MX26LV160ATTC-70 [Macronix]

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY BOOT SECTOR HIGH SPEED eLiteFlashTM MEMORY; 16M - BIT [ 2Mx8 / 1Mx16 ] CMOS单电压3V只引导扇区高速eLiteFlashTM记忆
MX26LV160ATTC-70
型号: MX26LV160ATTC-70
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY BOOT SECTOR HIGH SPEED eLiteFlashTM MEMORY
16M - BIT [ 2Mx8 / 1Mx16 ] CMOS单电压3V只引导扇区高速eLiteFlashTM记忆

文件: 总61页 (文件大小:742K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MX26LV160AT/AB  
Macronix NBitTM Memory Family  
16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE  
3V ONLY BOOT SECTOR HIGH SPEED eLiteFlashTM MEMORY  
FEATURES  
• Extended single - supply voltage range 3.0V to 3.6V  
• 2,097,152 x 8 / 1,048,576 x 16 switchable  
• Singlepowersupplyoperation  
-Providesahardwaremethodofdetectingprogramor  
eraseoperationcompletion  
• Sectorprotection  
- 3.0V only operation for read, erase and program  
operation  
• Fast access time: 55/70ns  
- Hardware method to disable any combination of  
sectors from program or erase operations  
-Temporarysectorunprotectallowscodechangesin  
previously locked sectors  
• Lowpowerconsumption  
- 30mA maximum active current  
- 30uA typical standby current  
• CFI (Common Flash Interface) compliant  
- Flash device parameters stored on the device and  
provide the host system to access  
• 2K minimum erase/program cycles  
• Latch-up protected to 100mA from -1V to VCC+1V  
• Boot Sector Architecture  
- T = Top Boot Sector  
- B = Bottom Boot Sector  
• Package type:  
• Commandregisterarchitecture  
- Byte/word Programming (55us/70us typical)  
- Sector Erase (Sector structure 16K-Bytex1,  
8K-Bytex2, 32K-Bytex1, and 64K-Byte x31)  
• Auto Erase (chip & sector) and Auto Program  
-Automaticallyeraseanycombinationofsectorswith  
erase verify capability  
- Automatically program and verify data at specified  
address  
- 44-pin SOP  
- 48-pin TSOP  
• Status Reply  
- 48-ball CSP  
- Data# polling & Toggle bit for detection of program  
anderaseoperationcompletion  
• Ready/Busy# pin (RY/BY#)  
• Compatibility with JEDEC standard  
- Pinout and software compatible with single-power  
supply Flash  
• 20 years data retention  
GENERAL DESCRIPTION  
The MX26LV160AT/AB is a 16-mega bit high speed Flash  
memory organized as 2M bytes of 8 bits or 1M words of  
16 bits. MXIC's high speed Flash memories offer the  
most cost-effective and reliable read/write non-volatile  
random access memory. The MX26LV160AT/AB is pack-  
aged in 44-pin SOP, 48-pinTSOP, and 48-ball CSP. It is  
designed to be reprogrammed and erased in system or  
in standard EPROM programmers.  
lows for 100% TTL level control inputs and fixed power  
supply levels during erase and programming, while main-  
taining maximum EPROM compatibility.  
MXIC high speed Flash technology reliably stores  
memory contents even after 2K erase and program  
cycles. The MXIC cell is designed to optimize the erase  
and programming mechanisms. In addition, the combi-  
nation of advanced tunnel oxide processing and low in-  
ternal electric fields for erase and program operations  
produces reliable cycling. The MX26LV160AT/AB uses  
a 3.0V~3.6VVCC supply to perform the High Reliability  
Erase and auto Program/Erase algorithms.  
The standard MX26LV160AT/AB offers access time as  
fast as 55ns, allowing operation of high-speed micropro-  
cessors without wait states. To eliminate bus conten-  
tion, the MX26LV160AT/AB has separate chip enable  
(CE#) and output enable (OE#) controls.  
The highest degree of latch-up protection is achieved  
with MXIC's proprietary non-epi process. Latch-up pro-  
tection is proved for stresses up to 100 milliamperes on  
address and data pin from -1V to VCC + 1V.  
MXIC's high speed Flash memories augment EPROM  
functionality with in-circuit electrical erasure and program-  
ming. The MX26LV160AT/AB uses a command register  
to manage this functionality. The command register al-  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
1
MX26LV160AT/AB  
PIN CONFIGURATIONS  
PIN DESCRIPTION  
SYMBOL PIN NAME  
44 SOP  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
WE#  
A19  
A8  
RESET#  
2
3
4
A18  
A17  
A7  
A0~A19  
Address Input  
A9  
Q0~Q14 Data Input/Output  
5
A10  
A11  
A12  
A13  
A14  
A15  
A16  
BYTE#  
GND  
Q15/A-1  
Q7  
Q14  
Q6  
Q13  
Q5  
Q12  
Q4  
VCC  
A6  
6
A5  
Q15/A-1  
CE#  
Q15(Word mode)/LSB addr(Byte mode)  
7
A4  
8
A3  
Chip Enable Input  
9
A2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
A1  
A0  
CE#  
GND  
OE#  
Q0  
Q8  
Q1  
Q9  
Q2  
WE#  
Write Enable Input  
BYTE#  
Word/Byte Selection input  
RESET# Hardware Reset Pin  
OE#  
Output Enable Input  
Ready/Busy Output  
Power Supply Pin (3.0V~3.6V)  
Ground Pin  
RY/BY#  
VCC  
Q10  
Q3  
Q11  
GND  
48 TSOP (Standard Type) (12mm x 20mm)  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
BYTE#  
GND  
Q15/A-1  
Q7  
2
3
4
5
6
Q14  
Q6  
7
A8  
8
Q13  
Q5  
A19  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Q12  
Q4  
WE#  
RESET#  
NC  
VCC  
Q11  
Q3  
MX26LV160AT/AB  
NC  
RY/BY#  
A18  
A17  
A7  
Q10  
Q2  
Q9  
Q1  
A6  
Q8  
A5  
Q0  
A4  
OE#  
GND  
CE#  
A0  
A3  
A2  
A1  
48-Ball CSP Ball Pitch = 0.8 mm,Top View, Balls Facing Down  
A
B
C
D
E
F
G
H
6
5
4
3
2
1
A13  
A9  
A12  
A8  
A14  
A10  
NC  
A18  
A6  
A15  
A11  
A19  
NC  
A5  
A16  
Q7  
Q5  
Q2  
Q0  
A0  
BYTE# Q15/A-1 GND  
Q14  
Q12  
Q10  
Q8  
Q13  
Vcc  
Q11  
Q9  
Q6  
Q4  
WE# RESET#  
RY/BY#  
A7  
NC  
A17  
A4  
Q3  
Q1  
A3  
A2  
A1  
CE#  
OE#  
GND  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
2
MX26LV160AT/AB  
BLOCK STRUCTURE  
TABLE 1: MX26LV160AT SECTOR ARCHITECTURE  
Sector  
Sector Size  
Address range  
Sector Address  
Byte Mode Word Mode Byte Mode(x8) Word Mode(x16) A19 A18 A17 A16 A15 A14 A13 A12  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
64Kbytes  
64Kbytes  
64Kbytes  
64Kbytes  
64Kbytes  
64Kbytes  
64Kbytes  
64Kbytes  
64Kbytes  
64Kbytes  
32Kwords 000000-00FFFF 00000-07FFF  
32Kwords 010000-01FFFF 08000-0FFFF  
32Kwords 020000-02FFFF 10000-17FFF  
32Kwords 030000-03FFFF 18000-1FFFF  
32Kwords 040000-04FFFF 20000-27FFF  
32Kwords 050000-05FFFF 28000-2FFFF  
32Kwords 060000-06FFFF 30000-37FFF  
32Kwords 070000-07FFFF 38000-3FFFF  
32Kwords 080000-08FFFF 40000-47FFF  
32Kwords 090000-09FFFF 48000-4FFFF  
32Kwords 0A0000-0AFFFF 50000-57FFF  
32Kwords 0B0000-0BFFFF 58000-5FFFF  
32Kwords 0C0000-0CFFFF 60000-67FFF  
32Kwords 0D0000-0DFFFF 68000-6FFFF  
32Kwords 0E0000-0EFFFF 70000-77FFF  
32Kwords 0F0000-0FFFFF 78000-7FFFF  
32Kwords 100000-10FFFF 80000-87FFF  
32Kwords 110000-11FFFF 88000-8FFFF  
32Kwords 120000-12FFFF 90000-97FFF  
32Kwords 130000-13FFFF 98000-9FFFF  
32Kwords 140000-14FFFF A0000-A7FFF  
32Kwords 150000-15FFFF A8000-AFFFF  
32Kwords 160000-16FFFF B0000-B7FFF  
32Kwords 170000-17FFFF B8000-BFFFF  
32Kwords 180000-18FFFF C0000-C7FFF  
32Kwords 190000-19FFFF C8000-CFFFF  
32Kwords 1A0000-1AFFFF D0000-D7FFF  
32Kwords 1B0000-1BFFFF D8000-DFFFF  
32Kwords 1C0000-1CFFFF E0000-E7FFF  
32Kwords 1D0000-1DFFFF E8000-EFFFF  
32Kwords 1E0000-1EFFFF F0000-F7FFF  
16Kwords 1F0000-1F7FFF F8000-FBFFF  
4Kwords 1F8000-1F9FFF FC000-FCFFF  
4Kwords 1FA000-1FBFFF FD000-FDFFF  
8Kwords 1FC000-1FFFFF FE000-FFFFF  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
SA10 64Kbytes  
SA11 64Kbytes  
SA12 64Kbytes  
SA13 64Kbytes  
SA14 64Kbytes  
SA15 64Kbytes  
SA16 64Kbytes  
SA17 64Kbytes  
SA18 64Kbytes  
SA19 64Kbytes  
SA20 64Kbytes  
SA21 64Kbytes  
SA22 64Kbytes  
SA23 64Kbytes  
SA24 64Kbytes  
SA25 64Kbytes  
SA26 64Kbytes  
SA27 64Kbytes  
SA28 64Kbytes  
SA29 64Kbytes  
SA30 64Kbytes  
SA31 32Kbytes  
SA32  
SA33  
8Kbytes  
8Kbytes  
1
1
0
1
SA34 16Kbytes  
1
1
X
Note:Byte mode:address range A19:A-1, word mode:address range A19:A0.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
3
MX26LV160AT/AB  
TABLE 2: MX26LV160AB SECTOR ARCHITECTURE  
Sector  
Sector Size  
Address range  
Sector Address  
Byte Mode Word Mode Byte Mode (x8) Word Mode (x16) A19 A18 A17 A16 A15 A14 A13 A12  
SA0  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
16Kbytes  
8Kbytes  
8Kwords 000000-003FFF 00000-01FFF  
4Kwords 004000-005FFF 02000-02FFF  
4Kwords 006000-007FFF 03000-03FFF  
16Kwords 008000-00FFFF 04000-07FFF  
32Kwords 010000-01FFFF 08000-0FFFF  
32Kwords 020000-02FFFF 10000-17FFF  
32Kwords 030000-03FFFF 18000-1FFFF  
32Kwords 040000-04FFFF 20000-27FFF  
32Kwords 050000-05FFFF 28000-2FFFF  
32Kwords 060000-06FFFF 30000-37FFF  
32Kwords 070000-07FFFF 38000-3FFFF  
32Kwords 080000-08FFFF 40000-47FFF  
32Kwords 090000-09FFFF 48000-4FFFF  
32Kwords 0A0000-0AFFFF 50000-57FFF  
32Kwords 0B0000-0BFFFF 58000-5FFFF  
32Kwords 0C0000-0CFFFF 60000-67FFF  
32Kwords 0D0000-0DFFFF 68000-6FFFF  
32Kwords 0E0000-0EFFFF 70000-77FFF  
32Kwords 0F0000-0FFFFF 78000-7FFFF  
32Kwords 100000-10FFFF 80000-87FFF  
32Kwords 110000-11FFFF 88000-8FFFF  
32Kwords 120000-12FFFF 90000-97FFF  
32Kwords 130000-13FFFF 98000-9FFFF  
32Kwords 140000-14FFFF A0000-A7FFF  
32Kwords 150000-15FFFF A8000-AFFFF  
32Kwords 160000-16FFFF B0000-B7FFF  
32Kwords 170000-17FFFF B8000-BFFFF  
32Kwords 180000-18FFFF C0000-C7FFF  
32Kwords 190000-19FFFF C8000-CFFFF  
32Kwords 1A0000-1AFFFF D0000-D7FFF  
32Kwords 1B0000-1BFFFF D8000-DFFFF  
32Kwords 1C0000-1CFFFF E0000-E7FFF  
32Kwords 1D0000-1DFFFF E8000-EFFFF  
32Kwords 1E0000-1EFFFF F0000-FFFFF  
32Kwords 1F0000-1FFFFF F8000-FFFFF  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
X
0
8Kbytes  
0
1
1
32Kbytes  
64Kbytes  
64Kbytes  
64Kbytes  
64Kbytes  
64Kbytes  
64Kbytes  
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SA10 64Kbytes  
SA11 64Kbytes  
SA12 64Kbytes  
SA13 64Kbytes  
SA14 64Kbytes  
SA15 64Kbytes  
SA16 64Kbytes  
SA17 64Kbytes  
SA18 64Kbytes  
SA19 64Kbytes  
SA20 64Kbytes  
SA21 64Kbytes  
SA22 64Kbytes  
SA23 64Kbytes  
SA24 64Kbytes  
SA25 64Kbytes  
SA26 64Kbytes  
SA27 64Kbytes  
SA28 64Kbytes  
SA29 64Kbytes  
SA30 64Kbytes  
SA31 64Kbytes  
SA32 64Kbytes  
SA33 64Kbytes  
SA34 64Kbytes  
Note:Byte mode:address range A19:A-1, word mode:address range A19:A0.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
4
MX26LV160AT/AB  
BLOCK DIAGRAM  
WRITE  
CE#  
OE#  
WE#  
CONTROL  
INPUT  
PROGRAM/ERASE  
STATE  
HIGH VOLTAGE  
MACHINE  
RESET#  
LOGIC  
(WSM)  
STATE  
REGISTER  
FLASH  
ADDRESS  
LATCH  
ARRAY  
ARRAY  
A0-A19  
SOURCE  
HV  
AND  
COMMAND  
DATA  
BUFFER  
Y-PASS GATE  
DECODER  
PGM  
DATA  
HV  
SENSE  
AMPLIFIER  
COMMAND  
DATA LATCH  
PROGRAM  
DATA LATCH  
I/O BUFFER  
Q0-Q15/A-1  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
5
MX26LV160AT/AB  
provides the erase verification, and counts the number of  
sequences. A status bit toggling between consecutive  
read cycles provides feedback to the user as to the sta-  
tus of the erasing operation.  
AUTOMATIC PROGRAMMING  
The MX26LV160AT/AB is word/byte programmable us-  
ing the Automatic Programming algorithm. The Auto-  
matic Programming algorithm makes the external sys-  
tem do not need to have time out sequence nor to verify  
the data programmed.  
Register contents serve as inputs to an internal state-  
