MXL1543 [MAXIM]

+5V Multiprotocol, 3Tx/3Rx, Software-Selectable Clock/Data Transceivers; + 5V多协议, 3TX / 3Rx ,软件可选的时钟/数据收发器
MXL1543
型号: MXL1543
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

+5V Multiprotocol, 3Tx/3Rx, Software-Selectable Clock/Data Transceivers
+ 5V多协议, 3TX / 3Rx ,软件可选的时钟/数据收发器

时钟
文件: 总18页 (文件大小:335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1929; Rev 1; 9/01  
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
General Description  
Features  
The MXL1543 is a three-driver/three-receiver multipro-  
tocol transceiver that operates from a +5V single sup-  
ply. The MXL1543, along with the MXL1544/MAX3175  
and the MXL1344A, form a complete software-selec-  
table data terminal equipment (DTE) or data communi-  
cation equipment (DCE) interface port that supports the  
V.28 (RS-232), V.10/V.11 (RS-449/V.36, EIA-530, EIA-  
530A, X.21), and V.35 protocols. The MXL1543 trans-  
ceivers carry the high-speed clock and data signals  
while the MXL1544/MAX3175 carry the control signals.  
The MXL1543 can be terminated by the MXL1344A  
software-selectable resistor termination network or by  
discrete termination networks.  
An internal charge pump and a proprietary low-dropout  
transmitter output stage allow V.11- , V.28- , and V.35-  
compliant operation from a +5V single supply. A no-  
cable mode is entered when all mode pins (M0, M1,  
and M2) are pulled high or left unconnected. In no-  
cable mode, supply current decreases to 0.5µA and all  
transmitter and receiver outputs are disabled (high  
impedance). Short-circuit current limiting and thermal  
shutdown circuitry protect the drivers against excessive  
power dissipation.  
o MXL1543, MXL1544/MAX3175, and MXL1344A  
Chipset Is Pin Compatible with LTC1543,  
LTC1544, and LTC1344A  
o Supports RS-232, RS-449, EIA-530, EIA-530A,  
V.35, V.36, and X.21  
o Software-Selectable Cable Termination Using the  
MXL1344A  
o Complete DTE or DCE Port with MXL1544/  
MAX3175, and MXL1344A  
o +5V Single-Supply Operation  
o 0.5µA No-Cable Mode  
o TUV-Certified NET1/NET2 and TBR1/TBR2-  
Compliant  
Ordering Information  
PART  
TEMP. RANGE  
PIN-PACKAGE  
MXL1543CAI  
0° to +70°C  
28 SSOP  
Applications  
Data Networking  
CSU and DSU  
Data Routers  
PCI Cards  
Pin Configuration appears at end of data sheet.  
Telecommunications  
Equipment  
Typical Operating Circuit  
LL  
R4  
CTS DSR  
DCD DTR RTS  
RXD RXC  
TXC SCTE TXD  
MXL1544  
MAX3175  
MXL1543  
D4  
D3  
D3  
D2  
D1  
D2  
D1  
R3  
R2  
R1  
R3  
R2  
R1  
MXL1344A  
18 13 5 10 8  
22 6 23 20 19 4  
1
7
16 3 9 17  
12 15 11 24 14 2  
DB-25 CONNECTOR  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
ABSOLUTE MAXIMUM RATINGS  
All Voltages Referenced to GND Unless Otherwise Noted.  
Supply Voltages  
Receiver Input  
R_IN_T3OUT_/R1IN_..........................................-15V to +15V  
V
V
EE  
.......................................................................-0.3V to +6V  
....................................................................-0.3V to +7.3V  
Continuous Power Dissipation (T = +70°C)  
A
28-Pin SSOP (derate 11.1mW/°C above +70°C) .........889mW  
Operating Temperature Range  
MXL1543CAI .......................................................0°C to 70°C  
Junction Temperature .......................................................150°C  
Storage Temperature Range ...........................-65°C to +150°C  
Lead Temperature (soldering, 10s) ...............................+300°C  
CC  
DD  
V
.....................................................................+0.3V to -6.5V  
V
to V (Note 1)................................................................13V  
DD  
EE  
Logic Input Voltages  
M0, M1, M2, DCE/DTE, T_IN................................-0.3V to +6V  
Logic Output Voltages  
R_OUT....................................................-0.3V to (V  
Transmitter Outputs  
+ 0.3V)  
CC  
T_OUT_, T3OUT_/R1IN_.....................................-15V to +15V  
Short-Circuit Duration............................................Continuous  
Note 1: V  
and V absolute difference cannot exceed 13V.  
EE  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
CC  
(V  
= +5.0V, C1 = C2 = C4 = 1µF, C3 = C5 = 4.7µF, (Figure 10), T = T  
to T  
. Typical values are at T = +25°C, unless oth-  
MAX A  
MIN  
A
erwise noted.)  
PARAMETER  
DC CHARACTERISTICS  
Operating Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.25  
130  
UNITS  
V
V
4.75  
V
CC  
CC  
CC  
RS-530, RS-530A, X.21, no load  
RS-530, RS-530A, X.21, full load  
V.35 mode, no load  
13  
100  
20  
Supply Current  
(DCE Mode)  
(Digital Inputs = GND or  
mA  
I
V.35 mode, full load  
126  
20  
170  
V
)
CC  
V.28 mode, no load  
(Transmitter Outputs Static)  
