128M8 [MDTIC]

1Gb: x4, x8, x16 DDR3 SDRAM; 1GB : X4,X8 , X16 DDR3 SDRAM
128M8
型号: 128M8
厂家: Micon Design Technology Corporation    Micon Design Technology Corporation
描述:

1Gb: x4, x8, x16 DDR3 SDRAM
1GB : X4,X8 , X16 DDR3 SDRAM

动态存储器 双倍数据速率
文件: 总181页 (文件大小:8341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1Gb : x4, x8, x16 DDR3 SDRAM  
Fe a t u re s  
DDR3 SDRAM  
MT41J256M4 – 32 Me g x 4 x 8 Ba n ks  
MT41J128M8 – 16 Me g x 8 x 8 Ba n ks  
MT41J64M16 – 8 Me g x 16 x 8 Ba n ks  
Op t io n s  
Ma rkin g  
Fe a t u re s  
• VDD = VDDQ = +1.5V ±0.075V  
• Configuration  
256 Meg x 4  
128 Meg x 8  
64 Meg x 16  
• 1.5V center-terminated push/ pull I/ O  
• Differential bidirectional data strobe  
• 8n-bit prefetch architecture  
256M4  
128M8  
64M16  
• Differential clock inputs (CK, CK#)  
• 8 internal banks  
• Nominal and dynamic on-die termination (ODT) for  
data, strobe, and mask signals  
• CAS (READ) latency (CL): 5, 6, 7, 8, 9, 10, or 11  
• POSTED CAS ADDITIVE latency (AL): 0, CL - 1, CL - 2  
• CAS (WRITE) latency (CWL): 5, 6, 7, 8, based on CK  
• FBGA package (Pb-free) - x4, x8  
78-ball FBGA (8mm x 11.5mm) Rev. F  
78-ball FBGA (9mm x 11.5mm) Rev. D  
86-ball FBGA (9mm x 15.5mm) Rev. B  
• FBGA package (Pb-free) - x16  
96-ball FBGA (9mm x 15.5mm) Rev. B  
• Timing - cycle time  
JP  
HX  
BY  
LA  
t
• Fixed burst length (BL) of 8 and burst chop (BC) of 4  
(via the mode register set [MRS])  
1.25ns @ CL = 11 (DDR3-1600)  
1.25ns @ CL = 10 (DDR3-1600)  
1.25ns @ CL = 9 (DDR3-1600)  
1.5ns @ CL = 10 (DDR3-1333)  
1.5ns @ CL = 9 (DDR3-1333)  
1.5ns @ CL = 8 (DDR3-1333)  
1.87ns @ CL = 8 (DDR3-1066)  
1.87ns @ CL = 7 (DDR3-1066)  
2.5ns @ CL = 6 (DDR3-800)  
2.5ns @ CL = 5 (DDR3-800)  
• Revision  
-125  
-125E  
-125F  
-15  
-15E  
-15F  
-187  
-187E  
-25  
-25E  
:B/ :D/ :F  
• Selectable BC4 or BL8 on-the-fly (OTF)  
• Self refresh mode  
o
o
• T of 0 C to 95 C  
C
o
o
64ms, 8,192 cycle refresh at 0 C to 85 C  
32ms at 85 C to 95 C  
o
o
• Clock frequency range of 300–800 MHz  
• Self refresh temperature (SRT)  
Autom atic self refresh (ASR)  
• Write leveling  
• Multipurpose register  
• Output driver calibration  
Ta b le 1:  
Ke y Tim in g Pa ra m e t e rs  
Sp e e d Gra d e  
-125  
Da t a Ra t e (MT/s)  
Ta rg e t t RCD-t RP-CL  
t RCD (n s)  
t RP (n s)  
CL (n s)  
1600  
1600  
1600  
1333  
1333  
1333  
1066  
1066  
800  
11-11-11  
10-10-10  
9-9-9  
13.75  
12.5  
11.25  
15  
13.75  
12.5  
11.25  
15  
13.75  
12.5  
11.25  
15  
-125E  
-125F  
-15  
10-10-10  
9-9-9  
-15E  
-15F  
-187  
-187E  
-25  
13.5  
12  
13.5  
12  
13.5  
12  
8-8-8  
8-8-8  
15  
15  
15  
7-7-7  
13.1  
15  
13.1  
15  
13.1  
15  
6-6-6  
-25E  
800  
5-5-5  
12.5  
12.5  
12.5  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D1 .fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
1
Products and specifications discussed herein are subject to change by Micron without notice.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Fe a t u re s  
Ta b le 2:  
Ad d re ssin g  
Pa ra m e t e r  
256 Me g x 4  
128 Me g x 8  
64 Me g x 16  
Configuration  
Refresh count  
32 Meg x 4 x 8 banks  
8K  
16 Meg x 8 x 8 banks  
8K  
8 Meg x 16 x 8 banks  
8K  
Row addressing  
Bank addressing  
Column addressing  
16K (A[13:0])  
8 (BA[2:0])  
16K (A[13:0])  
8 (BA[2:0])  
8K (A[12:0])  
8 (BA[2:0])  
1K (A[9:0])  
2K (A[11, 9:0])  
1K (A[9:0])  
Fig u re 1:  
1Gb DDR3 Pa rt Nu m b e rs  
Example Part Number: M T4 1 J2 5 6 M 4 BY-1 5 :B  
-
:
MT41J  
Configuration  
Package  
Speed  
Revision  
:B/:D/:F Revision  
Temperature  
Configuration  
256 Meg x 4  
128 Meg x 8  
64 Meg x 16  
256M4  
128M8  
64M16  
Commercial  
None  
IT  
Industrial temperature  
Speed Grade  
t
Package  
Rev. Mark  
-125  
-125E  
-125F  
-15  
CK = 1.25ns, CL = 11  
t
78-ball 8mm x 11.5mm FBGA  
78-ball 9mm x 11.5mm FBGA  
86-ball 9mm x 15.5mm FBGA  
96-ball 9mm x 15.5mm FBGA  
F
D
B
B
JP  
CK = 1.25ns, CL = 10  
t
HX  
BY  
LA  
CK = 1.25ns, CL = 9  
t
CK = 1.5ns, CL = 10  
t
-15E  
-15F  
-187  
-187E  
-25  
CK = 1.5ns, CL = 9  
t
CK = 1.5ns, CL = 8  
t
CK = 1.87ns, CL = 8  
t
CK = 1.87ns, CL = 7  
t
CK = 2.5ns, CL = 6  
t
-25E  
CK = 2.5ns, CL = 5  
FBGA Pa rt Ma rkin g De co d e r  
Due to space limitations, FBGA-packaged components have an abbreviated part  
marking that is different from the part number. For a quick conversion of an FBGA code,  
see the FBGA Part Marking Decoder on Microns Web site: www.micron.com.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D1 .fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
2
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ta b le o f Co n t e n t s  
Ta b le o f Co n t e n t s  
State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Functional Block Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Ball Assignments and Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Absolute Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Input/ Output Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Electrical Specifications – IDD Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Electrical Characteristics – IDD Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Electrical Specifications – DC and AC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Input Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
AC Overshoot/ Undershoot Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Slew Rate Definitions for Single-Ended Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Slew Rate Definitions for Differential Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
ODT Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
ODT Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
ODT Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
ODT Timing Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Output Driver Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
34Ω Output Driver Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
34Ω Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
34Ω Driver Output Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Alternative 40Ω Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
40Ω Driver Output Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Output Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Reference Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Slew Rate Definitions for Single-Ended Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Slew Rate Definitions for Differential Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Speed Bin Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Command and Address Setup, Hold, and Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Data Setup, Hold, and Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
DESELECT (DES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
NO OPERATION (NOP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
ZQ CALIBRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
ACTIVATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
SELF REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
DLL Disable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Input Clock Frequency Change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Write Leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_TOC.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
3
1Gb : x4, x8, x16 DDR3 SDRAM  
Ta b le o f Co n t e n t s  
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Mode Register 0 (MR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Mode Register 1 (MR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Mode Register 2 (MR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Mode Register 3 (MR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
MODE REGISTER SET (MRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
ZQ CALIBRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
ACTIVATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
SELF REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Extended Temperature Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
On-Die Termination (ODT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Functional Representation of ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Nominal ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Dynamic ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Synchronous ODT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
ODT Off During READs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Asynchronous ODT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Synchronous to Asynchronous ODT Mode Transition (Power-Down Entry). . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Asynchronous to Synchronous ODT Mode Transition (Power-Down Exit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_TOC.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
4
1Gb : x4, x8, x16 DDR3 SDRAM  
List o f Fig u re s  
List o f Fig u re s  
Figure 1:  
Figure 2:  
Figure 3:  
Figure 4:  
Figure 5:  
Figure 6:  
Figure 7:  
Figure 8:  
1Gb DDR3 Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
256 Meg x 4 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
128 Meg x 8 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
64 Meg x 16 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
78-Ball FBGA – x4, x8 Ball Assignments (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
86-Ball FBGA – x4, x8 Ball Assignments (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
96-Ball FBGA – x16 Ball Assignments (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
78-Ball FBGA – x4, x8; “JP” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
78-Ball FBGA – x4, x8; “HX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
86-Ball FBGA – x4, x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
96-Ball FBGA – x16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Thermal Measurement Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
IDD1 Example – DDR3-800, 5-5-5, x8 (-25E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
IDD2N/ IDD3N Example – DDR3-800, 5-5-5, x8 (-25E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
IDD4R Example – DDR3-800, 5-5-5, x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Input Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Overshoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Undershoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Single-Ended Requirements for Differential Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Figure 9:  
Figure 10:  
Figure 11:  
Figure 12:  
Figure 13:  
Figure 14:  
Figure 15:  
Figure 16:  
Figure 17:  
Figure 18:  
Figure 19:  
Figure 20:  
Figure 21:  
Figure 22:  
Figure 23:  
Figure 24:  
Figure 25:  
Figure 26:  
Figure 27:  
Figure 28:  
Figure 29:  
Figure 30:  
Figure 31:  
Figure 32:  
Figure 33:  
Figure 34:  
Figure 35:  
Figure 36:  
Figure 37:  
Figure 38:  
Figure 39:  
Figure 40:  
Figure 41:  
Figure 42:  
Figure 43:  
Figure 44:  
Figure 45:  
Figure 46:  
Figure 47:  
Figure 48:  
Figure 49:  
Figure 50:  
Figure 51:  
Figure 52:  
Figure 53:  
Figure 54:  
Figure 55:  
Figure 56:  
t
Definition of Differential AC-Swing and DVAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Nominal Slew Rate Definition for Single-Ended Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Nominal Differential Input Slew Rate Definition for DQS, DQS# and CK, CK# . . . . . . . . . . . . . . . . . .48  
ODT Levels and I-V Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
ODT Timing Reference Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
t
t
t
t
AON and AOF Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
t
AONPD and AOFPD Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
ADC Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Output Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
DQ Output Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Differential Output Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Reference Output Load for AC Timing and Output Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Nominal Slew Rate Definition for Single-Ended Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Nominal Differential Output Slew Rate Definition for DQS, DQS# . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
t
t
Nominal Slew Rate and VAC for IS (Command and Address – Clock) . . . . . . . . . . . . . . . . . . . . . . . . .80  
t
Nominal Slew Rate for IH (Command and Address – Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
t
Tangent Line for IS (Command and Address – Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
t
Tangent Line for IH (Command and Address – Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
t
t
Nominal Slew Rate and VAC for DS (DQ – Strobe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
t
Nominal Slew Rate for DH (DQ – Strobe). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
t
Tangent Line for DS (DQ – Strobe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
t
Tangent Line for DH (DQ – Strobe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Refresh Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
DLL Enable Mode to DLL Disable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
DLL Disable Mode to DLL Enable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
t
DLL Disable DQSCK Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Change Frequency During Precharge Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Write Leveling Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Write Leveling Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Exit Write Leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
t
MRS-to-MRS Command Timing ( MRD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
t
MRS-to-nonMRS Command Timing ( MOD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Mode Register 0 (MR0) Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
READ Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Mode Register 1 (MR1) Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_LOF.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
5
1Gb : x4, x8, x16 DDR3 SDRAM  
List o f Fig u re s  
Figure 57:  
Figure 58:  
Figure 59:  
Figure 60:  
Figure 61:  
Figure 62:  
Figure 63:  
Figure 64:  
Figure 65:  
Figure 66:  
Figure 67:  
Figure 68:  
Figure 69:  
Figure 70:  
Figure 71:  
Figure 72:  
Figure 73:  
Figure 74:  
Figure 75:  
Figure 76:  
Figure 77:  
Figure 78:  
Figure 79:  
Figure 80:  
Figure 81:  
Figure 82:  
Figure 83:  
Figure 84:  
Figure 85:  
Figure 86:  
Figure 87:  
Figure 88:  
Figure 89:  
Figure 90:  
Figure 91:  
Figure 92:  
Figure 93:  
Figure 94:  
Figure 95:  
Figure 96:  
Figure 97:  
Figure 98:  
Figure 99:  
READ Latency (AL = 5, CL = 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Mode Register 2 (MR2) Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
CAS Write Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Mode Register 3 (MR3) Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Multipurpose Register (MPR) Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
MPR System Read Calibration with BL8: Fixed Burst Order Single Readout. . . . . . . . . . . . . . . . . . . 122  
MPR System Read Calibration with BL8: Fixed Burst Order, Back-to-Back Readout . . . . . . . . . . . 123  
MPR System Read Calibration with BC4: Lower Nibble, Then Upper Nibble . . . . . . . . . . . . . . . . . . 124  
MPR System Read Calibration with BC4: Upper Nibble, Then Lower Nibble . . . . . . . . . . . . . . . . . . 125  
ZQ Calibration Timing (ZQCL and ZQCS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
t
t
Example: Meeting RRD (MIN) and RCD (MIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
t
Example: FAW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
READ Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Consecutive READ Bursts (BL8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Consecutive READ Bursts (BC4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Nonconsecutive READ Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
READ (BL8) to WRITE (BL8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
READ (BC4) to WRITE (BC4) OTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
READ to PRECHARGE (BL8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
READ to PRECHARGE (BC4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
READ to PRECHARGE (AL = 5, CL = 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
READ with Auto Precharge (AL = 4, CL = 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
t
Data Output Timing – DQSQ and Data Valid Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Data Strobe Timing – READs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
t
t
Method for Calculating LZ and HZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
t
RPRE Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
RPST Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
WPRE Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
WPST Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
t
t
t
Write Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Consecutive WRITE (BL8) to WRITE (BL8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Consecutive WRITE (BC4) to WRITE (BC4) via MRS or OTF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Nonconsecutive WRITE to WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
WRITE (BL8) to READ (BL8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
WRITE to READ (BC4 Mode Register Setting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
WRITE (BC4 OTF) to READ (BC4 OTF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
WRITE (BL8) to PRECHARGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
WRITE (BC4 Mode Register Setting) to PRECHARGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
WRITE (BC4 OTF) to PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Data Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Self Refresh Entry/ Exit Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Active Power-Down Entry and Exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Precharge Power-Down (Fast-Exit Mode) Entry and Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Figure 100: Precharge Power-Down (Slow-Exit Mode) Entry and Exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Figure 101: Power-Down Entry After READ or READ with Auto Precharge (RDAP) . . . . . . . . . . . . . . . . . . . . . . . 154  
Figure 102: Power-Down Entry After WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Figure 103: Power-Down Entry After WRITE with Auto Precharge (WRAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Figure 104: REFRESH to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Figure 105: ACTIVATE to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Figure 106: PRECHARGE to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Figure 107: MRS Command to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Figure 108: Power-Down Exit to Refresh to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Figure 109: RESET Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Figure 110: On-Die Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Figure 111: Dynamic ODT: ODT Asserted Before and After the WRITE, BC4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Figure 112: Dynamic ODT: Without WRITE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_LOF.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
6
1Gb : x4, x8, x16 DDR3 SDRAM  
List o f Fig u re s  
Figure 113: Dynamic ODT: ODT Pin Asserted Together with WRITE Command for 6 Clock Cycles, BL8 . . . . 165  
Figure 114: Dynamic ODT: ODT Pin Asserted with WRITE Command for 6 Clock Cycles, BC4. . . . . . . . . . . . . 166  
Figure 115: Dynamic ODT: ODT Pin Asserted with WRITE Command for 4 Clock Cycles, BC4. . . . . . . . . . . . . 166  
Figure 116: Synchronous ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Figure 117: Synchronous ODT (BC4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Figure 118: ODT During READs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Figure 119: Asynchronous ODT Timing with Fast ODT Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Figure 120: Synchronous to Asynchronous Transition During Precharge Power-Down (DLL Off) Entry . . . . 175  
Figure 121: Asynchronous to Synchronous Transition During Precharge Power-Down (DLL Off) Exit. . . . . . 177  
Figure 122: Transition Period for Short CKE LOW Cycles with Entry and Exit Period Overlapping . . . . . . . . . 179  
Figure 123: Transition Period for Short CKE HIGH Cycles with Entry and Exit Period Overlapping. . . . . . . . . 180  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_LOF.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
7
1Gb : x4, x8, x16 DDR3 SDRAM  
List o f Ta b le s  
List o f Ta b le s  
Table 1:  
Table 2:  
Table 3:  
Table 4:  
Table 5:  
Table 6:  
Table 7:  
Table 8:  
Key Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
78-Ball FBGA – x4, x8 Ball Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
86-Ball FBGA – x4, x8 Ball Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
96-Ball FBGA – x16 Ball Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Input/ Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
IDD Measurement Conditions Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Definition of Switching for Command and Address Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Definition of Switching for Data Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
IDD Measurement Conditions for IDD0 and IDD1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
IDD Measurement Conditions for Power-Down Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
IDD Measurement Conditions for IDD4R, IDD4W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
IDD Measurement Conditions for IDD5B, IDD6, IDD6ET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
IDD Measurement Conditions for IDD7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
IDD7 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
IDD Maximum Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
DC Electrical Characteristics and Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
DC Electrical Characteristics and Input Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
AC Input Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Control and Address Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Clock, Data, Strobe, and Mask Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Differential Input Operating Conditions (CK, CK# and DQS, DQS#) . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Table 9:  
Table 10:  
Table 11:  
Table 12:  
Table 13:  
Table 14:  
Table 15:  
Table 16:  
Table 17:  
Table 18:  
Table 19:  
Table 20:  
Table 21:  
Table 22:  
Table 23:  
Table 24:  
Table 25:  
Table 26:  
Table 27:  
Table 28:  
Table 29:  
Table 30:  
Table 31:  
Table 32:  
Table 33:  
Table 34:  
Table 35:  
Table 36:  
Table 37:  
Table 38:  
Table 39:  
Table 40:  
Table 41:  
Table 42:  
Table 43:  
Table 44:  
Table 45:  
Table 46:  
Table 47:  
Table 48:  
Table 49:  
Table 50:  
Table 51:  
t
Allowed Time Before Ringback ( DVAC) for CK - CK# and DQS - DQS#. . . . . . . . . . . . . . . . . . . . . . . . .45  
Single-Ended Input Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Differential Input Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
On-Die Termination DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
RTT Effective Impedances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
ODT Sensitivity Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
ODT Temperature and Voltage Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
ODT Timing Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Reference Settings for ODT Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
34Ω Driver Impedance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
34Ω Driver Pull-Up and Pull-Down Impedance Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
34Ω Driver IOH/ IOL Characteristics: VDD = VDDQ = 1.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
34Ω Driver IOH/ IOL Characteristics: VDD = VDDQ = 1.575V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
34Ω Driver IOH/ IOL Characteristics: VDD = VDDQ = 1.425V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
34Ω Output Driver Sensitivity Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
34Ω Output Driver Voltage and Temperature Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
40Ω Driver Impedance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
40Ω Output Driver Sensitivity Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
40Ω Output Driver Voltage and Temperature Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Single-Ended Output Driver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Differential Output Driver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Single-Ended Output Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Differential Output Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
DDR3-800 Speed Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
DDR3-1066 Speed Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
DDR3-1333 Speed Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_LOT.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
8
1Gb : x4, x8, x16 DDR3 SDRAM  
List o f Ta b le s  
Table 52:  
Table 54:  
Table 55:  
Table 56:  
Table 57:  
Table 58:  
Table 59:  
Table 60:  
Table 61:  
Table 62:  
Table 63:  
Table 64:  
Table 65:  
Table 66:  
Table 67:  
Table 68:  
Table 69:  
Table 70:  
Table 71:  
Table 72:  
Table 73:  
Table 74:  
Table 75:  
Table 76:  
Table 77:  
Table 78:  
Table 79:  
Table 80:  
Table 81:  
Table 83:  
DDR3-1600 Speed Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Command and Address Setup and Hold Values Referenced at 1 V/ ns – AC/ DC-Based . . . . . . . . . . .77  
t
t
DDR3-800, DDR3-1066, DDR3-1333, and DDR3-1600 Derating Values for IS/ IH AC/ DC-Based78  
t
t
DDR3-1333 and DDR3-1600 Derating Values for IS/ IH AC/ DC-Based . . . . . . . . . . . . . . . . . . . . . . .78  
t
Minimum Required Time VAC Above VIH(AC) for Valid Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Data Setup and Hold Values at 1 V/ ns (DQS, DQS# at 2 V/ ns) – AC/ DC-Based . . . . . . . . . . . . . . . . . .84  
t
t
DDR3-800, DDR3-1066, DDR3-1333, and DDR3-1600 Derating Values for DS/ DH – AC/ DC-Based85  
t
t
DDR3-1333and DDR3-1600 Derating Values for DS/ DH AC/ DC-Based . . . . . . . . . . . . . . . . . . . . .85  
t
Required Time VAC Above VIH(AC) (Below VIL[AC]) for Valid Transition . . . . . . . . . . . . . . . . . . . . . . . .86  
Truth Table – Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Truth Table – CKE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
READ Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
WRITE Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
READ Electrical Characteristics, DLL Disable Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Write Leveling Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Burst Order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
MPR Functional Description of MR3 Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
MPR Readouts and Burst Order Bit Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Self Refresh Temperature and Auto Self Refresh Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Self Refresh Mode Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Command to Power-Down Entry Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Power-Down Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Truth Table – ODT (Nominal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
ODT Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Dynamic ODT Specific Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Mode Registers for Rtt_nom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Mode Registers for Rtt_wr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Timing Diagrams for Dynamic ODT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Synchronous ODT Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
ODT Parameters for Power-Down (DLL Off) Entry and Exit Transition Period . . . . . . . . . . . . . . . . 175  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_LOT.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
9
1Gb : x4, x8, x16 DDR3 SDRAM  
St a t e Dia g ra m  
St a t e Dia g ra m  
Fig u re 2:  
Sim p lifie d St a t e Dia g ra m  
CKE L  
Power  
applied  
MRS, MPR,  
write  
leveling  
Reset  
procedure  
Power  
on  
Self  
refresh  
Initialization  
SRE  
SRX  
ZQCL  
MRS  
From any  
state  
RESET  
REF  
ZQCL/ZQCS  
ZQ  
calibration  
Idle  
Refreshing  
PDE  
PDX  
ACT  
Active  
power-  
down  
Precharge  
power-  
down  
Activating  
PDX  
PDE  
CKE L  
CKE L  
Bank  
active  
WRITE  
READ  
READ  
WRITE  
WRITE AP  
WRITE  
READ AP  
READ  
Writing  
Reading  
WRITE AP  
READ AP  
WRITE AP  
READ AP  
PRE, PREA  
Writing  
Reading  
PRE, PREA  
PRE, PREA  
Precharging  
Automatic  
sequence  
Command  
sequence  
ACT = ACTIVATE  
PREA = PRECHARGE ALL  
READ = RD, RDS4, RDS8  
READ AP = RDAP, RDAPS4, RDAPS8  
REF = REFRESH  
RESET = START RESET PROCEDURE  
SRE = Self refresh entry  
SRX = Self refresh exit  
WRITE = WR, WRS4, WRS8  
WRITE AP = WRAP, WRAPS4, WRAPS8  
ZQCL = ZQ LONG CALIBRATION  
ZQCS = ZQ SHORT CALIBRATION  
MPR = Multipurpose register  
MRS = Mode register set  
PDE = Power-down entry  
PDX = Power-down exit  
PRE = PRECHARGE  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
10  
1Gb : x4, x8, x16 DDR3 SDRAM  
Fu n ct io n a l De scrip t io n  
Fu n ct io n a l De scrip t io n  
The DDR3 SDRAM uses a double data rate architecture to achieve high-speed operation.  