machine which controls the erase and programming cir-  
cuitry. During write cycles, the command register inter-  
nally latches address and data needed for the program-  
ming and erase operations. During a system write cycle,  
addresses are latched on the falling edge, and data are  
latched on the rising edge of WE# or CE#, whichever  
happens first.  
AUTOMATIC PROGRAMMING ALGORITHM  
MXIC's Automatic Programming algorithm requires the  
user to only write program set-up commands (including  
2 unlock write cycle and A0H) and a program command  
(program data and address). The device automatically  
times the programming pulse width, provides the pro-  
gram verification, and counts the number of sequences.  
A status bit similar to DATA# polling and a status bit  
toggling between consecutive read cycles, provide feed-  
back to the user as to the status of the programming  
operation.Refer to write operation status, table 7, for more  
information on these status bits.  
MXIC's high speed Flash technology combines years of  
EPROM experience to produce the highest levels of  
quality, reliability, and cost effectiveness. The  
MX26LV160AT/AB electrically erases all bits simulta-  
neously using Fowler-Nordheim tunneling. The bytes are  
programmed by using the EPROM programming mecha-  
nism of hot electron injection.  
During a program cycle, the state-machine will control  
the program sequences and command register will not  
respond to any command set. After the state machine  
has completed its task, it will allow the command regis-  
ter to respond to its full command set.  
AUTOMATIC CHIP ERASE  
The entire chip is bulk erased using 10 ms erase pulses  
according to MXIC's Automatic Chip Erase algorithm.  
The Automatic Erase algorithm automatically programs  
the entire array prior to electrical erase. The timing and  
verification of electrical erase are controlled internally  
within the device.  
AUTOMATIC SELECT  
The auto select mode provides manufacturer and de-  
vice identification, protection verification, through identi-  
fier codes output on Q7~Q0.This mode is mainly adapted  
for programming equipment on the device to be pro-  
grammed with its programming algorithm.When program-  
ming by high voltage method, automatic select mode re-  
quires VID (11V to 12V) on address pin A9 and other  
address pin A6, A1 and A0 as referring to Table 3. In  
addition, to access the automatic select codes in-sys-  
tem, the host can issue the automatic select command  
through the command register without requiring VID, as  
shown in table 4.  
AUTOMATIC SECTOR ERASE  
The MX26LV160AT/AB is sector(s) erasable using MXIC's  
Auto Sector Erase algorithm. The Automatic Sector  
Erase algorithm automatically programs the specified  
sector(s) prior to electrical erase. The timing and verifi-  
cation of electrical erase are controlled internally within  
the device. An erase operation can erase one sector,  
multiple sectors, or the entire device.  
To verify whether or not sector being protected, the sec-  
tor address must appear on the appropriate highest order  
address bit (seeTable 1 andTable 2).The rest of address  
bits, as shown inTable 3, are don't care. Once all neces-  
sary bits have been set as required, the programming  
equipment may read the corresponding identifier code on  
Q7~Q0.  
AUTOMATIC ERASE ALGORITHM  
MXIC's Automatic Erase algorithm requires the user to  
write commands to the command register using stan-  
dard microprocessor write timings. The device will auto-  
matically pre-program and verify the entire array. Then  
the device automatically times the erase pulse width,  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
6
MX26LV160AT/AB  
TABLE 3. MX26LV160AT/AB AUTO SELECT MODE OPERATION  
A19 A11 A9 A8 A6 A5 A1 A0  
Description  
Mode CE# OE# WE#  
|
|
|
A7  
X
|
A2  
X
Q15~Q0  
A12 A10  
Manufacturer Code  
L
L
L
L
L
L
L
L
L
L
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
VID  
VID  
VID  
VID  
VID  
L
L
L
L
L
L
L
L
L
L
L
C2H  
Read Device ID  
Word  
Byte  
Word  
X
X
H
H
H
H
22C4H  
XXC4H  
2249H  
XX49H  
XX01H  
Silicon (Top Boot Block)  
X
X
ID  
Device ID  
X
X
(Bottom Boot Block) Byte  
X
X
Sector Protection Verification  
L
L
H
SA  
X
VID  
X
L
X
H
L
(protected)  
XX00H  
(unprotected)  
NOTE:SA=Sector Address, X=Don't Care, L=Logic Low, H=Logic High  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
7
MX26LV160AT/AB  
in the improper sequence will reset the device to the  
read mode. Table 5 defines the valid register command  
sequences.  
COMMAND DEFINITIONS  
Device operations are selected by writing specific ad-  
dress and data sequences into the command register.  
Writing incorrect address and data values or writing them  
TABLE 4. MX26LV160AT/AB COMMAND DEFINITIONS  
First Bus  
Bus Cycle  
Cycle Addr Data Addr  
XXXH F0H  
RA RD  
Second Bus Third Bus  
Fourth Bus  
Cycle  
Fifth Bus  
Cycle  
Sixth Bus  
Cycle  
Command  
Cycle  
Cycle  
Data Addr  
Data Addr Data  
Addr  
Data Addr Data  
Reset  
1
Read  
1
Read Silicon ID Word  
Byte  
4
4
4
555H AAH 2AAH 55H 555H 90H ADI DDI  
AAAH AAH 555H 55H AAAH 90H ADI DDI  
555H AAH 2AAH 55H 555H 90H (SA) XX00H  
x02H XX01H  
Sector Protect  
Verify  
Word  
Byte  
4
AAAH AAH 555H 55H AAAH 90H (SA) 00H  
x04H 01H  
Program  
Word  
Byte  
Word  
Byte  
Word  
Byte  
Word  
Byte  
4
4
6
6
6
6
1
555H AAH 2AAH 55H 555H A0H PA  
AAAH AAH 555H 55H AAAH A0H PA  
PD  
PD  
Chip Erase  
Sector Erase  
CFI Query  
555H AAH 2AAH 55H 555H 80H 555H AAH  
AAAH AAH 555H 55H AAAH 80H AAAH AAH  
555H AAH 2AAH 55H 555H 80H 555H AAH  
AAAH AAH 555H 55H AAAH 80H AAAH AAH  
555H 98  
2AAH 55H  
555H 55H  
2AAH 55H  
555H 55H  
555H 10H  
AAAH 10H  
SA  
SA  
30H  
30H  
AAAH 98  
Note:  
1. ADI = Address of Device identifier; A1=0, A0 = 0 for manufacturer code,A1=0, A0 = 1 for device code. A2-A19=do not care.  
(Refer to table 3)  
DDI = Data of Device identifier : C2H for manufacture code, 22DA/DA(Top), and 225B/5B(Bottom) for device code.  
X = X can be VIL or VIH  
RA=Address of memory location to be read.  
RD=Data to be read at location RA.  
2. PA = Address of memory location to be programmed.  
PD = Data to be programmed at location PA.  
SA = Address of the sector.  
3. The system should generate the following address patterns: 555H or 2AAH to Address A10~A0 in word mode/AAAH or  
555H to Address A10~A-1 in byte mode.  
Address bit A11~A19=X=Don't care for all address commands except for Program Address (PA) and Sector Address (SA).  
Write Sequence may be initiated with A11~A19 in either state.  
4. For Sector Protect Verify operation: If read out data is 01H, it means the sector has been protected. If read out data is 00H, it  
means the sector is still not being protected.  
5. Any number of CFI data read cycles are permitted.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
8
MX26LV160AT/AB  
COMMAND DEFINITIONS  
Device operations are selected by writing specific address and data sequences into the command register. Writing  
incorrect address and data values or writing them in the improper sequence will reset the device to the read mode.  
Table 5 defines the valid register command sequences.  
TABLE 5. MX26LV160AT/AB BUS OPERATION  
ADDRESS  
Q8~Q15  
DESCRIPTION  
CE# OE# WE# RE- A19 A11 A9 A8 A6 A5 A1 A0 Q0~Q7 BYTE BYTE  
SET# A12 A10  
A7  
A2  
=VIH  
=VIL  
Read  
L
L
H
H
AIN  
Dout  
Dout Q8~Q14  
=High Z  
Q15=A-1  
DIN  
Write  
L
X
H
X
H
X
L
X
H
X
H
L
AIN  
X
DIN(3)  
Reset  
High Z High Z High Z  
High Z High Z High Z  
High Z High Z High Z  
Output Disable  
Standby  
L
H
X
Vcc±  
0.3V  
L
Vcc±  
0.3V  
X
Sector Protect  
Chip Unprotect  
Sector Protection  
Verify  
H
H
L
L
L
VID  
VID  
H
SA  
X
X
X
X
X
X
X
L
H
L
X
X
X
H
H
H
L
L
L
DIN  
DIN  
X
X
X
X
X
X
L
L
H
SA X VID X  
CODE(5)  
NOTES:  
1. Manufacturer and device codes may also be accessed via a command register write sequence. Refer to Table 4.  
2. VID is the Silicon-ID-Read high voltage, 11V to 12V.  
3. Refer to Table 5 for valid Data-In during a write operation.  
4. X can be VIL or VIH.  
5. Code=00H/XX00H means unprotected.  
Code=01H/XX01H means protected.  
6. A19~A12=Sector address for sector protect.  
7. The sector protect and chip unprotect functions may also be implemented via programming equipment.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
9
MX26LV160AT/AB  
Characteristics" section contains timing specification  
table and timing diagrams for write operations.  
REQUIREMENTS FOR READING ARRAY  
DATA  
To read array data from the outputs, the system must  
drive the CE# and OE# pins to VIL. CE# is the power  
control and selects the device. OE# is the output control  
and gates array data to the output pins.WE# should re-  
main at VIH.  
STANDBY MODE  
When using both pins of CE# and RESET#, the device  
enter CMOS Standby with both pins held atVCC ±0.3V.  
If CE# and RESET# are held at VIH, but not within the  
range ofVCC ±0.3V, the device will still be in the standby  
mode, but the standby current will be larger.During Auto  
Algorithm operation,Vcc active current (Icc2) is required  
even CE# = "H" until the operation is completed. The  
device can be read with standard access time (tCE) from  
either of these standby modes, before it is ready to read  
data.  
The internal state machine is set for reading array data  
upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory con-  
tent occurs during the power transition. No command is  
necessary in this mode to obtain array data. Standard  
microprocessor read cycles that assert valid address on  
the device address inputs produce valid data on the de-  
vice data outputs. The device remains enabled for read  
access until the command register contents are altered.  
OUTPUT DISABLE  
With the OE# input at a logic high level (VIH), output  
from the devices are disabled.This will cause the output  
pins to be in a high impedance state.  
WRITE COMMANDS/COMMAND SEQUENCES  
To program data to the device or erase sectors of memory  
, the system must drive WE# and CE# to VIL, and OE#  
to VIH.  
RESET# OPERATION  
The "Word/byte Program Command Sequence" section  
has details on programming data to the device.  
The RESET# pin provides a hardware method of reset-  
ting the device to reading array data.When the RESET#  
pin is driven low for at least a period of tRP, the device  
immediately terminates any operation in progress, tri-  
states all output pins, and ignores all read/write com-  
mands for the duration of the RESET# pulse. The de-  
vice also resets the internal state machine to reading  
array data.The operation that was interrupted should be  
reinitiated once the device is ready to accept another  
command sequence, to ensure data integrity  
An erase operation can erase one sector, multiple sec-  
tors , or the entire device. Table indicates the address  
space that each sector occupies. A "sector address"  
consists of the address bits required to uniquely select a  
sector.The "Writing specific address and data commands  
or sequences into the command register initiates device  
