MXD1000SE45 [MAXIM]

Delay Line, 1-Func, 5-Tap, CMOS;
MXD1000SE45
型号: MXD1000SE45
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Delay Line, 1-Func, 5-Tap, CMOS

延迟线
文件: 总8页 (文件大小:70K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1310; Rev 0; 10/97  
5 -Ta p S ilic o n De la y Lin e  
MXD10  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Improved Second Source to DS1000  
Available in Space-Saving 8-Pin µMAX Package  
20mA Supply Current (vs. Dallas’ 35mA)  
Low Cost  
The MXD1000 s ilic on d e la y line offe rs five e q ua lly  
spaced taps with delays ranging from 4ns to 500ns and  
a nomina l a c c ura c y of ± 2ns or ± 5%, whic he ve r is  
greater. Relative to hybrid solutions, this device offers  
e nha nc e d p e rforma nc e a nd hig he r re lia b ility, a nd  
reduces overall cost. Each tap can drive up to ten 74LS  
loads.  
Delay Tolerance of ±2ns or ±5%, whichever is  
The MXD1000 is available in multiple versions, each  
offering a different combination of delay times. It comes  
in the space-saving 8-pin µMAX package, as well as an  
8-pin SO or DIP, allowing full compatibility with the  
DS1000 and other delay line products.  
Greater  
TTL/CMOS-Compatible Logic  
Leading- and Trailing-Edge Accuracy  
Custom Delays Available  
______________Ord e rin g In fo rm a t io n  
________________________Ap p lic a t io n s  
Clock Synchronization  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
Dice*  
MXD1000C/D__  
MXD1000PA__  
MXD1000PD__  
MXD1000SA__  
MXD1000SE__  
MXD1000UA__  
Digital Systems  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
8 Plastic DIP  
14 Plastic DIP  
8 SO  
16 Narrow SO  
8 µMAX  
*Dice are tested at T = +25°C.  
A
Functional Diagram appears at end of data sheet.  
Note: To complete the ordering information, fill in the blank  
with the part number extension from the Part Number and Delay  
Times table (located at the end of this data sheet) to indicate  
the desired delay per output.  
__________________________________________________________P in Co n fig u ra t io n s  
TOP VIEW  
IN  
N.C.  
1
2
3
4
5
6
7
14  
V
IN  
N.C.  
1
2
3
4
5
6
7
8
16 V  
CC  
CC  
IN  
TAP2  
TAP4  
GND  
1
2
3
4
8
7
6
5
V
CC  
13 N.C.  
12 TAP1  
11 N.C.  
10 TAP3  
15 N.C.  
14 N.C.  
13 TAP1  
12 N.C.  
11 TAP3  
10 N.C.  
TAP1  
TAP3  
TAP5  
MXD1000  
N.C.  
N.C.  
TAP2  
N.C.  
MXD1000  
TAP2  
N.C.  
MXD1000  
TAP4  
GND  
9
8
N.C.  
TAP4  
N.C.  
DIP/SO/µMAX  
TAP5  
GND  
9 TAP5  
DIP  
SO  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
5 -Ta p S ilic o n De la y Lin e  
ABSOLUTE MAXIMUM RATINGS  
V
to GND..............................................................-0.5V to +6V  
8-Pin SO (derate 5.9mW/°C above +70°C)....................471mW  
16-Pin Narrow SO (derate 8.7mW/°C above +70°C) .....696mW  
8-Pin µMAX (derate 4.1mW/°C above +70°C) ...............330mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
All Other Pins ..............................................-0.5V to (V + 0.5V)  
Short-Circuit Output Current (1sec)....................................50mA  
Continuous Power Dissipation (T = +70°C)  
8-Pin Plastic DIP (derate 9.1mW/°C above +70°C) .......727mW  
14-Pin Plastic DIP (derate 10.0mW/°C above +70°C) ...800mW  
CC  
A
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
MXD10  
ELECTRICAL CHARACTERISTICS  
(V = +5.0V ±5%, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