The double data rate architecture is an 8n-prefetch architecture with an interface  
designed to transfer two data words per clock cycle at the I/ O pins. A single read or write  
access for the DDR3 SDRAM consists of a single 8n-bit-wide, one-clock-cycle data  
transfer at the internal DRAM core and eight corresponding n-bit-wide, one-half-clock-  
cycle data transfers at the I/ O pins.  
The differential data strobe (DQS, DQS#) is transmitted externally, along with data, for  
use in data capture at the DDR3 SDRAM input receiver. DQS is center-aligned with data  
for WRITEs. The read data is transmitted by the DDR3 SDRAM and edge-aligned to the  
data strobes.  
The DDR3 SDRAM operates from a differential clock (CK and CK#). The crossing of CK  
going HIGH and CK# going LOW is referred to as the positive edge of CK. Control,  
command, and address signals are registered at every positive edge of CK. Input data is  
registered on the first rising edge of DQS after the WRITE preamble, and output data is  
referenced on the first rising edge of DQS after the READ preamble.  
Read and write accesses to the DDR3 SDRAM are burst-oriented. Accesses start at a  
selected location and continue for a programmed number of locations in a programmed  
sequence. Accesses begin with the registration of an ACTIVATE command, which is then  
followed by a READ or WRITE command. The address bits registered coincident with the  
ACTIVATE command are used to select the bank and row to be accessed. The address  
bits registered coincident with the READ or WRITE commands are used to select the  
bank and the starting column location for the burst access.  
DDR3 SDRAM use READ and WRITE BL8 and BC4. An auto precharge function may be  
enabled to provide a self-timed row precharge that is initiated at the end of the burst  
access.  
As with standard DDR SDRAM, the pipelined, multibank architecture of DDR3 SDRAM  
allows for concurrent operation, thereby providing high bandwidth by hiding row  
precharge and activation time.  
A self refresh mode is provided, along with a power-saving, power-down mode.  
Ge n e ra l No t e s  
• The functionality and the timing specifications discussed in this data sheet are for the  
DLL enable mode of operation (normal operation).  
• Throughout the data sheet, the various figures and text refer to DQs as “DQ.” The DQ  
term is to be interpreted as any and all DQ collectively, unless specifically stated  
otherwise.  
• The terms DQS” and CK” found throughout the data sheet are to be interpreted as  
DQS, DQS# and CK, CK# respectively, unless specifically stated otherwise.  
• Complete functionality may be described throughout the entire document, and any  
page or diagram may have been simplified to convey a topic and may not be inclusive  
of all requirements.  
• Any specific requirement takes precedence over a general statement.  
• Any functionality not specifically stated herewithin is considered undefined, illegal,  
and not supported and can result in unknown operation.  
• Row addressing is denoted as A[n:0](1Gb: n = 12 [x16]; 1Gb: n = 13 [x4, x8]).  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
11  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Fu n ct io n a l Blo ck Dia g ra m s  
Fu n ct io n a l Blo ck Dia g ra m s  
DDR3 SDRAM is a high-speed, CMOS dynamic random access memory. It is internally  
configured as an 8-bank DRAM.  
Fig u re 3:  
256 Me g x 4 Fu n ct io n a l Blo ck Dia g ra m  
ODT  
control  
ODT  
ZQ  
To pull-up/pull-down  
ZQ CAL  
networks  
RESET#  
RZQ  
ZQCL, ZQCS  
CKE  
Control  
logic  
VSSQ  
A12  
CK, CK#  
CS#  
VDDQ/2  
BC4 (burst chop)  
RTT_NOM  
RTT_WR  
Columns 0, 1, and 2  
Bank 7  
Bank 6  
Bank 5  
Bank 4  
Bank 3  
Bank 2  
Bank 1  
RAS#  
Bank 7  
Bank 6  
Bank 5  
Bank 4  
Bank 3  
Bank 2  
Bank 1  
CK, CK#  
OTF  
sw2  
sw1  
CAS#  
WE#  
DLL  
(1 . . . 4)  
Refresh  
counter  
14  
READ  
FIFO  
and  
data  
MUX  
Mode registers  
16  
Bank 0  
memory  
array  
Bank 0  
row-  
address  
latch  
32  
Row-  
address  
MUX  
4
14  
DQ[3:0]  
DQS, DQS#  
READ  
drivers  
16,384  
DQ[3:0]  
(16,384 x 256 x 32)  
14  
and  
decoder  
VDDQ/2  
Sense amplifiers  
32  
BC4  
RTT_NOM  
RTT_WR  
8,192  
BC4  
OTF  
sw1  
sw2  
I/O gating  
DM mask logic  
3
DM  
DQS, DQS#  
(1, 2)  
Bank  
control  
logic  
A[13:0]  
BA[2:0]  
Address  
register  
17  
3
V
DDQ/2  
256  
(x32)  
WRITE  
drivers  
and  
input  
logic  
4
32  
RTT_NOM  
RTT_WR  
Data  
interface  
Data  
sw2  
Column  
decoder  
sw1  
Column-  
address  
counter/  
latch  
8
3
DM  
11  
Columns 0, 1, and 2  
Column  
(select upper or  
lower nibble for BC4)  
2
CK, CK#  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
12  
1Gb : x4, x8, x16 DDR3 SDRAM  
Fu n ct io n a l Blo ck Dia g ra m s  
Fig u re 4:  
128 Me g x 8 Fu n ct io n a l Blo ck Dia g ra m  
ODT  
control  
ODT  
ZQ  
To ODT/output drivers  
ZQ CAL  
RESET#  
CKE  
RZQ  
Control  
logic  
ZQCL, ZQCS  
VSSQ  
A12  
CK, CK#  
CS#  
VDDQ/2  
BC4 (burst chop)  
RTT_NOM  
RTT_WR  
Columns 0, 1, and 2  
Bank 7  
Bank 6  
Bank 5  
Bank 4  
Bank 3  
Bank 2  
Bank 1  
RAS#  
Bank 7  
Bank 6  
Bank 5  
Bank 4  
Bank 3  
Bank 2  
Bank 1  
CK, CK#  
OTF  
sw2  
sw1  
CAS#  
WE#  
DLL  
(1 . . . 8)  
Refresh  
counter  
DQ8  
14  
READ  
FIFO  
and  
data  
MUX  
TDQS#  
Mode registers  
16  
Bank 0  
memory  
array  
Bank 0  
Row-  
address  
MUX  
8
14  
64  
DQ[7:0]  
DQS, DQS#  
row-  
address  
latch  
READ  
drivers  
16,384  
DQ[7:0]  
(16,384 x 128 x 64)  
14  
and  
decoder  
VDDQ/2  
Sense amplifiers  
64  
BC4  
RTT_NOM  
RTT_WR  
8,192  
BC4  
OTF  
sw2  
sw1  
I/O gating  
3
DM mask logic  
DQS, DQS#  
(1, 2)  
Bank  
control  
logic  
A[13:0]  
BA[2:0]  
Address  
register  
17  
3
V
DDQ/2  
(128  
x64)  
WRITE  
drivers  
and  
input  
logic  
8
64  
RTT_NOM  
RTT_WR  
Data  
interface  
Data  
sw2  
Column  
decoder  
sw1  
Column-  
address  
counter/  
latch  
7
3
DM/TDQS  
(shared pin)  
10  
Columns 0, 1, and 2  
CK, CK#  
Column  
2
(select upper or  
lower nibble for BC4)  
Fig u re 5:  
64 Me g x 16 Fu n ct io n a l Blo ck Dia g ra m  
ODT  
control  
ODT  
ZQ  
ZQ CAL  
To ODT/output drivers  
RESET#  
CKE  
RZQ  
Control  
logic  
ZQCL, ZQCS  
VSSQ  
A12  
CK, CK#  
CS#  
V
DDQ/2  
BC4 (burst chop)  
RTT_NOM  
RTT_WR  
Column 0, 1, and 2  
Bank  
Bank  
7
RAS#  
Bank  
Bank  
Bank  
Bank  
Bank  
Bank  
Bank  
7
CK, CK#  
OTF  
6
6
sw2  
sw1  
Bank  
5
CAS#  
5
Bank  
Bank  
Bank  
Bank  
4
4
3
WE#  
3
DLL  
2
2
(1 . . . 16)  
1
1
Refresh  
counter  
13  
READ  
FIFO  
and  
data  
MUX  
Mode registers  
16  
Bank  
0
Bank  
0
Row-  
address  
MUX  
16  
13  
128  
DQ[15:0]  
LDQS, LDQS#, UDQS, UDQS#  
memory  
array  
row-  
address  
latch  
READ  
drivers  
DQ[15:0]  
8,192  
(8192 x 128 x 128)  
13  
and  
decoder  
V
DDQ/2  
Sense amplifiers  
16,384  
BC4  
128  
RTT_NOM  
RTT_WR  
sw2  
BC4  
OTF  
sw1  
LDQS, LDQS#  
UDQS, UDQS#  
I/O gating  
DM mask logic  
3
Bank  
control  
logic  
(1 . . . 4)  
A[12:0]  
BA[2:0]  
Address  
register  
16  
3
VDDQ/2  
(128  
WRITE  
drivers  
and  
input  
logic  
x128)  
128  
16  
Data  
RTT_NOM  
Data  
interface  
RTT_WR  
sw2  
Column  
decoder  
sw1  
Column-  
address  
counter/  
latch  
7
3
LDM/UDM  
10  
(1, 2)  
Columns 0, 1, and 2  
Column  
(select upper or  
lower nibble for BC4)  
2
CK, CK#  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
13  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ba ll Assig n m e n t s a n d De scrip t io n s  
Ba ll Assig n m e n t s a n d De scrip t io n s  
Fig u re 6:  
78-Ba ll FBGA – x4, x8 Ba ll Assig n m e n t s (To p Vie w )  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
V
SS  
V
DD  
NC  
NF, NF/TDQS#  
DM, DM/TDQS  
DQ1  
V
SS  
VDD  
VSS  
VSS  
Q
DQ0  
DQS  
VSS  
Q
V
DD  
Q
Q
Q
VDD  
Q
DQ2  
DQ3  
VSS  
VSS  
Q
NF, DQ6 DQS#  
VDD  
VSS  
VSS  
V
REFDQ  
VDD  
Q
NF, DQ4  
RAS#  
CAS#  
WE#  
BA2  
A0  
NF, DQ7 NF, DQ5  
VDDQ  
NC  
ODT  
NC  
V
SS  
CK  
CK#  
VSS  
NC  
G
H
J
VDD  
VDD  
CKE  
NC  
CS#  
BA0  
A3  
A10/AP  
NC  
ZQ  
VSS  
V
REFCA  
VSS  
K
L
M
N
VDD  
A12/BC# BA1  
VDD  
VSS  
A5  
A2  
A1  
A11  
NC  
A4  
A6  
A8  
VSS  
VDD  
A7  
A9  
VDD  
VSS  
RESET#  
A13  
VSS  
Notes: 1. Ball descriptions listed in Table 3 on page 17 are listed as “x4, x8” if unique; otherwise, x4  
and x8 are the same.  
2. A comma separates the configuration; a slash defines a selectable function.  
3. Example D7 = NF, NF/TDQS#. NF applies to the x4 configuration only. NF/TDQS# applies to  
the x8 configuration only—selectable between NF or TDQS# via MRS (symbols are defined  
in Table 3 on page 17).  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
14  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ba ll Assig n m e n t s a n d De scrip t io n s  
Fig u re 7:  
86-Ba ll FBGA – x4, x8 Ba ll Assig n m e n t s (To p Vie w )  
1
2
3
4
5
6
7
8
9
A
B
C
NC  
NC  
NC  
NC  
D
E
V
SS  
V
DD  
NC  
NF, NF/TDQS#  
DM, DM/TDQS  
DQ1  
V
SS  
VDD  
VSS  
VSS  
Q
DQ0  
DQS  
VSS  
Q
VDDQ  
F
VDD  
Q
DQ2  
DQ3  
VSSQ  
G
H
J
V
SS  
Q
NF, DQ6 DQS#  
V
DD  
V
SS  
V
SS  
Q
VREFDQ  
V
DD  
Q
NF, DQ4  
RAS#  
CAS#  
WE#  
BA2  
A0  
NF, DQ7 NF, DQ5  
VDD  
Q
NC  
ODT  
NC  
V
SS  
CK  
CK#  
VSS  
NC  
K
L
V
DD  
VDD  
CKE  
NC  
CS#  
BA0  
A3  
A10/AP  
NC  
ZQ  
M
N
P
V
SS  
V
REFCA  
VSS  
V
DD  
A12/BC# BA1  
VDD  
V
SS  
A5  
A2  
A1  
A11  
NC  
A4  
A6  
A8  
VSS  
R
T
V
DD  
A7  
A9  
VDD  
V
SS  
RESET#  
A13  
VSS  
U
V
W
NC  
NC  
NC  
NC  
Notes: 1. Ball descriptions listed in Table 4 on page 19 are listed as “x4, x8” if unique; otherwise, x4  
and x8 are the same.  
2. A comma separates the configuration; a slash defines a selectable function.  
3. Example D7 = NF, NF/TDQS#. NF applies to the x4 configuration only. NF/TDQS# applies to  
the x8 configuration only—selectable between NF or TDQS# via MRS (symbols are defined  
in Table 4 on page 19).  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
15  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ba ll Assig n m e n t s a n d De scrip t io n s  
Fig u re 8:  
96-Ba ll FBGA – x16 Ba ll Assig n m e n t s (To p Vie w )  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
DQ13  
VDD  
DQ15  
VSS  
DQ12  
VDDQ  
VSS  
VSSQ  
VDDQ  
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
NC  
UDQS# DQ14  
UDQS DQ10  
DQ11  
VDDQ  
VSSQ  
DQ2  
DQ9  
UDM  
DQ0  
LDQS  
LDQS#  
DQ4  
RAS#  
CAS#  
WE#  
BA2  
A0  
DQ8  
LDM  
DQ1  
VDD  
VSSQ  
VSSQ  
DQ3  
VSS  
VDDQ  
VSSQ  
G
H
J
DQ6  
VREFDQ VDDQ  
DQ7  
CK  
DQ5  
VSS  
NC  
ODT  
NC  
VSS  
VDD  
CS#  
K
L
M
N
P
CK#  
VDD  
CKE  
NC  
A10/AP  
NC  
ZQ  
VSS  
BA0  
A3  
VREFCA  
VSS  
VDD  
VSS  
A12/BC# BA1  
VDD  
VSS  
A5  
A2  
A1  
A11  
NC  
A4  
A6  
A8  
R
T
VDD  
VSS  
A7  
A9  
VDD  
VSS  
RESET#  
NC  
Notes: 1. Ball descriptions listed in Table 5 on page 21 are listed as “x4, x8” if unique; otherwise, x4  
and x8 are the same.  
2. A comma separates the configuration; a slash defines a selectable function.  
3. Example D7 = NF, NF/TDQS#. NF applies to the x4 configuration only. NF/TDQS# applies to  
the x8 configuration only—selectable between NF or TDQS# via MRS (symbols are defined  
in Table 5 on page 21).  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
16  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ba ll Assig n m e n t s a n d De scrip t io n s  
Ta b le 3:  
78-Ba ll FBGA – x4, x8 Ba ll De scrip t io n s  
Ba ll Assig n m e n t s  
Sym b o l  
Typ e  
De scrip t io n  
K3, L7, L3, K2,  
L8, L2, M8, M2,  
N8, M3, H7, M7,  
K7, N3  
A0, A1, A2, A3,  
A4, A5, A6, A7,  
A8, A9, A10/AP,  
A11, A12/BC#,  
A13  
Input  
Ad d re ss in p u t s: Provide the row address for ACTIVATE commands,  
and the column address and auto precharge bit (A10) for READ/  
WRITE commands, to select one location out of the memory array in  
the respective bank. A10 sampled during a PRECHARGE command  
determines whether the PRECHARGE applies to one bank (A10 LOW,  
bank selected by BA[2:0]) or all banks (A10 HIGH). The address inputs  
also provide the op-code during a LOAD MODE command. Address  
inputs are referenced to VREFCA. A12/BC#: When enabled in the  
mode register (MR), A12 is sampled during READ and WRITE  
commands to determine whether burst chop (on-the-fly) will be  
performed (HIGH = BL8 or no burst chop, LOW = BC4 burst chop).  
See Table 62 on page 91.  
J2, K8, J3  
BA0, BA1, BA2  
Input  
Ba n k a d d re ss in p u t s: BA[2:0] define the bank to which an  
ACTIVATE, READ, WRITE, or PRECHARGE command is being applied.  
BA[2:0] define which mode register (MR0, MR1, MR2, or MR3) is  
loaded during the LOAD MODE command. BA[2:0] are referenced to  
VREFCA.  
F7, G7  
G9  
CK, CK#  
CKE  
Input  
Input  
Clo ck: CK and CK# are differential clock inputs. All control and  
address input signals are sampled on the crossing of the positive  
edge of CK and the negative edge of CK#. Output data strobe (DQS,  
DQS#) is referenced to the crossings of CK and CK#.  
Clo ck e n a b le : CKE enables (registered HIGH) and disables  
(registered LOW) internal circuitry and clocks on the DRAM. The  
specific circuitry that is enabled/disabled is dependent upon the  
DDR3 SDRAM configuration and operating mode. Taking CKE LOW  
provides PRECHARGE power-down and SELF REFRESH operations (all  
banks idle), or active power-down (row active in any bank). CKE is  
synchronous for power-down entry and exit and for self refresh  
entry. CKE is asynchronous for self refresh exit. Input buffers  
(excluding CK, CK#, CKE, RESET#, and ODT) are disabled during  
power-down. Input buffers (excluding CKE and RESET#) are disabled  
during SELF REFRESH. CKE is referenced to VREFCA.  
