial Data Output0 DOUT outputs serial data from the data register0 DOUT changes on the falling  
edge of SCLK and is valid on the rising edge of SCLK0 When CS is high, DOUT is high impedance0  
DOUT  
DIN  
14  
15  
16  
Serial Data Input0 Data on DIN is clocked in on the rising edge of SCLK when CS is low0  
V
Power Input  
Ground  
DD  
GND  
16 ______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Functional Diagram  
CLKIN  
CLOCK  
GENERATOR  
DIVIDER  
CLKOUT  
MX7705  
BUFFER  
AIN1+  
AIN1-  
AIN2+  
AIN2-  
V
2ND-ORDER  
SIGMA-DELTA  
MODULATOR  
DD  
SWITCHING  
NETWORK  
S1  
S2  
DIGITAL  
FILTER  
PGA  
GND  
BUFFER  
CS  
SERIAL INTERFACE,  
REGISTERS,  
AND  
SCLK  
DIN  
S1 AND S2 ARE OPEN IN  
BUFFERED MODE AND CLOSED  
IN UNBUFFERED MODE  
DOUT  
DRDY  
RESET  
CONTROL  
REF+  
REF-  
Analog Inputs  
Detailed Description  
The MX77±5 accepts four analog inputs (AIN1+, AIN1-,  
AIN2+, and AIN2-) in buffered or unbuffered mode0  
Use Table 8 to select the positive and negative input  
pair for a fully differential channel0 The input buffer iso-  
lates the inputs from the capacitive load presented by  
the PGA/modulator, allowing for high source-imped-  
ance analog transducers0 The value of the BUF bit in  
the setup register (see the Setup Register section) deter-  
mines whether the input buffer is enabled or disabled0  
The MX77±5 low-power, 2-channel, serial-output ADC  
uses a sigma-delta modulator with a digital filter to  
achieve 16-bit resolution with no missing codes0 The  
device includes a PGA, an on-chip input buffer, and a  
bidirectional communications port0 The MX77±5 oper-  
ates with a single 207V to 5025V supply0  
Fully differential inputs, an internal input buffer, and an  
on-chip PGA (gain = 1 to 128) allow low-level signals to  
be directly measured, minimizing the requirements for  
external signal conditioning0 Self-calibration corrects for  
gain and offset errors0 A programmable digital filter  
allows for the selection of the output data rate and first-  
notch frequency from 2±Hz to 5±±Hz0  
Internal protection diodes, which clamp the analog  
input to V  
and/or GND, allow the input to swing from  
DD  
(GND - ±03V) to (V  
+ ±03V), without damaging the  
DD  
device0 If the analog input exceeds 3±±mV beyond the  
supplies, limit the input current to 1±mA0  
The bidirectional serial SPI-/QSPI-/MICROWIRE-compati-  
ble interface consists of four digital control lines (SCLK,  
CS, DOUT, and DIN) and provides an easy interface to  
microcontrollers (µCs)0 Connect CS to GND to configure  
the MX77±5 for 3-wire operation0  
Input Buffers  
When the analog input buffer is disabled, the analog  
input drives a typical 7pF (gain = 1) capacitor, C  
,
TOTAL  
in series with the 7ktypical on-resistance of the track  
and hold (T/H) switch (Figure 1)0 C is comprised  
TOTAL  
of the sampling capacitor, C  
, and the stray capac-  
SAMP  
itance, C  
0 During the conversion, C  
charges  
STRAY  
SAMP  
to (AIN+ - AIN-)0 The gain determines the value of  
(Table 5)0  
C
SAMP  
______________________________________________________________________________________ 17  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
To minimize gain errors in unbuffered mode, select a  
source impedance less than the maximum values  
shown in Figures 2 and 30 These are the maximum  
external resistance/capacitance combinations allowed  
AIN(+)  
R
(7kTYP)  
SW  
HIGH  
IMPEDANCE  
before gain errors greater than 1 LSB are introduced in  
unbuffered mode0  
AIN(-)  
C
(7pF TYP FOR GAIN = 1)  
TOTAL  
Enable the internal input buffer for a high source imped-  
ance0 This isolates the inputs from the sampling capaci-  
tor and reduces the sampling-related gain error0 When  
using the internal buffer, limit the absolute input voltage  
C
= C  
+ C  
SAMP STRAY  
TOTAL  
V
BIAS  
range to (V  
+ 5±mV) to (V  
- 105V)0 Set gain and  
DD  
GND  
common-mode voltage range properly to minimize lin-  
earity errors0  
Figure 1. Unbuffered Analog Input Structure  
Input Voltage Range  
In unbuffered mode, the absolute analog input voltage  
100  
range is from (GND - 3±mV) to (V  
+ 3±mV) (see the  
DD  
GAIN = 1  
Electrical Characteristics)0 In buffered mode, the ana-  
log input voltage range is reduced to (GND + 5±mV) to  
GAIN = 2  
(V  
- 105V)0 In both buffered and unbuffered modes,  
DD  
10  
GAIN = 4  
the differential analog input range (V  
- V  
)
AIN-  
AIN+  
decreases at higher gains (see the Programmable-Gain  
Amplifier and the Unipolar and Bipolar Modes sections)0  
GAIN = 8 TO 128  
1
Reference  
The MX77±5 provides differential inputs, REF+ and REF-,  
for an external reference voltage0 Connect the external  
reference directly across REF+ and REF- to obtain the  
0.1  
1
10  
100  
1000  
10,000  
differential reference voltage, V  
0 The common-mode  
REF-  
REF  
and V  
EXTERNAL CAPACITANCE (pF)  
voltage range for V  
is between GND  
REF+  
and V 0 For specified operation, the nominal voltage,  
DD  
V
(V  
- V  
), is 10225V for V  
DD  
= 4075V to  
DD  
REF  
REF+  
REF-  
Figure 2. Maximum External Resistance vs. Maximum External  
Capacitance for Unbuffered Mode (1MHz)  
5025V and 205V for V  
= 207V to 306V0  
The MX77±5 samples REF+ and REF- at f  
/ 64  
CLKIN  
(CLKDIV = ±) or f  
/ 128 (CLKDIV = 1) with an  
CLKIN  
internal 1±pF (typ for gain = 1) sampling capacitor in  
series with a 7k(typ) switch on-resistance0  
100  
GAIN = 1  
GAIN = 2  
Programmable-Gain Amplifier  
A PGA provides selectable levels of gain: 1, 2, 4, 8, 16,  
32, 64, and 1280 Bits G±, G1, and G2 in the setup reg-  
ister control the gain (Table 9)0 As the gain increases,  
10  
GAIN = 4  
the value of the input sampling capacitor, C  
, also  
SAMP  
increases (Table 5)0 The dynamic load presented to the  
analog inputs increases with clock frequency and gain  
in unbuffered mode (see the Input Buffers section and  
Figure 1)0  
1
GAIN = 8 TO 128  
0.1  
1
10  
100  
1000  
10,000  
EXTERNAL CAPACITANCE (pF)  
Figure 3. Maximum External Resistance vs. Maximum External  
Capacitance for Unbuffered Mode (2.4576MHz)  
18 ______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Table 5. Input Sampling Capacitor vs. Gain  
V
REF  
/ GAIN  
GAIN  
INPUT SAMPLING CAPACITOR (C ) (pF)  
SAMP  
1111 1111 1111 1111  
1111 1111 1111 1110  
1111 1111 1111 1101  
1111 1111 1111 1100  
1
3075  
705  
15  
FULL-SCALE TRANSITION  
2
4
8128  
3±  
V
REF  
1 LSB =  
(GAIN) (65,536)  
Increasing the gain increases the resolution of the ADC  
(LSB size decreases), but reduces the differential input  
voltage range0 Calculate 1 LSB in unipolar mode using  
the following equation:  
0000 0000 0000 0011  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
V
REF  
1 LSB=  
GAIN (65,536)  
where V  
= V  
- V  
REF  
REF+ REF-0  
0
1
2
3
65,533  
DIFFERENTIAL INPUT VOLTAGE (LSB)  
65,535  
For a gain of one and V  
= 205V, the full-scale volt-  
REF  
age in unipolar mode is 205V and 1 LSB 3801µV0 For a  
Figure 4. MX7705 Unipolar Transfer Function  
gain of four, the full-scale voltage in unipolar mode is  
±0625V (V  
/ GAIN) and 1 LSB 905µV0 The differen-  
REF  
tial input voltage range in this example reduces from  
205V to ±0625V, and the resolution increases, since the  
LSB size decreased from 3801µV to 905µV0  
V
/ GAIN  
V
REF  
/ GAIN  
REF  
1111 1111 1111 1111  