operations. Table 1 defines the valid register command  
sequences.Writing incorrect address and data values or  
writing them in the improper sequence resets the device  
to reading array data. Section has details on erasing a  
sector or the entire chip.  
Current is reduced for the duration of the RESET# pulse.  
When RESET# is held at VSS±0.3V, the device draws  
CMOS standby current (ICC4).If RESET# is held atVIL  
but not within VSS±0.3V, the standby current will be  
greater.  
After the system writes the autoselect command se-  
quence, the device enters the autoselect mode.The sys-  
tem can then read autoselect codes from the internal  
register (which is separate from the memory array) on  
Q7-Q0. Standard read cycle timings apply in this mode.  
Refer to the Autoselect Mode and Autoselect Command  
Sequence section for more information.  
The RESET# pin may be tied to system reset circuitry.  
A system reset would that also reset the high speed  
Flash, enabling the system to read the boot-up firmware  
from the high speed Flash.  
ICC2 in the DC Characteristics table represents the ac-  
tive current specification for the write mode. The "AC  
If RESET# is asserted during a program or erase opera-  
tion, the RY/BY# pin remains a "0" (busy) until the inter-  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
10  
MX26LV160AT/AB  
nal reset operation is complete, which requires a time of  
tREADY (during Embedded Algorithms).The system can  
thus monitor RY/BY# to determine whether the reset  
operation is complete. If RESET# is asserted when a  
program or erase operation is completed within a time of  
tREADY (not during Embedded Algorithms). The sys-  
tem can read data tRH after the RESET# pin returns to  
VIH.  
"set-up" command 80H. Two more "unlock" write cycles  
are then followed by the chip erase command 10H or  
sector erase command 30H.  
The Automatic Chip Erase does not require the device  
to be entirely pre-programmed prior to executing the Au-  
tomatic Chip Erase. Upon executing the Automatic Chip  
Erase, the device will automatically program and verify  
the entire memory for an all-zero data pattern. When the  
device is automatically verified to contain an all-zero  
pattern, a self-timed chip erase and verify begin. The  
erase and verify operations are completed when the data  
on Q7 is "1" at which time the device returns to the  
Read mode. The system is not required to provide any  
control or timing during these operations.  
Refer to the AC Characteristics tables for RESET#  
parameters and to Figure 21 for the timing diagram.  
READ/RESET COMMAND  
The read or reset operation is initiated by writing the  
read/reset command sequence into the command reg-  
ister. Microprocessor read cycles retrieve array data.  
The device remains enabled for reads until the command  
register contents are altered.  
When using the Automatic Chip Erase algorithm, note  
that the erase automatically terminates when adequate  
erase margin has been achieved for the memory array  
(no erase verification command is required).  
If program-fail or erase-fail happen, the write of F0H will  
reset the device to abort the operation. A valid com-  
mand must then be written to place the device in the  
desired state.  
If the Erase operation was unsuccessful, the data on  
Q5 is "1" (see Table 7), indicating the erase operation  
exceed internal timing limit.  
The automatic erase begins on the rising edge of the  
last WE# or CE# pulse, whichever happens first in the  
command sequence and terminates when the data on  
Q7 is "1" at which time the device returns to the Read  
mode, or the data on Q6 stops toggling for two consecu-  
tive read cycles at which time the device returns to the  
Read mode.  
SILICON-ID READ COMMAND  
High speed Flash memories are intended for use in ap-  
plications where the local CPU alters memory contents.  
As such, manufacturer and device codes must be ac-  
cessible while the device resides in the target system.  
PROM programmers typically access signature codes  
by raising A9 to a high voltage (VID). However, multi-  
plexing high voltage onto address lines is not generally  
desired system design practice.  
The MX26LV160AT/AB contains a Silicon-ID-Read op-  
eration to supple traditional PROM programming meth-  
odology. The operation is initiated by writing the read  
silicon ID command sequence into the command regis-  
ter.  
SET-UP AUTOMATIC CHIP/SECTOR ERASE  
COMMANDS  
Chip erase is a six-bus cycle operation. There are two  
"unlock" write cycles. These are followed by writing the  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
11  
MX26LV160AT/AB  
TABLE 6. SILICON ID CODE  
Pins  
A0  
A1 Q15~Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Code (Hex)  
Manufacture code Word VIL VIL 00H  
Byte VIL VIL  
Word VIH VIL 22H  
for MX26LV160AT Byte VIH VIL  
Device code Word VIH VIL 22H  
for MX26LV160AB Byte VIH VIL  
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
0
00C2H  
X
C2H  
Device code  
22C4H  
X
C4H  
2249H  
X
49H  
Sector Protection  
Verification  
Word X  
Byte X  
VIH X  
VIH X  
01H (Protected)  
00H (Unprotected)  
READING ARRAY DATA  
RESET COMMAND  
The device is automatically set to reading array data  
after device power-up.No commands are required to re-  
trieve data.The device is also ready to read array data  
after completing an Automatic Program or Automatic  
Erase algorithm.  
Writing the reset command to the device resets the de-  
vice to reading array data.Address bits are don't care for  
this command.  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
erasing begins. This resets the device to reading array  
data.Once erasure begins, however, the device ignores  
reset commands until the operation is complete.  
The system must issue the reset command to re-en-  
able the device for reading array data if Q5 goes high, or  
while in the "read silicon-ID" and "sector protect verify"  
mode. See the "Reset Command" section, next.  
The reset command may be written between the se-  
quence cycles in a program command sequence before  
programming begins. This resets the device to reading  
array data Once programming begins, however, the de-  
vice ignores reset commands until the operation is com-  
plete.  
The reset command may be written between the se-  
quence cycles in an SILICON ID READ command se-  
quence.Once in the SILICON ID READ mode, the reset  
command must be written to return to reading array data.  
If Q5 goes high during a program or erase operation, writ-  
ing the reset command returns the device to read-ing  
array data.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
12  
MX26LV160AT/AB  
address and data are written next, which in turn initiate  
the Embedded Program algorithm.The system is not re-  
quired to provide further controls or timings.The device  
automatically generates the program pulses and verifies  
the programmed cell margin.Table 1 shows the address  
and data requirements for the word/byte program com-  
mand sequence.  
SECTOR ERASE COMMANDS  
The Automatic Sector Erase does not require the de-  
vice to be entirely pre-programmed prior to executing  
the Automatic Sector Erase Set-up command and Au-  
tomatic Sector Erase command. Upon executing the  
Automatic Sector Erase command, the device will auto-  
matically program and verify the sector(s) memory for  
an all-zero data pattern. The system is not required to  
provide any control or timing during these operations.  
When the Embedded Program algorithm is complete, the  
device then returns to reading array data and addresses  
are no longer latched. The system can determine the  
status of the program operation by using Q7, Q6, or RY/  
BY#.See "Write Operation Status" for information on these  
status bits.  
When the sector(s) is automatically verified to contain  
an all-zero pattern, a self-timed sector erase and verify  
begin. The erase and verify operations are complete  
when either the data on Q7 is "1" at which time the de-  
vice returns to the Read mode, or the data on Q6 stops  
toggling for two consecutive read cycles at which time  
the device returns to the Read mode. The system is not  
required to provide any control or timing during these  
operations.  
Any commands written to the device during the Embed-  
ded Program Algorithm are ignored.Note that a hardware  
reset immediately terminates the programming operation.  
The word/byte Program command sequence should be  
reinitiated once the device has reset to reading array  
data, to ensure data integrity.  
When using the Automatic sector Erase algorithm, note  
that the erase automatically terminates when adequate  
erase margin has been achieved for the memory array  
(no erase verification command is required). Sector  
erase is a six-bus cycle operation. There are two "un-  
lock" write cycles. These are followed by writing the  
set-up command 80H. Two more "unlock" write cycles  
are then followed by the sector erase command 30H.  
The sector address is latched on the falling edge of WE#  
or CE#, whichever happens later, while the command  
(data) is latched on the rising edge of WE# or CE#,  
whichever happens first. Sector addresses selected are  
loaded into internal register on the sixth falling edge of  
WE# or CE#, whichever happens later. Each succes-  
sive sector load cycle started by the falling edge of WE#  
or CE#, whichever happens later must begin within 50us  
from the rising edge of the preceding WE# or CE#, which-  
ever happens first. Otherwise, the loading period ends  
and internal auto sector erase cycle starts. (Monitor Q3  
to determine if the sector erase timer window is still open,  
see section Q3, Sector EraseTimer.) Any command other  
than Sector Erase (30H) during the time-out period re-  
sets the device to read mode.  
Programming is allowed in any sequence and across  
sector boundaries. A bit cannot be programmed from a  
"0" back to a "1". Attempting to do so may halt the op-  
eration and set Q5 to "1", or cause the Data# Polling  
algorithm to indicate the operation was successful.How-  
ever, a succeeding read will show that the data is still  
"0". Only erase operations can convert a "0" to a "1".  
WRITE OPERATION STATUS  
The device provides several bits to determine the sta-  
tus of a write operation: Q2, Q3, Q5, Q6, Q7, and RY/  
BY#.Table 7 and the following subsections describe the  
functions of these bits.Q7, RY/BY#, and Q6 each offer a  
method for determining whether a program or erase op-  
eration is complete or in progress. These three bits are  
discussed first.  
Q7: Data# Polling  
The Data# Polling bit, Q7, indicates to the host system  
whether an Automatic Algorithm is in progress or com-  
pleted. Data# Polling is valid after the rising edge of the  
final WE# pulse in the program or erase command se-  
quence.  
WORD/BYTE PROGRAM COMMAND SEQUENCE  
The device programs one byte of data for each program  
operation. The command sequence requires four bus  
cycles, and is initiated by writing two unlock write cycles,  