H2  
B7  
G1  
CS#  
DM  
Input  
Input  
Input  
Ch ip se le ct : CS# enables (registered LOW) and disables (registered  
HIGH) the command decoder. All commands are masked when CS# is  
registered HIGH. CS# provides for external rank selection on systems  
with multiple ranks. CS# is considered part of the command code.  
CS# is referenced to VREFCA.  
In p u t d a t a m a sk: DM is an input mask signal for write data. Input  
data is masked when DM is sampled HIGH along with the input data  
during a write access. Although the DM ball is input-only, the DM  
loading is designed to match that of the DQ and DQS balls. DM is  
referenced to VREFDQ. DM has an optional use as TDQS on the x8.  
ODT  
On -d ie t e rm in a t io n : ODT enables (registered HIGH) and disables  
(registered LOW) termination resistance internal to the DDR3  
SDRAM. When enabled in normal operation, ODT is only applied to  
each of the following balls: DQ[7:0], DQS, DQS#, and DM for the x8;  
DQ[3:0], DQS, DQS#, and DM for the x4. The ODT input is ignored if  
disabled via the LOAD MODE command. ODT is referenced to  
VREFCA.  
F3, G3, H3  
RAS#, CAS#, WE#  
Input  
Co m m a n d in p u t s: RAS#, CAS#, and WE# (along with CS#) define  
the command being entered and are referenced to VREFCA.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
17  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ba ll Assig n m e n t s a n d De scrip t io n s  
Ta b le 3:  
78-Ba ll FBGA – x4, x8 Ba ll De scrip t io n s (co n t in u e d )  
Ba ll Assig n m e n t s  
Sym b o l  
Typ e  
De scrip t io n  
N2  
RESET#  
Input  
Re se t : RESET# is an active LOW CMOS input referenced to VSS. The  
RESET# input receiver is a CMOS input defined as a rail-to-rail signal  
with DC HIGH 0.8 × VDDQ and DC LOW 0.2 × VDDQ. RESET#  
assertion and desertion are asynchronous.  
B3, C7,  
C2, C8  
DQ0, DQ1,  
DQ2, DQ3  
I/O  
I/O  
Da t a in p u t /o u t p u t : Bidirectional data bus for the x4 configuration.  
DQ[3:0] are referenced to VREFDQ.  
B3, C7, C2,  
C8, E3, E8,  
D2, E7  
DQ0, DQ1, DQ2,  
DQ3, DQ4, DQ5,  
DQ6, DQ7  
Da t a in p u t /o u t p u t : Bidirectional data bus for the x8 configuration.  
DQ[7:0] are referenced to VREFDQ.  
C3, D3  
DQS, DQS#  
I/O  
Da t a st ro b e : Output with read data. Edge-aligned with read data.  
Input with write data. Center-aligned to write data.  
B7, A7  
TDQS, TDQS#  
Output Te rm in a t io n d a t a st ro b e : Applies to the x8 configuration only.  
When TDQS is enabled, DM is disabled, and the TDQS and TDQS#  
balls provide termination resistance.  
A2, A9, D7, G2, G8,  
K1, K9, M1, M9  
VDD  
VDDQ  
Supply Po w e r su p p ly: 1.5V ±0.075V.  
B9, C1, E2, E9  
Supply DQ p o w e r su p p ly: 1.5V ±0.075V. Isolated on the device for  
improved noise immunity.  
J8  
VREFCA  
Supply Re fe re n ce vo lt a g e fo r co n t ro l, co m m a n d , a n d a d d re ss: VREFCA  
must be maintained at all times (including self refresh) for proper  
device operation.  
E1  
VREFDQ  
VSS  
Supply Re fe re n ce vo lt a g e fo r d a t a : VREFDQ must be maintained at all  
times (including self refresh) for proper device operation.  
A1, A8, B1, D8, F2,  
F8, J1, J9, L1, L9, N1,  
N9  
Supply Ground.  
B2, B8, C9, D1, D9  
H8  
VSSQ  
ZQ  
Supply DQ g ro u n d : Isolated on the device for improved noise immunity.  
Reference Ext e rn a l re fe re n ce b a ll fo r o u t p u t d rive ca lib ra t io n : This ball is  
tied to an external 240Ω resistor (RZQ), which is tied to VSSQ.  
A3, J7, N7, F9, H1, F1,  
H9  
NC  
NF  
No co n n e ct : These balls should be left unconnected (the ball has no  
connection to the DRAM or to other balls).  
A7, D2, E3, E7, E8  
No fu n ct io n : When configured as a x4 device, these balls are NF.  
When configured as a x8 device, these balls are defined as TDQS#,  
DQ[7:4].  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
18  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ba ll Assig n m e n t s a n d De scrip t io n s  
Ta b le 4:  
86-Ba ll FBGA – x4, x8 Ba ll De scrip t io n s  
Ba ll Assig n m e n t s  
Sym b o l  
Typ e  
De scrip t io n  
N3, P7, P3, N2,  
P8, P2, R8, R2,  
T8, R3,  
A0, A1, A2, A3,  
A4, A5, A6, A7,  
A8, A9  
A10/AP,  
A11, A12/BC#,  
A13  
Input  
Ad d re ss in p u t s: Provide the row address for ACTIVATE commands,  
and the column address and auto precharge bit (A10) for READ/  
WRITE commands, to select one location out of the memory array in  
the respective bank. A10 sampled during a PRECHARGE command  
determines whether the PRECHARGE applies to one bank (A10 LOW,  
bank selected by BA[2:0]) or all banks (A10 HIGH). The address inputs  
also provide the op-code during a LOAD MODE command. Address  
inputs are referenced to VREFCA. A12/BC#: When enabled in the  
mode register (MR), A12 is sampled during READ and WRITE  
commands to determine whether burst chop (on-the-fly) will be  
performed (HIGH = BL8 or no burst chop, LOW = BC4 burst chop).  
See Table 62 on page 91.  
L7,  
R7, N7,  
T3  
M2, N8, M3  
BA0, BA1, BA2  
Input  
Ba n k a d d re ss in p u t s: BA[2:0] define the bank to which an  
ACTIVATE, READ, WRITE, or PRECHARGE command is being applied.  
BA[2:0] define which mode register (MR0, MR1, MR2, or MR3) is  
loaded during the LOAD MODE command. BA[2:0] are referenced to  
VREFCA.  
J7, K7  
K9  
CK, CK#  
CKE  
Input  
Input  
Clo ck: CK and CK# are differential clock inputs. All control and  
address input signals are sampled on the crossing of the positive  
edge of CK and the negative edge of CK#. Output data strobe (DQS,  
DQS#) is referenced to the crossings of CK and CK#.  
Clo ck e n a b le : CKE enables (registered HIGH) and disables  
(registered LOW) internal circuitry and clocks on the DRAM. The  
specific circuitry that is enabled/disabled is dependent upon the  
DDR3 SDRAM configuration and operating mode. Taking CKE LOW  
provides PRECHARGE power-down and SELF REFRESH operations (all  
banks idle), or active power-down (row active in any bank). CKE is  
synchronous for power-down entry and exit and for self refresh  
entry. CKE is asynchronous for self refresh exit. Input buffers  
(excluding CK, CK#, CKE, RESET#, and ODT) are disabled during  
power-down. Input buffers (excluding CKE and RESET#) are disabled  
during SELF REFRESH. CKE is referenced to VREFCA.  
L2  
E7  
K1  
CS#  
DM  
Input  
Input  
Input  
Ch ip se le ct : CS# enables (registered LOW) and disables (registered  
HIGH) the command decoder. All commands are masked when CS# is  
registered HIGH. CS# provides for external rank selection on systems  
with multiple ranks. CS# is considered part of the command code.  
CS# is referenced to VREFCA.  
In p u t d a t a m a sk: DM is an input mask signal for write data. Input  
data is masked when DM is sampled HIGH along with the input data  
during a write access. Although the DM ball is input-only, the DM  
loading is designed to match that of the DQ and DQS balls. DM is  
referenced to VREFDQ. DM has an optional use as TDQS on the x8.  
ODT  
On -d ie t e rm in a t io n : ODT enables (registered HIGH) and disables  
(registered LOW) termination resistance internal to the DDR3  
SDRAM. When enabled in normal operation, ODT is only applied to  
each of the following balls: DQ[7:0], DQS, DQS#, and DM for the x8;  
DQ[3:0], DQS, DQS#, and DM for the x4. The ODT input is ignored if  
disabled via the LOAD MODE command. ODT is referenced to  
VREFCA.  
J3, K3, L3  
RAS#, CAS#, WE#  
Input  
Co m m a n d in p u t s: RAS#, CAS#, and WE# (along with CS#) define  
the command being entered and are referenced to VREFCA.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
19  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ba ll Assig n m e n t s a n d De scrip t io n s  
Ta b le 4:  
86-Ba ll FBGA – x4, x8 Ba ll De scrip t io n s (co n t in u e d )  
Ba ll Assig n m e n t s  
Sym b o l  
Typ e  
De scrip t io n  
T2  
RESET#  
Input  
Re se t : RESET# is an active LOW CMOS input referenced to VSS. The  
RESET# input receiver is a CMOS input defined as a rail-to-rail signal  
with DC HIGH 0.8 × VDDQ and DC LOW 0.2 × VDDQ. RESET#  
assertion and desertion are asynchronous.  
E3, F7,  
F2, F8  
DQ0, DQ1,  
DQ2, DQ3  
I/O  
I/O  
Da t a in p u t /o u t p u t : Bidirectional data bus for the x4 configuration.  
DQ[3:0] are referenced to VREFDQ.  
E3, F7, F2,  
F8, H3, H8,  
G2, H7  
DQ0, DQ1, DQ2,  
DQ3, DQ4, DQ5,  
DQ6, DQ7  
Da t a in p u t /o u t p u t : Bidirectional data bus for the x8 configuration.  
DQ[7:0] are referenced to VREFDQ.  
F3, G3  
DQS, DQS#  
I/O  
Da t a st ro b e : Output with read data. Edge-aligned with read data.  
Input with write data. Center-aligned to write data.  
E7, D7  
TDQS, TDQS#  
Output Te rm in a t io n d a t a st ro b e : Applies to the x8 configuration only.  
When TDQS is enabled, DM is disabled, and the TDQS and TDQS#  
balls provide termination resistance.  
D2, D9, G7, K2, K8,  
N1, N9, R1, R9  
VDD  
VDDQ  
Supply Po w e r su p p ly: 1.5V ±0.075V.  
E9, F1, H2, H9  
Supply DQ p o w e r su p p ly: 1.5V ±0.075V. Isolated on the device for  
improved noise immunity.  
M8  
VREFCA  
Supply Re fe re n ce vo lt a g e fo r co n t ro l, co m m a n d , a n d a d d re ss: VREFCA  
must be maintained at all times (including self refresh) for proper  
device operation.  
H1  
VREFDQ  
VSS  
Supply Re fe re n ce vo lt a g e fo r d a t a : VREFDQ must be maintained at all  
times (including self refresh) for proper device operation.  
D1, D8, E1, G8, J2, J8,  
M1, M9, P1, P9, T1,  
T9  
Supply Ground.  
E2, E8, F9, G1, G9  
L8  
VSSQ  
ZQ  
Supply DQ g ro u n d : Isolated on the device for improved noise immunity.  
Reference Ext e rn a l re fe re n ce b a ll fo r o u t p u t d rive ca lib ra t io n : This ball is  
tied to an external 240Ω resistor (RZQ), which is tied to VSSQ.  
A1, A3, A7, A9, D3,  
J1, J9, L1, L9, M7, T7,  
W1, W3, W7, W9  
NC  
NF  
No co n n e ct : These balls should be left unconnected (the ball has no  
connection to the DRAM or to other balls).  
D7, G2, H3, H7, H8  
No fu n ct io n : When configured as a x4 device, these balls are NF.  
When configured as a x8 device, these balls are defined as TDQS#,  
DQ[7:4].  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
20  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ba ll Assig n m e n t s a n d De scrip t io n s  
Ta b le 5:  
96-Ba ll FBGA – x16 Ba ll De scrip t io n s  
Ba ll Assig n m e n t s  
Sym b o l  
Typ e  
De scrip t io n  
N3, P7, P3, N2,  
P8, P2, R8, R2,  
T8, R3,  
A0, A1, A2, A3,  
A4, A5, A6, A7,  
A8, A9  
A10/AP,  
A11, A12/BC#  
Input  
Ad d re ss in p u t s: Provide the row address for ACTIVATE commands,  
and the column address and auto precharge bit (A10) for READ/  
WRITE commands, to select one location out of the memory array in  
the respective bank. A10 sampled during a PRECHARGE command  
determines whether the PRECHARGE applies to one bank (A10 LOW,  
bank selected by BA[2:0]) or all banks (A10 HIGH). The address inputs  
also provide the op-code during a LOAD MODE command. Address  
inputs are referenced to VREFCA. A12/BC#: When enabled in the  
mode register (MR), A12 is sampled during READ and WRITE  
commands to determine whether burst chop (on-the-fly) will be  
performed (HIGH = BL8 or no burst chop, LOW = BC4 burst chop). See  
Table 62 on page 91.  
L7,  
R7, N7  
M2, N8, M3  
BA0, BA1, BA2  
Input  
Ba n k a d d re ss in p u t s: BA[2:0] define the bank to which an  
ACTIVATE, READ, WRITE, or PRECHARGE command is being applied.  
BA[2:0] define which mode register (MR0, MR1, MR2, or MR3) is  
loaded during the LOAD MODE command. BA[2:0] are referenced to  
VREFCA.  
J7, K7  
K9  
CK, CK#  
CKE  
Input  
Input  
Clo ck: CK and CK# are differential clock inputs. All control and  
address input signals are sampled on the crossing of the positive  
edge of CK and the negative edge of CK#. Output data strobe (DQS,  
DQS#) is referenced to the crossings of CK and CK#.  
Clo ck e n a b le : CKE enables (registered HIGH) and disables  
(registered LOW) internal circuitry and clocks on the DRAM. The  
specific circuitry that is enabled/disabled is dependent upon the  
DDR3 SDRAM configuration and operating mode. Taking CKE LOW  
provides PRECHARGE power-down and SELF REFRESH operations (all  
banks idle),or active power-down (row active in any bank). CKE is  
synchronous for power-down entry and exit and for self refresh  
entry. CKE is asynchronous for self refresh exit. Input buffers  
(excluding CK, CK#, CKE, RESET#, and ODT) are disabled during  
power-down. Input buffers (excluding CKE and RESET#) are disabled  
during SELF REFRESH. CKE is referenced to VREFCA.  
L2  
E7  
K1  
CS#  
LDM  
ODT  
Input  
Input  
Input  
Ch ip se le ct : CS# enables (registered LOW) and disables (registered  
HIGH) the command decoder. All commands are masked when CS# is  
registered HIGH. CS# provides for external rank selection on systems  
with multiple ranks. CS# is considered part of the command code.  
CS# is referenced to VREFCA.  
In p u t d a t a m a sk: LDM is a lower-byte, input mask signal for write  
data. Lower-byte input data is masked when LDM is sampled HIGH  
along with the input data during a write access. Although the LDM  
ball is input-only, the LDM loading is designed to match that of the  
DQ and DQS balls. LDM is referenced to VREFDQ.  
On -d ie t e rm in a t io n : ODT enables (registered HIGH) and disables  
(registered LOW) termination resistance internal to the DDR3  
SDRAM. When enabled in normal operation, ODT is only applied to  
each of the following balls: DQ[15:0], LDQS, LDQS#, UDQS, UDQS#,  
LDM, and UDM for the x16; DQ0[7:0], DQS, DQS#, DM/TDQS, and NF/  
TDQS# (when TDQS is enabled) for the x8; DQ[3:0], DQS, DQS#, and  
DM for the x4. The ODT input is ignored if disabled via the LOAD  
MODE command. ODT is referenced to VREFCA.  
J3, K3, L3  
RAS#, CAS#, WE#  
Input  
Co m m a n d in p u t s: RAS#, CAS#, and WE# (along with CS#) define  
the command being entered and are referenced to VREFCA.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
21  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ba ll Assig n m e n t s a n d De scrip t io n s  
Ta b le 5:  
96-Ba ll FBGA – x16 Ba ll De scrip t io n s (co n t in u e d )  
Ba ll Assig n m e n t s  
Sym b o l  
Typ e  
De scrip t io n  
T2  
RESET#  
Input  
Re se t : RESET# is an active LOW CMOS input referenced to VSS. The  
RESET# input receiver is a CMOS input defined as a rail-to-rail signal  
with DC HIGH 0.8 × VDDQ and DC LOW 0.2 × VDDQ. RESET#  
assertion and desertion are asynchronous.  
D3  
UDM  
Input  
In p u t d a t a m a sk: UDM is an upper-byte, input mask signal for  
write data. Upper-byte input data is masked when UDM is sampled  
HIGH along with that input data during a WRITE access. Although  
the UDM ball is input-only, the UDM loading is designed to match  
that of the DQ and DQS balls. UDM is referenced to VREFDQ.  
E3, F7, F2,  
F8, H3, H8,  
G2, H7  
DQ0, DQ1, DQ2,  
DQ3, DQ4, DQ5,  
DQ6, DQ7  
I/O  
I/O  
Da t a in p u t /o u t p u t : Lower byte of bidirectional data bus for the x16  
configuration. DQ[7:0] are referenced to VREFDQ.  
D7, C3,  
C8, C2,  
A7, A2,  
B8, A3  
DQ8, DQ9,  
DQ10, DQ11,  
DQ12, DQ13,  
DQ14, DQ15  
Da t a in p u t /o u t p u t : Upper byte of bidirectional data bus for the x16  
configuration. DQ[15:8] are referenced to VREFDQ.  
F3, G3  
LDQS, LDQS#  
I/O  
I/O  
Lo w e r b yt e d a t a st ro b e : Output with read data. Edge-aligned  
with read data. Input with write data. Center-aligned to write data.  
C7, B7  
UDQS, UDQS#  
Up p e r b yt e d a t a st ro b e : Output with read data. Edge-aligned  
with read data. Input with write data. DQS is center-aligned to write  
data.  
B2, D9, G7, K2, K8,  
N1, N9, R1, R9  
VDD  
VDDQ  
Supply Po w e r su p p ly: 1.5V ±0.075V.  
A1, A8, C1, C9, D2,  
E9, F1, H2, H9  
Supply DQ p o w e r su p p ly: 1.5V ±0.075V. Isolated on the device for  
improved noise immunity.  
M8  
VREFCA  
Supply Re fe re n ce vo lt a g e fo r co n t ro l, co m m a n d , a n d a d d re ss: VREFCA  
must be maintained at all times (including self refresh) for proper  
device operation.  
H1  
VREFDQ  
VSS  
Supply Re fe re n ce vo lt a g e fo r d a t a : VREFDQ must be maintained at all  
times (including self refresh) for proper device operation.  
A9, B3, E1, G8, J2, J8,  
M1, M9, P1, P9, T1,  
T9  
Supply Ground.  
B1, B9, D1, D8, E2,  
E8, F9, G1, G9  
VSSQ  
ZQ  
Supply DQ g ro u n d : Isolated on the device for improved noise immunity.  
L8  
Reference Ext e rn a l re fe re n ce b a ll fo r o u t p u t d rive ca lib ra t io n : This ball is  
tied to an external 240Ω resistor (RZQ), which is tied to VSSQ.  
J1, J9, L1, L9, M7, T3,  
T7  
NC  
No co n n e ct : These balls should be left unconnected (the ball has no  
connection to the DRAM or to other balls).  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
22  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Pa cka g e Dim e n sio n s  
Pa cka g e Dim e n sio n s  
Fig u re 9:  
78-Ba ll FBGA – x4, x8; “ JP”  
0.8 ±0.1  
Seating  
plane  
0.12 A  
A
8 ±0.15  
78X Ø0.45  
Dimensions apply  
to solder balls post-  
reflow on Ø0.33  
Ball A1 ID  
Ball A1 ID  
9
8
7
3
2
1
NSMD ball pads.  
A
B
C
D
E
F
0.8 TYP  
9.6  
CTR  
G
H
J
11.5 ±0.15  
K
L
M
N
0.8  
TYP  
1.2 MAX  
0.25 MIN  
6.4 CTR  
Notes: 1. All dimensions are in millimeters.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
23  
1Gb : x4, x8, x16 DDR3 SDRAM  
Pa cka g e Dim e n sio n s  
Fig u re 10: 78-Ba ll FBGA – x4, x8; “ HX”  
0.8 ±0.1  
Seating  
plane  
A
0.12  
A
78X Ø0.45  
Solder ball  
material: SAC305.  