Calculate 1 LSB in bipolar mode using the following  
equation:  
1111 1111 1111 1110  
1111 1111 1111 1101  
V
REF  
V
REF  
1 LSB=  
× 2  
1 LSB =  
x 2  
(GAIN) (65,536)  
GAIN (65,536)  
- V  
REF+ REF-0  
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
where V  
= V  
REF  
Unipolar and Bipolar Modes  
The B/U bit in the setup register (Table 9) configures  
the MX77±5 for unipolar or bipolar transfer functions0  
Figures 4 and 5 illustrate the unipolar and bipolar trans-  
fer functions, respectively0  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
In unipolar mode, the digital output code is straight  
binary0 When AIN+ = AIN-, the outputs are at zero  
scale, which is the lower endpoint of the transfer func-  
tion0 The full-scale endpoint is given by AIN+ - AIN- =  
-32,768  
-32,766  
-1  
0
+1  
+32,765 +32,767  
DIFFERENTIAL INPUT VOLTAGE (LSB)  
Figure 5. MX7705 Bipolar Transfer Function  
V
REF  
/ GAIN, where V  
= V  
- V  
0
REF-  
REF  
REF+  
In bipolar mode, the digital output code is in offset  
binary0 Positive full scale is given by AIN+ - AIN- =  
When the MX77±5 is in buffered mode, the absolute and  
common-mode analog input voltage ranges reduce to  
+V  
/ GAIN and negative full scale is given by AIN+ -  
REF  
AIN- = -V  
between (GND + 5±mV) and (V  
- 105V)0 The differential  
DD  
/ GAIN0 When AIN+ = AIN-, the outputs  
REF  
input voltage range is not affected in buffered mode0  
are at zero scale, which is the midpoint of the bipolar  
transfer function0  
______________________________________________________________________________________ 19  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
The output data rate for the digital filter corresponds with  
Modulator  
The MX77±5 performs analog-to-digital conversions  
using a single-bit, 2nd-order, switched-capacitor,  
sigma-delta modulator0 The sigma-delta modulation  
converts the input signal into a digital pulse train whose  
average duty cycle represents the digitized signal infor-  
mation0 A single comparator within the modulator quan-  
tizes the input signal at a much higher sample rate than  
the bandwidth of the input0  
the positioning of the first notch of the filters frequency  
response0 Therefore, for the plot in Figure 6, where the first  
notch of the filter is 6±Hz, the output data rate is 6±Hz0 The  
notches of the SINC3 filter are repeated at multiples of the  
first notch frequency0 The SINC3 filter provides an attenua-  
tion of better than 1±±dB at these notches0  
Determine the cutoff frequency of the digital filter by load-  
ing the appropriate values into the CLK, FS±, and FS1  
bits in the clock register (Table 13)0 Programming a differ-  
ent cutoff frequency with FS± and FS1 changes the fre-  
quency of the notches, but it does not alter the profile of  
the frequency response0  
The MX77±5 modulator provides 2nd-order frequency  
shaping of the quantization noise resulting from the sin-  
gle-bit quantizer0 The modulator is fully differential for  
maximum signal-to-noise ratio and minimum suscepti-  
bility to power-supply and common-mode noise0 A sin-  
gle-bit data stream is then presented to the digital filter  
for processing to remove the frequency-shaped quanti-  
zation noise0  
For step changes at the input, allow a settling time  
before valid data is read0 The settling time depends on  
the output data rate chosen for the filter0 The worst-  
case settling time of a SINC3 filter for a full-scale step  
input is four times the output data period0 By synchro-  
nizing the step input using FSYNC, the settling time  
reduces to three times the output data period0 If FSYNC  
is high during the step input, the filter settles in three  
times the output data period after FSYNC falls low0  
The modulator sampling frequency is f  
/ 128,  
CLKIN  
(CLKDIV = ±) is the  
regardless of gain, where f  
CLKIN  
frequency of the signal at CLKIN0  
Digital Filtering  
The MX77±5 contains an on-chip, digital lowpass filter  
that processes the 1-bit data stream from the modulator  
using a SINC3 (sinx/x)3 response0 The SINC3 filter has a  
settling time of three output data periods0  
Analog Filtering  
The digital filter does not provide any rejection close to  
the harmonics of the modulator sample frequency0 Due  
to the high oversampling ratio of the MX77±5, these  
bands occupy only a small fraction of the spectrum and  
most broadband noise is filtered0 The analog filtering  
requirements in front of the MX77±5 are reduced com-  
pared to a conventional converter with no on-chip filtering0  
In addition, the devices provide excellent common-mode  
rejection of 9±db to reduce the common-mode noise sus-  
ceptibility0  
Filter Characteristics  
Figure 6 shows the filter frequency response0 The  
SINC3 characteristic -3dB cutoff frequency is ±0262  
times the first-notch frequency0 This results in a cutoff  
frequency of 15072Hz for a first filter-notch frequency of  
6±Hz (output data rate of 6±Hz)0 The response shown  
in Figure 5 is repeated at either side of the digital filters  
sample frequency, f (f = 1902kHz for 6±Hz output  
M
M
Additional filtering prior to the MX77±5 eliminates  
unwanted frequencies the digital filter does not reject0  
Use additional filtering to ensure that differential noise  
signals outside the frequency band of interest do not  
saturate the analog modulator0  
data rate), and at either side of the related harmonics  
(2f , 3f , etc0)0  
M
M
0
-20  
-40  
-60  
-80  
f
= 2.4576MHz  
CLKIN  
CLK = 1  
FS1 = 0  
FS0 = 1  
If passive components are in the path of the analog  
inputs when the device is in unbuffered mode, ensure  
the source impedance is low enough (Figure 2) not to  
introduce gain errors in the system0 This significantly  
limits the amount of passive anti-aliasing filtering that  
can be applied in front of the MX77±5 in unbuffered  
mode0 In buffered mode, large source impedance  
causes a small DC-offset error, which can be removed  
by calibration0  
f
N
= 60Hz  
-100  
-120  
-140  
-160  
0
20 40 60 80 100 120 140 160 180 200  
FREQUENCY (Hz)  
3
Figure 6. Frequency Response of the SINC Filter (Notch at 60Hz)  
20 ______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
External Oscillator  
The oscillator requires time to stabilize when enabled0  
Startup time for the oscillator depends on supply voltage,  
temperature, load capacitances, and center frequency0  
Depending on the load capacitance, a 1Mfeedback  
resistor across the crystal can reduce the startup time  
(Figure 7)0 The MX77±5 was tested with an ECS-24-32-1  
(204576MHz crystal) and an ECS-49-2±-1 (409152MHz  
crystal) (see the Typical Operating Characteristics)0 In  
power-down mode, the supply current with the external  
oscillator enabled is typically 67µA with a 3V supply and  
227µA with a 5V supply0  
CS  
t
6
t
2
SCLK  
DIN  
t
10  
t
9
MSB  
LSB  
Serial-Digital Interface  
The MX77±5 interface is fully compatible with SPI-, QSPI-,  
and MICROWIRE-standard serial interfaces0 The serial  
interface provides access to seven on-chip registers0 The  
registers are 8, 16, and 24 bits in size0  
Figure 8. Write Timing Diagram  
DRDY  
t
8
Drive CS low to transfer data in and out of the MX77±50  
Clock in data at DIN on the rising edge of SCLK0 Data at  
DOUT changes on the falling edge of SCLK and is valid  
on the rising edge of SCLK0 DIN and DOUT are trans-  