V.28 mode, full load  
40  
75  
10  
No-cable mode  
0.5  
230  
600  
140  
6.8  
6.8  
6.8  
-5.6  
-5.6  
-5.6  
-5.6  
500  
µA  
RS-530, RS-530A, X.21, full load  
V.35 mode, full load  
Internal Power Dissipation  
(DCE Mode)  
P
mW  
D
V.28 mode, full load  
Any mode (except no-cable mode), no load  
V.28 mode, with load  
6.4  
6.4  
6.4  
Positive Charge-Pump  
Output Voltage  
V
V
DD  
V.28, V.35 modes, with load, I  
V.28, V.35, no load  
= 10mA  
DD  
V.28 mode, full load  
-5.4  
-5.4  
-5.4  
Negative Charge-Pump  
Output Voltage  
V
V
µs  
V
EE  
V.35 mode, full load  
RS-530, RS-530A, X.21, full load  
No-cable mode or power-up to turn on  
Supply Rise Time  
t
r
LOGIC INPUTS (M0, M1, M2, DCE/DTE, T1IN, T2IN, T3IN)  
Input High Voltage  
Input Low Voltage  
V
2.0  
IH  
V
0.8  
10  
IL  
T1IN, T2IN, T3IN  
Logic Input Current  
I
µA  
M0, M1, M2, DCE/DTE = GND  
-100  
-50  
-30  
10  
IN  
M0, M1, M2, DCE/DTE = V  
CC  
2
_______________________________________________________________________________________  
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5.0V, C1 = C2 = C4 = 1µF, C3 = C5 = 4.7µF, (Figure 10), T = T  
to T  
. Typical values are at T = +25°C, unless oth-  
MAX A  
CC  
MIN  
A
erwise noted.)  
PARAMETER  
LOGIC OUTPUTS (R1OUT, R2OUT, R3OUT)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output High Voltage  
Output Low Voltage  
V
I
I
= 4mA  
SOURCE  
3
4.5  
0.3  
OH  
V
V
= 4mA  
SINK  
0.8  
50  
OL  
SC  
Output Short-Circuit Current  
Output Pullup Current  
V.11 TRANSMITTER  
I
0 V  
V  
mA  
OUT  
CC  
I
V
= 0, no-cable mode  
OUT  
70  
µA  
L
Open-Circuit Differential Output  
Voltage  
V
Open circuit, R = 1.95k(Figure 1)  
5
V
V
ODO  
0.5  
V
0.67  
V
ODO  
R = 50(Figure 1), T = +25oC  
Loaded Differential Output  
Voltage  
A
V
ODO  
ODL  
R = 50(Figure 1)  
R = 50(Figure 1)  
2
Change in Magnitude of Output  
Differential Voltage  
V  
0.2  
3.0  
V
V
OD  
Common-Mode Output Voltage  
V
R = 50(Figure 1)  
R = 50(Figure 1)  
OC  
Change in Magnitude of Output  
Common-Mode Voltage  
V  
0.2  
V
OC  
Short-Circuit Current  
Output Leakage Current  
Rise or Fall Time  
I
V
= GND  
OUT  
150  
100  
25  
mA  
µA  
ns  
SC  
-0.25V V  
no-cable mode  
+0.25V, power-off or  
OUT  
I
Z
1
10  
40  
t , t  
(Figures 2, 6)  
2
r
f
Transmitter Input to Output  
Delay  
t
, t  
PHL PLH  
(Figures 2, 6)  
80  
ns  
Data Skew  
It  
- t  
I
(Figures 2, 6)  
(Figures 2, 6)  
3
3
12  
ns  
ns  
PHL PLH  
Output to Output Skew  
V.11 RECEIVER  
t
SKEW  
Differential Threshold Voltage  
Input Hysteresis  
V
-7V V  
-7V V  
7V  
-200  
15  
200  
40  
mV  
mV  
mA  
kΩ  
ns  
TH  
CM  
CM  
V  
7V  
15  
TH  
Receiver Input Current  
Receiver Input Resistance  
Rise or Fall Time  
I
-10V V  
-10V V  
10V  
0.66  
IN  
A, B  
A, B  
R
10V  
30  
15  
50  
4
IN  
t , t  
r
(Figures 2, 7)  
(Figures 2, 7)  
(Figures 2, 7)  
f
Receiver Input to Output Delay  
Data Skew  
t
,t  
80  
16  
ns  
PHL PLH  
|t  
- t  
|
ns  
PHL PLH  
V.35 TRANSMITTER  
Open circuit (Figure 3)  
7
0.66  
-9  
Differential Output Voltage  
V
V
OD  
With load, -4V V  
4V (Figure 3)  
0.44  
-13  
9
0.55  
-11  
11  
CM  
Output High Current  
Output Low Current  
I
V
V
= 0  
= 0  
mA  
mA  
OH  
A,B  
A,B  
I
13  
OL  
_______________________________________________________________________________________  
3
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5.0V, C1 = C2 = C4 = 1µF, C3 = C5 = 4.7µF, (Figure 10), T = T  
to T  
. Typical values are at T = +25°C, unless oth-  
MAX A  
CC  
MIN  
A
erwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
+0.25V, power-off or no-  
MIN  
TYP  
1
MAX  
UNITS  
µA  
-0.25V V  
cable mode  
OUT  
Output Leakage Current  
Rise or Fall Time  
I
Z
100  
t , t  
r
(Figures 3, 6)  
5
ns  
f
Transmitter Input to Output  
Delay  
t
t
(Figures 3, 6)  
35  
80  
16  
ns  
PHL, PLH  
Data Skew  
|t  
t  
|
(Figures 3, 6)  
(Figures 3, 6)  
4
4
ns  
ns  
PHL PLH  
Output-to-Output Skew  
V.35 RECEIVER  
t
SKEW  
Differential Input Voltage  
Input Hysteresis  
V
-2V V  
-2V V  
2V (Figure 3)  
-200  
15  
200  
40  
mV  
mV  
mA  
kΩ  
ns  
TH  
CM  
CM  
V  
2V (Figure 3)  
15  
TH  
Receiver Input Current  
Receiver Input Resistance  
Rise or Fall Time  
I
-10V V , 10V  
0.66  
IN  
A B  
R
-10V V , 10V  
30  
15  
50  
4
IN  
A B  
t , t  
r
(Figures 3, 7)  
(Figures 3, 7)  
(Figures 3, 7)  
f
Receiver Input to Output Delay  
Data Skew  
t
, t  
PHL PLH  
80  
16  
ns  
|t  
t  
|
ns  
PHL PLH  
V.28 TRANSMITTER  
Open circuit  
7
Output Voltage Swing (Figure 4)  
Short-Circuit Current  
V
V
mA  
µA  
O
R = 3kΩ  
L
5
4
6
1
I
150  
100  
30  
SC  
-0.25V V  
+0.25V, power-off or no-  
OUT  
Output Leakage Current  
Output Slew Rate  
I
Z
cable mode  