CC  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
4.75  
2.2  
TYP  
MAX  
UNITS  
V
Supply Voltage  
V
CC  
(Note 3)  
(Note 3)  
(Note 3)  
5.00  
5.25  
Input Voltage High  
Input Voltage Low  
Input Leakage Current  
Active Current  
V
IH  
V
V
IL  
0.8  
1
V
I
L
0V V V  
CC  
-1  
µA  
mA  
mA  
mA  
pF  
IN  
I
CC  
V
CC  
= 5.25V, period = minimum (Notes 4, 5)  
20  
5
75  
-1  
Output Current High  
Output Current Low  
Input Capacitance  
I
OH  
V
= 4.75V, V = 4.0V  
CC OH  
I
OL  
V
= 4.75V, V = 0.5V  
CC OL  
12  
C
T
A
= +25°C (Note 6)  
10  
IN  
TIMING CHARACTERISTICS  
(V = +5.0V ±5%, T = +25°C, unless otherwise noted.)  
CC  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
40% of TAP5  
Input Pulse Width  
t
WI  
(Note 7)  
ns  
t
PLH  
Input-to-Tap Delay  
(leading edge)  
See Part Number and  
Delay Times table  
t
t
(Notes 1, 8–12)  
(Notes 1, 8–12)  
ns  
ns  
PLH  
PHL  
Input-to-Tap Delay  
(trailing edge)  
See Part Number and  
Delay Times table  
Power-Up Time  
Period  
t
100  
ms  
ns  
PU  
(Note 7)  
4(t )  
WI  
Note 1: Contact factory for ordering information.  
Note 2: Specifications to -40°C are guaranteed by design, not production tested.  
Note 3: All voltages referenced to GND.  
Note 4: Measured with output open.  
Note 5:  
I
is a function of frequency and TAP5 delay. Only an MXD1000_ _25 operating with a 40ns period and V = +5.25V will have  
C
C
C
C
an I = 75mA. For example, an MXD1000_ _100 will never exceed 30mA. See Supply Current vs. Input Frequency in Typical  
CC  
Operating Characteristics.  
Note 6: Guaranteed by design.  
Note 7: Pulse width and/or period specifications may be exceeded, but accuracy is application sensitive (i.e., layout, decoupling,  
etc.). The device will remain functional with pulse widths down to 20% of TAP5 delay, and input periods as short as 2(t ).  
WI  
Note 8: Typical initial tolerances are ± with respect to the nominal value at +25°C and V = 5V.  
CC  
Note 9: Typical temperature tolerance is ± with respect to the initial delay value over a temperature range of -40°C to +85°C.  
Note 10: The delay will also vary with supply voltage, typically by less than 4% over the supply range of V = +4.75V to +5.25V.  
CC  
Note 11: All tap delays tend to vary unidirectionally with temperature or voltage changes. For example, if TAP1 slows down, all other  
taps will also slow down; i.e., TAP3 can never be faster than TAP2.  
2
_______________________________________________________________________________________  
5 -Ta p S ilic o n De la y Lin e  
MXD10  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V, T = +25°C, unless otherwise noted.)  
CC  
A
MXD1000_ _75  
PERCENT CHANGE IN DELAY  
vs. TEMPERATURE  
ACTIVE CURRENT  
vs. FREQUENCY  
20  
2.0  
1.5  
1.0  
0.5  
0
50% DUTY CYCLE  
18  
16  
14  
12  
10  
8
t
PHL  
t
PLH  
MXD1000_ _50  
MXD1000_ _75  
t
PLH  
t
PHL  
-0.5  
-1.0  
-1.5  
-2.0  
MXD1000_ _200  
MXD1000_ _500  
RELATIVE TO NOMINAL (+25°C)  
0.001  
0.01  
0.1  
1
10  
100  
-40 -20  
0
20  
40  
60  
80 100  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
MXD1000_ _100 TO MXD1000_ _200  
PERCENT CHANGE IN DELAY  
vs. TEMPERATURE  
MXD1000_ _250 TO MXD1000_ _500  
PERCENT CHANGE IN DELAY  
vs. TEMPERATURE  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
t
PHL  
t
PLH  
t
PHL  
t
PHL  
t
PLH  
t
PHL  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