ferred MSB first0 Drive CS high to force DOUT high  
impedance and cause the MX77±5 to ignore any signals  
on SCLK and DIN0 Connect CS low for 3-wire operation0  
Figures 8 and 9 show the timings for write and read  
operations, respectively0  
t
1
CS  
t
6
t
2
t
4
SCLK  
DOUT  
t
5
t
7
t
3
MSB  
LSB  
On-Chip Registers  
The MX77±5 contains seven internal registers (Figure 1±),  
which are accessed by the serial interface0 These regis-  
ters control the various functions of the device and allow  
the results to be read0 Table 7 lists the address, power-on  
default value, and size of each register0  
Figure 9. Read Timing Diagram  
trols calibration modes, gain setting, unipolar/bipolar  
inputs, and buffered/unbuffered modes0 The third register  
is the 8-bit clock register, which sets the digital filter char-  
acteristics and the clock control bits0 The fourth register is  
the 16-bit data register, which holds the output result0 The  
24-bit offset and gain registers store the calibration coeffi-  
cients for the MX77±50 The 8-bit test register is used for  
factory testing only0  
The first of these registers is the communications register0  
The 8-bit communications register controls the acquisition  
channel selection, whether the next data transfer is a read  
or write operation, and which register is to be accessed0  
The second register is the 8-bit setup register, which con-  
The default state of the MX77±5 is to wait for a write to  
the communications register0 Any write or read opera-  
tion on the MX77±5 is a two-step process0 First, a com-  
mand byte is written to the communications register0  
This command selects the input channel, the desired  
register for the next read or write operation, and  
whether the next operation is a read or a write0 The sec-  
ond step is to read from or write to the selected regis-  
ter0 At the end of the data-transfer cycle, the device  
returns to the default state0 See the Performing a  
Conversion section for examples0  
CRYSTAL OR  
CERAMIC  
RESONATOR  
CLKIN  
C
C
L
MX7705  
CLKOUT  
L
OPTIONAL  
1M  
If the serial communication is lost, write 32 ones to the  
serial interface to return the MX77±5 to the default  
state0 The registers are not reset after this operation0  
Figure 7. Using a Crystal or Ceramic Oscillator  
______________________________________________________________________________________ 21  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
PD: (Default = ±) Power-Down Control Bit0 Set PD = 1  
to initiate power-down mode0 Set PD = ± to take the  
device out of power-down mode0 If CLKDIS = ±, CLKOUT  
remains active during power-down mode to provide a  
clock source for other devices in the system0  
DIN  
RS2 RS1 RS0  
CH0, CH1: (Default = ±, ±) Channel-Select Bit0 Write to  
the CH± and CH1 bits to select the conversion channel or  
to access the calibration data shown in Table 80 The cali-  
bration coefficients of a particular channel are stored in  
one of the three offset and gain-register pairs in Table 80  
Set CH1 = 1 and CH± = ± to evaluate the noise perfor-  
mance of the part without external noise sources0 In this  
noise evaluation mode, connect AIN1- to an external volt-  
age within the allowable common-mode range0  
COMMUNICATIONS REGISTER  
SETUP REGISTER (8 BITS)  
CLOCK REGISTER (8 BITS)  
DATA REGISTER (16 BITS)  
TEST REGISTER (8 BITS)*  
OFFSET REGISTER (24 BITS)  
GAIN REGISTER (24 BITS)  
REGISTER  
SELECT  
DECODER  
DOUT  
Setup Register  
The byte-wide setup register is bidirectional, so it can  
be written and read0 The byte written to the setup regis-  
ter sets the calibration modes, PGA gain, unipolar/bipo-  
lar mode, buffer enable, and conversion start (Table 9)0  
MD1, MD0: (Default = ±, ±) Mode-Select Bits0 See  
Table 1± for normal operating mode, self-calibration,  
zero-scale calibration, or full-scale calibration-mode  
selection0  
*THE TEST REGISTER IS USED FOR FACTORY TESTING ONLY.  
G2, G1, G0: (Default = ±, ±, ±) Gain-Selection Bits0 See  
Table 11 for PGA gain settings0  
Figure 10. Register Summary  
B/U: (Default = ±) Bipolar/Unipolar Mode Selection0 Set  
B/U = ± to select bipolar mode0 Set B/U = 1 to select  
unipolar mode0  
Communications Register  
The byte-wide communications register is bidirectional  
so it can be written and read0 The byte written to the  
communications register indicates the next read or write  
operation on the selected register, the power-down  
mode, and the analog input channel (Table 6)0 The  
DRDY bit indicates the conversion status0  
BUF: (Default = ±) Buffer-Enable Bit0 For unbuffered  
mode, disable the internal buffer of the MX77±5 to reduce  
power consumption by writing a ± to the BUF bit0 Write a  
1 to this bit to enable the buffer0 Use the internal buffer  
when acquiring high source-impedance input signals0  
FSYNC: (Default  
= 1) Filter-Synchronization/  
0/DRDY: (Default = ±) Communication-Start/Data-Ready  
Bit0 Write a ± to the ±/DRDY bit to start a write operation to  
the communications register0 If ±/DRDY = 1, then the  
device waits until a ± is written to ±/DRDY before continu-  
ing to load the remaining bits0 For a read operation, the  
±/DRDY bit shows the status of the conversion0 The  
DRDY bit returns a ± if the conversion is complete and  
the data is ready0 DRDY returns a 1 if the new data has  
been read and the next conversion is not yet complete0 It  
has the same value as the DRDY output pin0  
Conversion-Start Bit0 Set FSYNC = ± to begin calibration  
or conversion0 The MX77±5 performs free-running con-  
versions while FSYNC = ±0 Set FSYNC = 1 to stop con-  
verting data and to hold the nodes of the digital filter, the  
filter-control logic, the calibration-control logic, and the  
analog modulator in a reset state0 The DRDY output does  
not reset high if it is low (indicating that valid data has not  
yet been read from the data register) when FSYNC goes  
high0 To clear the DRDY output, read the data register0  
Clock Register  
The byte-wide clock register is bidirectional, so it can  
be written and read0 The byte written to the setup regis-  
ter sets the clock, filter first-notch frequency, and the  
output data rate (Table 12)0  
RS2, RS1, RS0: (Default = ±, ±, ±) Register-Select Bits0  
RS±, RS1, and RS2 select the next register to be  
accessed as shown in Table 70  
R/W: (Default = ±) Read-/Write-Select Bit0 Use this bit to  
select if the next register access is a read or a write  
operation0 Set R/W = ± to select a write operation or set  
R/W = 1 for a read operation on the selected register0  
MXID: (Default = 1) Maxim-Identifier Bit0 This is a read-  
only bit0 Values written to this bit are ignored0  
22 ______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Table 6. Communications Register  
FIRST BIT (MSB)  
(LSB)  
COMMUNICATION  
START/DATA READY  
READ/WRITE  
SELECT  
POWER-DOWN  
MODE  
FUNCTION  
REGISTER SELECT  
CHANNEL SELECT  
Name  
±/DRDY  
RS2  
±
RS1  
±
RS±  
±
R/W  
PD  
±
CH1  
±
CH±  
±
Defaults  
±
±
Table 7. Register Selection  
RS2  
±
RS1  
±
RS0  
±
REGISTER  
POWER-ON RESET STATUS  
REGISTER SIZE (BITS)  
Communications Register  
Setup Register  
Clock Register  
Data Register  
±x±±  
±x±1  
8
8
±
±
1
±
1
±
±x±5  
8
±
1
1
N/A  
16  
8
1
±
±
Test Register*  
N/A  
1
±
1
No Operation  
24  
24  
1
1
±
Offset Register  
Gain Register  