Dimensions apply to  
solder balls post-  
reflow on Ø0.33  
NSMD ball pads.  
Ball A1 ID  
Ball A1 ID  
9
8
7
3
2
1
A
B
C
D
E
F
9.6  
CTR  
G
H
J
11.5 ±0.15  
K
L
M
N
0.8 TYP  
0.8 TYP  
6.4 CTR  
9 ±0.15  
1.2 MAX  
0.25 MIN  
Notes: 1. All dimensions are in millimeters.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
24  
1Gb : x4, x8, x16 DDR3 SDRAM  
Pa cka g e Dim e n sio n s  
Fig u re 11: 86-Ba ll FBGA – x4, x8  
0.8 ±0.1  
Seating  
plane  
A
0.12 A  
86X Ø0.45  
Dimensions  
apply to solder  
balls post-reflow  
on Ø0.33 NSMD  
Ball A1 ID  
Ball A1 ID  
9
8
7
3
2
1
ball pads.  
A
D
E
F
0.8 TYP  
G
H
J
14.4 CTR  
15.5 ±0.15  
K
L
M
N
P
R
T
2.4 TYP  
W
0.8 TYP  
6.4 CTR  
9 ±0.15  
1.2 MAX  
0.25 MIN  
Notes: 1. All dimensions are in millimeters.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
25  
1Gb : x4, x8, x16 DDR3 SDRAM  
Pa cka g e Dim e n sio n s  
Fig u re 12: 96-Ba ll FBGA – x16  
0.8 ±0.1  
Seating  
plane  
A
0.12 A  
96X Ø0.45  
Solder ball  
Ball A1 ID  
Ball A1 ID  
material: SAC305.  
Dimensions  
9
8
7
3
2
1
apply to solder  
balls post-reflow  
on Ø0.33 NSMD  
ball pads.  
A
B
C
D
E
F
G
H
J
12 CTR  
15.5 ±0.15  
K
L
M
N
P
R
S
0.8 TYP  
0.8 TYP  
1.2 MAX  
0.25 MIN  
6.4 CTR  
9 ±0.15  
Notes: 1. All dimensions are in millimeters.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
26  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s  
Ele ct rica l Sp e cifica t io n s  
Ab so lu t e Ra t in g s  
Stresses greater than those listed in Table 6 may cause permanent damage to the device.  
This is a stress rating only, and functional operation of the device at these or any other  
conditions outside those indicated in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended periods may  
adversely affect reliability.  
Ta b le 6:  
Sym b o l  
Ab so lu t e Ma xim u m Ra t in g s  
Pa ra m e t e r  
Min  
Ma x  
Un it s  
No t e s  
VDD  
VDDQ  
VIN, VOUT  
TC  
VDD supply voltage relative to VSS  
VDD supply voltage relative to VSSQ  
Voltage on any pin relative to VSS  
Operating case temperature  
Storage temperature  
–0.4  
–0.4  
–0.4  
0
1.975  
1.975  
1.975  
95  
V
V
1
V
°C  
°C  
2, 3  
TSTG  
–55  
150  
Notes: 1. VDD and VDDQ must be within 300mV of each other at all times, and VREF must not be  
greater than 0.6 × VDDQ. When VDD and VDDQ are less than 500mV, VREF may be 300mV.  
2. MAX operating case temperature. TC is measured in the center of the package (see  
Figure 13 on page 28).  
3. Device functionality is not guaranteed if the DRAM device exceeds the maximum TC during  
operation.  
In p u t /Ou t p u t Ca p a cit a n ce  
Ta b le 7:  
In p u t /Ou t p u t Ca p a cit a n ce  
Note 1 applies to the entire table  
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600  
Ca p a cit a n ce Pa ra m e t e rs  
Sym b o l  
Min Ma x Min Ma x Min Ma x Min Ma x Un it s No t e s  
CK and CK#  
CCK  
CDCK  
CIO  
0.8  
0
1.6  
0.15  
3.0  
0.8  
0
1.6  
0.15  
3.0  
0.8  
0
1.4  
0.15  
2.5  
0.8  
0
1.4  
0.15  
2.3  
pF  
pF  
pF  
pF  
ΔC: CK to CK#  
Single-end I/O: DQ, DM  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2
3
Differential I/O:  
CIO  
3.0  
3.0  
2.5  
2.3  
DQS, DQS#, TDQS, TDQS#  
ΔC: DQS to DQS#, TDQS, TDQS#  
ΔC: DQ to DQS  
CDDQS  
CDIO  
0
0.2  
0.3  
1.5  
0.3  
0.5  
0
0.2  
0.3  
1.5  
0.3  
0.5  
0
0.15  
0.3  
1.3  
0.2  
0.4  
0
0.15  
0.3  
1.3  
0.2  
0.4  
pF  
pF  
pF  
pF  
pF  
3
4
5
6
7
–0.5  
0.75  
–0.5  
–0.5  
0.75  
–0.5  
–0.5  
–0.5  
0.75  
–0.4  
–0.4  
–0.5  
0.75  
–0.4  
–0.4  
Inputs (CTRL, CMD, ADDR)  
ΔC: CTRL to CK  
CI  
CDI_CTRL  
ΔC: CMD_ADDR to CK  
CDI_CMD_ADDR –0.5  
Notes: 1. VDD = +1.5V ±0.075mV, VDDQ = VDD, VREF = VSS, f = 100 MHz, TC = 25°C.  
VOUT(DC) = 0.5 × VDDQ, VOUT (peak-to-peak) = 0.1V.  
2. DM input is grouped with I/O pins, reflecting the fact that they are matched in loading.  
3. Includes TDQS, TDQS#. CDDQS is for DQS vs. DQS# and TDQS vs. TDQS# separately.  
4. CDIO = CIO (DQ) - 0.5 × (CIO [DQS] + CIO [DQS#]).  
5. Excludes CK, CK#; CTRL = ODT, CS#, and CKE; CMD = RAS#, CAS#, and WE#; ADDR = A[n:0],  
BA[2:0].  
6. CDI_CTRL = CI (CTRL) - 0.5 × (CCK [CK] + CCK [CK#]).  
7. CDI_CMD_ADDR = CI (CMD_ADDR) - 0.5 × (CCK [CK] + CCK [CK#]).  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
27  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Th e rm a l Ch a ra ct e rist ics  
Th e rm a l Ch a ra ct e rist ics  
Ta b le 8:  
Th e rm a l Ch a ra ct e rist ics  
Pa ra m e t e r/Co n d it io n  
Sym b o l  
Va lu e  
Un it s  
No t e s  
Operating case temperature  
Junction-to-case (TOP)  
TC  
TC  
0 to 85  
0 to 95  
3.2  
°C  
°C  
1, 2, 3  
1, 2, 3, 4  
5
78-ball  
86-ball  
96-ball  
ΘJC  
°C/W  
2.8  
2.8  
Notes: 1. MAX operating case temperature. TC is measured in the center of the package (see  
Figure 13).  
2. A thermal solution must be designed to ensure the DRAM device does not exceed the maxi-  
mum TC during operation.  
3. Device functionality is not guaranteed if the DRAM device exceeds the maximum TC during  
operation.  
4. If TC exceeds 85°C, the DRAM must be refreshed externally at 2X refresh, which is a 3.9µs  
interval refresh rate. The use of SRT or ASR (if available) must be enabled.  
5. The thermal resistance data is based off of a number of samples from multiple lots and  
should be viewed as a typical number.  
Fig u re 13: Th e rm a l Me a su re m e n t Po in t  
(L/2)  
T
test point  
c
L
(W/2)  
W
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
28  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – IDD Sp e cifica t io n s a n d Co n d it io n s  
Ele ct rica l Sp e cifica t io n s – IDD Sp e cifica t io n s a n d Co n d it io n s  
The following definitions are used within the IDD measurement tables:  
• LOW: VIN VIL(AC) MAX; HIGH: VIN VIH(AC) MIN  
• Stable: Inputs are stable at a HIGH or LOW level  
• Floating: Inputs are VREF = VDDQ/ 2  
• Switching: See Tables 10 and 11  
Ta b le 9:  
IDD Me a su re m e n t Co n d it io n s Re fe re n ce  
Ta b le Nu m b e r  
Me a su re m e n t Co n d it io n s  
Table 13 on page 31  
Table 14 on page 33  
Table 15 on page 35  
Table 16 on page 37  
Table 17 on page 38  
IDD0 and IDD1  
IDD2Ps, IDD2Pf, IDD2Q, IDD2N, IDD3P, and IDD3N  
IDD4R, IDD4W  
IDD5B, IDD6, IDD6ET  
IDD7 (see Table 18 on page 38)  
Ta b le 10:  
De fin it io n o f Sw it ch in g fo r Co m m a n d a n d Ad d re ss In p u t Sig n a ls  
Sw it ch in g fo r Ad d re ss (Ro w /Co lu m n ) a n d Co m m a n d Sig n a ls (CS#, RAS#, CAS#, a n d /o r WE#)  
Address (row/column)  
If not otherwise stated, inputs are stable at HIGH or LOW during 4 clocks and then change to  
the opposite value (Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax . . . )  
Bank address  
If not otherwise stated, the bank addresses should be switched in a similar fashion as the  
row/column addresses  
Command  
(CS#, RAS#, CAS#, WE#)  
Define command background pattern = D D D D D D D D D D D D . . . where:  
D = (CS#, RAS#, CAS#, WE#) = (HIGH, LOW, LOW, LOW)  
D = (CS#, RAS#, CAS#, WE#) = (HIGH, HIGH, HIGH, HIGH)  
If other commands are necessary (ACTIVATE for IDD0 or READ for IDD4R), the background  
pattern command is substituted by the respective CS#, RAS#, CAS#, and WE# levels of the  
necessary command  
Ta b le 11:  
De fin it io n o f Sw it ch in g fo r Da t a Pin s  
Sw it ch in g fo r Da t a Pin s (DQ, DQS, DM)  
Data strobe (DQS)  
Data (DQ)  
Data strobe is changing between HIGH and LOW after every clock cycle  
Data DQ is changing between HIGH and LOW every other data transfer (once per clock) for  
DQ signals, which means that data DQ is stable during one clock  
Data masking (DM)  
No switching; DM must always be driven LOW  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
29  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – IDD Sp e cifica t io n s a n d Co n d it io n s  
Ta b le 12:  
Tim in g Pa ra m e t e rs  
DDR3-800  
DDR3-1066  
DDR3-1333  
-15E  
DDR3-1600  
-125E -125  
-25E  
-25  
-187E  
7-7-7  
-187  
-15F  
-15  
-125F  
IDD Pa ra m e t e r  
5-5-5  
6-6-6  
8-8-8  
8-8-8  
9-9-9 10-10-10 9-9-9 10-10-10 11-11-11 Un it s  
tCK (MIN) IDD  
2.5  
1.875  
1.5  
9
1.25  
10  
ns  
CK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CL IDD  
5
6
15  
7
8
15  
8
12  
48  
36  
12  
30  
45  
6
10  
15  
51  
36  
15  
30  
45  
6
9
11.25  
46.25  
35  
11  
13.75  
48.75  
35  
tRCD (MIN) IDD  
tRC (MIN) IDD  
tRAS (MIN) IDD  
tRP (MIN)  
12.5  
50  
13.13  
50.63  
37.5  
13.13  
37.5  
50  
13.5  
49.5  
36  
12.5  
47.5  
35  
52.5  
37.5  
15  
52.50  
37.5  
15  
37.5  
12.5  
40  
13.5  
30  
11.25  
30  
12.5  
30  
13.75  
30  
tFAW  
x4, x8  
40  
37.5  
50  
x16  
50  
50  
45  
40  
40  
40  
tRRD IDD  
tRFC  
x4, x8  
x16  
10  
10  
7.5  
7.5  
6
6
6
6
10  
10  
10  
10  
7.5  
110  
7.5  
110  
7.5  
110  
7.5  
7.5  
110  
7.5  
110  
110  
110  
110  
110  
110  
Notes: 1. IDD specifications are tested after the device is properly initialized.  
2. Input slew rate is specified by AC parametric test conditions.  
3. IDD parameters are specified with ODT and the output buffer is disabled (MR1[12]).  
4. Optional ASR is disabled unless stated otherwise.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
30  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – IDD Sp e cifica t io n s a n d Co n d it io n s  
Ta b le 13:  
IDD Te st  
IDD Me a su re m e n t Co n d it io n s fo r IDD0 a n d IDD1  
IDD1: Op e ra t in g Cu rre n t 1  
On e Ba n k ACTIVATE t o READ  
t o PRECHARGE  
IDD0: Op e ra t in g Cu rre n t 0  
On e Ba n k ACTIVATE t o PRECHARGE  
No t e s  
Timing example  
Figure 14 on page 32  
CKE  
HIGH  
HIGH  
On  
External clock  
tCK  
tRC  
tRAS  
tRCD  
tRRD  
tRC  
On  
tCK (MIN) IDD  
tRC (MIN) IDD  
tRAS (MIN) IDD  
tCK (MIN) IDD  
tRC (MIN) IDD  
tRAS (MIN) IDD  
tRCD (MIN) IDD  
n/a  
n/a  
n/a  
n/a  
n/a  
CL  
n/a  
CL IDD  
AL  
n/a  
0
CS#  
HIGH between ACTIVATE and PRECHARGE  
HIGH between ACTIVATE, READ, and  
PRECHARGE  
Command inputs  
Switchingthe only exceptions are  
ACTIVATE and PRECHARGE commands;  
Example of -25E IDD0 pattern:  
Switchingthe only exceptions are  
ACTIVATE and PRECHARGE commands;  
Example of -25E IDD1 pattern:  
1
A0DDDDDDDDDDDDDDP0  
A0DDDDR0DDDDDDDDDP0  
Row/column addresses  
Row addresses switching;  
Address input A10 must be LOW at all times Address input A10 must be LOW at all times  
Row addresses switching;  
1
2
Bank addresses  
Data I/O  
Bank address is fixed (bank 0)  
Bank address is fixed (bank 0)  
Switching  
Read data: Output data switches after  
every clock cycle, which means that read  
data is stable during falling DQS; I/O should  
be floating when no read data  
Output buffer DQ, DQS  
ODT  
Off  
Off  
Disabled  
Disabled  
Burst length  
Active banks  
n/a  
8 fixed (via MR0)  
Bank 0; ACTIVATE-to-PRECHARGE loop  
Bank 0; ACTIVATE-to-READ-to-PRECHARGE  
loop  
Idle banks  
All other  
n/a  
All other  
n/a  
Special notes  
Notes: 1. For further definition of input switching, see Table 10 on page 29.  
2. For further definition of data switching, see Table 11 on page 29.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
31  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – IDD Sp e cifica t io n s a n d Co n d it io n s  
Fig u re 14: IDD1 Exa m p le – DDR3-800, 5-5-5, x8 (-25E)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18  
CK  
BA[2:0]  
A[9:0]  
0
000  
0
3FF  
3
000  
3FF  
3
000  
0
3FF  
A10  
A[12:11]  
0
CS#  
RAS#  
CAS#  
WE#  
ACT  
D
D#  
D#  
D
RD  
D#  
D#  
D
D
D#  
D#  
D
D
D#  
PRE  
D
D
D# D#  
Command  
0
0
1
1
0
0
1
1
DQ  
DM  
IDD1 measurement loop  
Notes: 1. Data DQ is shown, but the output buffer should be switched off (per MR1[12] = 1) to  
achieve IOUT = 0mA (MR1[12] = 0 is reflected in this example; however, test conditions are  
MR1[12] = 1). Address inputs are split into three parts.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
32  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – IDD Sp e cifica t io n s a n d Co n d it io n s  
Ta b le 14:  
IDD Me a su re m e n t Co n d it io n s fo r Po w e r-Do w n Cu rre n t s  
IDD2Ps  
IDD2Pf  
IDD2Q  
Pre ch a rg e  
Qu ie t  
St a n d b y  
Cu rre n t  
Pre ch a rg e  
Pre ch a rg e  
IDD2N  
Pre ch a rg e  
St a n d b y  
Cu rre n t  
IDD3P  
Act ive  
Po w e r-Do w n  
Cu rre n t  
IDD3N  
Act ive  
St a n d b y  
Cu rre n t  
Po w e r-Do w n Po w e r-Do w n  
Cu rre n t  
Cu rre n t  
Na m e  
(Slo w Exit )1  
(Fa st Exit )1  
No t e s  
Timing example  
n/a  
n/a  
n/a  
Figure 15 on  
page 34  
n/a  
Figure 15 on  
page 34  
CKE  
LOW  
On  
LOW  
On  
HIGH  
On  
HIGH  
On  
LOW  
On  
HIGH  
On  
External clock  
tCK  
tCK (MIN) IDD  
tCK(MIN) IDD  
tCK(MIN) IDD  
tCK (MIN) IDD tCK (MIN) IDD tCK (MIN) IDD  
tRC  
tRAS  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
tRCD  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
tRRD  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
tRC  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
CL  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
AL  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
CS#  
Stable  
Stable  
Stable  
Stable  
Stable  
Stable  
HIGH  
Stable  
Stable  
HIGH  
Switching  
Switching  
Stable  
Stable  
Stable  
HIGH  
Switching  
Switching  
Command inputs  
2
2
Row/column  
addresses  
Bank addresses  
Data I/O  
Stable  
Floating  
Off  
Stable  
Floating  
Off  
Stable  
Floating  
Off  
Switching  
Switching  
Off  
Stable  
Floating  
Off  
Switching  
Switching  
Off  
2
3
Output buffer  
DQ, DQS  
ODT  
Disabled  
n/a  
Disabled  
n/a  
Disabled  
n/a  
Disabled  
n/a  
Disabled  
n/a  
Disabled  
n/a  
Burst length  
Active banks  
Idle banks  
Special notes  
None  
All  
None  
All  
None  
All  
None  
All  
All  
All  
None  
n/a  
None  
n/a  
n/a  
n/a  
n/a  
n/a  
Notes: 1. MR0[12] defines DLL on/off behavior during precharge power-down only; DLL on (fast exit,  
MR0[12] = 1) and DLL off (slow exit, MR0[12] = 0).  
2. For further definition of input switching, see Table 10 on page 29.  
3. For further definition of data switching, see Table 11 on page 29.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
33  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – IDD Sp e cifica t io n s a n d Co n d it io n s  
Fig u re 15: IDD2N/IDD3N Exa m p le – DDR3-800, 5-5-5, x8 (-25E)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CK  
BA[2:0]  
A[12:0]  
CS#  
0
7
0
0000  
1FFF  
0000  
RAS#  
CAS#  
WE#  
Command  
DQ[7:0]  
D#  
00  
D#  
FF  
D
D
D#  
00  
D#  
FF  
D
D
D#  
00  
D#  
FF  
D
FF  
00  
FF 00  
00  
FF  
FF  
00  
FF  
00  
00  
FF  
FF  
00  
FF 00  
DM  
IDD2N/IDD3N measurement loop  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
34  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – IDD Sp e cifica t io n s a n d Co n d it io n s  
Ta b le 15:  
IDD Te st  
IDD Me a su re m e n t Co n d it io n s fo r IDD4R, IDD4W  
IDD4R: Bu rst Re a d Op e ra t in g Cu rre n t  
IDD4W: Bu rst Writ e Op e ra t in g Cu rre n t No t e s  
Timing diagram example  
Figure 16 on page 36  
CKE  
HIGH  
HIGH  
External clock  
On  
On  
tCK  
tCK (MIN) IDD  
tCK (MIN) IDD  
tRC  
n/a  
n/a  
tRAS  
n/a  
n/a  
tRCD  
n/a  
n/a  
tRRD  
n/a  
n/a  
tRC  
n/a  
n/a  
CL  
CL IDD  
CL IDD  
AL  
0
0
CS#  
HIGH between valid commands  
HIGH between valid commands  
Command inputs  
Switching;  
Switching;  
1
READ command/pattern:  
R0DDDR1DDDR2DDDR3DDDR4 . . .  
Rx = READ from bank x  
WRITE command/pattern:  
W0DDDW1DDDW2DDDW3DDDW4 . . .  
Wx = WRITE to bank x  
Row/column addresses  
Column addresses switching;  
Address input A10 must always be LOW  
Column addresses switching;  
Address input A10 must always be LOW  
1
2
Bank addresses  
Data I/O  
Bank address looping (0-to-1-to-2-to-3 . . . ) Bank address looping (0-to-1-to-2-to-3 . . . )  
Seamless read data burst (BL8): Output  
data switches after every clock cycle, which  
means that read data is stable during  
falling DQS  
Seamless write data burst (BL8): Input data  
switches after every clock cycle, which  
means that write data is stable during  
falling DQS  
Output buffer DQ, DQS  
ODT  
Off  
Disabled  
8 fixed (via MR0)  
All  
Off  
Disabled  
Burst length  
Active banks  
Idle banks  
8 fixed (via MR0)  
All  
None  
None  
Special notes  
n/a  
DM always LOW  
Notes: 1. For further definition of input switching, see Table 10 on page 29.  