t
PLH  
t
PLH  
RELATIVE TO NOMINAL (+25°C)  
RELATIVE TO NOMINAL (+25°C)  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
3
5 -Ta p S ilic o n De la y Lin e  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
8-PIN  
DIP/SO/µMAX  
14-PIN DIP  
16-PIN SO  
1
2
3
4
5
6
7
8
1
4
1
4
IN  
Signal Input  
TAP2  
TAP4  
GND  
TAP5  
TAP3  
TAP1  
40% of specified maximum delay  
80% of specified maximum delay  
Device Ground  
6
6
MXD10  
7
8
8
9
100% of maximum specified delay  
60% of specified maximum delay  
20% of specified maximum delay  
Power-Supply Input  
10  
12  
14  
11  
13  
16  
V
CC  
2, 3, 5, 9, 11,  
13  
2, 3, 5, 7, 10,  
12, 14, 15  
N.C.  
No Connection. Not internally connected.  
Note: Maximum delay is determined by the part number extension. See the Part Number and Delay Times table for more information.  
_______________De fin it io n s o f Te rm s  
____________________Te s t Co n d it io n s  
Period: The time elapsed between the first pulses  
Ambient Temperature: +25°C ±3°C  
leading edge and the following pulses leading edge.  
Supply Voltage (V ):  
CC  
+5V ±0.1V  
Pulse Width (t ): The time elapsed on the pulse  
between the 1.5V level on the leading edge and the  
1.5V level on the trailing edge, or vice-versa.  
WI  
Input Pulse:  
High = 3.0V ±0.1V  
Low = 0.0V ±0.1V  
50max  
Source Impedance:  
Rise and Fall Times:  
Pulse Width:  
Input Rise Time (t  
): The time elapsed between  
RISE  
the 20% and 80% points on the input pulses leading  
edge.  
3.0ns max  
500ns max (1ns for -500)  
1µs (2ns for -500)  
Input Fall Time (t  
): The time elapsed between  
FALL  
Period:  
the 80% and 20% points on the input pulses trailing  
edge.  
Each output is loaded with a 74F04 input gate. Delay is  
measured at the 1.5V level on the rising and falling  
edges. The time delay due to the 74F04 is subtracted  
from the measured delay.  
Time Delay, Rising (t ): The time elapsed between  
PLH  
the 1.5V level on the input pulses leading edge and the  
corresponding output pulses leading edge.  
Time Delay, Falling (t ): The time elapsed between  
PHL  
the 1.5V level on the input pulses trailing edge and the  
corresponding output pulses trailing edge.  
4
_______________________________________________________________________________________  
5 -Ta p S ilic o n De la y Lin e  
MXD10  
(+5V)  
V
CC  
0.1µF  
PERIOD  
TIME  
MEASUREMENT  
UNIT  
t
t
FALL  
RISE  
V
IH  
2.4V  
1.5V  
0.6V  
2.4V  
1.5V  
0.6V  
1.5V  
IN  
IN  
50  
20%  
20%  
20%  
20%  
20%  
TAP1  
TAP2  
V
IL  
t
WI  
MXD1000  
t
PHL  
TAP3  
TAP4  
t
PLH  
1.5V  
1.5V  
TAP5  
OUT  
74FO4  
Figure 2. Test Circuit  
Figure 1. Timing Diagram  
Ca p a c it a n c e a n d Lo a d in g  
Effe c t s o n De la y  
The outp ut loa d c a n a ffe c t the ta p d e la ys . La rg e r  
capacitances tend to lengthen the rising and falling  
edges, thus increasing the tap delays. As the taps are  
loaded with other logic devices, the increased load will  
increase the tap delays.  
__________Ap p lic a t io n s In fo rm a t io n  
S u p p ly a n d Te m p e ra t u re  
Effe c t s o n De la y  
Variations in supply voltage may affect the MXD1000s  
fixed tap delays. Supply voltages beyond the specified  
range may result with larger variations. The devices are  
internally compensated to reduce the effects of temper-  
ature variations. Although these devices might vary with  