±x1F 4± ±±  
±x57 61 AB  
1
1
1
*The test register is used for factory testing only.  
Table 8. Channel Selection  
OFFSET/GAIN  
REGISTER PAIR  
CH1  
CH0  
AIN+  
AIN-  
±
±
1
1
±
1
±
1
AIN1+  
AIN2+  
AIN1-  
AIN1-  
AIN1-  
AIN2-  
AIN1-  
AIN2-  
±
1
±
2
Table 9. Setup Register  
FIRST BIT (MSB)  
(LSB)  
BIPOLAR/UNIPOLAR  
MODE  
FUNCTION  
MODE CONTROL  
PGA GAIN CONTROL  
BUFFER ENABLE  
FSYNC  
Name  
Defaults  
MD1  
±
MD±  
±
G2  
±
G1  
±
G±  
±
B/U  
±
BUF  
±
FSYNC  
1
ZERO: (Default = ±) Zero Bit0 This is a read-only bit0  
CLKDIV: (Default = ±) Clock-Divider Control Bit0 The  
MX77±5 has an internal clock divider0 Set this bit to 1 to  
divide the input clock by two0 When this bit is set to ±, the  
MX77±5 operates at the external oscillator frequency0  
Values written to this bit are ignored0  
CLKDIS: (Default = ±) Clock-Disable Bit0 Set CLKDIS =  
1 to disable the clock when using a crystal or resonator  
across CLKIN and CLKOUT0 Set CLKDIS = 1 to disable  
CLKOUT when using a CMOS clock source at CLKIN0  
CLKOUT is held low during clock disable to save  
power0 Set CLKDIS = ± to allow other devices to use  
the output signal on CLKOUT as a clock source and/or  
to enable the external oscillator0  
CLK: (Default = 1) Clock Bit0 Set CLK = 1 for f  
=
CLKIN  
204576MHz with CLKDIV = ±, or 409152MHz with  
CLKDIV = 10  
______________________________________________________________________________________ 23  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Table 10. Operating-Mode Selection  
MD1  
MD0  
OPERATING MODE  
±
±
Normal Mode0 Use this mode to perform normal conversions on the selected analog input channel0  
Self-Calibration Mode0 This mode performs self-calibration on the selected channel determined from CH± and  
CH1 selection bits in the communications register (Table 6)0 Upon completion of self-calibration, the device  
returns to normal mode with MD±, MD1 returning to ±, ±0 The DRDY output bit goes high when self-calibration is  
requested and returns low when the calibration is complete and a new data word is in the data register0 Self-  
calibration performs an internal zero-scale and full-scale calibration0 The analog inputs of the device are shorted  
±
1
together internally during zero-scale calibration and connected to an internally generated (V  
/ selected gain)  
REF  
voltage during full-scale calibration0 The offset and gain registers for the selected channel are automatically  
updated with the calibration data0  
Zero-Scale System-Calibration Mode0 This mode performs zero-scale calibration on the selected channel  
determined from CH± and CH1 selection bits in the communications register (Table 6)0 The DRDY output bit  
goes high when calibration is requested and returns low when the calibration is complete and a new data word  
is in the data register0 Performing zero-scale calibration compensates for any DC offset voltage present in the  
ADC and system0 Ensure that the analog input voltage is stable within 1/2 LSB for the duration of the calibration  
sequence0 The offset register for the selected channel is updated with the zero-scale system-calibration data0  
Upon completion of calibration, the device returns to normal mode with MD±, MD1 returning to ±, ±0  
1
1
±
1
Full-Scale System-Calibration Mode0 This mode performs full-scale system calibration on the selected channel  
determined by the CH± and CH1 selection bits in the communications register0 This calibration assigns a full-  
scale output code to the voltage present on the selected channel0 Ensure that the analog input voltage is stable  
within 1/2 LSB for the duration of the calibration sequence0 The DRDY output bit goes high during calibration  
and returns low when the calibration is complete and a new data word is in the data register0 The gain register  
for the selected channel is updated with the full-scale system-calibration data0 Upon completion of calibration,  
the device returns to normal mode with MD±, MD1 returning to ±, ±0  
Data Register  
Table 11. PGA Gain Selection  
The data register is a 16-bit register that can be read  
and written0 Figure 9 shows how to read conversion  
results using the data register0 A write to the data regis-  
ter is not required, but if the data register is written, the  
device does not return to its normal state of waiting for  
a write to the communications register until all 16 bits  
have been written0 The 16-bit data word written to the  
data register is ignored0  
G2  
±
G1  
±
G0  
±
PGA GAIN  
1
2
±
±
1
±
1
±
4
±
1
1
8
1
±
±
16  
32  
64  
128  
The data from the data register is read through DOUT0  
DOUT changes on the falling edge of SCLK and is valid  
on the rising edge of SCLK0 The data register format is  
16-bit straight binary for unipolar mode with zero scale  
equal to ±x±±±±, and offset binary for bipolar mode  
with zero scale equal to ±x1±±±0  
1
±
1
1
1
±
1
1
1
Set CLK = ± for optimal performance if the external  
clock frequency is 1MHz with CLKDIV = ± or 2MHz with  
CLKDIV = 10  
FS1, FS0: (Default = ±, 1) Filter-Selection Bits0 These bits  
determine the output data rate and the digital-filter cutoff  
frequency0 See Table 13 for FS1 and FS± settings0  
Recalibrate when the filter characteristics are changed0  
24 ______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Test Register  
This register is reserved for factory testing of the device0  
For proper operation of the MX77±5, do not change this  
register from its default power-on reset values0  
Write to the calibration registers in normal mode only0  
After writing to the calibration registers, the devices  
implement the new offset and gain-register calibration  
coefficients at the beginning of a new acquisition0 To  
ensure the results are valid, discard the first conversion  
result after writing to the calibration registers0  
Offset and Gain-Calibration Registers  
The MX77±5 contains one offset register and one gain  
register for each input channel0 Each register is 24 bits  
wide and can be written and read0 The offset registers  
store the calibration coefficients resulting from a zero-  
scale calibration, and the gain registers store the cali-  
bration coefficients resulting from a full-scale  
calibration0 The data stored in these registers are 24-bit  
straight binary values representing the offset or gain  
errors associated with the selected channel0 A 24-bit  
read or write operation can be performed on the cali-  
bration registers for any selected channel0 During a  
write operation, 24 bits of data must be written to the  
register, or no data is transferred0  
To ensure that a conversion is not made using invalid  
calibration data, drive FSYNC high prior to writing to the  
calibration registers, and then release FSYNC low to ini-  
tiate conversion0  
Power-On Reset  
At power-up, the serial-interface, logic, digital-filter, and  
modulator circuits are reset0 The registers are set to  
their default values0 The device returns to wait for a  
write to the communications register0 For accurate  
measurements, perform calibration routines after  
power-up0 Allow time for the external reference and  
oscillator to start up before starting calibration0 See the  
Typical Operating Characteristics for typical external-  
oscillator startup times0  
Table 12. Clock Register  
FIRST BIT (MSB)  
(LSB)  
CLKOUT  
DISABLE  
CLOCK  