SR  
R = 3k, C = 2500pF (Figures 4, 8)  
V/µs  
µs  
L
L
Transmitter Input to Output  
Delay  
t
t
R = 3k, C = 2500pF (Figures 4, 8)  
1.5  
1.5  
2.5  
PHL  
L
L
Transmitter Input to Output  
Delay  
R = 3k, C = 2500pF (Figures 4, 8)  
3
µs  
PLH  
L
L
V.28 RECEIVER  
Input Threshold Low  
Input Threshold High  
Input Hysteresis  
V
0.8  
3
1.2  
1.2  
0.05  
5
V
V
IL  
V
2.0  
0.3  
7
IH  
V
V
HYST  
Input Resistance  
R
IN  
-15V V +15V  
kΩ  
ns  
ns  
ns  
IN  
Rise or Fall Time  
t , t  
r
(Figures 5, 9)  
(Figures 5, 9)  
(Figures 5, 9)  
15  
f
Receiver Input to Output Delay  
Receiver Input to Output Delay  
t
60  
100  
250  
PHL  
PLH  
t
160  
4
_______________________________________________________________________________________  
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
Typical Operating Characteristics  
(V  
= +5.0V, C1 = C2 = C4 =1µF, C3 = C5 = 4.7µF, (Figure 10), T = T  
to T  
, T = +25°C, unless otherwise noted.)  
CC  
A
MIN  
MAX  
A
V.28 SUPPLY CURRENT  
vs. DATA RATE  
V.11 SUPPLY CURRENT  
vs. DATA RATE  
V.35 SUPPLY CURRENT  
vs. DATA RATE  
200  
160  
140  
120  
100  
80  
60  
40  
20  
0
DCE MODE ALL TRANSMITTERS  
180  
OPERATING AT THE SPECIFIED DATA RATE  
R = 3k, C = 2500pF  
160  
140  
L
L
100  
80  
120  
100  
80  
60  
40  
20  
0
60  
40  
DCE MODE, R = 50, ALL TRANSMITTERS  
OPERATING AT THE SPECIFIED DATA RATE  
DCE MODE, FULL LOAD, ALL TRANSMITTERS  
OPERATING AT THE SPECIFIED DATA RATE  
20  
0
0
50  
100  
150  
200  
250  
0.1  
1
10  
100  
1000 10,000  
0.1  
0.1  
10  
100  
1000 10,000  
DATA RATE (kbps)  
DATA RATE (kbps)  
DATA RATE (kbps)  
V.11 DRIVER DIFFERENTIAL OUTPUT  
VOLTAGE vs. TEMPERATURE  
V.28 OUTPUT VOLTAGE  
vs. TEMPERATURE  
V.35 OUTPUT VOLTAGE  
vs. TEMPERATURE  
10  
8
5
4
3
2
1
0
0.66  
0.44  
0.22  
0
DCE MODE, R = 3kΩ  
DCE MODE, R = 50Ω  
L
V
OH  
DCE MODE, V = 0  
CM  
V
OUT+  
6
FULL LOAD  
V
OUT+  
4
2
0
-2  
-1  
-2  
-3  
-4  
-5  
-0.22  
-0.44  
-0.66  
V
OUT-  
-4  
-6  
V
OUT-  
V
OL  
50  
-8  
-10  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
60  
70  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V.35 DIFFERENTIAL OUTPUT VOLTAGE  
vs. COMMON-MODE VOLTAGE  
V.28 RECEIVER INPUT CURRENT  
vs. INPUT VOLTAGE  
V.11/V.35 RECEIVER INPUT CURRENT  
vs. INPUT VOLTAGE  
600  
590  
580  
570  
560  
550  
540  
530  
520  
2.5  
2.0  
300  
200  
100  
0
DCE MODE  
DCE MODE  
1.5  
1.0  
|V  
|
OD  
0.5  
0
-0.5  
-1.0  
-100  
-200  
-300  
-1.5  
-2.0  
-2.5  
-4 -3 -2 -1  
0
1
2
3
4
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
COMMON-MODE VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
_______________________________________________________________________________________  
5
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
Typical Operating Characteristics (continued)  
(V  
= +5.0V, C1= C2 = C4 =1µF, C3 = C5 = 4.7µF (Figure 10), T = +25°C, unless otherwise noted.)  
CC  
A
V.11 LOOPBACK OPERATION  
V.28 LOOPBACK OPERATION  
V.35 LOOPBACK OPERATION  
MXL1543 toc10  
MXL1543 toc11  
MXL1543 toc12  
R = 50Ω  
FULL LOAD  
C
R
= 2500pF  
= 3kΩ  
L
T
L
5V/div  
T
5V/div  
IN  
IN  
5V/div  
5V/div  
5V/div  
T
IN  
T
/R  
OUT IN  
T
/R  
5V/div  
5V/div  
OUT IN  
T
/R  
OUT IN  
1V/div  
5V/div  
R
OUT  
R
R
OUT  
OUT  
200ns/div  
1µs/div  
200ns/div  
V.11 TRANSMITTER PROPAGATION DELAY  
vs. TEMPERATURE  
V.11 RECEIVER PROPAGATION DELAY  
vs. TEMPERATURE  
V.28 SLEW RATE vs. C  
LOAD  
80  
70  
60  
50  
40  
80  
70  
60  
50  
40  
24  
22  
20  
18  
16  
14  
12  
t
PHL  
+SLEW  
-SLEW  
t
PLH  
10  
8
6
30  
20  
t
30  
20  
PLH  
t
PHL  
R = 3kΩ  
L
4
2
0
10  
0
1 TRANSMITTER SWITCHING AT 250kbps.  
10  
0
OTHER TRANSMITTERS SWITCHING AT 15kbps  
0
10  
20  
30  
50  
60  
70  
40  
0
1000  
2000  
C
3000  
(pF)  
4000  
5000  
0
10  
20  
30  
50  
60  
70  
40  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LOAD  
V.35 TRANSMITTER PROPAGATION DELAY  
vs. TEMPERATURE  
V.35 RECEIVER PROPAGATION DELAY  
vs. TEMPERATURE  
100  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
t
t
PHL  
PLH  
t
t
PLH  
30  
20  
30  
20  
PHL  
30  
10  
0
10  
0
0
10  
20  
50  
60  
70  
40  
0
10  
20  
30  
50  
60  
70  
40  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
Test Circuits  
100pF  
R
B
B
D
R
R
100Ω  
A
A
V
OD  
15pF  
V
OC  
100pF  
Figure 1. V.11 DC Test Circuit  
Figure 2. V.11 AC Test Circuit  
50Ω  
50Ω  
V
CM  
B
125Ω  
125Ω  
B
R
D
V
OD  
A
A
50Ω  
50Ω  
15pF  
Figure 3. V.35 Transmitter/Receiver Test Circuit  
A
A
D
D
R
C
R
L
V
L
O
15pF  
Figure 5. V.28 Receiver Test Circuit  
Figure 4. V.28 Driver Test Circuit  
_______________________________________________________________________________________  
7
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