2. For further definition of data switching, see Table 11 on page 29.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
35  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – IDD Sp e cifica t io n s a n d Co n d it io n s  
Fig u re 16: IDD4R Exa m p le – DDR3-800, 5-5-5, x8  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
CK  
BA[2:0]  
0
1
2
3
A[9:0]  
A10  
000  
3FF  
000  
3FF  
A[12:11]  
0
3
0
3
CS#  
RAS#  
CAS#  
WE#  
CMD[2:0]  
RD  
D
D#  
D#  
RD  
D
D#  
D#  
RD  
D
D#  
D#  
RD  
D
DQ[7:0]  
DM  
00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF  
Start measurement loop  
Notes: 1. Data DQ is shown, but the output buffer should be switched off (per MR1[12] = 1) to  
achieve IOUT = 0mA (MR1[12] = 0 is reflected in this example; however, test conditions are  
MR1[12] = 1). Address inputs are split into three parts.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
36  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – IDD Sp e cifica t io n s a n d Co n d it io n s  
Ta b le 16:  
IDD Te st  
IDD Me a su re m e n t Co n d it io n s fo r IDD5B, IDD6, IDD6ET  
IDD6: Se lf Re fre sh Cu rre n t  
IDD6ET: Se lf Re fre sh Cu rre n t  
Ext e n d e d Te m p e ra t u re  
Ra n g e  
No rm a l Te m p e ra t u re  
Ra n g e  
IDD5B: Re fre sh  
Cu rre n t  
TC = 0°C t o 85°C  
TC = 0°C t o 95°C  
No t e s  
CKE  
HIGH  
LOW  
LOW  
External clock  
tCK  
tRC  
On  
Off, CK and CK# = LOW  
Off, CK and CK# = LOW  
tCK (MIN) IDD  
n/a  
n/a  
n/a  
n/a  
n/a  
tRAS  
tRCD  
tRRD  
tRC  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
tRFC (MIN) IDD  
n/a  
n/a  
CL  
n/a  
n/a  
n/a  
n/a  
AL  
n/a  
n/a  
CS#  
HIGH between valid  
commands  
Floating  
Floating  
Command inputs  
Row/column addresses  
Bank addresses  
Data I/O  
Switching  
Switching  
Switching  
Switching  
Disabled  
Disabled  
n/a  
Floating  
Floating  
Floating  
Floating  
Disabled  
Disabled  
n/a  
Floating  
Floating  
Floating  
Floating  
Disabled  
Disabled  
n/a  
1
1
1
2
Output buffer DQ, DQS  
ODT  
Burst length  
Active banks  
REFRESH command  
every tRFC (MIN)  
n/a  
n/a  
Idle banks  
None  
n/a  
n/a  
n/a  
Special notes  
SRT disabled  
SRT enabled  
Notes: 1. For further definition of input switching, see Table 10 on page 29.  
2. For further definition of data switching, see Table 11 on page 29.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
37  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – IDD Sp e cifica t io n s a n d Co n d it io n s  
Ta b le 17:  
IDD Te st  
IDD Me a su re m e n t Co n d it io n s fo r IDD7  
IDD7: All Ba n ks In t e rle a ve d Re a d Cu rre n t  
CKE  
HIGH  
External clock  
On  
tCK  
tCK (MIN) IDD  
tRC  
tRC (MIN) IDD  
tRAS  
tRAS (MIN) IDD  
tRCD  
tRCD (MIN) IDD  
tRRD  
tRRD (MIN) IDD  
tRC  
n/a  
CL  
CL IDD  
AL  
CL - 1  
CS#  
HIGH between valid commands  
See Table 10 on page 29 for patterns  
Stable during DESELECTs (DES)  
Looping (see Table 10 on page 29 for patterns)  
Command inputs  
Row/column addresses  
Bank addresses  
Data I/O  
Read data (BL8): output data switches after every clock cycle, which means that read data is  
stable during falling DQS; I/O should be floating when no read data is being driven  
Output buffer DQ, DQS  
ODT  
Off  
Disabled  
8 fixed (via MR0)  
All, rotational  
n/a  
Burst length  
Active banks  
Idle banks  
Ta b le 18:  
Sp e e d Bin  
IDD7 Pa t t e rn s  
Wid t h IDD7 Pa t t e rn  
DDR3-800  
(-25, -25E)  
x4, x8 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7  
D D A0 . . .  
x16 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D  
A7 RA7 D D D D D D A0 . . .  
DDR3-1066  
(-187, -187E)  
x4, x8 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D  
A7 RA7 D D D D D D A0 . . .  
x16 A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3 RA3 D D D D D D D A4 RA4 D D D D A5  
RA5 D D D D A6 RA6 D D D D A7 RA7 D D D D D D D A0 . . .  
DDR3-1333  
(-15, -15E, -15F)  
x4, x8 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D A4 RA4 D D A5 RA5 D D A6 RA6 D D  
A7 RA7 D D D D D D A0 . . .  
x16 A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D D D D D D D D D D D D D A4 RA4 D D D  
A5 RA5 D D D A6 RA6 D D D A7 RA7 D D D D D D D D D D D D D A0 . . .  
DDR3-1600  
(-125E, -125F, -125)  
x4, x8 A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D D D D D D D A4 RA4 D D D A5 RA5 D D  
D A6 RA6 D D D A7 RA7 D D D D D D D A0 . . .  
x16 A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3 RA3 D D D D D D D D D D D D A4 RA4 D  
D D D A5 RA5 D D D D A6 RA6 D D D D A7 RA7 D D D D D D D D D D D D A0 . . .  
Notes: 1. A0 = ACTIVATE bank 0; RA0 = READ with auto precharge bank 0; D = DESELECT.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
38  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Ch a ra ct e rist ics – IDD Sp e cifica t io n s  
Ele ct rica l Ch a ra ct e rist ics – IDD Sp e cifica t io n s  
IDD values are for full operating range of voltage and temperature unless otherwise  
noted.  
Ta b le 19:  
IDD Ma xim u m Lim it s  
Sp e e d Bin  
IDD  
Wid t h  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Un it s  
No t e s  
IDD0  
x4  
x8  
65  
90  
75  
100  
100  
95  
85  
110  
110  
105  
130  
150  
10  
95  
120  
120  
115  
140  
170  
10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2, 3  
2, 4  
1, 2  
1, 2  
1, 2  
x16  
x4  
90  
IDD1  
85  
x8  
110  
110  
10  
120  
130  
10  
x16  
Slow (s)  
Fast (f)  
All  
IDD2P  
25  
25  
25  
25  
IDD2Q  
IDD2N  
IDD3P  
IDD3N  
40  
45  
50  
55  
All  
45  
50  
55  
60  
All  
25  
30  
35  
40  
x4, x8  
x16  
x4  
50  
55  
60  
65  
50  
55  
60  
65  
IDD4R  
130  
130  
190  
130  
130  
210  
200  
6
160  
160  
230  
160  
160  
265  
220  
6
200  
200  
270  
190  
190  
325  
240  
6
250  
250  
315  
225  
225  
400  
260  
6
x8  
x16  
x4  
IDD4W  
x8  
x16  
All  
IDD5B  
IDD6  
All  
IDD6ET  
IDD7  
All  
9
9
9
9
x4  
230  
350  
350  
250  
390  
380  
315  
490  
420  
400  
600  
460  
x8  
x16  
Notes: 1. TC = 85°C; SRT and ASR are disabled.  
2. Enabling ASR could increase IDDx by up to an additional 2mA.  
3. Restricted to TC (MAX) = 85°C.  
4. TC = 85°C; ASR and ODT are disabled; SRT is enabled.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_D2.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
39  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – DC a n d AC  
Ele ct rica l Sp e cifica t io n s – DC a n d AC  
DC Op e ra t in g Co n d it io n s  
Ta b le 20:  
DC Ele ct rica l Ch a ra ct e rist ics a n d Op e ra t in g Co n d it io n s  
All voltages are referenced to VSS  
Pa ra m e t e r/Co n d it io n  
Sym b o l  
Min  
No m  
Ma x  
Un it s No t e s  
Supply voltage  
VDD  
VDDQ  
II  
1.425  
1.425  
–2  
1.5  
1.5  
1.575  
1.575  
2
V
V
1, 2  
1, 2  
I/O supply voltage  
Input leakage current  
µA  
Any input 0V VIN VDD, VREF pin 0V VIN 1.1V  
(All other pins not under test = 0V)  
VREF supply leakage current  
IVREF  
–1  
1
µA  
3, 4  
VREFDQ = VDD/2 or VREFCA = VDD/2  
(All other pins not under test = 0V)  
Notes: 1. VDD and VDDQ must track one another. VDDQ must be less than or equal to VDD. VSS = VSSQ.  
2. VDD and VDDQ may include AC noise of ±50mV (250 kHz to 20 MHz) in addition to the DC  
(0Hz to 250 kHz) specifications. VDD and VDDQ must be at same level for valid AC timing  
parameters.  
3. VREF (see Table 21).  
4. The minimum limit requirement is for testing purposes. The leakage current on the VREF pin  
should be minimal.  
In p u t Op e ra t in g Co n d it io n s  
Ta b le 21:  
DC Ele ct rica l Ch a ra ct e rist ics a n d In p u t Co n d it io n s  
All voltages are referenced to VSS  
Pa ra m e t e r/Co n d it io n  
Sym b o l  
Min  
No m  
Ma x  
Un it s No t e s  
Input reference voltage command/address bus  
I/O reference voltage DQ bus  
VREFCA(DC)  
VREFDQ(DC)  
VTT  
0.49 × VDD  
0.49 × VDD  
0.5 × VDD  
0.5 × VDD  
0.5 × VDDQ  
0.51 × VDD  
0.51 × VDD  
V
V
V
1, 2  
2, 3  
4
Command/address termination voltage  
(system level, not direct DRAM input)  
Notes: 1. VREFCA(DC) is expected to be approximately 0.5 × VDD and to track variations in the DC  
level. Externally generated peak noise (noncommon mode) on VREFCA may not exceed ±1  
percent × VDD around the VREFCA(DC) value. Peak-to-peak AC noise on VREFCA should not  
exceed ±2 percent of VREFCA(DC).  
2. DC values are determined to be less than 20 MHz in frequency. DRAM must meet specifica-  
tions if the DRAM induces additional AC noise greater than 20 MHz in frequency.  
3. VREFDQ(DC) is expected to be approximately 0.5 × VDD and to track variations in the DC  
level. Externally generated peak noise (noncommon mode) on VREFDQ may not exceed ±1  
percent × VDD around the VREFDQ(DC) value. Peak-to-peak AC noise on VREFDQ should not  
exceed ±2 percent of VREFDQ(DC).  
4. VTT is not applied directly to the device. VTT is a system supply for signal termination resis-  
tors. MIN and MAX values are system-dependent.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
40  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – DC a n d AC  
Ta b le 22:  
AC In p u t Op e ra t in g Co n d it io n s  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Pa ra m e t e r/Co n d it io n  
Sym b o l  
Un it s  
Co m m a n d a n d Ad d re ss  
Input high AC voltage: Logic 1  
Input high DC voltage: Logic 1  
Input low DC voltage: Logic 0  
Input low AC voltage: Logic 0  
VIH(AC) MIN  
VIH(DC) MIN  
VIL(DC) MAX  
VIL(AC) MAX  
+175  
+150 or +175  
+100  
mV  
mV  
mV  
mV  
+100  
–100  
–175  
–100  
–150 or –175  
DQ a n d DM  
Input high AC voltage: Logic 1  
Input high DC voltage: Logic 1  
Input low DC voltage: Logic 0  
Input low AC voltage: Logic 0  
VIH(AC) MIN  
VIH(DC) MIN  
VIL(DC) MAX  
VIL(AC) MAX  
+175  
+100  
–100  
–175  
+150  
+100  
–100  
–150  
mV  
mV  
mV  
mV  
Notes: 1. All voltages are referenced to VREF. VREF is VREFCA for control, command, and address. All  
slew rates and setup/hold times are specified at the DRAM ball. VREF is VREFDQ for DQ and  
DM inputs.  
t
2. Input setup timing parameters (tIS and DS) are referenced at VIL(AC)/VIH(AC), not VREF(DC).  
t
3. Input hold timing parameters (tIH and DH) are referenced at VIL(DC)/VIH(DC), not VREF(DC).  
4. Single-ended input slew rate = 1 V/ns; maximum input voltage swing under test is 900mV  
(peak-to-peak).  
t
5. For VIH(AC) and VIL(AC) levels of 150mV, special setup and hold derating and different VAC  
numbers apply.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
41  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – DC a n d AC  
Fig u re 17: In p u t Sig n a l  
VIL and VIH levels with ringback  
V
DDQ + 0.4V narrow  
1.90V  
1.50V  
pulse width  
VDDQ  
Minimum VIL and VIH levels  
VIH(AC)  
0.925V  
0.850V  
0.925V  
0.850V  
V
IH  
(
AC  
)
)
VIH(DC)  
VIH(  
DC  
0.780V  
0.765V  
0.750V  
0.735V  
0.720V  
0.780V  
0.765V  
0.750V  
0.735V  
0.720V  
V
REF + AC noise  
V
REF + DC error  
V
REF - DC error  
V
REF - AC noise  
0.650V  
V
IL  
(
DC  
)
)
0.650V  
V
IL  
(
DC  
)
)
0.575V  
0.575V  
VIL(  
AC  
VIL(  
AC  
0.0V  
VSS  
–0.40V  
VSS - 0.4V narrow  
pulse width  
Notes: 1. Numbers in diagrams reflect nominal values.  
AC Ove rsh o o t /Un d e rsh o o t Sp e cifica t io n  
Ta b le 23:  
Pa ra m e t e r  
Co n t ro l a n d Ad d re ss Pin s  
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600  
Maximum peak amplitude allowed for overshoot area  
(see Figure 18 on page 43)  
0.4V  
0.4V  
0.4V  
0.4V  
Maximum peak amplitude allowed for undershoot area  
(see Figure 19 on page 43)  
0.4V  
0.4V  
0.4V  
0.4V  
Maximum overshoot area above VDD (see Figure 18 on page 43)  
0.67 Vns  
0.5 Vns  
0.5 Vns  
0.4 Vns  
0.4 Vns  
0.33 Vns  
0.33 Vns  
Maximum undershoot area below VSS (see Figure 19 on page 43) 0.67 Vns  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
42  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – DC a n d AC  
Ta b le 24:  
Pa ra m e t e r  
Clo ck, Da t a , St ro b e , a n d Ma sk Pin s  
DDR3-800  
DDR3-1066 DDR3-1333 DDR3-1600  
Maximum peak amplitude allowed for overshoot area  
(see Figure 18 on page 43)  
0.4V  
0.4V  
0.4V  
0.4V  
Maximum peak amplitude allowed for undershoot area  
(see Figure 19 on page 43)  
0.4V  
0.4V  
0.4V  
0.4V  
Maximum overshoot area above VDD/VDDQ  
(see Figure 18 on page 43)  
0.25 Vns  
0.25 Vns  
0.19 Vns  
0.19 Vns  
0.15 Vns  
0.15 Vns  
0.13 Vns  
0.13 Vns  
Maximum undershoot area below VSS/VSSQ  
(see Figure 19 on page 43)  
Fig u re 18: Ove rsh o o t  
Maximum amplitude  
Overshoot area  
Volts (V)  
VDD/VDDQ  
Time (ns)  
Fig u re 19: Un d e rsh o o t  
VSS/VSSQ  
Volts (V)  
Undershoot area  
Maximum amplitude  
Time (ns)  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
43  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – DC a n d AC  
Ta b le 25:  
Diffe re n t ia l In p u t Op e ra t in g Co n d it io n s (CK, CK# a n d DQS, DQS#)  
All voltages are referenced to VSS  
Pa ra m e t e r/Co n d it io n  
Sym b o l  
Min  
Ma x  
Un it s  
Differential input voltage  
VIN  
VMP(DC)  
VIHDIFF  
VILDIFF  
VIX  
–400  
650  
VDD + 400  
850  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
Differential input midpoint voltage  
Differential input voltage logic high  
Differential input voltage logic low  
200  
VDD + 400  
–200  
VSSQ - 400  
VREF(DC) - 150  
VREF(DC) - 175  
VREF(DC) - 150  
Differential input crossing voltage relative  
to VDD/2 for CK, CK#  
VREF(DC) + 150  
VREF(DC) + 175  
VREF(DC) + 150  
Differential input crossing voltage relative  
to VDD/2 for DQS, DQS#  
Notes: 1. VMP(DC) specifies the input differential common mode voltage (VTR + VCP)/2 where VTR is  
the true input (CK, DQS) level and VCP is the complementary input (CK#, DQS#) level.  
VMP(DC) is expected to be about 0.5 × VDDQ.  
2. The typical value of VIX(AC) is expected to be about 0.5 × VDD of the transmitting device,  
and VIX(AC) is expected to track variations in VDD. VIX(AC) indicates the voltage at which dif-  
ferential input signals must cross.  
3. Reference is VREFCA(DC) for clock and for VREFDQ(DC) for strobe.  
4. Clock is referenced to VDD and VSS. Data strobe is referenced to VDDQ and VSSQ.  
5. Differential input slew rate = 2 V/ns.  
6. The VIX extended range (±175mV) is allowed only for the clock. Additionally, the VIX  
extended range is only allowed when the following conditions are met: The single-ended  
input signals are monotonic, have the single-ended swing VSEL, VSEH of at least VDD/2  
±250mV, and the differential slew rate of CK, CK# is greater than 3 V/ns.  
Fig u re 20: Sin g le -En d e d Re q u ire m e n t s fo r Diffe re n t ia l Sig n a ls  
VDD or VDDQ  
VSEH (MIN)  
VDD/2 or VDDQ/2  
VSEH  
CK or DQS  
VSEL (MAX)  
VSEL  
VSS or VSSQ  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
44  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – DC a n d AC  
t
Fig u re 21: De fin it io n o f Diffe re n t ia l AC-Sw in g a n d DVAC  
t
DVAC  
VIHDIFF(AC) MIN  
VIHDIFF (MIN)  
VIHDIFF(DC) MIN  
CK - CK#  
DQS - DQS#  
0.0  
VILDIFF(DC) MAX  
VILDIFF (MAX)  
VILDIFF(AC) MAX  
t
half cycle  
DVAC  
t
Ta b le 26:  
Allo w e d Tim e Be fo re Rin g b a ck ( DVAC) fo r CK - CK# a n d DQS - DQS#  
Below VIL(AC)  
t DVAC (p s) a t |VIHDIFF(AC)/VILDIFF(AC)|  
Sle w Ra t e (V/n s)  
350m V  
300m V  
>4.0  
4.0  
3.0  
2.0  
1.9  
1.6  
1.4  
1.2  
1.0  
<1.0  
75  
57  
50  
38  
34  
29  
22  
13  
0
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
0
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
45  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – DC a n d AC  
Sle w Ra t e De fin it io n s fo r Sin g le -En d e d In p u t Sig n a ls  
t
t
Setup ( IS and DS) nominal slew rate for a rising signal is defined as the slew rate  
t
between the last crossing of VREF and the first crossing of VIH(AC) MIN. Setup ( IS and  
t
DS) nominal slew rate for a falling signal is defined as the slew rate between the last  
crossing of VREF and the first crossing of VIL(AC) MAX (see Figure 22 on page 47).  
t
t
Hold ( IH and DH) nominal slew rate for a rising signal is defined as the slew rate  
t
between the last crossing of VIL(DC) MAX and the first crossing of VREF. Hold ( IH and  
t
DH) nominal slew rate for a falling signal is defined as the slew rate between the last  
crossing of VIH(DC) MIN and the first crossing of VREF (see Figure 22 on page 47).  
Ta b le 27:  
Sin g le -En d e d In p u t Sle w Ra t e De fin it io n  
In p u t Sle w Ra t e s  
(Lin e a r Sig n a ls)  
Me a su re d  
In p u t  
Ed g e  
Fro m  
To  
Ca lcu la t io n  
Setup  
Rising  
VREF  
VIH(AC) MIN  
VIL(AC) MAX  
VREF  
VIH(AC) MIN - VREF  
ΔTRS  
Falling  
Rising  
Falling  
VREF  
V
REF - VIL  
(
AC) MAX  
ΔTFS  
Hold  
VIL(DC) MAX  
VIH(DC) MIN  
V
REF - VIL  
(
DC) MAX  
ΔTFH  
VREF  
VIH(DC) MIN - VREF  
ΔTRSH  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
46  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – DC a n d AC  
Fig u re 22: No m in a l Sle w Ra t e De fin it io n fo r Sin g le -En d e d In p u t Sig n a ls  
ΔTRS  
Setup  
VIH(AC) MIN  
VIH(DC) MIN  
VREFDQ or  
VREFCA  
VIL(DC) MAX  
VIL(AC) MAX  
ΔTFS  
ΔTRH  
Hold  
VIH(AC) MIN  
VIH(DC) MIN  
VREFDQ or  
VREFCA  
VIL(DC) MAX  
VIL(AC) MAX  
ΔTFH  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
47  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ele ct rica l Sp e cifica t io n s – DC a n d AC  
Sle w Ra t e De fin it io n s fo r Diffe re n t ia l In p u t Sig n a ls  
Input slew rate for differential signals (CK, CK# and DQS, DQS#) are defined and  
measured, as shown in Table 28 and Figure 23. The nominal slew rate for a rising signal  
is defined as the slew rate between VIL(DIFF ) MAX and VIH(DIFF ) MIN. The nominal slew  
rate for a falling signal is defined as the slew rate between VIH(DIFF ) MIN and  
VIL(DIFF) MAX.  