DIVIDER  
CLOCK  
SELECT  
FUNCTION  
RESERVED  
FILTER SELECT  
Name  
MXID ZERO ZERO  
CLKDIS  
±
CLKDIV  
±
CLK  
1
FS1  
±
FS±  
1
Defaults  
1
±
±
Table 13. Output Data Rate and Notch Frequency vs. Filter Select and CLKIN Frequency  
CLKIN FREQUENCY  
(MHz)*  
OUTPUT DATA RATE  
(FIRST NOTCH) (Hz)  
-3dB FILTER CUTOFF**  
(Hz)  
CLK  
FS1  
FS0  
f
CLKIN  
1
±
±
±
±
1
1
1
1
±
±
1
1
±
±
1
1
±
1
±
1
±
1
±
1
2±  
25  
5024  
6055  
1
1
1±±  
2±±  
5±  
2602±  
5204±  
1301±  
1507±  
6505±  
1310±±  
1
204576  
204576  
204576  
204576  
6±  
25±  
5±±  
*These values are given for CLKDIV = 0. External clock frequency, f  
, can be two times the values in this column if CLKDIV = 1.  
**The filter -3dB filter cutoff frequency = 0.262 x filter first-notch frequency.  
CLKIN  
______________________________________________________________________________________ 25  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Reset  
Table 14. Filter Select and Decimation Rate  
Drive RESET low to reset the MX77±5 to power-on reset  
status0 DRDY goes high and all communication to the  
MX77±5 is ignored while RESET is low0 Upon releasing  
RESET, the device must be reconfigured to begin a con-  
version0 The device returns to waiting for a write to the  
communication register after a reset has been performed0  
Perform a calibration sequence following a reset for  
accurate conversions0  
CLK  
FS1  
FS0  
DECIMATION RATE  
±
±
±
±
1
1
1
1
±
±
391  
313  
78  
±
1
1
±
1
1
39  
±
±
384  
32±  
77  
±
1
The MX77±5 clock generator continues to run when  
RESET is pulled low0 This allows any device running from  
CLKOUT to be uninterrupted when the device is in reset0  
1
±
1
1
38  
Selecting Custom Output Data Rates and  
First-Notch Frequency  
Writing to the clock and setup registers after configuring  
and initializing the host processor serial port sets up the  
MX77±50 Use self- or system calibrations to minimize off-  
set and gain errors (see the Calibration section for more  
details)0 Set FSYNC = ± to begin calibration or conver-  
sion0 The MX77±5 performs free-running acquisitions  
when FSYNC is low (see the Using FSYNC section)0 The  
µC can poll the DRDY bit of the communications register  
and read the data register when the DRDY bit returns a  
±0 For hardware polling, the DRDY output goes low when  
the new data is valid in the data register0  
The recommended frequency range of the external clock  
is 4±±kHz to 5MHz0 The output data rate and first notch  
frequency are dependent on the decimation rate of the  
digital filter0 Table 14 shows the available decimation  
rates of the digital filter0 The output data rate and filter first  
notch is calculated using the following formula:  
f
CLKIN  
output data rate =  
× ±05  
128 × Decimation Rate  
(if CLKDIV = 1)  
The data register can be read multiple times while the  
next conversion takes place0  
f
CLKIN  
output data rate =  
The flow diagram in Figure 11 shows an example  
sequence required to perform a conversion on channel  
1 (AIN1+ / AIN1-) after a power-on reset0  
128 × Decimation Rate  
(if CLKDIV = ±)  
Note: First-notch filter frequency = output data rate0  
Performing a Conversion  
At power-on reset, the MX77±5 expects a write to the  
communications register0 Writing to the communica-  
tions register selects the acquisition channel, read/write  
operation for the next register, power-down/normal  
mode, and address of the following register to be  
accessed0 The MX77±5 has six user-accessible regis-  
ters, which control the function of the device and allow  
the result to be read0 Write to the communications reg-  
ister before accessing any other registers0  
26 ______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
POWER-ON RESET  
INITIALIZE µC/µP SERIAL  
PORT  
WRITE TO THE COMMUNICATIONS  
REGISTER. SELECT CHANNEL 1 AND SET  
NEXT OPERATION AS A WRITE TO THE  
CLOCK REGISTER.  
(0x20)  
WRITE TO THE CLOCK REGISTER. ENABLE  
EXTERNAL OSCILLATOR. SELECT  
OUTPUT UPDATE RATE OF 60Hz.  
(0xA5)  
WRITE TO THE COMMUNICATIONS  
REGISTER. SELECT CHANNEL 1 AND SET  
NEXT OPERATION AS A WRITE TO THE  
SETUP REGISTER.  
(0x10)  
WRITE TO THE SETUP REGISTER. SET  
SELF-CALIBRATION MODE, GAIN TO 0,  
UNIPOLAR MODE, UNBUFFERED MODE.  
BEGIN SELF-CALIBRATION/CONVERSION  
BY CLEARING FSYNC.  
(0x44)  
HARDWARE POLLING  
SOFTWARE POLLING  
WRITE TO COMMUNICATIONS REGISTER.  
SET NEXT OPERATION AS A READ FROM  
THE COMMUNICATIONS REGISTER.  
(0x08)  
POLL DRDY  
OUTPUT  
1 (DATA  
NOT  
READY)  
READ THE COMMUNICATIONS REGISTER  
(8 BITS)  
POLL DRDY  
BIT  
1 (DATA NOT  
READY)  
WRITE TO THE COMMUNICATIONS  
REGISTER. SET NEXT OPERATION AS A  
READ FROM THE DATA REGISTER.  
(0x38)  
0 (DATA  
READY)  
0 (DATA  
READY)  
READ THE DATA REGISTER  
(16 BITS)  
Figure 11. Sample Flow Diagram for Data Conversion  
______________________________________________________________________________________ 27  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Using FSYNC  
When FSYNC = 1, the digital filter and analog modula-  
tor are in a reset state, inhibiting normal operation0 Set  
FSYNC = ± to begin calibration or conversion0  
When zero-scale or full-scale calibration is selected,  
DRDY goes low 4 x 1/output data rate + t after FSYNC  
P
goes low (or while the zero-scale or full-scale calibra-  
tion command is issued when FSYNC is already low) to  
indicate new data in the data register (see the  
Calibration section)0  
When configured for normal operation (MD± and MD1  
set to ±), DRDY goes low 3 x 1/output data rate after  
FSYNC goes low to indicate that the new conversion  
result is ready to be read from the data register0 DRDY  
returns high when a read operation on the data register  
is complete0 As long as FSYNC remains low, the  
MX77±5 performs free-running conversions with the  
data registers updating at the output data rate0 If the  
valid data is not read before the next conversion result  
Calibration  
To compensate for errors introduced by temperature  
variations or system DC offsets, perform an on-chip cal-  
ibration0 Select calibration options by writing to the  
MD1 and MD± bits in the setup register (Table 9)0  
Calibration removes gain and offset errors from the  
device and/or the system0 Recalibrate with changes in  
ambient temperature, supply voltage, bipolar/unipolar  
mode, PGA gain, and output data rate0  
is ready, DRDY returns high for 5±± x 1/f  
before  
CLKIN  
going low again to indicate a new conversion0 Set  
FSYNC = 1 to stop converting data0  
The MX77±5 offers two calibration modes, self-calibra-  
tion and system calibration0 The channels of the  
MX77±5 are independently calibrated (Table 8)0 The  
calibration coefficients resulting from a calibration  
sequence on a selected channel are stored in the corre-  
sponding offset and gain-register pair0  
If FSYNC goes high while DRDY is low (indicating that  
valid data has not yet been read from the data regis-  
ter), DRDY does not reset high0 DRDY remains low until  
the new data is read from the data register or until  
FSYNC goes low to begin a new conversion0  
Table 15 provides the duration-to-mode bits and dura-  
tion-to-DRDY for each calibration sequence0 Duration-to-  
mode bits provide the time required for the calibration  
sequence to complete (MD1 and MD± return to ±)0  
Duration-to-DRDY provides the time until the first conver-  