followed by the program set-up command.The program  
During the Automatic Program algorithm, the device out-  
puts on Q7 the complement of the datum programmed to  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
13  
MX26LV160AT/AB  
Q7.When the Automatic Program algorithm is complete,  
the device outputs the datum programmed to Q7. The  
system must provide the program address to read valid  
status information on Q7.  
gram or Erase algorithm is in progress or complete. Toggle  
Bit I may be read at any address, and is valid after the  
rising edge of the final WE# or CE#, whichever happens  
first, in the command sequence (prior to the program or  
erase operation), and during the sector time-out.  
During the Automatic Erase algorithm, Data# Polling pro-  
duces a "0" on Q7.When the Automatic Erase algorithm  
is complete, Data# Polling produces a "1" on Q7.This is  
analogous to the complement/true datum out-put de-  
scribed for the Automatic Program algorithm: the erase  
function changes all the bits in a sector to "1" prior to  
this, the device outputs the "complement," or "0". The  
system must provide an address within any of the sec-  
tors selected for erasure to read valid status information  
on Q7.  
During an Automatic Program or Erase algorithm opera-  
tion, successive read cycles to any address cause Q6  
to toggle. The system may use either OE# or CE# to  
control the read cycles.When the operation is complete,  
Q6 stops toggling.  
When the device is actively erasing (that is, the Auto-  
matic Erase algorithm is in progress), Q6 toggling.How-  
ever, the system must also use Q2 to determine which  
sectors are erasing. Alternatively, the system can use  
Q7.  
After an erase command sequence is written, if all sec-  
tors selected for erasing are protected, Data# Polling on  
Q7 is active for approximately 100 us, then the device  
returns to reading array data. If not all selected sectors  
are protected, the Automatic Erase algorithm erases the  
unprotected sectors, and ignores the selected sectors  
that are protected.  
Q6 stops toggling once the Automatic Program algorithm  
is complete.  
Table 7 shows the outputs for Toggle Bit I on Q6.  
When the system detects Q7 has changed from the  
complement to true data, it can read valid data at Q7-Q0  
on the following read cycles. This is because Q7 may  
change asynchronously with Q0-Q6 while Output Enable  
(OE#) is asserted low.  
Q2:Toggle Bit II  
The "Toggle Bit II" on Q2, when used with Q6, indicates  
whether a particular sector is actively erasing (that is,  
the Automatic Erase algorithm is in process).Toggle Bit  
II is valid after the rising edge of the final WE# or CE#,  
whichever happens first, in the command sequence.  
RY/BY# : Ready/Busy  
Q2 toggles when the system reads at addresses within  
those sectors that have been selected for erasure. (The  
system may use either OE# or CE# to control the read  
cycles.) But Q2 cannot distinguish when the sector is  
actively erasing or is in Erase Suspend. Q6, by com-  
parison, indicates when the device is actively erasing  
but cannot distinguish which sectors are selected for era-  
sure. Thus, both status bits are required for sectors and  
mode information. Refer to Table 7 to compare outputs  
for Q2 and Q6.  
The RY/BY# is a dedicated, open-drain output pin that  
indicates whether an Automatic Erase/Program algorithm  
is in progress or complete. The RY/BY# status is valid  
after the rising edge of the final WE# or CE#, whichever  
happens first, in the command sequence.Since RY/BY#  
is an open-drain output, several RY/BY# pins can be tied  
together in parallel with a pull-up resistor toVCC.  
If the output is low (Busy), the device is actively erasing  
or programming.If the output is high (Ready), the device  
is ready to read array data, or is in the standby mode.  
Reading Toggle Bits Q6/ Q2  
Table 7 shows the outputs for RY/BY# during write op-  
eration.  
Whenever the system initially begins reading toggle bit  
status, it must read Q7-Q0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically, the  
system would note and store the value of the toggle bit  
after the first read. After the second read, the system  
would compare the new value of the toggle bit with the  
Q6:Toggle BIT I  
Toggle Bit I on Q6 indicates whether an Automatic Pro-  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
14  
MX26LV160AT/AB  
first. If the toggle bit is not toggling, the device has com-  
pleted the program or erase operation. The system can  
read array data on Q7-Q0 on the following read cycle.  
If this time-out condition occurs during the word/byte pro-  
gramming operation, it specifies that the entire sector  
containing that byte is bad and this sector may not be  
reused, (other sectors are still functional and can be re-  
used).  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of Q5 is high  
(see the section on Q5). If it is, the system should then  
determine again whether the toggle bit is toggling, since  
the toggle bit may have stopped toggling just as Q5 went  
high. If the toggle bit is no longer toggling, the device  
has successfully completed the program or erase opera-  
tion. If it is still toggling, the device did not complete the  
operation successfully, and the system must write the  
reset command to return to reading array data.  
The time-out condition will not appear if a user tries to  
program a non blank location without erasing.Please note  
that this is not a device failure condition since the device  
was incorrectly used.  
The remaining scenario is that system initially determines  
that the toggle bit is toggling and Q5 has not gone high.  
The system may continue to monitor the toggle bit and  
Q5 through successive read cycles, determining the sta-  
tus as described in the previous paragraph. Alternatively,  
it may choose to perform other system tasks. In this  
case, the system must start at the beginning of the al-  
gorithm when it returns to determine the status of the  
operation.  
Q5  
ExceededTiming Limits  
Q5 will indicate if the program or erase time has exceeded  
the specified limits (internal pulse count). Under these  
conditions Q5 will produce a "1". This time-out condition  
indicates that the program or erase cycle was not suc-  
cessfully completed. Data# Polling and Toggle Bit are  
the only operating functions of the device under this con-  
dition.  
If this time-out condition occurs during sector erase op-  
eration, it specifies that a particular sector is bad and it  
may not be reused. However, other sectors are still func-  
tional and may be used for the program or erase opera-  
tion. The device must be reset to use other sectors.  
Write the Reset command sequence to the device, and  
then execute program or erase command sequence. This  
allows the system to continue to use the other active  
sectors in the device.  
If this time-out condition occurs during the chip erase  
operation, it specifies that the entire chip is bad or com-  
bination of sectors are bad.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
15  
MX26LV160AT/AB  
TABLE 7. WRITE OPERATION STATUS  
Status  
Q7  
Q6  
Q5  
(Note2)  
0
Q3  
Q2 RY/BY#  
(Note1)  
In Progress Word/Byte Program in Auto Program Algorithm  
Q7# Toggle  
N/A  
No  
0
Toggle  
Toggle  
No  
Auto Erase Algorithm  
0
Toggle  
0
1
1
0
0
Exceeded Word/Byte Program in Auto Program Algorithm  
Time  
Q7# Toggle  
N/A  
Toggle  
Toggle  
Limits  
Auto Erase Algorithm  
0
Toggle  
1
1
0
Note:  
1. Q7 and Q2 require a valid address when reading status information.Refer to the appropriate subsection for further  
details.  
2. Q5 switches to '1' when an Auto Program or Auto Erase operation has exceeded the maximum timing limits.  
See "Q5 : Exceeded Timing Limits" for more information.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
16  
MX26LV160AT/AB  
Q3  
POWER SUPPLY DECOUPLING  
Sector Erase Timer  
In order to reduce power switching effect, each device  
should have a 0.1uF ceramic capacitor connected be-  
tween itsVCC and GND.  
After the completion of the initial sector erase command  
sequence, the sector erase time-out will begin. Q3 will  
remain low until the time-out is complete. Data# Polling  
andToggle Bit are valid after the initial sector erase com-  
mand sequence.  
POWER-UP SEQUENCE  
The MX26LV160AT/AB powers up in the Read only mode.  
In addition, the memory contents may only be altered  
after successful completion of the predefined command  
sequences.  
If Data# Polling or the Toggle Bit indicates the device  
has been written with a valid erase command, Q3 may  
be used to determine if the sector erase timer window is  
still open. If Q3 is high ("1") the internally controlled  
erase cycle has begun; attempts to write subsequent  
commands to the device will be ignored until the erase  
operation is completed as indicated by Data# Polling or  
Toggle Bit. If Q3 is low ("0"), the device will accept  
additional sector erase commands. To insure the com-  
mand has been accepted, the system software should  
check the status of Q3 prior to and following each sub-  
sequent sector erase command. If Q3 were high on the  
second status check, the command may not have been  
accepted.  
TEMPORARY SECTOR UNPROTECT  
This feature allows temporary unprotection of previously  
protected sector to change data in-system.TheTempo-  
rary Sector Unprotect mode is activated by setting the  
RESET# pin to VID (11.5V-12.5V). During this mode,  
formerly protected sectors can be programmed or erased  
as un-protected sector. Once VID is remove from the  
RESET# pin.All the previously protected sectors are pro-  
tected again.  
DATA PROTECTION  
SECTOR PROTECTION  
The MX26LV160AT/AB is designed to offer protection  
against accidental erasure or programming caused by  
spurious system level signals that may exist during power  
transition. During power up the device automatically re-  
sets the state machine in the Read mode. In addition,  
with its control register architecture, alteration of the  
memory contents only occurs after successful comple-  
tion of specific command sequences. The device also  
incorporates several features to prevent inadvertent write  
cycles resulting fromVCC power-up and power-down tran-  
sition or system noise.  
The MX29LV160AT/AB features hardware sector protec-  
tion. This feature will disable both program and erase  
operations for these sectors protected. To activate this  
mode, the programming equipment must force VID on  
address pin A9 and OE# (suggestVID = 12V). Program-  
ming of the protection circuitry begins on the falling edge  
of the WE# pulse and is terminated on the rising edge.  
Please refer to sector protect algorithm and waveform.  
To verify programming of the protection circuitry, the pro-  
gramming equipment must forceVID on address pin A9  
( with CE# and OE# at VIL and WE# at VIH). When  
A1=VIH, A0=VIL, A6=VIL, it will produce a logical "1"  
code at device output Q0 for a protected sector. Other-  