Timing Diagrams  
5V  
0
f = 1MHz: t 10ns: t 10ns  
r
f
D
1.5V  
1.5V  
t
t
PHL  
PLH  
V
0
90%  
10%  
90%  
V
= V(A) - V(B)  
DIFF  
50%  
50%  
B — A  
10%  
1/2 V  
0
-V  
0
t
t
f
r
A
V
0
B
t
t
SKEW  
SKEW  
Figure 6. V.11, V.35 Driver Propagation Delays  
V
0
0
f = 1MHz: t 10ns: t 10ns  
INPUT  
B A  
r
f
0
0
-V  
t
t
PHL  
PLH  
V
0H  
OUTPUT  
1.5V  
1.5V  
R
V
0L  
Figure 7. V.11, V.35 Receiver Propagation Delays  
3V  
1.5V  
t
1.5V  
D
A
0
t
PHL  
PLH  
V
0
3V  
3V  
0
0
-3V  
-3V  
-V  
0
t
r
t
r
Figure 8. V.28 Driver Propagation Delays  
V
IH  
1.7V  
A
1.3V  
V
IL  
t
PLH  
t
PHL  
V
R
V
0H  
2.4V  
0.8V  
0L  
Figure 9. V.28 Receiver Propagation Delays  
8
_______________________________________________________________________________________  
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
Pin Description  
PIN  
1
NAME  
FUNCTION  
Capacitor C1 Negative Terminal. Connect a 1µF ceramic capacitor between C1+ and C1-.  
Capacitor C1 Positive Terminal. Connect a 1µF ceramic capacitor between C1+ and C1-.  
Generated Positive Supply. Connect a 4.7µF ceramic capacitor to ground.  
+5V Supply Voltage ( 5%). Decouple with a 1µF capacitor to ground.  
Transmitter 1 TTL-Compatible Input  
C1-  
2
C1+  
3
V
V
DD  
CC  
4
5
T1IN  
T2IN  
6
Transmitter 2 TTL-Compatible Input  
7
T3IN  
Transmitter 3 TTL-Compatible Input  
8
R1OUT  
R2OUT  
R3OUT  
M0  
Receiver 1 CMOS Output  
9
Receiver 2 CMOS Output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Receiver 3 CMOS Output  
Mode-Select Pin with Internal Pullup to V  
Mode-Select Pin with Internal Pullup to V  
Mode-Select Pin with Internal Pullup to V  
CC  
CC  
CC  
M1  
M2  
DCE/DTE  
R3INB  
DCE/DTE Mode-Select Pin with Internal Pullup to V  
Noninverting Receiver Input  
CC  
R3INA  
Inverting Receiver Input  
R2INB  
Noninverting Receiver Input  
R2INA  
Inverting Receiver Input  
T3OUTB/R1INB  
T3OUTA/R1INA  
T2OUTB  
T2OUTA  
T1OUTB  
T1OUTA  
GND  
Noninverting Transmitter Output/Noninverting Receiver Input  
Inverting Transmitter Output/Inverting Receiver Input  
Noninverting Transmitter Output  
Inverting Transmitter Output  
Noninverting Transmitter Output  
Inverting Transmitter Output  
Ground  
V
Generated Negative Supply. Connect a 4.7µF ceramic capacitor to ground.  
Capacitor C2 Negative Terminal. Connect a 1µF ceramic capacitor between C2+ and C2-.  
Capacitor C2 Positive Terminal. Connect a 1µF ceramic capacitor between C2+ and C2-.  
EE  
C2-  
C2+  
safe operation, and thermal shutdown circuitry. Thermal  
Detailed Description  
shutdown protects the drivers against excessive power  
dissipation. When activated, the thermal shutdown cir-  
cuitry places the driver outputs into a high-impedance  
state.  
The MXL1543 is a three-driver/three-receiver, multipro-  
tocol transceiver that operates from a single +5V sup-  
ply. The MXL1543, along with the MXL1544/MAX3175  
and MXL1344A, form a complete software-selectable  
DTE or DCE interface port that supports the V.28 (RS-  
232), V.10/V.11 (RS-449/V.36, EIA-530, EIA-530A,  
X.21), and V.35 protocols. The MXL1543 transceivers  
carry the high-speed clock and data signals, while the  
MXL1544/MAX3175 transceivers carry serial interface  
control signaling. The MXL1543 can be terminated by  
the MXL1344A software-selectable resistor termination  
network or by a discrete termination network. The  
MXL1543 features a 0.5µA no-cable mode, true fail-  
Mode Selection  
The state of the mode-select pins M0, M1, and M2  
determines which serial interface protocol is selected  
(Table 1). The state of the DCE/DTE input determines  
whether the transceiver will be configured as a DTE or  
DCE serial port. When the DCE/DTE input is logic  
HIGH, driver T3 is activated and receiver R1 is dis-  
abled. When the DCE/DTE input is logic LOW, driver T3  
_______________________________________________________________________________________  
9
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
Table 1. Mode Selection  
DCE/  
DTE  
MXL1543  
MODE NAME  
M2  
M1  
M0  
T1  
T2  
T3  
R1  
R2  
R3  
Not Used (Default V.11)  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0
0
0
0
0
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.11  
V.11  
V.11  
V.35  
Z
Z
Z
Z
Z
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.11  
V.11  
V.11  
V.35  
RS-530A  
RS-530  
X.21  
V.35  
RS-449/V.361  
V.28/RS-232  
No Cable  
0
1
0
V.11  
V.11  
Z
V.11  
V.11  
V.11  
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
0
0
1
1
1
1
1
V.28  
Z
V.28  
Z
Z
Z
V.28  
Z
V.28  
Z
V.28  
Z
Not Used (Default V.11)  
RS-530A  
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.11  
V.11  
V.11  
V.35  
Z
V.11  
V.11  
V.11  
V.11  
V.35  
V.11  
V.11  
V.11  
V.11  