sion result is valid in the data register (DRDY goes low)0  
Self- and system calibration automatically calculate the  
offset and gain coefficients, which are written to the off-  
set and gain registers0 These offset and gain coeffi-  
cients provide offset and gain-error correction for the  
specified channel0  
Self-Calibration  
Self-calibration compensates for offset and gain errors  
internal to the ADC0 Prior to calibration, set the PGA gain,  
unipolar/bipolar mode, and input channel setting0 During  
self-calibration, AIN+ and AIN- of the selected channel  
are internally shorted together0 The ADC calibrates this  
condition as the zero-scale output level0 For bipolar  
mode, this zero-scale point is the midscale of the bipolar  
transfer function0  
The pipeline delay necessary to ensure that the first  
conversion result is valid is t (t = 2±±± x 1/f )0  
CLKIN  
P
P
When selecting self-calibration (MD1 = ±, MD± = 1),  
DRDY goes low 9 x 1/output data rate + t after FSYNC  
P
goes low (or after a write operation to the setup register  
with MD1 = ± and MD± = 1 is performed while FSYNC  
is already low) to indicate new data in the data register0  
The pipeline delay required to ensure that the first con-  
version result is valid is t (t = 2±±± x 1/f )0  
CLKIN  
P
P
Table 15. Calibration Sequences  
CALIBRATION TYPE  
DURATION-TO-MODE  
DURATION TO DRDY**  
BITS*  
CALIBRATION SEQUENCE  
(MD1, MD0)  
Internal zero-scale calibration at  
Self-calibration (±,1)  
selected gain + internal full-scale  
calibration at selected gain  
6 x 1/output data rate  
9 x 1/output data rate + t  
P
Zero-scale calibration on AIN at  
selected gain  
Zero-scale system calibration (1,±)  
Full-scale system calibration (1,1)  
3 x 1/output data rate  
3 x 1/output data rate  
4 x 1/output data rate + t  
4 x 1/output data rate + t  
P
Full-scale calibration on AIN at  
selected gain  
P
*Duration-to-mode bits represents the completion of the calibration sequence.  
**Duration to DRDY represents the time at which a new conversion result is available in the data register.  
28 ______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Next, an internally generated voltage (V  
applied across AIN+ and AIN-0 This condition results in  
the full-scale calibration0  
/ GAIN) is  
After performing a zero-scale calibration, connect the  
analog inputs to the full-scale voltage level (V  
REF  
/
REF  
GAIN)0 Perform a full-scale calibration by setting MD1 =  
1 and MD± = 10 After 3 x 1/output data rate, MD1 and  
MD± both return to zero at the completion of full-scale  
calibration0 DRDY goes high at the beginning of cali-  
bration and returns low after calibration is complete  
and new data is in the data register (4 x 1/output data  
rate)0 The time until DRDY goes low is comprised of  
one full-scale calibration sequence (3 x 1/output data  
rate) and one conversion on the AIN voltage (1 x 1/out-  
put data rate)0 If DRDY is low before or goes low during  
the calibration-command write to the setup register,  
DRDY takes up to one additional modulator cycle  
Start self-calibration by setting MD1 = ±, MD± = 1, and  
FSYNC = ± in the setup register0 Self-calibration com-  
pletes in 6 x 1/output data rate0 The MD1 and MD± bits  
both return to zero at the end of calibration0 The device  
returns to normal acquisition mode and performs a con-  
version, which completes in 3 x 1/output data rate after  
the self-calibration sequence0  
The DRDY output goes high at the start of calibration  
and falls low when the calibration is complete and the  
next conversion result is valid in the data register0 The  
total time for self-calibration and one conversion (time  
until DRDY goes low) is 9 x 1/output data rate0 If DRDY  
is low before or goes low during the calibration com-  
mand write to the setup register, DRDY takes up to one  
(128/f  
) to return high to indicate a calibration or  
CLKIN  
conversion in progress0  
In bipolar mode, the midpoint (zero scale) and positive  
full scale of the transfer function are used to calculate the  
calibration coefficients of the gain and offset registers0 In  
unipolar mode, system calibration is performed using the  
two endpoints of the transfer function (Figures 4 and 5)0  
additional modulator cycle (128/f  
) to return high to  
CLKIN  
indicate a calibration or conversion in progress0  
System Calibration  
System calibration compensates for offset and gain  
errors for the entire analog signal path including the  
ADC, signal conditioning, and signal source0 System  
calibration is a two-step process and requires individ-  
ual zero-scale and full-scale calibrations on the select-  
ed channel at a specified PGA gain0 Recalibration is  
recommended with changes in ambient temperature,  
supply voltage, bipolar/unipolar mode, PGA gain, and  
output data rate0 Before starting calibration, set the  
PGA gain and the desired channel0  
Power-Down Modes  
The MX77±5 includes a power-down mode to save  
power0 Select power-down mode by setting PD = 1 in  
the communications register0 The PD bit does not affect  
the serial interface or the status of the DRDY line0 While  
in power-down mode, the MX77±5 retains the contents  
of all of its registers0 Placing the part in power-down  
mode reduces current consumption to 2µA (typ) when  
in external clock mode and with CLKIN connected to  
V
or GND0 If DRDY is high before the part enters  
DD  
Set the zero-scale reference point across AIN+ and AIN-0  
Start the zero-scale calibration by setting MD1 = 1, MD±  
= ±, and FSYNC = ± in the setup register0 When zero-  
scale calibration is complete (3 x 1/output data rate),  
MD1 and MD± both return to zero0 DRDY goes high at the  
start of the zero-scale system calibration and returns low  
when there is a valid word in the data register (4 x 1/out-  
put data rate)0 The time until DRDY goes low is com-  
prised of one zero-scale calibration sequence (3 x  
1/output data rate) and one conversion on the AIN volt-  
age (1 x 1/output data rate)0 If DRDY is low before or  
goes low during the calibration command write to the  
setup register, DRDY takes up to one additional modula-  
power-down mode, then DRDY remains high until the  
part returns to normal operation mode and new data is  
available in the data register0 If DRDY is low before the  
part enters power-down mode, indicating new data in  
the data register, the data register can be read during  
power-down mode0 DRDY goes high at the end of this  
read operation0 If the new data remains unread, DRDY  
stays low until the MX77±5 is taken out of power-down  
mode and resumes data conversion0 Resume normal  
operation by setting PD = ±0 The device begins a new  
conversion with a result appearing in 3 x 1/output data  
rate + t , where t = 2±±± x 1/f , after PD is set to  
CLKIN  
P
P
±0 If the clock is stopped during power-down mode,  
allow sufficient time for the clock to start up before  
resuming conversion0  
tor cycle (128/f  
) to return high to indicate a calibra-  
CLKIN  
tion or conversion in progress0  
If CLKDIS = ±, CLKOUT remains active during power-  
down mode to provide a clock source for other devices  
in the system0  
______________________________________________________________________________________ 29  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Applications Information  
V