Ta b le 28:  
Diffe re n t ia l In p u t Sle w Ra t e De fin it io n  
Diffe re n t ia l In p u t  
Sle w Ra t e s (Lin e a r  
Sig n a ls)  
Me a su re d  
In p u t  
Ed g e  
Fro m  
To  
Ca lcu la t io n  
CK and DQS  
reference  
Rising  
VIL(DIFF) MAX  
VIH(DIFF) MIN  
VIH(DIFF) MIN - VIL(DIFF) MAX  
ΔTR(DIFF)  
Falling  
VIH(DIFF) MIN  
VIL(DIFF) MAX  
VIH(DIFF) MIN - VIL(DIFF) MAX  
ΔTF(DIFF)  
Fig u re 23: No m in a l Diffe re n t ia l In p u t Sle w Ra t e De fin it io n fo r DQS, DQS# a n d CK, CK#  
ΔTRDIFF  
VIH(DIFF) MIN  
0
VIL(DIFF) MAX  
ΔTFDIFF  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
48  
1Gb : x4, x8, x16 DDR3 SDRAM  
ODT Ch a ra ct e rist ics  
ODT Ch a ra ct e rist ics  
ODT effective resistance RTT is defined by MR1[9, 6, and 2]. ODT is applied to the DQ,  
DM, DQS, DQS#, and TDQS, TDQS# balls (x8 devices only). The ODT target values are  
listed in Table 29 and Table 30 on page 50. A functional representation of the ODT is  
shown in Figure 24. The individual pull-up and pull-down resistors (RTT and RTT  
)
PU  
PD  
are defined as follows:  
• RTT = (VDDQ - VOUT)/ |IOUT|, under the condition that RTT is turned off  
PU  
PD  
• RTT = (VOUT)/ |IOUT|, under the condition that RTT is turned off  
PD  
PU  
Fig u re 24: ODT Le ve ls a n d I-V Ch a ra ct e rist ics  
Chip in termination mode  
ODT  
VDDQ  
IPU  
IOUT = IPD - IPU  
To  
RTT  
PU  
other  
circuitry  
such as  
RCV, . . .  
DQ  
IOUT  
RTT  
PD  
VOUT  
IPD  
VSSQ  
Ta b le 29:  
On -Die Te rm in a t io n DC Ele ct rica l Ch a ra ct e rist ics  
Pa ra m e t e r/Co n d it io n  
Sym b o l  
Min  
No m  
Ma x  
Un it s  
No t e s  
RTT effective impedance  
RTT_EFF  
See Table 30 on page 50  
+5  
1, 2  
Deviation of VM with respect to VDDQ/2  
ΔVM  
–5  
%
1, 2, 3  
Notes: 1. Tolerance limits are applicable after proper ZQ calibration has been performed at a stable  
temperature and voltage (VDDQ = VDD, VSSQ = VSS). Refer to "ODT Sensitivity" on page 50 if  
either the temperature or voltage changes after calibration.  
2. Measurement definition for RTT: Apply VIH(AC) to pin under test and measure current  
I[VIH(AC)], then apply VIL(AC) to pin under test and measure current I[VIL(AC)]:  
VIH(AC) VIL(AC)  
|I(VIH(AC))I(VIL(AC))|  
--------------------------------------------------------------  
RTT =  
3. Measure voltage (VM) at the tested pin with no load:  
2 × VM  
VDDQ  
-----------------  
ΔVM =  
1 × 100  
ODT Re sist o rs  
Table 30 on page 50 provides an overview of the ODT DC electrical characteristics. The  
values provided are not specification requirements; however, they can be used as design  
guidelines to indicate what RTT is targeted to provide:  
• RTT 120Ω is made up of RTT  
• RTT 60Ω is made up of RTT  
and RTT  
120PD240  
120PU240  
60PU120  
and RTT  
60PD120  
• RTT 40Ω is made up of RTT  
• RTT 30Ω is made up of RTT  
• RTT 20Ω is made up of RTT  
and RTT  
40PD80  
30PD60  
20PD40  
40PU80  
30PU60  
20PU40  
and RTT  
and RTT  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
49  
1Gb : x4, x8, x16 DDR3 SDRAM  
ODT Ch a ra ct e rist ics  
Ta b le 30:  
RTT Effe ct ive Im p e d a n ce s  
MR1  
[9, 6, 2]  
RTT  
Re sist o r  
VOUT  
Min  
No m  
Ma x  
Un it s  
0, 1, 0  
0, 0, 1  
0, 1, 1  
1, 0, 1  
1, 0, 0  
120Ω  
RTT  
0.2 × VDDQ  
0.5 × VDDQ  
0.8 × VDDQ  
0.2 × VDDQ  
0.5 × VDDQ  
0.8 × VDDQ  
VIL(AC) to VIH(AC)  
0.2 × VDDQ  
0.5 × VDDQ  
0.8 × VDDQ  
0.2 × VDDQ  
0.5 × VDDQ  
0.8 × VDDQ  
VIL(AC) to VIH(AC)  
0.2 × VDDQ  
0.5 × VDDQ  
0.8 × VDDQ  
0.2 × VDDQ  
0.5 × VDDQ  
0.8 × VDDQ  
VIL(AC) to VIH(AC)  
0.2 × VDDQ  
0.5 × VDDQ  
0.8 × VDDQ  
0.2 × VDDQ  
0.5 × VDDQ  
0.8 × VDDQ  
VIL(AC) to VIH(AC)  
0.2 × VDDQ  
0.5 × VDDQ  
0.8 × VDDQ  
0.2 × VDDQ  
0.5 × VDDQ  
0.8 × VDDQ  
VIL(AC) to VIH(AC)  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
RZQ/1  
RZQ/1  
RZQ/1  
RZQ/1  
RZQ/1  
RZQ/1  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/4  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/6  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/8  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/12  
120PD240  
RTT  
120PU240  
120Ω  
60Ω  
40Ω  
30Ω  
20Ω  
RTT  
60PD120  
60PU120  
RTT  
60Ω  
RTT  
RTT  
40PD80  
40PU80  
40Ω  
30Ω  
20Ω  
RTT  
RTT  
30PD60  
30PU60  
RTT  
RTT  
20PD40  
20PU40  
Notes: 1. Values assume an RZQ of 240Ω (±1 percent).  
ODT Se n sit ivit y  
If either the temperature or voltage changes after I/ O calibration, the tolerance limits  
listed in Table 29 on page 49 and Table 30 can be expected to widen according to  
Tables 31 and 32 on page 51.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
50  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
ODT Ch a ra ct e rist ics  
Ta b le 31:  
ODT Se n sit ivit y De fin it io n  
Sym b o l  
Min  
Ma x  
1.6 + dRTTdT × |DT| + dRTTdV × |DV|  
Un it s  
RTT  
0.9 - dRTTdT × |DT| - dRTTdV × |DV|  
RZQ/(2, 4, 6, 8, 12)  
Notes: 1. ΔT = T - T(@ calibration), ΔV = VDDQ - VDDQ(@ calibration) and VDD = VDDQ.  
Ta b le 32:  
ODT Te m p e ra t u re a n d Vo lt a g e Se n sit ivit y  
Ch a n g e  
Min  
Ma x  
Un it s  
dRTTdT  
dRTTdV  
0
0
1.5  
% /°C  
0.15  
% /mV  
Notes: 1. ΔT = T - T(@ calibration), ΔV = VDDQ - VDDQ(@ calibration) and VDD = VDDQ.  
ODT Tim in g De fin it io n s  
ODT loading differs from that used in AC timing measurements. The reference load for  
ODT timings is shown in Figure 25. Two parameters define when ODT turns on or off  
synchronously, two define when ODT turns on or off asynchronously, and another  
defines when ODT turns on or off dynamically. Table 33 outlines and provides definition  
and measurement reference settings for each parameter (see Figure 34 on page 52).  
ODT turn-on time begins when the output leaves High-Z and ODT resistance begins to  
turn on. ODT turn-off time begins when the output leaves Low-Z and ODT resistance  
begins to turn off.  
Fig u re 25: ODT Tim in g Re fe re n ce Lo a d  
VDDQ/2  
VREF  
DUT  
RTT = 25Ω  
DQ, DM  
DQS, DQS#  
CK, CK#  
VTT = VSSQ  
TDQS, TDQS#  
Timing reference point  
RZQ = 240Ω  
ZQ  
VSSQ  
Ta b le 33:  
ODT Tim in g De fin it io n s  
Sym b o l  
Be g in Po in t De fin it io n  
En d Po in t De fin it io n  
Fig u re  
tAON  
Rising edge of CK - CK# defined by the end  
point of ODTL on  
Extrapolated point at VSSQ  
Figure 26 on page 52  
tAOF  
Rising edge of CK - CK# defined by the end  
point of ODTL off  
Extrapolated point at VRTT_NOM  
Extrapolated point at VSSQ  
Figure 26 on page 52  
Figure 27 on page 53  
Figure 27 on page 53  
Figure 28 on page 53  
tAONPD Rising edge of CK - CK# with ODT first being  
registered HIGH  
tAOFPD  
tADC  
Rising edge of CK - CK# with ODT first being  
registered LOW  
Extrapolated point at VRTT_NOM  
Rising edge of CK - CK# defined by the end  
point of ODTLCNW, ODTLCWN4, or ODTLCWN8  
Extrapolated points at VRTT_WR and  
VRTT_NOM  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
51  
1Gb : x4, x8, x16 DDR3 SDRAM  
ODT Ch a ra ct e rist ics  
Ta b le 34:  
Re fe re n ce Se t t in g s fo r ODT Tim in g Me a su re m e n t s  
Me a su re d Pa ra m e t e r  
RTT_NOM Se t t in g  
RTT_WR Se t t in g  
VSW1  
VSW2  
tAON  
RZQ/4 (60Ω)  
RZQ/12 (20Ω)  
RZQ/4 (60Ω)  
RZQ/12 (20Ω)  
RZQ/4 (60Ω)  
RZQ/12 (20Ω)  
RZQ/4 (60Ω)  
RZQ/12 (20Ω)  
RZQ/12 (20Ω)  
n/a  
50mV  
100mV  
50mV  
100mV  
200mV  
100mV  
200mV  
100mV  
200mV  
100mV  
200mV  
300mV  
n/a  
tAOF  
tAONPD  
tAOFPD  
tADC  
n/a  
n/a  
100mV  
50mV  
n/a  
n/a  
n/a  
100mV  
50mV  
n/a  
100mV  
200mV  
RZQ/2 (120Ω)  
Notes: 1. Assume an RZQ of 240Ω (±1 percent) and that proper ZQ calibration has been performed at  
a stable temperature and voltage (VDDQ = VDD, VSSQ = VSS).  
t
t
Fig u re 26: AON a n d AOF De fin it io n s  
t
AON  
t
AOF  
Begin point: Rising edge of CK - CK#  
defined by the end point of ODTL on  
Begin point: Rising edge of CK - CK#  
defined by the end point of ODTL off  
CK  
CK  
VDDQ/2  
CK#  
CK#  
t
t
AON  
AOF  
End point: Extrapolated point at VRTT_NOM  
TSW2  
VRTT_NOM  
TSW1  
TSW1  
DQ, DM  
TSW1  
DQS, DQS#  
TDQS, TDQS#  
VSW2  
VSW2  
VSW1  
VSW1  
VSSQ  
VSSQ  
End point: Extrapolated point at VSSQ  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
52  
1Gb : x4, x8, x16 DDR3 SDRAM  
ODT Ch a ra ct e rist ics  
t
t
Fig u re 27: AONPD a n d AOFPD De fin it io n  
t
t
AONPD  
AOFPD  
Begin point: Rising edge of CK - CK#  
with ODT first registered HIGH  
Begin point: Rising edge of CK - CK#  
with ODT first registered LOW  
CK  
CK  
VDDQ/2  
CK#  
CK#  
t
t
AONPD  
AOFPD  
End point: Extrapolated point at VRTT_NOM  
VRTT_NOM  
TSW2  
TSW2  
TSW1  
DQ, DM  
TSW1  
DQS, DQS#  
TDQS, TDQS#  
VSW2  
VSW2  
VSW1  
VSW1  
VSSQ  
VSSQ  
End point: Extrapolated point at VSSQ  
t
Fig u re 28: ADC De fin it io n  
Begin point: Rising edge of CK - CK#  
defined by the end point of ODTLCNW  
Begin point: Rising edge of CK - CK# defined by  
the end point of ODTLCWN4 or ODTLCWN8  
CK  
VDDQ/2  
CK#  
t
t
ADC  
ADC  
VRTT_NOM  
VRTT_NOM  
TSW21  
TSW11  
DQ, DM  
DQS, DQS#  
TDQS, TDQS#  
End point:  
Extrapolated  
point at VRTT_NOM  
TSW22  
VSW2  
TSW12  
End point: Extrapolated point at VRTT_WR  
VSW1  
VRTT_WR  
VSSQ  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
53  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ou t p u t Drive r Im p e d a n ce  
Ou t p u t Drive r Im p e d a n ce  
The output driver impedance is selected by MR1[5,1] during initialization. The selected  
value is able to maintain the tight tolerances specified if proper ZQ calibration is  
performed. Output specifications refer to the default output driver unless specifically  
stated otherwise. A functional representation of the output buffer is shown in Figure 29  
on page 54. The output driver impedance RON is defined by the value of the external  
reference resistor RZQ as follows:  
• RON = RZQ/ y (with RZQ = 240Ω ±1 percent; x = 34Ω or 40Ω with y = 7 or 6, respec-  
x
tively)  
The individual pull-up and pull-down resistors (RON and RON ) are defined as  
PU  
PD  
follows:  
• RON  
= (VDDQ - VOUT)/ |IOUT|, when RON is turned off  
PU  
PD  
• RON = (VOUT)/ |IOUT|, when RON is turned off  
PD  
PU  
Fig u re 29: Ou t p u t Drive r  
Chip in drive mode  
Output driver  
VDDQ  
IPU  
To  
other  
RON  
PU  
circuitry  
such as  
RCV, . . .  
DQ  
IOUT  
RON  
PD  
VOUT  
IPD  
VSSQ  
34Ω Ou t p u t Drive r Im p e d a n ce  
The 34Ω driver (MR1[5, 1] = 01) is the default driver. Unless otherwise stated, all timings  
and specifications listed herein apply to the 34Ω driver only. Its impedance RON is  
defined by the value of the external reference resistor RZQ as follows: RON = RZQ/ 7  
34  
(with nominal RZQ = 240Ω ±1 percent) and is actually 34.3Ω ±1 percent. The 34Ω output  
driver impedance characteristics are listed in Table 35 on page 55.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
54  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ou t p u t Drive r Im p e d a n ce  
Ta b le 35:  
34Ω Drive r Im p e d a n ce Ch a ra ct e rist ics  
MR1[5,1]  
RON  
Re sist o r  
VOUT  
Min  
No m  
Ma x  
Un it s  
No t e s  
0,1  
34.3Ω  
Ron34PD  
0.2/VDDQ  
0.5/VDDQ  
0.8/VDDQ  
0.2/VDDQ  
0.5/VDDQ  
0.8/VDDQ  
0.5/VDDQ  
0.6  
0.9  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
n/a  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
10  
RZQ/ 7  
RZQ/ 7  
RZQ/ 7  
RZQ/ 7  
RZQ/ 7  
RZQ/ 7  
%
1
1
0.9  
1
RON  
34PU  
0.9  
1
0.9  
1
0.6  
1
Pull-up/pull-down mismatch (MMPUPD  
)
–10%  
1, 2  
Notes: 1. Tolerance limits assume RZQ of 240Ω (±1 percent) and are applicable after proper ZQ cali-  
bration has been performed at a stable temperature and voltage (VDDQ = VDD, VSSQ = VSS).  
Refer to "34Ω Driver Output Sensitivity" on page 56 if either the temperature or the volt-  
age changes after calibration.  
2. Measurement definition for mismatch between pull-up and pull-down (MMPUPD). Measure  
both RONPU and RONPD at 0.5 × VDDQ:  
RONPU RON  
PD  
MMPUPD = ------------------------------------ X100  
RONNOM  
34Ω Drive r  
The 34Ω drivers current range has been calculated and summarized in Table 37 on  
page 56 for VDD = 1.5V, Table 38 on page 56 for VDD = 1.575V, and Table 39 on page 56  
for VDD = 1.425V. The individual pull-up and pull-down resistors (RON  
are defined as follows:  
and RON  
)
34PD  
34PU  
• RON  
• RON  
= (VOUT)/ |IOUT|; RON  
is turned off  
34PU  
34PD  
34PU  
= (VDDQ - VOUT)/ |IOUT|; RON  
is turned off  
34PD  
Ta b le 36:  
34Ω Drive r Pu ll-Up a n d Pu ll-Do w n Im p e d a n ce Ca lcu la t io n s  
RON  
Min  
No m  
Ma x  
Un it s  
RZQ = 240Ω ±1 percent  
237.6  
33.9  
240  
242.4  
34.6  
Ω
RZQ/7 = (240Ω ±1 percent)/7  
34.3  
Ω
MR1[5,1]  
RON  
Re sist o r  
VOUT  
Min  
No m  
Ma x  
Un it s  
0, 1  
34.3Ω  
RON  
34PD  
0.2 × VDDQ  
0.5 × VDDQ  
0.8 × VDDQ  
0.2 × VDDQ  
0.5 × VDDQ  
0.8 × VDDQ  
20.4  
30.5  
30.5  
30.5  
30.5  
20.4  
34.3  
34.3  
34.3  
34.3  
34.3  
34.3  
38.1  
38.1  
48.5  
48.5  
38.1  
38.1  
Ω
Ω
Ω
Ω
Ω
Ω
RON  
34PU  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
55  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ou t p u t Drive r Im p e d a n ce  
Ta b le 37:  
34Ω Drive r IOH/IOL Ch a ra ct e rist ics: VDD = VDDQ = 1.5V  
MR1[5,1]  
RON  
Re sist o r  
VOUT  
Ma x  
No m  
Min  
Un it s  
0, 1  
34.3Ω  
RON  
34PD  
IOL @ 0.2 × VDDQ  
IOL @ 0.5 × VDDQ  
IOL @ 0.8 × VDDQ  
IOH @ 0.2 × VDDQ  
IOH @ 0.5 × VDDQ  
IOH @ 0.8 × VDDQ  
14.7  
24.6  
39.3  
39.3  
24.6  
14.7  
8.8  
21.9  
35.0  
35.0  
21.9  
8.8  
7.9  
19.7  
24.8  
24.8  
19.7  
7.9  
mA  
mA  
mA  
mA  
mA  
mA  
RON  
34PU  
Ta b le 38:  
34Ω Drive r IOH/IOL Ch a ra ct e rist ics: VDD = VDDQ = 1.575V  
MR1[5,1]  
RON  
Re sist o r  
VOUT  
Ma x  
No m  
Min  
Un it s  
0, 1  
34.3Ω  
RON  
34PD  
IOL @ 0.2 × VDDQ  
IOL @ 0.5 × VDDQ  
IOL @ 0.8 × VDDQ  
IOH @ 0.2 × VDDQ  
IOH @ 0.5 × VDDQ  
IOH @ 0.8 × VDDQ  
15.5  
25.8  
41.2  
41.2  
25.8  
15.5  
9.2  
23  
8.3  
20.7  
26  
mA  
mA  
mA  
mA  
mA  
mA  
36.8  
36.8  
23  
RON  
34PU  
26  
20.7  
8.3  
9.2  
Ta b le 39:  
34Ω Drive r IOH/IOL Ch a ra ct e rist ics: VDD = VDDQ = 1.425V  
MR1[5,1]  
RON  
Re sist o r  
VOUT  
Ma x  
No m  
Min  
Un it s  
0, 1  
34.3Ω  
RON  
34PD  
IOL @ 0.2 × VDDQ  
IOL @ 0.5 × VDDQ  
IOL @ 0.8 × VDDQ  
IOH @ 0.2 × VDDQ  
IOH @ 0.5 × VDDQ  
IOH @ 0.8 × VDDQ  
14.0  
23.3  
37.3  
37.3  
23.3  
14.0  
8.3  
20.8  
33.3  
33.3  
20.8  
8.3  
7.5  
18.7  
23.5  
23.5  
18.7  
7.5  
mA  
mA  
mA  
mA  
mA  
mA  
RON  
34PU  
34Ω Drive r Ou t p u t Se n sit ivit y  
If either the temperature or the voltage changes after ZQ calibration, the tolerance limits  
listed in Table 35 on page 55 can be expected to widen according to Table 40 and  
Table 41 on page 57.  