V.35  
Z
RS-530  
Z
X.21  
Z
V.35  
Z
RS-449/V.361  
V.28/RS-232  
No Cable  
0
1
1
V.11  
V.11  
V.11  
V.28  
Z
V.11  
V.11  
1
1
1
1
0
1
1
1
V.28  
Z
V.28  
Z
Z
Z
V.28  
Z
V.28  
Z
Z
is disabled and receiver R1 is activated. M0, M1, M2,  
Each charge pump requires a flying capacitor (C1, C2)  
and DCE/DTE are internally pulled up to V  
to ensure  
and a reservoir capacitor (C3, C5) to generate the V  
DD  
CC  
a logic HIGH if left unconnected.  
and V supplies. Figure 10 shows charge-pump con-  
EE  
nections.  
No-Cable Mode  
Fail-Safe Receivers  
The MXL1543 will enter no-cable mode when the  
mode-select pins are left unconnected or connected  
high (M0 = M1 = M2 = 1). In this mode, the multiproto-  
col drivers and receivers are disabled and the supply  
current drops to 0.5µA. The receiversoutputs enter a  
high-impedance state in no-cable mode, which allow  
these output lines to be shared with other receivers’  
outputs (the receiversoutputs have internal pullup  
resistors to pull the outputs HIGH if not driven). Also, in  
no-cable mode, the transmitter outputs enter a high-  
impedance state so that these output lines can be  
shared with other devices.  
The MXL1543 guarantees a logic-high receiver output  
when the receiver inputs are shorted or open, or when  
they are connected to a terminated transmission line  
with all the drivers disabled. This is done by setting the  
receiversthreshold between -25mV and -200mV in the  
MXL1543  
V
C2+  
C2-  
DD  
C2  
1µF  
C3  
4.7µF  
C1+  
C1-  
Dual Charge-Pump Voltage Converter  
C1  
1µF  
The MXL1543s internal power supply consists of a reg-  
ulated dual charge pump that provides positive and  
negative output voltages from a +5V supply. The  
charge pump operates in discontinuous mode. If the  
output voltage is less than the regulated voltage, the  
charge pump is enabled. If the output voltage exceeds  
the regulated voltage, the charge pump is disabled.  
V
EE  
C5  
4.7µF  
V
CC  
GND  
5V  
C4  
1µF  
Figure 10. Charge Pump  
10 ______________________________________________________________________________________  
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
C6  
C7 C8  
100pF 100pF 100pF  
3
8
11 12 13  
V
CC  
5V  
MXL1344A  
14  
V
CC  
EE  
C13  
21  
1µF  
28  
3
1
LATCH  
C2  
C3  
4.7µF  
1µF  
27  
26  
C1  
2
CHARGE  
PUMP  
1µF  
V
2
4
C5  
4.7µF  
25  
C12  
5
4
6
7
9 10 16 15 18 17 19 20 22 23 24 1  
C4  
1µF  
1µF  
DTE  
DCE  
V
CC  
2
14  
24  
11  
24  
23  
22  
21  
5
6
RXD A  
RXD B  
RXC A  
RXC B  
TXD A  
TXD B  
SCTE A  
SCTE B  
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
D1  
D2  
7
8
D3  
R1  
20  
19  
15  
12  
TXC A TXC A  
DTE_TXC/DCE_TXC  
TXC B  
TXC B  
17  
9
18  
17  
16  
15  
9
SCTE A  
SCTE B  
RXC A  
RXC B  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
R2  
R3  
3
16  
7
TXD A  
TXD B  
10  
RXD A  
RXD B  
SG  
11  
MXL1543  
M0  
M1  
M2  
12  
13  
14  
1
SHIELD  
NC  
DCE/DTE  
DB-25  
CONNECTOR  
C9  
F  
V
CC  
28  
27  
1
2
V
V
V
EE  
CC  
DD  
C10  
C11  
1µF  
25  
1µF  
DCE/DTE  
M1  
M0  
GND  
21  
18  
4
19  
20  
23  
26  
25  
24  
23  
3
4
CTS A  
RTS A  
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
D1  
D2  
D3  
RTS B CTS B  
DSR A  
DSR B  
DTR A  
DTR B  
5
6
8
10  
22  
21  
DCD A  
DCD B  
DCD A  
DCD B  
DTE_DCD/DCE_DCD  
R1  
6
22  
5
20  
19  
18  
17  
7
8
DTR A  
DTR B  
DSR A  
DSR B  
DTE_DSR/DCE_DTR  
DTE_CTS/DCE_RTS  
R2  
R3  
R4  
RTS A  
RTS B  
CTS A  
CTS B  
13  
10  
9
16  
D4  
11  
MXL1544  
MAX3175  
M0  
M1  
M2  
12  
13  
14  
NC  
15  
DCE/DTE INVERT  
Figure 11. Cable-Selectable Multiprotocol DTE/DCE Port  
______________________________________________________________________________________ 11  
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
BALANCED  
INTERCONNECTING  
CABLE  
I
Z
3.25mA  
V
LOAD  
GENERATOR  
CABLE  
RECEIVER  
TERMINATION  
-3V  
-10V  
A′  
Z
A
+10V  
+3V  
100Ω  
MIN  
-3.25mA  
B′  
B
C′  
C
Figure 13. Receiver Input Impedance  
GND  
GND  
Cable-Selectable Mode  
Figure 12. Typical V.11 Interface  
A cable-selectable multiprotocol interface is shown in  
Figure 11. The mode control lines M0, M1, and  
DCE/DTE are wired to the DB-25 connector. To select  
the serial interface mode, the appropriate combination  
of M0, M1, and DCE/DTE are grounded within the cable  
wiring. The control lines that are not grounded are  
pulled high by the internal pullups on the MXL1543.  
The serial interface protocol of the MXL1543,  
MXL1544/MAX3175, and MXL1344A is selected based  
on the cable that is connected to the DB-25 interface.  
V.11 and V.35 modes. If the differential receiver input  
voltage (B - A) is -25mV, R_OUT is logic HIGH. If (B -  
A) is -200mV, R_OUT is logic LOW. In the case of a  