wise the device will produce 00H for the unprotected sec-  
tor. In this mode, the addresses, except for A1, are don't  
care. Address locations with A1 = VIL are reserved to  
read manufacturer and device codes.(Read Silicon ID)  
WRITE PULSE "GLITCH" PROTECTION  
Noise pulses of less than 5ns(typical) on CE# or WE#  
will not initiate a write cycle.  
LOGICAL INHIBIT  
It is also possible to determine if the sector is protected  
in the system by writing a Read Silicon ID command.  
Performing a read operation with A1=VIH, it will produce  
a logical "1" at Q0 for the protected sector.  
Writing is inhibited by holding any one of OE# = VIL,  
CE# = VIH or WE# = VIH. To initiate a write cycle CE#  
and WE# must be a logical zero while OE# is a logical  
one.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
17  
MX26LV160AT/AB  
The system must write the reset command to exit the  
"Silicon-ID Read Command" code.  
CHIP UNPROTECT  
TheMX29LV160AT/ABalsofeaturesthechipunprotect  
mode, so that all sectors are unprotected after chip  
unprotectiscompletedtoincorporateanychangesinthe  
code. It is recommended to protect all sectors before  
activating chip unprotect mode.  
Toactivatethismode,theprogrammingequipmentmust  
force VID on control pin OE# and address pin A9. The  
CE# pinsmustbesetatVIL. PinsA6mustbesettoVIH.  
Refer to chip unprotect algorithm and waveform for the  
chip unprotect algorithm. The unprotection mechanism  
begins on the falling edge of the WE# pulse and is  
terminated on the rising edge.  
It is also possible to determine if the chip is unprotected  
in the system by writing the Read Silicon ID command.  
PerformingareadoperationwithA1=VIH,itwillproduce  
00H at data outputs(Q0-Q7) for an unprotected sector.  
It is noted that all sectors are unprotected after the chip  
unprotect algorithm is completed.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
18  
MX26LV160AT/AB  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RATINGS  
StorageTemperature  
Plastic Packages . . . . . . . . . . . . . ..... -65oC to +150oC  
Commercial (C) Devices  
Ambient Temperature (TA ). . . . . . . . . . . . 0° C to +70°C  
AmbientTemperature  
with Power Applied. . . . . . . . . . . . . .... -65oC to +125oC  
Voltage with Respect to Ground  
VCC Supply Voltages  
VCC for full voltage range. . . . . . . . . . . +3.0 V to 3.6 V  
VCC (Note 1) . . . . . . . . . . . . . . . . . -0.5 V to +4.0 V  
A9, OE#, and  
Operating ranges define those limits between which the  
functionality of the device is guaranteed.  
RESET# (Note 2) . . . . . . . . . . . . . . . . -0.5 V to +12 V  
All other pins (Note 1) . . . . . . . -0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3) . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/O pins is -0.5 V.  
During voltage transitions, input or I/O pins may over-  
shoot VSS to -2.0 V for periods of up to 20 ns. Maxi-  
mum DC voltage on input or I/O pins is VCC +0.5 V.  
During voltage transitions, input or I/O pins may over-  
shoot to VCC +2.0 V for periods up to 20 ns.  
2.Minimum DC input voltage on pins A9, OE#, and RE-  
SET# is -0.5 V. During voltage transitions, A9, OE#,  
and RESET# may overshoot VSS to -2.0 V for peri-  
ods of up to 20 ns. Maximum DC input voltage on pin  
A9 is +12V which may overshoot to 13.5V for periods  
up to 20 ns.  
3.No more than one output may be shorted to ground at  
a time. Duration of the short circuit should not be  
greater than one second.  
Stresses above those listed under "Absolute Maximum  
Ratings" may cause permanent damage to the device.  
This is a stress rating only; functional operation of the  
device at these or any other conditions above those in-  
dicated in the operational sections of this data sheet is  
not implied. Exposure of the device to absolute maxi-  
mum rating conditions for extended periods may affect  
device reliability.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
19  
MX26LV160AT/AB  
CAPACITANCE TA = 25oC, f = 1.0 MHz  
SYMBOL PARAMETER  
MIN.  
TYP  
MAX.  
8
UNIT  
pF  
CONDITIONS  
VIN = 0V  
CIN1  
CIN2  
COUT  
Input Capacitance  
Control Pin Capacitance  
Output Capacitance  
12  
pF  
VIN = 0V  
12  
pF  
VOUT = 0V  
TABLE 8. DC CHARACTERISTICS TA = 0oC to 70oC, VCC = 3.0V~3.6V  
MX26LV160AT/AB  
Symbol PARAMETER  
MIN.  
TYP  
± 1  
MAX.  
± 3  
UNIT  
uA  
CONDITIONS  
ILI  
Input Leakage Current  
VIN = VSS to VCC  
VCC=VCC max;  
A9=12V  
ILIT  
A9 Input Leakage Current  
Output Leakage Current  
VCC Active Read Current  
35  
200  
uA  
ILO  
± 1  
uA  
VOUT = VSS to VCC,  
VCC=VCC max  
ICC1  
20  
8
30  
14  
mA  
mA  
mA  
uA  
CE#=VIL,  
OE#=VIH  
@5MHz  
@1MHz  
ICC2  
ICC3  
ICC4  
VCC Active write Current  
VCC Standby Current  
VCC Standby Current  
During Reset  
26  
30  
30  
30  
CE#=VIL, OE#=VIH  
100  
100  
CE#; RESET#=VCC ±0.3V  
RESET#=VSS ± 0.3V  
uA  
VIL  
VIH  
VID  
Input Low Voltage (Note 1)  
Input HighVoltage  
-0.5  
0.7xVCC  
11  
0.8  
VCC+0.3  
12  
V
V
V
Voltage for Automatic Select  
andTemporary Sector Unprotect  
Output LowVoltage  
VCC=3.3V  
VOL  
0.45  
V
IOL = 4.0mA,  
VCC= VCC min  
IOH = -2mA,  
VOH1  
VOH2  
Output HighVoltage (TTL)  
0.85xVCC  
VCC-0.4  
VCC=VCC min  
IOH = -100uA, VCC min  
Output HighVoltage  
(CMOS)  
NOTES:  
1. VIL min. = -1.0V for pulse width is equal to or less than 50 ns.  
VIL min. = -2.0V for pulse width is equal to or less than 20 ns.  
2. VIH max. = VCC + 1.5V for pulse width is equal to or less than 20 ns  
If VIH is over the specified maximum value, read operation cannot be guaranteed.  
3. Automatic sleep mode enable the low power mode when addresses remain stable for tACC +30ns.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
20  
MX26LV160AT/AB  
AC CHARACTERISTICS TA = 0oC to 70oC, VCC = 3.0V~3.6V  
TABLE 9. READ OPERATIONS  
26LV160AT/AB-55 26LV160AT/AB-70  
SYMBOLPARAMETER  
MIN.  
MAX. MIN.  
MAX. UNIT CONDITIONS  
tRC  
Read CycleTime (Note 1)  
Address to Output Delay  
CE# to Output Delay  
55  
70  
ns  
tACC  
tCE  
55  
55  
25  
70  
70  
30  
25  
ns  
ns  
ns  
ns  
ns  
ns  
CE#=OE#=VIL  
OE#=VIL  
tOE  
tDF  
OE# to Output Delay  
CE#=VIL  
OE# High to Output Float (Note1)  
0
25  
0
CE#=VIL  
tOEH  
Output  
Read  
0
0
Enable  
Toggle and  
Data# Polling  
10  
10  
HoldTime  
tOH  
Address to Output hold  
0
0
ns  
CE#=OE#=VIL  
NOTE:  
1. Not 100% tested.  
2. tDF is defined as the time at which the output achieves  
the open circuit condition and data is no longer driven.  
TEST CONDITIONS:  
Input pulse levels: 0V/3.0V.  
Input rise and fall times is equal to or less than 5ns.  
Outputload:1TTLgate+100pF(Includingscopeand  
jig),for26LV160AT/AB-70.1TTL gate+30pF(Includ-  
ing scope and jig) for 26LV160AT/AB-55.  
Reference levels for measuring timing: 1.5V.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
21  
MX26LV160AT/AB  
SWITCHING TEST CIRCUITS  
DEVICE UNDER  
TEST  
2.7K ohm  
+3.3V  
CL  
6.2K ohm  
DIODES=IN3064  
OR EQUIVALENT  
CL= 100pF Including jig capacitance for MX26LV160T/B-70  
(30pF for MX26LV160T/B-55)  
SWITCHING TEST WAVEFORMS  
3.0V  
TEST POINTS  
0V  
INPUT  
OUTPUT  
AC TESTING: Inputs are driven at 3.0V for a logic "1" and 0V for a logic "0".  
Input pulse rise and fall times are < 5ns.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
22  
MX26LV160AT/AB  
FIGURE 1. READ TIMING WAVEFORMS  
tRC  
VIH  
ADD Valid  
Addresses  
VIL  
tACC  
tCE  
VIH  
CE#  
VIL  
VIH  
WE#  
VIL  
tOE  
tDF  
tOEH  
VIH  
OE#  
VIL  
tACC  
tOH  
HIGH Z  
HIGH Z  
VOH  
VOL  
Outputs  
DATA Valid  
VIH  
VIL  
RESET#  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
23  
MX26LV160AT/AB  
AC CHARACTERISTICS TA = 0oC to 70oC, VCC = 3.0V~3.6V  
TABLE 10. Erase/Program Operations  
26LV160AT/AB-55  
26LV160AT/AB-70  
SYMBOL  
tWC  
PARAMETER  
MIN.  
55  
0
MAX.  
MIN.  
70  
0
MAX.  
UNIT  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
tAS  
ns  
tAH  
Address Hold Time  
45  
35  
0
45  
35  
0
ns  
tDS  
Data Setup Time  
ns  
tDH  
Data Hold Time  
ns  
tOES  
tGHWL  
Output Enable Setup Time  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
CE# Setup Time  
0
0
ns  
0
0
ns  
tCS  
0
0
ns  
ns  
ns  
ns  
us  
tCH  
CE# Hold Time  
0
0
tWP  
Write Pulse Width  
35  
30  
35  
30  
tWPH  
tWHWH1  
Write Pulse Width High  
ProgrammingOperation(Note2)  
(Byte/Wordprogramtime)  
Sector Erase Operation (Note 2)  
VCC Setup Time (Note 1)  
Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
Write pulse width for sector  
protect (A9, OE# Control)  
Write pulse width for sector  
unprotect (A9, OE# Control)  
Voltage transition time  
OE# setup time to WE# active  
Sector Address Load Time  
55/70(TYP.)  
55/70(TYP.)  
tWHWH2  
tVCS  
2.4(TYP.)  
2.4(TYP.)  
sec  
us  
50  
0
50  
0
tRB  
ns  
tBUSY  
tWPP1  
90  
10us(typ.) 100ns  
90  
ns  
100ns  
100ns  
10us(typ.)  
tWPP2  
12ms(typ.) 100ns  
12ms(typ.)  
tVLHT  
tOESP  
tBAL  
4
4
4
us  
us  
us  
4
50  
50  
NOTES:  
1. Not 100% tested.  
2. See the "Erase and Programming Performance" section for more information.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
24  
MX26LV160AT/AB  
AC CHARACTERISTICS TA = 0oC to 70oC, VCC = 3.0V~3.6V  
TABLE 11. Alternate CE# Controlled Erase/Program Operations  
26LV160AT/AB-55  
26LV160AT/AB-70  
SYMBOL  
tWC  
PARAMETER  
MIN.  
MAX.  
MIN.  
MAX.  
UNIT  
ns  
Write Cycle Time (Note 1)  
Address SetupTime  
Address HoldTime  
Data SetupTime  
55  
70  
tAS  
0
0
ns  
tAH  
45  
45  
ns  
tDS  
35  
35  
ns  
tDH  
Data HoldTime  
0
0
ns  
tOES  
tGHEL  
tWS  
Output Enable SetupTime  
Read RecoveryTime Before Write  
WE# SetupTime  
0
0
ns  
0
0
ns  
0
0
ns  
tWH  
WE# HoldTime  
0
0
ns  
tCP  
CE# PulseWidth  
35  
35  
ns  
tCPH  
tWHWH1  
CE# Pulse Width High  
30  
30  
ns  
Programming  
Byte  
55(Typ.)  
70(Typ.)  
2.4(Typ.)  
55(Typ.)  
70(Typ.)  
2.4(Typ.)  
us  
Operation(note2)  
Word  
us  
tWHWH2  
Sector Erase Operation (note2)  
sec  
NOTE:  
1. Not 100% tested.  
2. See the "Erase and Programming Performance" section for more information.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
25  
MX26LV160AT/AB  
FIGURE 2. COMMAND WRITE TIMING WAVEFORM  
VCC  
3V  
VIH  
VIL  
Addresses  
ADD Valid  
tAH  
tAS  
VIH  
VIL  
WE#  
CE#  
tOES  
tWPH  
tWP  
tCWC  
VIH  
VIL  
tCS  
tCH  
tDH  
VIH  
VIL  
OE#  
Data  
tDS  
VIH  
VIL  
DIN  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
26  
MX26LV160AT/AB  
AUTOMATIC PROGRAMMING TIMING WAVEFORM  
ing after automatic programming starts. Device outputs  
DATA# during programming and DATA# after program-  
ming on Q7. (Q6 is for toggle bit; see toggle bit, DATA#  
polling, timing waveform)  
One byte data is programmed. Verify in fast algorithm  
and additional verification by external control are not re-  
quired because these operations are executed automati-  
cally by internal control circuit. Programming comple-  
tion can be verified by DATA# polling and toggle bit check-  
FIGURE 3. AUTOMATIC PROGRAMMING TIMING WAVEFORM  
Program Command Sequence(last two cycle)  
Read Status Data (last two cycle)  
tWC  
tAS  
PA  
PA  
555h  
PA  
Address  