DD  
Applications Examples  
10µF  
Strain-Gauge Measurement  
Connect the differential inputs of the MX77±5 to the  
bridge network of the strain gauge0 In Figure 12, the ana-  
log positive supply voltage powers the bridge network  
and the MX77±5, along with the reference voltage in a  
ratiometric configuration0 The on-chip PGA allows the  
MX77±5 to handle an analog input voltage range as low  
0.1µF  
CLKIN  
REF+  
REF-  
V
DD  
0.1µF  
R
REF  
as 2±mV to full scale0  
CLKOUT  
Temperature Measurement  
0.1µF  
Use the MX77±5 for temperature measurements from a  
thermocouple (Figure 13)0 Operate the MX77±5 in  
buffered mode to allow large decoupling capacitors at  
the analog inputs0 The decoupling capacitors eliminate  
any noise pickup from the thermocouple leads0 AIN1- is  
biased up at the reference voltage to accommodate the  
reduced common-mode input range in buffered mode0  
CS  
SCLK  
DIN  
MX7705  
ACTIVE  
GAUGE  
R
AIN1+  
AIN1-  
DOUT  
DRDY  
RESET  
DUMMY  
GAUGE  
R
GND  
Optical Isolation  
For applications that require an optically isolated inter-  
face, see Figure 140 With 6N136-type optocouplers,  
maximum clock speed is 4MHz0 Maximum clock speed  
is limited by the degree of mismatch between the indi-  
vidual optocouplers0 Faster optocouplers allow faster  
signaling at a higher cost0  
Figure 12. Strain-Gauge Measurement  
Layout, Grounding, Bypassing  
Use PC boards with separate analog and digital  
ground planes0 Connect the two ground planes togeth-  
er at the MX77±5 GND0 Isolate the digital supply from  
the analog with a low-value resistor (1±) or ferrite  
bead when the analog and digital supplies come from  
the same source0  
V
DD  
= 3V/5V*  
10  
µ
F
F
10  
µ
V
DD  
CLKIN  
Ensure that digital return currents do not pass through  
the analog ground and that return-current paths are low  
impedance0 A 5mA current flowing through a PC board  
ground trace impedance of only ±0±5creates an error  
voltage of about 25±µV0  
AIN1+  
AIN1-  
THERMOCOUPLE  
JUNCTION  
CLKOUT  
MX7705  
Layout the PC board to ensure digital and analog sig-  
nal lines are kept separate0 Do not run digital lines  
(especially the SCLK and DOUT) parallel to any analog  
lines0 If they must cross another, do so at right angles0  
SCLK  
DIN  
1.225V/2.5V  
REFERENCE*  
REF+  
REF-  
0.1  
µ
µ
F
F
DOUT  
DRDY  
RESET  
Bypass V  
to the analog ground plane with a ±01µF  
DD  
0.1  
capacitor in parallel with a 1µF to 1±µF low-ESR capac-  
itor0 Keep capacitor leads short for best supply-noise  
rejection0 Bypass REF+ and REF- with a ±01µF capaci-  
tor to GND0 Place all bypass capacitors as close to the  
device as possible to achieve the best decoupling0  
GND  
*USE A 1.225V REFERENCE FOR V = 3V OR A 2.5V REFERENCE FOR V = 5V.  
DD  
DD  
Figure 13. Temperature Measurement  
30 ______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Definitions  
ISO  
3V/5V  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line0 This  
straight line is either a best-straight-line fit or a line  
drawn between the endpoints of the transfer function,  
once offset and gain errors have been nullified0 INL for  
the MX77±5 is measured using the endpoint method0  
This is the more conservative method0  
+V  
DD  
V
DD  
2kΩ  
V
CC  
DIN  
6N136  
470kΩ  
MOSI  
MX7705  
Unipolar Offset Error  
For an ideal converter, the first transition occurs at ±05  
LSB above zero0 Offset error is the amount of deviation  
between the measured first transition point and the  
ideal point0  
2kΩ  
V
CC  
SCLK  
6N136  
470kΩ  
Bipolar Zero Error  
In bipolar mode, the ideal midscale transition occurs at  
AIN+ - AIN- = ±0 Bipolar zero error is the measured  
deviation from this ideal value0  
SCK  
V
CC  
2kΩ  
6N136  
470kΩ  
Gain Error  
With a full-scale analog input voltage applied to the  
ADC (resulting in all ones in the digital code), gain error  
is defined as the amount of deviation between the ideal  
transfer function and the measured transfer function  
(with the offset error or bipolar zero error removed)0  
Gain error is usually expressed in LSB or a percent of  
full-scale range (%FSR)0  
MISO  
DOUT  
CS  
CS  
Positive Full-Scale Error  
For the ideal transfer curve, the code edge transition  
that causes a full-scale transition to occur is 105 LSB  
below full scale0 The positive full-scale error is the dif-  
ference between this code transition of the ideal trans-  
fer function and the actual measured value at this code  
transition0 Unlike gain error, unipolar offset error and  
bipolar zero error are included in the positive full-scale  
error measurement0  
Figure 14. Optically Isolated Interface  
both input terminals0 The common-mode signal can be  
either an AC or a DC signal or a combination of the two0  
CMR is often expressed in decibels0 Common-mode  
rejection ratio (CMRR) is the ratio of the differential sig-  
nal gain to the common-mode signal gain0  
Bipolar Negative Full-Scale Error  
For the ideal transfer curve, the code edge transition that  
causes a negative full-scale transition to occur is ±05 LSB  
above negative full scale0 The negative full-scale error is  
the difference between this code transition of the ideal  
transfer function and the actual measured value at this  
code transition0  
Power-Supply Rejection Ratio  
Power-supply rejection ratio (PSRR) is the ratio of the  
input signal change (V) to the change in the converter  
output (V)0 It is typically measured in decibels0  
Chip Information  
TRANSISTOR COUNT: 42,±±±  
Input Common-Mode Rejection  
Input common-mode rejection (CMR) is the ability of a  
device to reject a signal that is common to or applied to  
PROCESS: BiCMOS  
______________________________________________________________________________________ 31  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications0 For the latest package outline information,  
go to www.maxim-ic.com/packages0)  
32 ______________________________________________________________________________________  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications0 For the latest package outline information,  
go to www.maxim-ic.com/packages0)  
INCHES  
MILLIMETERS  
N
MAX  
MAX  
2.65  
0.30  
0.49  
0.32  
DIM  
A
MIN  
MIN  
2.35  
0.10  
0.35  
0.23  
0.093  
0.004  
0.014  
0.009  
0.104  
0.012  
0.019  
0.013  
A1  
B
C
e
0.050  
1.27  
H
E
E
0.291  
0.394  
0.016  
0.299  
0.419  
0.050  
7.40  
10.00  
0.40  
7.60  
10.65  
1.27  
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
TOP VIEW  
MAX  
0.413  
0.463  
0.512  
0.614  
0.713  
MAX  
DIM  
D
MIN  
MIN  
10.10  
11.35  
12.60  
15.20  
17.70  
N MS013  
0.398  
0.447  
0.496  
0.598  
0.697  
10.50 16 AA  
11.75 18 AB  
13.00 20 AC  
15.60 24 AD  
18.10 28 AE  
D
D
D
D
D
C
A
B
e
0 -8  
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .300" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0042  
B
1
______________________________________________________________________________________ 33  
16-Bit, Low-Power, 2-Channel,  
Sigma-Delta ADC  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications0 For the latest package outline information,  
go to www.maxim-ic.com/packages0)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
34 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2±±3 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products0  