Ta b le 40:  
34Ω Ou t p u t Drive r Se n sit ivit y De fin it io n  
Sym b o l Min  
0.9 - dRONdTH × |ΔT| - dRONdVH × |ΔV|  
Ma x  
Un it s  
RON @ 0.8 × VDDQ  
RON @ 0.5 × VDDQ  
RON @ 0.2 × VDDQ  
1.1 + dRONdTH × |ΔT| + dRONdVH × |ΔV|  
1.1 + dRONdTM × |ΔT| + dRONdVM × |ΔV|  
1.1 + dRONdTL × |ΔT| + dRONdVL × |ΔV|  
RZQ/ 7  
RZQ/7  
RZQ/ 7  
0.9 - dRONdTM × |ΔT| - dRONdVM × |ΔV|  
0.9 - dRONdTL × |ΔT| - dRONdVL × |ΔV|  
Notes: 1. ΔT = T - T(@ calibration), ΔV = VDDQ - VDDQ(@ calibration), and VDD = VDDQ.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
56  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ou t p u t Drive r Im p e d a n ce  
Ta b le 41:  
34Ω Ou t p u t Drive r Vo lt a g e a n d Te m p e ra t u re Se n sit ivit y  
Ch a n g e  
Min  
Ma x  
Un it s  
dRONdTM  
dRONdVM  
dRONdTL  
dRONdVL  
dRONdTH  
dRONdVH  
0
0
0
0
0
0
1.5  
0.13  
1.5  
% /°C  
% /mV  
% /°C  
0.13  
1.5  
% /mV  
% /°C  
0.13  
% /mV  
Alt e rn a t ive 40Ω Drive r  
Ta b le 42:  
40Ω Drive r Im p e d a n ce Ch a ra ct e rist ics  
MR1[5,1]  
RON  
Re sist o r  
VOUT  
Min  
No m  
Ma x  
Un it s  
No t e s  
0,0  
40Ω  
RON  
40PD  
0.2 × VDDQ  
0.5 × VDDQ  
0.8 × VDDQ  
0.2 × VDDQ  
0.5 × VDDQ  
0.8 × VDDQ  
0.5 × VDDQ  
0.6  
0.9  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
n/a  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
10  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
%
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
0.9  
RON  
40PU  
0.9  
0.9  
0.6  
Pull-up/pull-down mismatch (MMPUPD  
)
–10%  
Notes: 1. Tolerance limits assume RZQ of 240Ω (±1 percent) and are applicable after proper ZQ cali-  
bration has been performed at a stable temperature and voltage (VDDQ = VDD, VSSQ = VSS).  
Refer to "40Ω Driver Output Sensitivity" on page 57 if either the temperature or the volt-  
age changes after calibration.  
2. Measurement definition for mismatch between pull-up and pull-down (MMPUPD). Measure  
both RONPU and RONPD at 0.5 × VDDQ:  
RON RON  
PU  
PD  
MM  
= ------------------------------------x100  
PUPD  
RONNo m  
40Ω Drive r Ou t p u t Se n sit ivit y  
If either the temperature or the voltage changes after I/ O calibration, the tolerance  
limits listed in Table 42 can be expected to widen according to Table 43 and Table 44 on  
page 58.  
Ta b le 43:  
40Ω Ou t p u t Drive r Se n sit ivit y De fin it io n  
Sym b o l Min  
0.9 - dRONdTH × |ΔT| - dRONdVH × |ΔV|  
Ma x  
Un it s  
RON @ 0.8 × VDDQ  
RON @ 0.5 × VDDQ  
RON @ 0.2 × VDDQ  
1.1 + dRONdTH × |ΔT| + dRONdVH × |ΔV|  
1.1 + dRONdTM × |ΔT| + dRONdVM × |ΔV|  
1.1 + dRONdTL × |ΔT| + dRONdVL × |ΔV|  
RZQ/6  
RZQ/6  
RZQ/6  
0.9 - dRONdTM × |ΔT| - dRONdVM × |ΔV|  
0.9 - dRONdTL × |ΔT| - dRONdVL × |ΔV|  
Notes: 1. ΔT = T - T(@ calibration), ΔV = VDDQ - VDDQ(@ calibration), and VDD = VDDQ.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
57  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ou t p u t Ch a ra ct e rist ics a n d Op e ra t in g Co n d it io n s  
Ta b le 44:  
40Ω Ou t p u t Drive r Vo lt a g e a n d Te m p e ra t u re Se n sit ivit y  
Ch a n g e  
Min  
Ma x  
Un it  
dRONdTM  
dRONdVM  
dRONdTL  
dRONdVL  
dRONdTH  
dRONdVH  
0
0
0
0
0
0
1.5  
0.15  
1.5  
% /°C  
% /mV  
% /°C  
0.15  
1.5  
% /mV  
% /°C  
0.15  
% /mV  
Ou t p u t Ch a ra ct e rist ics a n d Op e ra t in g Co n d it io n s  
The DRAM uses both single-ended and differential output drivers. The single-ended  
output driver is summarized in Table 45 while the differential output driver is summa-  
rized in Table 46 on page 59.  
Ta b le 45:  
Sin g le -En d e d Ou t p u t Drive r Ch a ra ct e rist ics  
All voltages are referenced to Vss  
Pa ra m e t e r/Co n d it io n  
Sym b o l  
Min  
Ma x  
Un it s No t e s  
Output leakage current: DQ are disabled;  
IOZ  
–5  
+5  
µA  
1
0V VOUT VDDQ; ODT is disabled; ODT is HIGH  
Output slew rate: Single-ended; For rising and falling  
edges, measure between VOL(AC) = VREF - 0.1 × VDDQ and  
VOH(AC) = VREF + 0.1 × VDDQ  
SRQSE  
2.5  
5
V/ns  
1, 2, 3  
Single-ended DC high-level output voltage  
Single-ended DC mid-point level output voltage  
Single-ended DC low-level output voltage  
Single-ended AC high-level output voltage  
Single-ended AC low-level output voltage  
Delta RON between pull-up and pull-down for DQ/DQS  
Test load for AC timing and output slew rates  
VOH(DC)  
VOM(DC)  
VOL(DC)  
VOH(AC)  
VOL(AC)  
MMPUPD  
0.8 × VDDQ  
0.5 × VDDQ  
0.2 × VDDQ  
V
V
V
V
V
%
1, 2, 4  
1, 2, 4  
1, 2, 4  
1, 2, 3, 5  
1, 2, 3, 5  
1, 6  
VTT + 0.1 × VDDQ  
VTT - 0.1 × VDDQ  
–10  
+10  
Output to VTT (VDDQ/2) via 25Ω resistor  
3
Notes: 1. RZQ of 240Ω (±1 percent) with RZQ/7 enabled (default 34Ω driver) and is applicable after  
proper ZQ calibration has been performed at a stable temperature and voltage  
(VDDQ = VDD, VSSQ = VSS).  
2. VTT = VDDQ/2.  
3. See Figure 32 on page 60 for the test load configuration.  
4. See Table 35 on page 55 for IV curve linearity. Do not use AC test load.  
5. See Table 47 on page 61 for output slew rate.  
6. See Table 35 on page 55 for additional information.  
7. See Figure 30 on page 59 for an example of a single-ended output signal.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
58  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ou t p u t Ch a ra ct e rist ics a n d Op e ra t in g Co n d it io n s  
Ta b le 46:  
Diffe re n t ia l Ou t p u t Drive r Ch a ra ct e rist ics  
All voltages are referenced to Vss  
Pa ra m e t e r/Co n d it io n  
Sym b o l  
Min  
Ma x  
Un it s No t e s  
Output leakage current: DQ are disabled;  
IOZ  
–5  
+5  
µA  
1
0V VOUT VDDQ; ODT is disabled; ODT is HIGH  
Output slew rate: Differential; For rising and falling  
edges, measure between VOLDIFF(AC) = –0.2 × VDDQ  
and VOHDIFF(AC) = +0.2 × VDDQ  
SRQDIFF  
5
10  
V/ns  
1
Output differential cross-point voltage  
VOX(AC)  
VOHDIFF(AC)  
VOLDIFF(AC)  
MMPUPD  
VREF - 100  
VREF + 100  
mV  
V
1, 2, 3  
1, 4  
1, 4  
1, 5  
3
Differential high-level output voltage  
+0.2 × VDDQ  
–0.2 × VDDQ  
Differential low-level output voltage  
V
Delta RON between pull-up and pull-down for DQ/DQS  
Test load for AC timing and output slew rates  
–10  
+10  
%
Output to VTT (VDDQ/2) via 25Ω resistor  
Notes: 1. RZQ of 240Ω (±1 percent) with RZQ/7 enabled (default 34Ω driver) and is applicable after  
proper ZQ calibration has been performed at a stable temperature and voltage  
(VDDQ = VDD, VSSQ = VSS).  
2. VREF = VDDQ/2.  
3. See Figure 32 on page 60 for the test load configuration.  
4. See Table 48 on page 62 for the output slew rate.  
5. See Table 35 on page 55 for additional information.  
6. See Figure 31 on page 60 for an example of a differential output signal.  
Fig u re 30: DQ Ou t p u t Sig n a l  
MAX output  
VOH(AC)  
VOL(AC)  
MIN output  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
59  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ou t p u t Ch a ra ct e rist ics a n d Op e ra t in g Co n d it io n s  
Fig u re 31: Diffe re n t ia l Ou t p u t Sig n a l  
MAX output  
VOH(DIFF)  
VOX(AC) MAX  
X
X
X
VOX(AC) MIN  
X
VOL(DIFF)  
MIN output  
Re fe re n ce Ou t p u t Lo a d  
Figure 32 on page 60 represents the effective reference load of 25Ω used in defining the  
relevant device AC timing parameters (except ODT reference timing) as well as the  
output slew rate measurements. It is not intended to be a precise representation of a  
particular system environment or a depiction of the actual load presented by a produc-  
tion tester. System designers should use IBIS or other simulation tools to correlate the  
timing reference load to a system environment.  
Fig u re 32: Re fe re n ce Ou t p u t Lo a d fo r AC Tim in g a n d Ou t p u t Sle w Ra t e  
VDDQ/2  
VREF  
DUT  
DQ  
DQS  
RTT = 25Ω  
VTT = VDDQ/2  
DQS#  
Timing reference point  
RZQ = 240Ω  
ZQ  
VSS  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
60  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ou t p u t Ch a ra ct e rist ics a n d Op e ra t in g Co n d it io n s  
Sle w Ra t e De fin it io n s fo r Sin g le -En d e d Ou t p u t Sig n a ls  
The single-ended output driver is summarized in Table 45 on page 58. With the refer-  
ence load for timing measurements, the output slew rate for falling and rising edges is  
defined and measured between VOL(AC) and VOH(AC) for single-ended signals, as shown  
in Table 47 and Figure 33.  
Ta b le 47:  
Sin g le -En d e d Ou t p u t Sle w Ra t e De fin it io n  
Sin g le -En d e d Ou t p u t  
Sle w Ra t e s  
(Lin e a r Sig n a ls)  
Me a su re d  
Fro m  
Ou t p u t  
Ed g e  
To  
Ca lcu la t io n  
DQ  
Rising  
VOL(AC)  
VOH(AC)  
VOH(AC) - VOL(AC)  
ΔTRSE  
Falling  
VOH(AC)  
VOL(AC)  
VOH(AC) - VOL(AC)  
ΔTFSE  
Fig u re 33: No m in a l Sle w Ra t e De fin it io n fo r Sin g le -En d e d Ou t p u t Sig n a ls  
ΔTRSE  
VOH(AC)  
VTT  
VOL(AC)  
ΔTFSE  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
61  
1Gb : x4, x8, x16 DDR3 SDRAM  
Ou t p u t Ch a ra ct e rist ics a n d Op e ra t in g Co n d it io n s  
Sle w Ra t e De fin it io n s fo r Diffe re n t ia l Ou t p u t Sig n a ls  
The differential output driver is summarized in Table 46 on page 59. With the reference  
load for timing measurements, the output slew rate for falling and rising edges is defined  
and measured between VOL(AC) and VOH(AC) for differential signals, as shown in  
Table 48 and Figure 34.  
Ta b le 48:  
Diffe re n t ia l Ou t p u t Sle w Ra t e De fin it io n  
Diffe re n t ia l Ou t p u t Sle w  
Ra t e s  
(Lin e a r Sig n a ls)  
Me a su re d  
Ou t p u t  
Ed g e  
Fro m  
To  
Ca lcu la t io n  
DQS, DQS#  
Rising  
VOLDIFF(AC)  
VOHDIFF(AC)  
VOHDIFF(AC) - VOLDIFF(AC)  
ΔTRDIFF  
Falling  
VOHDIFF(AC)  
VOLDIFF(AC)  
VOHDIFF(AC) - VOLDIFF(AC)  
ΔTFDIFF  
Fig u re 34: No m in a l Diffe re n t ia l Ou t p u t Sle w Ra t e De fin it io n fo r DQS, DQS#  
ΔTRDIFF  
VOH(DIFF)AC  
0
VOL(DIFF)AC  
ΔTFDIFF  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
62  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
Sp e e d Bin Ta b le s  
Ta b le 49:  
DDR3-800 Sp e e d Bin s  
DDR3-800 Sp e e d Bin  
CL-t RCD-t RP  
-25E  
-25  
5-5-5  
6-6-6  
Pa ra m e t e r  
Sym b o l  
Min  
Ma x  
Min  
Ma x  
Un it s  
No t e s  
ACTIVATE to internal READ or WRITE delay  
time  
tRCD  
12.5  
15  
ns  
PRECHARGE command period  
tRP  
tRC  
12.5  
50  
15  
ns  
ns  
ACTIVATE-to-ACTIVATE or REFRESH  
command period  
52.5  
t
t
ACTIVATE-to-PRECHARGE command period  
tRAS  
tCK (AVG)  
tCK (AVG)  
37.5  
2.5  
9 × REFI  
3.3  
37.5  
9 × REFI  
ns  
ns  
1
2, 3  
2
CL = 5  
CWL = 5  
CWL = 5  
Reserved  
2.5  
CL = 6  
2.5  
3.3  
3.3  
ns  
Supported CL settings  
Supported CWL settings  
5, 6  
6
5
CK  
CK  
5
Notes: 1. tREFI depends on TOPER  
.
t
t
2. The CL and CWL settings result in CK requirements. When making a selection of CK, both  
CL and CWL requirement settings need to be fulfilled.  
3. Reserved settings are not allowed.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
63  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
Ta b le 50:  
DDR3-1066 Sp e e d Bin s  
DDR3-1066 Sp e e d Bin  
CL-t RCD-t RP  
-187E  
7-7-7  
-187  
8-8-8  
Pa ra m e t e r  
Sym b o l  
Min  
Ma x  
Min  
Ma x  
Un it s  
No t e s  
ACTIVATE to internal READ or WRITE  
delay time  
tRCD  
13.125  
13.125  
50.625  
37.5  
15  
ns  
PRECHARGE command period  
tRP  
tRC  
15  
ns  
ns  
ns  
ACTIVATE-to-ACTIVATE or REFRESH  
command period  
52.5  
37.5  
t
t
ACTIVATE-to-PRECHARGE command  
period  
tRAS  
9 × REFI  
9 × REFI  
1
CL = 5  
CL = 6  
CL = 7  
CL = 8  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
Reserved  
Reserved  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CK  
CK  
2, 3  
3
Reserved  
Reserved  
2.5  
3.3  
2.5  
3.3  
2
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2, 3  
3
1.875  
<2.5  
2, 3  
3
Reserved  
1.875  
<2.5  
1.875  
<2.5  
2
Supported CL settings  
Supported CWL settings  
6, 7, 8  
5, 6  
6, 8  
5, 6  
Notes: 1. tREFI depends on TOPER  
.
t
t
2. The CL and CWL settings result in CK requirements. When making a selection of CK, both  
CL and CWL requirement settings need to be fulfilled.  
3. Reserved settings are not allowed.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
64  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
Ta b le 51:  
DDR3-1333 Sp e e d Bin s  
DDR3-1333 Sp e e d Bin  
CL-t RCD-t RP  
-15F  
-15E  
-15  
8-8-8  
9-9-9  
10-10-10  
Pa ra m e t e r  
Sym b o l  
Min  
Ma x  
Min  
Ma x  
Min  
Ma x  
Un it s No t e s  
ACTIVATE to internal READ or  
WRITE delay time  
tRCD  
12  
13.5  
15  
ns  
PRECHARGE command period  
tRP  
tRC  
12  
48  
13.5  
49.5  
15  
51  
ns  
ns  
ACTIVATE-to-ACTIVATE or  
REFRESH command period  
t
t
t
ACTIVATE-to-PRECHARGE  
command period  
tRAS  
36  
9 × REFI  
36  
9 × REFI  
36  
9 × REFI ns  
1
CL = 5  
CWL = 5  
CWL = 6, 7 tCK (AVG)  
tCK (AVG)  
2.5  
3.3  
Reserved  
Reserved  
2.5 3.3  
Reserved  
Reserved  
2.5 3.3  
Reserved  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2, 3  
3
Reserved  
CL = 6  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5, 6 tCK (AVG)  
CWL = 7  
tCK (AVG)  
CWL = 5, 6 tCK (AVG)  
CWL = 7  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG) 1.875  
tCK (AVG)  
tCK (AVG)  
tCK (AVG) 1.875  
tCK (AVG)  
2.5  
3.3  
2
Reserved  
Reserved  
Reserved  
Reserved  
2, 3  
3
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CL = 7  
CL = 8  
CL = 9  
3
<2.5  
Reserved  
Reserved  
1.875  
<2.5  
2, 3  
2, 3  
3
Reserved  
Reserved  
<2.5  
1.875  
<2.5  
1.875  
<2.5  
2
1.5  
<1.875  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2, 3  
3
Reserved  
1.5  
<1.875  
1.5  
Reserved  
1.5 <1.875  
<1.875  
2, 3  
3
CL = 10  
Reserved  
1.5  
<1.875  
1.5  
<1.875  
ns  
2
Supported CL settings  
5, 6, 7, 8, 9, 10  
5, 6, 7  
6, 7, 8, 9, 10  
5, 6, 7  
6, 8, 10  
5, 6, 7  
CK  
Supported CWL settings  
CK  
Notes: 1. tREFI depends on TOPER  
.
t
t
2. The CL and CWL settings result in CK requirements. When making a selection of CK, both  
CL and CWL requirement settings need to be fulfilled.  
3. Reserved settings are not allowed.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
65  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
Ta b le 52:  
DDR3-1600 Sp e e d Bin s  
DDR3-1600 Sp e e d Bin  
CL-t RCD-t RP  
-125F  
9-9-9  
-125E  
-125  
10-10-10  
11-11-11  
Pa ra m e t e r  
Sym b o l  
Min  
Ma x  
Min  
Ma x  
Min  
Ma x  
Un it s  
No t e s  
ACTIVATE to internal READ  
or WRITE delay time  
tRCD  
11.25  
11.25  
46.25  
35  
12.5  
12.5  
47.5  
35  
13.75  
ns  
PRECHARGE command  
period  
tRP  
tRC  
13.75  
48.75  
35  
ns  
ns  
ns  
ACTIVATE-to-ACTIVATE or  
REFRESH command period  
t
t
t
ACTIVATE-to-PRECHARGE  
command period  
tRAS  
9 × REFI  
9 × REFI  
9 × REFI  
1
CL = 5  
CWL = 5  
CWL = 6, 7, 8  
CWL = 5  
CWL = 6  
CWL = 7, 8  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 8  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 8  
CWL = 5, 6  
CWL = 7  
CWL = 8  
CWL = 5, 6  
CWL = 7  
CWL = 8  
CWL = 5, 6, 7  
CWL = 8  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
tCK (AVG)  
2.5  
3.3  
2.5  
3.3  
Reserved  
Reserved  
2.5 3.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2, 3  
3
Reserved  
Reserved  
CL = 6  
2.5  
3.3  
2.5  
3.3  
2
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2, 3  
3
Reserved  
Reserved  
Reserved  
Reserved  
CL = 7  
CL = 8  
3
1.875  
<2.5  
1.875  
<2.5  
2, 3  
2, 3  
3
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
3
1.875  
1.5  
<2.5  
1.875  
<2.5  
1.875  
<2.5  
2
<1.875  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2, 3  
2, 3  
3
Reserved  
Reserved  
CL = 9  
1.5  
<1.875  
<1.5  
1.5  
<1.875  
2, 3  
2, 3  
3
1.25  
Reserved  
Reserved  
CL = 10  
CL = 11  
Reserved  
1.5  
<1.875  
<1.5  
1.5  
<1.875  
<1.5  
1.5  
<1.875  
2
1.25  
1.25  
Reserved  
Reserved  
2, 3  
3
Reserved  
Reserved  
1.25  
<1.5  
1.25  
<1.5  
1.25  
<1.5  
ns  
2
Supported CL settings  
Supported CWL settings  
5, 6, 7, 8, 9, 10, 11 5, 6, 7, 8, 9, 10, 11  
5, 6, 7, 8 5, 6, 7, 8  
6, 8, 10, 11  
5, 6, 7, 8  
CK  
CK  
Notes: 1. tREFI depends on TOPER  
.
t
t
2. The CL and CWL settings result in CK requirements. When making a selection of CK, both  
CL and CWL requirement settings need to be fulfilled.  