CE#  
tAH  
tCH  
tGHWL  
OE#  
WE#  
tWHWH1  
tWP  
tCS  
tWPH  
tDS tDH  
Status  
A0h  
PD  
DOUT  
Data  
tBUSY  
tRB  
RY/BY#  
tVCS  
VCC  
NOTES:  
1.PA=Program Address, PD=Program Data, DOUT is the true data the program address  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
27  
MX26LV160AT/AB  
FIGURE 4. AUTOMATIC PROGRAMMING ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data A0H Address 555H  
Write Program Data/Address  
Data Poll  
Increment  
Address  
from system  
No  
No  
Verify Word Ok ?  
YES  
Last Address ?  
YES  
Auto Program Completed  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
28  
MX26LV160AT/AB  
FIGURE 5. CE# CONTROLLED PROGRAM TIMING WAVEFORM  
PA for program  
555 for program  
2AA for erase  
SA for sector erase  
555 for chip erase  
Data# Polling  
Address  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tCP  
tWHWH1 or 2  
CE#  
Data  
tWS  
tDS  
tCPH  
tBUSY  
tDH  
DOUT  
DQ7  
PD for program  
30 for sector erase  
10 for chip erase  
A0 for program  
55 for erase  
tRH  
RESET#  
RY/BY#  
NOTES:  
1.PA=Program Address, PD=Program Data, DOUT=Data Out, DQ7=complement of data written to device.  
2.Figure indicates the last two bus cycles of the command sequence.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
29  
MX26LV160AT/AB  
AUTOMATIC CHIP ERASE TIMING WAVEFORM  
All data in chip are erased. External erase verification is  
not required because data is verified automatically by  
internal control circuit. Erasure completion can be veri-  
fied by DATA# polling and toggle bit checking after auto-  
matic erase starts. Device outputs 0 during erasure  
and 1 after erasure on Q7. (Q6 is for toggle bit; see toggle  
bit, DATA# polling, timing waveform)  
FIGURE 6. AUTOMATIC CHIP ERASE TIMING WAVEFORM  
Erase Command Sequence(last two cycle)  
Read Status Data  
VA  
tWC  
tAS  
VA  
2AAh  
555h  
Address  
CE#  
tAH  
tCH  
tGHWL  
OE#  
WE#  
tWHWH2  
tWP  
tCS  
tWPH  
tDS tDH  
In  
Progress  
55h  
10h  
Complete  
Data  
tBUSY  
tRB  
RY/BY#  
tVCS  
VCC  
NOTES:  
SA=sector address(for Sector Erase), VA=Valid Address for reading status data(see "Write Operation Status").  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
30  
MX26LV160AT/AB  
FIGURE 7. AUTOMATIC CHIP ERASE ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 10H Address 555H  
Data Pall from System  
NO  
Data=FFh ?  
YES  
Auto Chip Erase Completed  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
31  
MX26LV160AT/AB  
AUTOMATIC SECTOR ERASE TIMING WAVEFORM  
Sector indicated by A12 to A19 are erased. External  
erase verify is not required because data are verified  
automatically by internal control circuit. Erasure comple-  
tion can be verified by DATA# polling and toggle bit check-  
ing after automatic erase starts. Device outputs 0 dur-  
ing erasure and 1 after erasure on Q7. (Q6 is for toggle  
bit; see toggle bit, DATA# polling, timing waveform)  
FIGURE 8. AUTOMATIC SECTOR ERASE TIMING WAVEFORM  
Erase Command Sequence(last two cycle)  
Read Status Data  
VA  
tWC  
tAS  
Sector  
Sector  
Sector  
VA  
2AAh  
Address  
CE#  
Address 0  
Address 1  
Address n  
tAH  
tCH  
tGHWL  
OE#  
WE#  
tWHWH2  
tBAL  
tWP  
tCS  
tWPH  
tDS tDH  
In  
Progress  
55h  
30h  
30h  
30h  
Complete  
Data  
tBUSY  
tRB  
RY/BY#  
tVCS  
VCC  
NOTES:  
SA=sector address(for Sector Erase), VA=Valid Address for reading status data(see "Write Operation Status").  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
32  
MX26LV160AT/AB  
FIGURE 9. AUTOMATIC SECTOR ERASE ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 30H Sector Address  
NO  
Last Sector  
to Erase  
YES  
Data Poll from System  
NO  
Data=FFh  
YES  
Auto Sector Erase Completed  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
33  
MX26LV160AT/AB  
Figure 10. IN-SYSTEM SECTOR PROTECT/CHIP UNPROTECTTIMINGWAVEFORM (RESET# Con-  
trol)  
VID  
VIH  
RESET#  
SA, A6  
A1, A0  
Valid*  
Valid*  
Valid*  
Sector Protect or Sector Unprotect  
Verify  
40h  
Status  
Data  
60h  
60h  
Sector Protect =150us  
chip Unprotect =15ms  
1us  
CE#  
WE#  
OE#  
Note: When sector protect, A6=0, A1=1, A0=0. When chip unprotect, A6=1, A1=1, A0=0.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
34  
MX26LV160AT/AB  
Figure 11. SECTOR PROTECT TIMING WAVEFORM (A9, OE# Control)  
A1  
A6  
12V  
3V  
A9  
tVLHT  
tVLHT  
Verify  
12V  
3V  
OE#  
tVLHT  
tWPP 1  
WE#  
CE#  
tOESP  
Data  
01H  
F0H  
tOE  
Sector Address  
A19-A12  
Notes: tVLHT (Voltage transition time)=4us min.  
tOESP (OE# setup time to WE# active)=4us min.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
35  
MX26LV160AT/AB  
Figure 12. SECTOR PROTECTION ALGORITHM (A9, OE# Control)  
START  
Set Up Sector Addr  
PLSCNT=1  
OE#=VID, A9=VID, CE#=VIL  
A6=VIL  
Activate WE# Pulse  
Time Out 150us  
Set WE#=VIH, CE#=OE#=VIL  
A9 should remain VID  
.
Read from Sector  
No  
Addr=SA, A1=1, A6=0, A0=0  
No  
Data=01H?  
PLSCNT=32?  
Yes  
Device Failed  
Yes  
Protect Another  
Sector?  
Remove VID from A9  
Write Reset Command  
Sector Protection  
Complete  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
36  
MX26LV160AT/AB  
Figure 13. IN-SYSTEM SECTOR PROTECTION ALGORITHM WITH RESET#=VID  
START  
PLSCNT=1  
RESET#=VID  
Wait 1us  
No  
Temporary Sector  
Unprotect Mode  
First Write  
Cycle=60H  
Yes  
Set up sector address  
Write 60H to sector address  
with A6=0, A1=1, A0=0  
Wait 150us  
Verify sector protect :  
write 90H with A6=0,  
A1=1, A0=0  
Increment PLSCNT  
Reset PLSCNT=1  
Read from sector address  
No  
No  
PLSCNT=25?  
Data=01H ?  
Yes  
Yes  
Device failed  
Yes  
Protect another  
sector?  
No  
Remove VID from RESET#  
Write reset command  
Sector protect complete  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
37  
MX26LV160AT/AB  
Figure 14. IN-SYSTEM CHIP UNPROTECTION ALGORITHM WITH RESET#=VID  
START  
PLSCNT=1  
RESET#=VID  
Wait 1us  
No  
No  
Temporary Sector  
Unprotect Mode  
First Write  
Cycle=60H ?  
Yes  
All sector  
Protect all sectors  
protected?  
Yes  
Set up first sector address  
Chip unprotect :  
write 60H with  
A6=1, A1=1, A0=0  
Wait 50ms  
Verify chip unprotect  
write 90H to sector address  
with A6=0, A1=1, A0=0  
Increment PLSCNT  
Read from sector address  
with A6=0, A1=1, A0=0  
No  
No  
Set up next sector address  
PLSCNT=1000?  
Data=00H ?  
Yes  
Yes  
Device failed  
Yes  
Last sector  
verified?  
No  
Remove VID from RESET#  
Write reset command  
Chip unprotect complete  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
38  
MX26LV160AT/AB  
Figure 15. TIMING WAVEFORM FOR CHIP UNPROTECTION (A9, OE# Control)  
A1  
12V  
Vcc 3V  
A9  
A6  
tVLHT  
Verify  
12V  
Vcc 3V  
OE#  
tVLHT  
tVLHT  
tWPP 2  
WE#  
CE#  
tOESP  
Data  
00H  
F0H  
tOE  
A19-A12  
Sector Address  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
39  
MX26LV160AT/AB  
Figure 16. CHIP UNPROTECTION ALGORITHM (A9, OE# Control)  
START  
Protect All Sectors  
PLSCNT=1  
Set OE#=A9=VID, CE#=VIL,  
A6=1, A1=1, A0=0  
Activate WE# Pulse  
Time Out 50ms  
Increment  
PLSCNT  
Set OE#=CE#=VIL, A9=VID,  
A1=1, A0=0, A6=0  
Set Up First Sector Addr  
Read Data from Device  
No  
No  
Data=00H?  
Yes  
PLSCNT=1000?  
Increment  
Sector Addr  
Yes  
Device Failed  
No  
All sectors have  
been verified?  
Yes  
Remove VID from A9  
Write Reset Command  
Chip Unprotect  
Complete  
* It is recommended before unprotect whole chip, all sectors should be protected in advance.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
40  
MX26LV160AT/AB  
WRITE OPERATION STATUS  
FIGURE 17. DATA# POLLING ALGORITHM  
Start  
Read Q7~Q0  
Add.=VA(1)  
Yes  
Q7 = Data ?  
No  
No  
Q5 = 1 ?  
Yes  
Read Q7~Q0  
Add.=VA  
Yes  
Q7 = Data ?  
(2)  
No  
FAIL  
Pass  
NOTE : 1.VA=Valid address for programming  
2.Q7 should be re-checked even Q5="1" because Q7 may change  
simultaneously with Q5.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
41  
MX26LV160AT/AB  
FIGURE 18. TOGGLE BIT ALGORITHM  
Start  
Read Q7-Q0  
Read Q7-Q0  
(Note 1)  
NO  
Toggle Bit Q6 =  
Toggle ?  
YES  
NO  
Q5= 1?  
YES  
Read Q7~Q0 Twice  
(Note 1,2)  
NO  
Toggle bit Q6=  
Toggle?  
YES  
Program/Erase Operation  
Not Complete,Write  
Reset Command  
Program/Erase  
operation Complete  
Note:1.Read toggle bit twice to determine whether or not it is toggling.  
2. Recheck toggle bit because it may stop toggling as Q5 change to "1".  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
42  
MX26LV160AT/AB  
FIGURE 19. Data# Polling Timings (During Automatic Algorithms)  
tRC  
VA  
VA  
VA  
Address  
CE#  
tACC  
tCE  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
Complement  
Status Data  
Complement  
Status Data  
True  
True  
Valid Data  
Valid Data  
Q7  
Q0-Q6  
tBUSY  
RY/BY#  
NOTES:  
1. VA=Valid address. Figure shows are first status cycle after command sequence, last status read cycle, and array data read cycle.  
2. CE# must be toggled when DATA# polling.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
43  
MX26LV160AT/AB  
FIGURE 20. Toggle Bit Timings (During Automatic Algorithms)  
tRC  
VA  
VA  
VA  
VA  
Address  
CE#  
tACC  
tCE  
tCH  
tOE  
OE#  
tDF  
tOEH  
WE#  
tOH  
High Z  
Valid Status  
(second read)  
Valid Status  
(first raed)  
Valid Data  
Valid Data  
Q6/Q2  
(stops toggling)  
tBUSY  
RY/BY#  
NOTES:  
1. VA=Valid address; not required for Q6. Figure shows first two status cycle after command sequence, last status read cycle,  
and array data read cycle.  
2. CE# must be toggled when toggle bit toggling.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
44  
MX26LV160AT/AB  
TABLE 12. AC CHARACTERISTICS  
Parameter Std Description  
Test Setup All Speed Options Unit  
tREADY1  
RESET# PIN Low (During Automatic Algorithms)  
MAX  
20  
us  
to Read or Write (See Note)  
tREADY2  
RESET# PIN Low (NOT During Automatic  
Algorithms) to Read or Write (See Note)  
RESET# Pulse Width (During Automatic Algorithms)  
RESET# HighTime Before Read (See Note)  
RY/BY# Recovery Time (to CE#, OE# go low)  
MAX  
500  
ns  
tRP  
tRH  
tRB  
MIN  
MIN  
MIN  
500  
50  
0
ns  
ns  
ns  
Note: Not 100% tested  
FIGURE 21. RESET# TIMING WAVEFORM  
RY/BY#  
CE#, OE#  
tRH  
RESET#  
tRP  
tReady2  
Reset Timing NOT during Automatic Algorithms  
tReady1  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Reset Timing during Automatic Algorithms  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
45  
MX26LV160AT/AB  
AC CHARACTERISTICS  
TABLE 13. WORD/BYTE CONFIGURATION (BYTE#)  
Parameter  
Description  
Speed Options  
Unit  
JEDEC Std  
-55  
-70  
tELFL/tELFH CE# to BYTE# Switching Low or High  
Max  
Max  
Min  
5
ns  
ns  
ns  
tFLQZ  
tFHQV  
BYTE# Switching Low to Output HIGH Z  
BYTE# Switching High to Output Active  
25  
55  
25  
70  
FIGURE 22. BYTE# TIMING WAVEFORM FOR READ OPERATIONS (BYTE# switching from byte  
mode to word mode)  
CE#  
OE#  
tELFH  
BYTE#  
DOUT  
(Q0-Q7)  
DOUT  
(Q0-Q14)  
Q0~Q14  
Q15/A-1  
DOUT  
(Q15)  
VA  
tFHQV  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
46  
MX26LV160AT/AB  