terminated bus with all transmitters disabled, the  
receivers differential input voltage is pulled to zero by  
the termination. With the receiver thresholds of the  
MXL1543, this results in a logic HIGH with a 25mV mini-  
mum noise margin.  
Applications Information  
V.11 Interface  
Capacitor Selection  
As shown in Figure 12, the V.11 protocol is a fully bal-  
anced differential interface. The V.11 driver generates a  
minimum of 2V between nodes A and B when a 100Ω  
(min) resistance is presented at the load. The V.11  
receiver is sensitive to 200mV differential signals at  
receiver inputs Aand B. The V.11 receiver rejects  
common-mode signals developed across the cable  
(referenced from C to C) of up to 7V, allowing for  
error-free reception in noisy environments. The receiver  
inputs must comply with the impedance curve shown in  
Figure 13.  
For high-speed data transmission, the V.11 specifica-  
tion recommends terminating the cable at the receiver  
with a 100resistor. This resistor, although not  
required, prevents reflections from corrupting transmit-  
ted data. In Figure 14, the MXL1344A is used to termi-  
nate the V.11 receiver. Internal to the MXL1344A, S1 is  
closed and S2 is open to present a 100minimum dif-  
ferential resistance. The MXL1543s internal V.28 termi-  
nation is disabled by opening S3.  
The capacitors used for the charge pumps, as well as  
for supply bypassing, should have a low equivalent  
series resistance (ESR) and low temperature coeffi-  
cient. Multilayer ceramic capacitors with an X7R dielec-  
tric offer the best combination of performance, size,  
and cost. The flying capacitors (C1, C2) and the  
bypass capacitor (C4) should have a value of 1µF,  
while the reservoir capacitors (C3, C5) should have a  
minimum value of 4.7µF (Figure 10). To reduce the rip-  
ple present on the transmitter outputs, capacitors C3,  
C4, and C5 can be increased. The values of C1 and C2  
should not be increased.  
Cable Termination  
The MXL1344A software-selectable resistor network is  
designed to be used with the MXL1543. The MXL1344A  
multiprotocol termination network provides V.11- and  
V.35-compliant termination, while V.28 receiver termina-  
tion is internal to the MXL1543. These cable termination  
networks provide compatibility with V.11, V.28, and  
V.35 protocols. Using the MXL1344A termination net-  
works provide the advantage of not having to build  
expensive termination networks out of resistors and  
relays, manually changing termination modules, or  
building custom termination networks  
V.35 Interface  
Figure 15 shows a fully-balanced, differential standard  
V.35 interface. The generator and the load must both  
present a 10010differential impedance and a  
15015common-mode impedance as shown by  
the resistive T networks in Figure 15. The V.35 driver  
generates a current output ( 11mA, typ) that develops  
an output voltage of 550mV across the generator and  
12 ______________________________________________________________________________________  
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
A′  
A
MXL1543  
R5  
30kΩ  
R8  
5kΩ  
R1  
52Ω  
MXL1344A  
R6  
10kΩ  
RECEIVER  
S3  
S1  
S2  
R3  
124Ω  
R7  
10kΩ  
R2  
52Ω  
R4  
30kΩ  
B′  
C′  
B
GND  
Figure 14. V.11 Termination and Internal Resistance Networks  
BALANCED  
INTERCONNECTING  
CABLE  
LOAD  
GENERATOR  
CABLE  
TERMINATION  
RECEIVER  
A′  
A
50Ω  
50Ω  
50Ω  
125Ω  
125Ω  
50Ω  
B′  
C′  
B
C
GND  
GND  
Figure 15. Typical V.35 Interface  
A′  
A
MXL1543  
R5  
30kΩ  
R8  
5kΩ  
R1  
52Ω  
MXL1344A  
R6  
10kΩ  
RECEIVER  
S1  
S3  
R3  
124Ω  
S2  
R7  
10kΩ  
R2  
52Ω  
R4  
30kΩ  
B′  
C′  
B
GND  
Figure 16. V.35 Termination and Internal Resistance Networks  
______________________________________________________________________________________ 13  
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
UNBALANCED  
INTERCONNECTING  
CABLE  
LOAD  
GENERATOR  
CABLE  
TERMINATION  
RECEIVER  
A
A′  
C′  
C
GND  
GND  
Figure 17. Typical V.28 Interface  
A  
A
MXL1543  
R5  
30kΩ  
R8  
5kΩ  
R1  
52Ω  
MXL1344A  
R6  
10kΩ  
RECEIVER  
S1  
S3  
R3  
124Ω  
S2  
R7  
10kΩ  
R2  
52Ω  
R4  
30kΩ  
B′  
C′  
B
GND  
Figure 18. V.28 Termination and Internal Resistance Networks  
load termination networks. The V.35 receiver is sensi-  
tive to 200mV differential signals at receiver inputs A’  
and B. The V.35 receiver rejects common-mode sig-  
nals developed across the cable (referenced from C to  
C) of up to 4V, allowing for error-free reception in  
noisy environments.  
In Figure 16, the MXL1344A is used to implement the  
resistive T network that is needed to properly terminate  
the V.35 driver and receiver. Internal to the MXL1344A,  