相关型号:

MX7705EUE

16-Bit, Low-Power, 2-Channel, Sigma-Delta ADC
MAXIM

MX7705EUE+

16-Bit, Low-Power, 2-Channel, Sigma-Delta ADC
MAXIM

MX7705EUE+T

ADC, Delta-Sigma, 16-Bit, 1 Func, 2 Channel, Serial Access, BICMOS, PDSO16, 4.40 MM, MO-153AB, TSSOP-16
MAXIM

MX7705EUE-T

ADC, Delta-Sigma, 16-Bit, 1 Func, 2 Channel, Serial Access, BICMOS, PDSO16, TSSOP-16
MAXIM

MX7705EWE

16-Bit, Low-Power, 2-Channel, Sigma-Delta ADC
MAXIM

MX7705EWE+

ADC, Delta-Sigma, 16-Bit, 1 Func, 2 Channel, Serial Access, BICMOS, PDSO16, SOP-16
MAXIM

MX7705EWE+T

暂无描述
MAXIM

MX7705EWE-T

ADC, Delta-Sigma, 16-Bit, 1 Func, 2 Channel, Serial Access, BICMOS, PDSO16, SOP-16
MAXIM

MX7705_09

16-Bit, Low-Power, 2-Channel, Sigma-Delta ADC
MAXIM

MX7705_10

16-Bit, Low-Power, 2-Channel, Sigma-Delta ADC
MAXIM
Macronix
Macronix