FIGURE 23. BYTE# TIMINGWAVEFORM FOR READ OPERATIONS (BYTE# switching from word  
mode to byte mode)  
CE#  
OE#  
tELFH  
BYTE#  
DOUT  
(Q0-Q14)  
DOUT  
(Q0-Q7)  
Q0~Q14  
Q15/A-1  
DOUT  
(Q15)  
VA  
tFLQZ  
FIGURE 24. BYTE# TIMING WAVEFORM FOR PROGRAM OPERATIONS  
CE#  
The falling edge of the last WE# signal  
WE#  
BYTE#  
tAS  
tAH  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
47  
MX26LV160AT/AB  
Table 14. TEMPORARY SECTOR UNPROTECT  
Parameter Std. Description  
Test Setup All Speed Options Unit  
tVIDR  
tRSP  
VID Rise and Fall Time (See Note)  
Min  
Min  
500  
4
ns  
us  
RESET# SetupTime forTemporary Sector Unprotect  
Note:  
Not 100% tested  
Figure 25. TEMPORARY SECTOR UNPROTECT TIMING DIAGRAM  
12V  
RESET#  
0 or Vcc  
0 or Vcc  
Program or Erase Command Sequence  
tVIDR  
tVIDR  
CE#  
WE#  
tRSP  
RY/BY#  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
48  
MX26LV160AT/AB  
Figure 26. TEMPORARY SECTOR UNPROTECT ALGORITHM  
Start  
RESET# = VID (Note 1)  
Perform Erase or Program Operation  
Operation Completed  
RESET# = VIH  
Temporary Sector Unprotect Completed(Note 2)  
Note :  
1. All protected sectors are temporary unprotected.  
VID=11.5V~12.5V  
2. All previously protected sectors are protected again.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
49  
MX26LV160AT/AB  
FIGURE 27. ID CODE READ TIMING WAVEFORM  
VCC  
3V  
VID  
ADD  
A9  
VIH  
VIL  
VIH  
VIL  
ADD  
A0  
tACC  
tACC  
VIH  
VIL  
A1  
ADD  
A2-A8  
VIH  
A10-A19 VIL  
CE#  
VIH  
VIL  
VIH  
VIL  
tCE  
WE#  
OE#  
tOE  
VIH  
VIL  
tDF  
tOH  
tOH  
VIH  
VIL  
DATA  
Q0-Q15  
DATA OUT  
DATA OUT  
C4H/49H (Byte)  
C2H/00C2H  
22C4H/2249H (Word)  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
50  
MX26LV160AT/AB  
described inTable 15.  
QUERY COMMAND AND COMMON FLASH  
INTERFACE (CFI) MODE  
The single cycle Query command is valid only when the  
device is in the Read mode, Standby mode, and Auto-  
matic Select mode; however, it is ignored otherwise.  
MX26LV160AT/AB is capable of operating in the CFI  
mode. This mode all the host system to determine the  
manufacturer of the device such as operating param-  
eters and configuration.Two commands are required in  
CFI mode. Query command of CFI mode is placed first,  
then the Reset command exits CFI mode. These are  
The Reset command exits from the CFI mode to the  
Read mode, or Automatic Select mode.The command is  
valid only when the device is in the CFI mode.  
Table 15-1. CFI mode: Identification Data Values  
(All values in these tables are in hexadecimal)  
Description  
Address  
Address  
Data  
(ByteMode)  
(WordMode)  
Query-unique ASCII string "QRY"  
20  
22  
24  
26  
28  
2A  
2C  
2E  
30  
32  
34  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
0051  
0052  
0059  
0002  
0000  
0040  
0000  
0000  
0000  
0000  
0000  
Primary vendor command set and control interface ID code  
Address for primary algorithm extended query table  
Alternate vendor command set and control interface ID code (none)  
Address for secondary algorithm extended query table (none)  
Table 15-2. CFI Mode: System Interface Data Values  
(All values in these tables are in hexadecimal)  
Description  
Address  
Address  
Data  
(ByteMode)  
(WordMode)  
VCC supply, minimum (3.0V)  
36  
38  
3A  
3C  
3E  
40  
42  
44  
46  
48  
4A  
4C  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
0030  
0036  
0000  
0000  
0004  
0000  
000A  
0000  
0005  
0000  
0004  
0000  
VCC supply, maximum (3.6V)  
VPP supply, minimum (none)  
VPP supply, maximum (none)  
Typical timeout for single word/byte write (2N us)  
Typical timeout for Minimum size buffer write (2N us) (not supported)  
Typical timeout for individual sector erase (2N ms)  
Typical timeout for full chip erase (2N ms)  
Maximum timeout for single word/byte write times (2N X Typ)  
Maximum timeout for buffer write times (2N X Typ)  
Maximum timeout for individual sector erase times (2N X Typ)  
Maximum timeout for full chip erase times (not supported)  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
51  
MX26LV160AT/AB  
Table 15-3. CFI Mode: Device Geometry Data Values  
(All values in these tables are in hexadecimal)  
Description  
Address  
Address  
Data  
(ByteMode)  
(WordMode)  
Device size (2N bytes)  
4E  
50  
52  
54  
56  
58  
5A  
5C  
5E  
60  
62  
64  
66  
68  
6A  
6C  
6E  
70  
72  
74  
76  
78  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
0015  
0002  
0000  
0000  
0000  
0004  
0000  
0000  
0040  
0000  
0001  
0000  
0020  
0000  
0000  
0000  
0080  
0000  
001E  
0000  
0000  
0001  
Flash device interface code (x8/x16 async.)  
Maximum number of bytes in multi-byte write (not supported)  
Number of erase sector regions  
Erase sector region 1 information (refer to the CFI publication 100)  
Erase sector region 2 information  
Erase sector region 3 information  
Erase sector region 4 information  
Table 15-4. CFI Mode: Primary Vendor-Specific Extended Query Data Values  
(All values in these tables are in hexadecimal)  
Description  
Address  
Address  
Data  
(ByteMode)  
(WordMode)  
Query-unique ASCII string "PRI"  
80  
82  
84  
86  
88  
8A  
8C  
8E  
90  
92  
94  
96  
98  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
0050  
0052  
0049  
0031  
0030  
0000  
0000  
0000  
0000  
0004  
0000  
0000  
0000  
Major version number, ASCII  
Minor version number, ASCII  
Address sensitive unlock (0=required, 1= not required)  
Erasesuspend(0=notsupported)  
Sector protect (0=not supported)  
Temporarysectorunprotect(0=notsupported)  
Sector protect/chip unprotect scheme (0=not supported)  
SimultaneousR/Woperation(0=notsupported)  
Burst mode type (0=not supported)  
Page mode type (0=not supported)  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
52  
MX26LV160AT/AB  
TABLE 16. ERASE AND PROGRAMMING PERFORMANCE (1)  
LIMITS  
TYP. (2)  
2.4  
PARAMETER  
MIN.  
MAX. (3)  
15  
UNITS  
sec  
Sector Erase Time  
Chip Erase Time  
80  
320  
sec  
Byte Programming Time  
Word Programming Time  
Chip Programming Time (Word/Byte Mode)  
Erase/Program Cycles  
55  
220  
us  
70  
280  
us  
70  
140  
sec  
2K (6)  
Cycles  
Note:  
1. Not 100% tested.  
2. Typical program and erase times assume the following conditions : 25° C, 3.3V VCC. Programming spec. assume  
that all bits are programmed to checkerboard pattern.  
3. Maximum values are measured at VCC=3.0V, worst case temperature. Maximum values are up to including 2K  
program/erase cycles.  
4. System-level overhead is the time required to execute the command sequences for the all program command.  
5. Excludes 00H programming prior to erasure. (In the pre-programming step of the embedded erase algorithm, all bits  
are programmed to 00H before erasure)  
6. Min.erase/program cycles is under :3.3VVCC, 25°C, checkerboard pattern conditions, and without baking process.  
TABLE 17. LATCH-UP CHARACTERISTICS  
MIN.  
-1.0V  
MAX.  
12V  
Input Voltage with respect to GND on ACC, OE#, RESET#, A9  
Input Voltage with respect to GND on all power pins, Address pins, CE# and WE#  
Input Voltage with respect to GND on all I/O pins  
-1.0V  
VCC + 1.0V  
VCC + 1.0V  
+100mA  
-1.0V  
Current  
-100mA  
Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time.  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
53  
MX26LV160AT/AB  
ORDERING INFORMATION  
PART NO.  
ACCESS  
OPERATING  
STANDBY  
PACKAGE  
Remark  
TIME (ns) Current MAX. (mA) Current MAX. (uA)  
MX26LV160ATMC-55  
MX26LV160ATMC-70  
MX26LV160ABMC-55  
MX26LV160ABMC-70  
MX26LV160ATTC-55  
55  
70  
55  
70  
55  
30  
30  
30  
30  
30  
100  
100  
100  
100  
100  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Ball CSP  
MX26LV160ABTC-55  
MX26LV160ATTC-70  
MX26LV160ABTC-70  
MX26LV160ATXBC-55  
MX26LV160ABXBC-55  
MX26LV160ATXBC-70  
MX26LV160ABXBC-70  
MX26LV160ATXEC-55  
MX26LV160ABXEC-55  
MX26LV160ATXEC-70  
MX26LV160ABXEC-70  
55  
70  
70  
55  
55  
70  
70  
55  
55  
70  
70  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
(Ball size:0.3mm)  
48 Ball CSP  
(Ball size:0.3mm)  
48 Ball CSP  
(Ball size:0.3mm)  
48 Ball CSP  
(Ball size:0.3mm)  
48 Ball CSP  
(Ball size:0.4mm)  
48 Ball CSP  
(Ball size:0.4mm)  
48 Ball CSP  
(Ball size:0.4mm)  
48 Ball CSP  
(Ball size:0.4mm)  
44 Pin SOP  
MX26LV160ATMC-55G  
MX26LV160ATMC-70G  
MX26LV160ABMC-55G  
MX26LV160ABMC-70G  
MX26LV160ATTC-55G  
55  
70  
55  
70  
55  
30  
30  
30  
30  
30  
100  
100  
100  
100  
100  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
44 Pin SOP  
44 Pin SOP  
44 Pin SOP  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
48 Pin TSOP  
(NormalType)  
MX26LV160ABTC-55G  
MX26LV160ATTC-70G  
MX26LV160ABTC-70G  
55  
70  
70  
30  
30  
30  
100  
100  
100  
Pb-free  
Pb-free  
Pb-free  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
54  
MX26LV160AT/AB  
PART NO.  
ACCESS  
OPERATING  
STANDBY  
PACKAGE  
Remark  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
TIME (ns) Current MAX. (mA) Current MAX. (uA)  
MX26LV160ATXBC-55G  
MX26LV160ABXBC-55G  
MX26LV160ATXBC-70G  
MX26LV160ABXBC-70G  
MX26LV160ATXEC-55G  
MX26LV160ABXEC-55G  
55  
55  
70  
70  
55  
55  
30  
30  
30  
30  
30  
30  
100  
100  
100  
100  
100  
100  
48 Ball CSP  
(Ball size:0.3mm)  
48 Ball CSP  
(Ball size:0.3mm)  
48 Ball CSP  
(Ball size:0.3mm)  
48 Ball CSP  
(Ball size:0.3mm)  
48 Ball CSP  
(Ball size:0.4mm)  
48 Ball CSP  
(Ball size:0.4mm)  
48 Ball CSP  
(Ball size:0.4mm)  
48 Ball CSP  
MX26LV160ATXEC-70G  
MX26LV160ABXEC-70G  
70  
70  
30  
30  
100  
100  
Pb-free  
Pb-free  
(Ball size:0.4mm)  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
55  
MX26LV160AT/AB  
PACKAGE INFORMATION  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
56  
MX26LV160AT/AB  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
57  
MX26LV160AT/AB  
48-Ball CSP (for MX26LV160ATXBC/ATXBI/ABXBC/ABXBI)  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
58  
MX26LV160AT/AB  
48-Ball CSP (for MX26LV160ATXEC/ATXEI/ABXEC/ABXEI)  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
59  
MX26LV160AT/AB  
REVISION HISTORY  
Revision No. Description  
Page  
P1  
Date  
NOV/15/2004  
1.0  
1. Removed "Preliminary"  
2. To added 44-SOP package information  
All  
3. To modified cycling time from 10K to 2K  
1. To corrected protect/unprotect information in CFI table  
P1,53  
P52  
1.1  
NOV/18/2004  
P/N:PM1123  
REV. 1.1, NOV. 18, 2004  
60  
MX26LV160AT/AB  
MACRONIX INTERNATIONALCO., LTD.  
Headquarters:  
TEL:+886-3-578-6688  
FAX:+886-3-563-2888  
Europe Office :  
TEL:+32-2-456-8020  
FAX:+32-2-456-8021  
Hong Kong Office :  
TEL:+86-755-834-335-79  
FAX:+86-755-834-380-78  
Japan Office :  
Kawasaki Office :  
TEL:+81-44-246-9100  
FAX:+81-44-246-9105  
Osaka Office :  
TEL:+81-6-4807-5460  
FAX:+81-6-4807-5461  
Singapore Office :  
TEL:+65-6346-5505  
FAX:+65-6348-8096  
Taipei Office :  
TEL:+886-2-2509-3300  
FAX:+886-2-2509-2200  
MACRONIX AMERICA, INC.  
TEL:+1-408-262-8887  
FAX:+1-408-262-8810  
http : //www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  