S1 and S2 are closed to connect the T-network resis-  
tors to the circuit. The V.28 termination resistor (internal  
to the MXL1543) is disabled by opening S3 to avoid  
interference with the T-network impedance.  
in rejecting system noise, the MXL1543s V.28 receiver  
has a typical hysteresis of 0.05V.  
Figure 18 shows the MXL1344As termination network  
disabled by opening S1 and S2. The MXL1543s inter-  
nal 5kV.28 termination is enabled by closing S3.  
DTE vs. DCE Operation  
Figure 19 shows a DCE or DTE controller-selectable  
interface. DCE/DTE (pin 14) switches the ports mode  
of operation. See Table 1.  
This application requires only one DB-25 connector,  
but separate cables for DCE or DTE signal routing. See  
Figure 19 for complete signal routing in DCE and DTE  
modes.  
V.28 Interface  
Complete Multiprotocol X.21 Interface  
The V.28 interface is an unbalanced single-ended inter-  
face (Figure 17). The V.28 driver generates a minimum  
of 5V across a 3kload impedance between Aand  
C. The V.28 receiver has a single-ended input. To aid  
A complete DTE-to-DCE interface operating in X.21  
mode is shown in Figure 20. The MXL1543 is used to  
generate the clock and data signals, and the  
14 ______________________________________________________________________________________  
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
C6  
C7 C8  
100pF 100pF 100pF  
3
8
11 12 13  
V
CC  
5V  
MXL1344A  
14  
V
V
CC  
EE  
C13  
21  
1µF  
28  
3
1
LATCH  
C2  
C3  
4.7µF  
1µF  
27  
26  
C1  
2
CHARGE  
PUMP  
1µF  
2
4
C5  
4.7µF  
25  
C12  
5
4
6
7
9 10 16 15 18 17 19 20 22 23 24 1  
C4  
1µF  
1µF  
DTE  
DCE  
2
14  
24  
11  
24  
23  
22  
21  
5
6
RXD A  
RXD B  
RXC A  
RXC B  
TXD A  
TXD B  
SCTE A  
SCTE B  
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
D1  
D2  
7
8
D3  
R1  
20  
19  
15  
12  
TXC A TXC A  
DTE_TXC/DCE_TXC  
TXC B  
TXC B  
17  
9
18  
17  
16  
15  
9
SCTE A  
SCTE B  
RXC A  
RXC B  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
R2  
R3  
3
16  
7
TXD A  
TXD B  
10  
RXD A  
RXD B  
SG  
11  
MXL1543  
M0  
M1  
M2  
12  
13  
14  
1
SHIELD  
DCE/DTE  
DB-25  
CONNECTOR  
C9  
F  
V
CC  
28  
27  
1
2
V
V
V
EE  
CC  
DD  
C10  
C11  
1µF  
1µF  
GND  
4
19  
20  
23  
26  
25  
24  
23  
3
4
CTS A  
RTS B CTS B  
RTS A  
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
D1  
D2  
D3  
DSR A  
DSR B  
DTR A  
DTR B  
5
6
8
10  
22  
21  
DCD A  
DCD B  
DCD A  
DCD B  
DTE_DCD/DCE_DCD  
R1  
6
22  
5
20  
19  
18  
17  
7
8
DTR A  
DTR B  
DSR A  
DSR B  
DTE_DSR/DCE_DTR  
DTE_CTS/DCE_RTS  
DTE_LL/DCE_LL  
R2  
R3  
R4  
RTS A  
RTS B  
CTS A  
CTS B  
13  
18  
10  
9
16  
LLA  
LLA  
D4  
MXL1544  
MAX3175  
11  
M0  
M1  
M2  
12  
13  
14  
15  
INVERT  
DCE/DTE  
DCE/DTE  
M2  
M1  
M0  
Figure 19. Multiprotocol DCE/DTE Port  
______________________________________________________________________________________ 15  
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
DTE  
DCE  
MXL1543  
R3  
SERIAL  
CONTROLLER  
SERIAL  
CONTROLLER  
MXL1543  
MXL1344A  
MXL1344A  
104  
D1  
TXD  
TXD  
TXD  
104Ω  
SCTE  
SCTE  
D2  
D3  
R2  
R1  
SCTE  
104Ω  
104Ω  
104Ω  
TXC  
RXC  
RXD  
TXC  
RXC  
RXD  
R3  
D1  
TXC  
RXC  
RXD  
R2  
R1  
D2  
D3  
MXL1544  
MAX3175  
MXL1544  
MAX3175  
D1  
R3  
RTS  
DTR  
RTS  
DTR  
RTS  
DTR  
D2  
D3  
R2  
R1  
DCD  
DSR  
DCD  
DSR  
R1  
D3  
DCD  
DSR  
R2  
R3  
D2  
D1  
CTS  
LL  
CTS  
LL  
CTS  
LL  
D4  
R4  
R4  
D4  
Figure 20. DCE-to-DTE X.21 Interface  
MXL1544/MAX3175 generate the control signals and  
local loopback (LL). The MXL1344A is used to termi-  
nate the clock and data signals to support the V.11 pro-  
tocol for cable termination. The control signals do not  
need external termination.  
Compliance Testing  
A European Standard EN 45001 test report is pending  
for the MXL1543/MXL1544/MXL1344A chipset. A copy  
of the test report will be available from Maxim upon  
completion.  
16 ______________________________________________________________________________________  
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
Chip Information  
TRANSISTOR COUNT: 2619  
PROCESS: BiCMOS  
Pin Configuration  
TOP VIEW  
C1-  
C1+  
1
2
3
4
5
6
7
8
9
28 C2+  
27 C2-  
V
DD  
V
CC  
26 V  
EE  
25 GND  
T1IN  
T2IN  
24 T1OUTA  
23 T1OUTB  
22 T2OUTA  
21 T2OUTB  
20 T3OUTA/R1INA  
19 T3OUTB/R1INB  
18 R2INA  
MXL1543  
T3IN  
R1OUT  
R2OUT  
R3OUT 10  
M0 11  
M1 12  
17 R2INB  
M2 13  
16 R3INA  
DCE/DTE 14  
15 R3INB  
SSOP  
______________________________________________________________________________________ 17  
+5V Multiprotocol, 3Tx/3Rx, Software-  
Selectable Clock/Data Transceivers  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MXL1543B