supply and temperature, the delays vary unilaterally,  
which suggests that TAP3 can never be faster than  
TAP2.  
Bo a rd La yo u t Co n s id e ra t io n s /De c o u p lin g  
The device should be driven with a source that can  
deliver the required current for proper operation. A  
0.1µF ceramic bypassing capacitor could be used. The  
board should be designed to reduce stray capaci-  
tance.  
_______________________________________________________________________________________  
5
5 -Ta p S ilic o n De la y Lin e  
_________________________________________________P a rt Nu m b e r a n d De la y Tim e s  
TAP1  
Tolerance  
TAP2  
Tolerance  
TAP3  
Tolerance  
TAP4  
Tolerance  
TAP5  
Tolerance  
Part  
Number  
Extension  
(MXD1000__)  
Nom.  
Delay  
(ns)  
Nom.  
Delay  
(ns)  
Nom.  
Delay  
(ns)  
Nom.  
Delay  
(ns)  
Nom.  
Delay  
(ns)  
(ns)  
(ns)  
(ns)  
(ns)  
(ns)  
Init. Temp.  
Init. Temp.  
Init. Temp.  
Init. Temp.  
Init. Temp.  
20  
(Note 1)  
4
5
6
2
2
2
1
1
1
8
2
2
2
1
1
1
12  
15  
18  
2
2
2
1
1
1
16  
20  
24  
2
2
2
1
1
1
20  
25  
30  
2
2
2
1
1
1
MXD10  
25  
(Note 1)  
10  
12  
30  
(Note 1)  
35  
40  
7
8
2
2
1
1
14  
16  
2
2
1
1
21  
24  
2
2
1
28  
32  
2
2
1
35  
40  
2
2
1.1  
1.2  
1.4  
1.5  
1.8  
2.3  
3
1
1
45  
9
2
1
18  
2
1
27  
2
1
36  
2
1.1  
1.2  
1.5  
1.8  
2.4  
3
45  
2.3  
2.5  
3
50  
10  
12  
15  
20  
25  
30  
35  
40  
50  
100  
2
1
20  
2
1
30  
2
1
40  
2
50  
60  
2
1
24  
2
1
36  
2
1.1  
1.4  
1.8  
2.3  
2.7  
3.2  
3.6  
4.5  
9
48  
2.4  
3
60  
75  
2
1
30  
2
1
45  
2.3  
3
60  
75  
3.8  
5
100  
125  
150  
175  
200  
250  
500  
2
1
40  
2
1.2  
1.5  
1.8  
2.1  
2.4  
3
60  
80  
4
100  
125  
150  
175  
200  
250  
500  
2
1
50  
2.5  
3
75  
3.8  
4.5  
5.3  
6
100  
120  
140  
160  
200  
400  
5
6.3  
7.5  
8.8  
10  
12.5  
25  
3.8  
4.5  
5.3  
6
2
1
60  
90  
6
3.6  
4.2  
4.8  
6
2
1.1  
1.2  
1.5  
3
70  
3.5  
4
105  
120  
150  
300  
7
2
80  
8
2.5  
5
100  
200  
5
7.5  
15  
10  
20  
7.5  
15  
10  
6
12  
Note 1: Contact factory for ordering information.  
6
_______________________________________________________________________________________  
5 -Ta p S ilic o n De la y Lin e  
MXD10  
_________________________________________________________Fu n c t io n a l Dia g ra m  
TAP1  
TAP2  
TAP3  
TAP4  
TAP5  
20%  
20%  
20%  
20%  
20%  
IN  
MXD1000  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 824  
_______________________________________________________________________________________  
7
5 -Ta p S ilic o n De la y Lin e  
________________________________________________________P a c k a g e In fo rm a t io n  
MXD10  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8
_____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.  

相关型号:

MXD1000SE50

Delay Line, 1-Func, 5-Tap, CMOS
MAXIM

MXD1000SE500

Tapped Delay Line
ETC

MXD1000SE500-T

Delay Line, 1-Func, 5-Tap, CMOS
MAXIM

MXD1000SE60

Delay Line, 1-Func, 5-Tap, CMOS,
MAXIM

MXD1000SE75

Tapped Delay Line
ETC

MXD1000SE__

5-Tap Silicon Delay Line
MAXIM

MXD1000UA100

Delay Line, 1-Func, 5-Tap, CMOS, SOT-8
MAXIM

MXD1000UA100-T

Delay Line, 1-Func, 5-Tap, CMOS
MAXIM

MXD1000UA125

Delay Line, 1-Func, 5-Tap, CMOS, SOT-8
MAXIM

MXD1000UA150

Delay Line, 1-Func, 5-Tap, CMOS, SOT-8
MAXIM

MXD1000UA150-T

Delay Line, 1-Func, 5-Tap, CMOS
MAXIM

MXD1000UA175

Delay Line, 1-Func, 5-Tap, CMOS, SOT-8
MAXIM