相关型号:

MX26LV160ATTC-70G

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY BOOT SECTOR HIGH SPEED eLiteFlashTM MEMORY
Macronix

MX26LV160ATXBC-55

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY BOOT SECTOR HIGH SPEED eLiteFlashTM MEMORY
Macronix

MX26LV160ATXBC-55G

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY BOOT SECTOR HIGH SPEED eLiteFlashTM MEMORY
Macronix

MX26LV160ATXBC-70

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY BOOT SECTOR HIGH SPEED eLiteFlashTM MEMORY
Macronix

MX26LV160ATXBC-70G

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY BOOT SECTOR HIGH SPEED eLiteFlashTM MEMORY
Macronix

MX26LV160ATXEC-55

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY BOOT SECTOR HIGH SPEED eLiteFlashTM MEMORY
Macronix

MX26LV160ATXEC-55G

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY BOOT SECTOR HIGH SPEED eLiteFlashTM MEMORY
Macronix

MX26LV160ATXEC-70

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY BOOT SECTOR HIGH SPEED eLiteFlashTM MEMORY
Macronix

MX26LV160ATXEC-70G

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY BOOT SECTOR HIGH SPEED eLiteFlashTM MEMORY
Macronix

MX26LV160BMC-55

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY BOOT SECTOR HIGH SPEED eLiteFlashTM MEMORY
Macronix

MX26LV160BMC-55G

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY BOOT SECTOR HIGH SPEED eLiteFlashTM MEMORY
Macronix

MX26LV160BMC-70

16M-BIT [2Mx8/1Mx16] CMOS SINGLE VOLTAGE 3V ONLY BOOT SECTOR HIGH SPEED eLiteFlashTM MEMORY
Macronix