+5V Multiprotocol, 3Tx/3Rx, Software- Selectable Clock/Data Transceivers
MAXIM

MXL1543BCAI

+5V Multiprotocol, 3Tx/3Rx, Software- Selectable Clock/Data Transceivers
MAXIM

MXL1543BCAI

TRIPLE LINE TRANSCEIVER, PDSO28, 5.30 MM, MO-150, SSOP-28
ROCHESTER

MXL1543BCAI+

Line Transceiver, 3 Func, 3 Driver, 3 Rcvr, BICMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM

MXL1543BCAI-G05

Line Transceiver
MAXIM

MXL1543BCAI-T

Line Transceiver, 3 Func, 3 Driver, 3 Rcvr, BICMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM

MXL1543BCAI-TG05

Line Transceiver
MAXIM

MXL1543CAI

+5V Multiprotocol, 3Tx/3Rx, Software-Selectable Clock/Data Transceivers
MAXIM

MXL1543CAI+

Line Transceiver, 3 Func, 3 Driver, 3 Rcvr, BICMOS, PDSO28, 5.30 MM, 0.65 MM PITCH, SSOP-28
MAXIM

MXL1543CAI-T

Line Transceiver, 3 Func, 3 Driver, 3 Rcvr, BICMOS, PDSO28, 5.30 MM, 0.65 MM PITCH, SSOP-28
MAXIM

MXL1543EVKIT

Evaluation Kit for the MXL1543/MXL1544/MAX3175/MXL1344A
ETC

MXL1544

+5V Multiprotocol, Software-Selectable Control Transceivers
MAXIM