3. Reserved settings are not allowed.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
66  
©2006 Micron Technology, Inc. All rights reserved.  
Ta b le 53:  
Ele ct rica l Ch a ra ct e rist ics a n d AC Op e ra t in g Co n d it io n s (Sh e e t 1 o f 7)  
Notes: 1–8 apply to the entire table; notes appear on page 74  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Pa ra m e t e r  
Sym b o l  
Min  
Ma x  
Min  
Ma x  
Min  
Ma x  
Min  
Ma x  
Un it s No t e s  
Clo ck Tim in g  
Clock period average: TC = 0°C to 85°C  
tCKDLL_DIS  
8
8
7,800  
3,900  
8
8
7,800  
3,900  
8
8
7,800  
3,900  
8
8
7,800  
3,900  
ns  
ns  
9
DLL disable mode  
TC = >85°C to 95°C  
t
Clock period average: DLL enable mode  
High pulse width average  
tCK (AVG)  
tCH (AVG)  
tCL (AVG)  
tJITPER  
See “Speed Bin Tableson page 63 for CK range allowed  
ns  
10, 11  
12  
0.47  
0.47  
–100  
–90  
0.53  
0.53  
100  
90  
0.47  
0.47  
–90  
0.53  
0.53  
90  
0.47  
0.47  
–80  
0.53  
0.53  
80  
0.47  
0.47  
–70  
0.53  
0.53  
70  
CK  
CK  
ps  
Low pulse width average  
12  
Clock period jitter  
DLL locked  
DLL locking  
13  
tJITPER, LCK  
–80  
80  
–70  
70  
–60  
60  
ps  
13  
t
t
t
t
Clock absolute period  
tCK(ABS) MIN = CK (AVG) MIN + JITPER MIN; MAX = CK (AVG) MAX + JITPER MAX  
ps  
Clock absolute high pulse width  
tCH (ABS)  
0.43  
0.43  
0.43  
0.43  
tCK  
(AVG)  
tCK  
14  
15  
Clock absolute low pulse width  
tCL (ABS)  
0.43  
0.43  
0.43  
0.43  
(AVG)  
Cycle-to-cycle jitter  
DLL locked  
DLL locking  
2 cycles  
tJITCC  
tJITCC, LCK  
tERR2PER  
tERR3PER  
tERR4PER  
tERR5PER  
tERR6PER  
tERR7PER  
tERR8PER  
tERR9PER  
tERR10PER  
tERR11PER  
tERR12PER  
tERRnPER  
200  
180  
180  
160  
160  
140  
140  
120  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
16  
16  
17  
17  
17  
17  
17  
17  
17  
17  
17  
17  
17  
17  
Cumulative error  
across  
–147  
–175  
–194  
–209  
–222  
–232  
–241  
–249  
–257  
–263  
–269  
147  
175  
194  
209  
222  
232  
241  
249  
257  
263  
269  
–132  
–157  
–175  
–188  
–200  
–209  
–217  
–224  
–231  
–237  
–242  
132  
157  
175  
188  
200  
209  
217  
224  
231  
237  
242  
–118  
–140  
–155  
–168  
–177  
–186  
–193  
–200  
–205  
–210  
–215  
118  
140  
155  
168  
177  
186  
193  
200  
205  
210  
215  
–103  
–122  
–136  
–147  
–155  
–163  
–169  
–175  
–180  
–184  
–188  
103  
122  
136  
147  
155  
163  
169  
175  
180  
184  
188  
3 cycles  
4 cycles  
5 cycles  
6 cycles  
7 cycles  
8 cycles  
9 cycles  
10 cycles  
11 cycles  
12 cycles  
t
n = 13, 14 . . . 49, 50  
cycles  
tERRnPER MIN = (1 + 0.68ln[n]) × JITPER MIN  
tERRnPER MAX = (1 + 0.68ln[n]) × JITPER MAX  
t
Ta b le 53:  
Pa ra m e t e r  
Ele ct rica l Ch a ra ct e rist ics a n d AC Op e ra t in g Co n d it io n s (Sh e e t 2 o f 7)  
Notes: 1–8 apply to the entire table; notes appear on page 74  
DDR3-800  
Min Ma x  
DQ In p u t Tim in g  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Sym b o l  
Min  
Ma x  
Min  
Ma x  
Min  
Ma x  
Un it s No t e s  
Data setup time to  
DQS, DQS#  
Base (specification)  
VREF @ 1 V/ns  
tDS  
AC175  
75  
250  
150  
250  
25  
200  
100  
200  
ps  
ps  
ps  
ps  
ps  
18, 19  
19, 20  
18,19  
19, 20  
Data hold time from Base (specification)  
DQS, DQS#  
tDH  
AC175  
VREF @ 1 V/ns  
Data setup time to  
DQS, DQS#  
Base (specification)  
tDS  
AC150  
30  
10  
18,  
19, 21  
VREF @ 1 V/ns  
180  
65  
160  
45  
ps  
ps  
ps  
ps  
19,  
20,21  
Data hold time from Base (specification)  
DQS, DQS#  
tDH  
AC150  
18,  
19, 21  
VREF @ 1 V/ns  
165  
400  
145  
360  
19,  
20, 21  
Minimum data pulse width  
tDIPW  
600  
490  
42  
DQ Ou t p u t Tim in g  
DQS, DQS# to DQ skew, per access  
tDQSQ  
tQH  
200  
150  
125  
100  
ps  
tCK  
DQ output hold time from DQS, DQS#  
0.38  
0.38  
0.38  
0.38  
22  
(AVG)  
DQ Low-Z time from CK, CK#  
DQ High-Z time from CK, CK#  
tLZ (DQ)  
tHZ (DQ)  
–800  
400  
400  
–600  
300  
300  
–500  
250  
250  
–450  
225  
225  
ps  
ps  
23, 24  
23, 24  
DQ St ro b e In p u t Tim in g  
DQS, DQS# rising to CK, CK# rising  
tDQSS  
tDQSL  
tDQSH  
tDSS  
tDSH  
tWPRE  
tWPST  
–0.25  
0.45  
0.45  
0.2  
0.25  
0.55  
0.55  
–0.25  
0.45  
0.45  
0.2  
0.25  
0.55  
0.55  
–0.25  
0.45  
0.45  
0.2  
0.25  
0.55  
0.55  
–0.27  
0.45  
0.45  
0.18  
0.18  
0.9  
0.27  
0.55  
0.55  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
26  
DQS, DQS# differential input low pulse width  
DQS, DQS# differential input high pulse width  
DQS, DQS# falling setup to CK, CK# rising  
DQS, DQS# falling hold from CK, CK# rising  
DQS, DQS# differential WRITE preamble  
DQS, DQS# differential WRITE postamble  
26  
26  
0.2  
0.2  
0.2  
0.9  
0.9  
0.9  
0.3  
0.3  
0.3  
0.3  
Ta b le 53:  
Ele ct rica l Ch a ra ct e rist ics a n d AC Op e ra t in g Co n d it io n s (Sh e e t 3 o f 7)  
Notes: 1–8 apply to the entire table; notes appear on page 74  
DDR3-800  
Min Ma x  
DQ St ro b e Ou t p u t Tim in g  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Pa ra m e t e r  
Sym b o l  
Min  
Ma x  
Min  
Ma x  
Min  
Ma x  
Un it s No t e s  
DQS, DQS# rising to/from rising CK, CK#  
tDQSCK  
tDQSCK  
–400  
1
400  
10  
–300  
1
300  
10  
–255  
1
255  
10  
–225  
1
225  
10  
ps  
ns  
24  
27  
DQS, DQS# rising to/from rising CK, CK# when  
DLL is disabled  
DLL_DIS  
DQS, DQS# differential output high time  
DQS, DQS# differential output low time  
DQS, DQS# Low-Z time (RL - 1)  
tQSH  
tQSL  
tLZ (DQS)  
tHZ (DQS)  
tRPRE  
0.38  
0.38  
–800  
0.38  
0.38  
–600  
0.40  
0.40  
–500  
0.40  
0.40  
–450  
CK  
CK  
ps  
22  
22  
400  
300  
250  
225  
23, 24  
23, 24  
24, 25  
24, 28  
DQS, DQS# High-Z time (RL + BL/2)  
DQS, DQS# differential READ preamble  
DQS, DQS# differential READ postamble  
400  
300  
250  
225  
ps  
0.9  
Note 25  
Note 28  
0.9  
Note 25  
Note 28  
0.9  
Note 25  
Note 28  
0.9  
Note 25  
Note 28  
CK  
CK  
tRPST  
0.3  
0.3  
0.3  
0.3  
Ta b le 53:  
Ele ct rica l Ch a ra ct e rist ics a n d AC Op e ra t in g Co n d it io n s (Sh e e t 4 o f 7)  
Notes: 1–8 apply to the entire table; notes appear on page 74  
DDR3-800  
Min Ma x  
Co m m a n d a n d Ad d re ss Tim in g  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Pa ra m e t e r  
Sym b o l  
Min Ma x  
Min  
Ma x  
Min  
Ma x  
Un it s No t e s  
DLL locking time  
tDLLK  
tIS  
512  
200  
375  
275  
375  
512  
125  
300  
200  
300  
512  
65  
512  
45  
CK  
ps  
ps  
ps  
ps  
ps  
29  
CTRL, CMD, ADDR  
setup to CK,CK#  
Base (specification)  
VREF @ 1 V/ns  
30, 31  
20, 31  
30, 31  
20, 31  
AC175  
240  
140  
240  
190  
220  
120  
220  
170  
CTRL, CMD, ADDR  
hold from CK,CK#  
Base (specification)  
VREF @ 1 V/ns  
tIH  
CTRL, CMD, ADDR  
setup to CK,CK#  
Base (specification)  
tIS  
AC150  
21,  
30, 31  
VREF @ 1 V/ns  
340  
620  
320  
560  
ps  
20,  
21, 31  
Minimum CTRL, CMD, ADDR pulse width  
ACTIVATE to internal READ or WRITE delay  
PRECHARGE command period  
tIPW  
tRCD  
tRP  
tRAS  
tRC  
900  
780  
ps  
ns  
ns  
ns  
ns  
CK  
42  
32  
t
See “Speed Bin Tableson page 63 for RCD  
t
See “Speed Bin Tableson page 63 for RP  
32  
t
ACTIVATE-to-PRECHARGE command period  
ACTIVATE-to-ACTIVATE command period  
See “Speed Bin Tableson page 63 for RAS  
32, 33  
32  
t
See “Speed Bin Tableson page 63 for RC  
ACTIVATE-to-  
ACTIVATE minimum  
command period  
1KB page size  
tRRD  
MIN = greater of MIN = greater of MIN = greater of MIN = greater of  
4CK or 10ns 4CK or 7.5ns 4CK or 6ns 4CK or 6ns  
MIN = greater of 4CK or 10ns MIN = greater of 4CK or 7.5ns  
32  
2KB page size  
CK  
ns  
ns  
ns  
32  
32  
32  
Four ACTIVATE windows for 1KB page size  
Four ACTIVATE windows for 2KB page size  
Write recovery time  
tFAW  
40  
50  
37.5  
50  
30  
45  
30  
40  
tWR  
MIN = 15ns; MAX = n/a  
32,  
33, 34  
Delay from start of internal WRITE transaction  
to internal READ command  
tWTR  
MIN = greater of 4CK or 7.5ns; MAX = n/a  
CK  
32, 35  
READ-to-PRECHARGE time  
tRTP  
tCCD  
tDAL  
MIN = greater of 4CK or 7.5ns; MAX = n/a  
MIN = 4CK; MAX = n/a  
CK  
CK  
CK  
32, 33  
CAS#-to-CAS# command delay  
t
Auto precharge write recovery + precharge  
time  
MIN = WR + RP/ tCK (AVG); MAX = n/a  
MODE REGISTER SET command cycle time  
MODE REGISTER SET command update delay  
tMRD  
tMOD  
tMPRR  
MIN = 4CK; MAX = n/a  
MIN = greater of 12CK or 15ns; MAX = n/a  
MIN = 1CK; MAX = n/a  
CK  
CK  
CK  
MULTIPURPOSE REGISTER READ burst end to  
mode register set for multipurpose register  
exit  
Ta b le 53:  
Ele ct rica l Ch a ra ct e rist ics a n d AC Op e ra t in g Co n d it io n s (Sh e e t 5 o f 7)  
Notes: 1–8 apply to the entire table; notes appear on page 74  
DDR3-800  
Min Ma x  
Ca lib ra t io n Tim in g  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Pa ra m e t e r  
Sym b o l  
Min  
Ma x  
Min  
Ma x  
Min  
Ma x  
Un it s No t e s  
ZQCL command: Long POWER-UP and RESET  
tZQINIT  
512  
512  
512  
512  
CK  
calibration time  
operation  
Normal operation  
tZQOPER  
tZQCS  
256  
64  
256  
64  
256  
64  
256  
64  
CK  
CK  
ZQCS command: Short calibration time  
In it ia liza t io n a n d Re se t Tim in g  
t
Exit reset from CKE HIGH to a valid command  
tXPR  
tVDDPR  
MIN = greater of 5CK or RFC + 10ns; MAX = n/a  
MIN = n/a; MAX = 200  
CK  
ms  
Begin power supply ramp to power supplies  
stable  
RESET# LOW to power supplies stable  
RESET# LOW to I/O and RTT High-Z  
tRPS  
tIOz  
MIN = 0; MAX = 200  
MIN = n/a; MAX = 20  
ms  
ns  
36  
Re fre sh Tim in g  
t
REFRESH-to-ACTIVATE or REFRESH command  
period  
tRFC  
MIN = 110; MAX = 9 × REFI (REFRESH-to-REFRESH command period)  
ns  
Maximum refresh  
period  
TC = 0°C to 85°C  
TC = >85°C to 95°C  
TC = 0°C to 85°C  
TC = >85°C to 95°C  
64 (1X)  
32 (2X)  
ms  
ms  
µs  
37  
37  
37  
37  
Maximum average  
periodic refresh  
tREFI  
7.8 (64ms/8,192)  
3.9 (32ms/8,192)  
µs  
Se lf Re fre sh Tim in g  
t
Exit self refresh to commands not requiring a  
locked DLL  
tXS  
MIN = greater of 5CK or RFC + 10ns; MAX = n/a  
CK  
CK  
CK  
CK  
CK  
t
Exit self refresh to commands requiring a  
locked DLL  
tXSDLL  
tCKESR  
tCKSRE  
tCKSRX  
MIN = DLLK (MIN); MAX = n/a  
29  
t
Minimum CKE low pulse width for self refresh  
entry to self refresh exit timing  
MIN = CKE (MIN) + CK; MAX = n/a  
Valid clocks after self refresh entry or power-  
down entry  
MIN = greater of 5CK or 10ns; MAX = n/a  
MIN = greater of 5CK or 10ns; MAX = n/a  
Valid clocks before self refresh exit, power-  
down exit, or reset exit  
Ta b le 53:  
Ele ct rica l Ch a ra ct e rist ics a n d AC Op e ra t in g Co n d it io n s (Sh e e t 6 o f 7)  
Notes: 1–8 apply to the entire table; notes appear on page 74  
DDR3-800  
Min Ma x  
Po w e r-Do w n Tim in g  
tCKE (MIN) Greater of 3CK or Greater of 3CK or Greater of 3CK or Greater of 3CK or  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Pa ra m e t e r  
Sym b o l  
Min Ma x  
Min Ma x  
Min Ma x  
Un it s No t e s  
CKE MIN pulse width  
CK  
7.5ns  
5.625ns  
5.625ns  
5ns  
Command pass disable delay  
tCPDED  
tPD  
tANPD  
MIN = 1; MAX = n/a  
CK  
CK  
CK  
t
t
Power-down entry to power-down exit timing  
MIN = CKE (MIN); MAX = 9 × REFI  
WL - 1CK  
Begin power-down period prior to CKE  
registered HIGH  
t
t
Power-down entry period: ODT either  
synchronous or asynchronous  
PDE  
PDX  
Greater of ANPD or RFC - REFRESH command to CKE LOW time  
CK  
CK  
t
Power-down exit period: ODT either  
synchronous or asynchronous  
tANPD + XPDLL  
Po w e r-Do w n En t ry Min im u m Tim in g  
ACTIVATE command to power-down entry  
tACTPDEN  
tPRPDEN  
MIN = 1  
MIN = 1  
CK  
CK  
PRECHARGE/PRECHARGE ALL command to  
power-down entry  
REFRESH command to power-down entry  
MRS command to power-down entry  
tREFPDEN  
tMRSPDEN  
tRDPDEN  
MIN = 1  
CK  
CK  
CK  
38  
t
MIN = MOD (MIN)  
READ/READ with auto precharge command to  
power-down entry  
MIN = RL + 4 + 1  
t
WRITE command to  
power-down entry  
BL8 (OTF, MRS)  
BC4OTF  
tWRPDEN  
MIN = WL + 4 + WR/ tCK (AVG)  
CK  
t
BC4MRS  
tWRPDEN  
tWRAPDEN  
MIN = WL + 2 + WR/ tCK (AVG)  
CK  
CK  
WRITE with auto  
precharge command BC4OTF  
BL8 (OTF, MRS)  
MIN = WL + 4 + WR + 1  
tWRAPDEN  
MIN = WL + 2 + WR + 1  
CK  
to power-down entry  
BC4MRS  
Po w e r-Do w n Exit Tim in g  
DLL on, any valid command, or DLL off to  
commands not requiring locked DLL  
tXP  
MIN = greater of 3CK or 7.5ns;  
MAX = n/a  
MIN = greater of 3CK or 6ns;  
MAX = n/a  
CK  
CK  
Precharge power-down with DLL off to  
tXPDLL  
MIN = greater of 10CK or 24ns; MAX = n/a  
29  
commands requiring a locked DLL  
Ta b le 53:  
Pa ra m e t e r  
Ele ct rica l Ch a ra ct e rist ics a n d AC Op e ra t in g Co n d it io n s (Sh e e t 7 o f 7)  
Notes: 1–8 apply to the entire table; notes appear on page 74  
DDR3-800  
DDR3-1066  
Min Ma x  
ODT Tim in g  
DDR3-1333  
DDR3-1600  
Sym b o l  
Min  
Ma x  
Min  
Ma x  
Min  
Ma x  
Un it s No t e s  
RTT synchronous turn-on delay  
ODTL on  
ODTL off  
tAON  
tAOF  
tAONPD  
CWL + AL - 2CK  
CWL + AL - 2CK  
CK  
CK  
ps  
39  
41  
RTT synchronous turn-off delay  
RTT turn-on from ODTL on reference  
RTT turn-off from ODTL off reference  
–400  
0.3  
400  
0.7  
–300  
0.3  
300  
0.7  
–250  
0.3  
250  
0.7  
–225  
0.3  
225  
0.7  
24, 39  
40, 41  
39  
CK  
ns  
Asynchronous RTT turn-on delay  
(power-down with DLL off)  
MIN = 1; MAX = 9  
MIN = 1; MAX = 9  
MIN = 6; MAX = n/a  
MIN = 4; MAX = n/a  
Asynchronous RTT turn-off delay  
(power-down with DLL off)  
tAOFPD  
ODTH8  
ODTH4  
ns  
41  
ODT HIGH time with WRITE command and  
BL8  
CK  
CK  
ODT HIGH time without WRITE command or  
with WRITE command and BC4  
Dyn a m ic ODT Tim in g  
RTT_NOM-to-RTT_WR change skew  
RTT_WR-to-RTT_NOM change skew - BC4  
RTT_WR-to-RTT_NOM change skew - BL8  
RTT dynamic change skew  
ODTLCNW  
ODTLCNW4  
ODTLCNW8  
tADC  
WL - 2CK  
CK  
CK  
CK  
CK  
4CK + ODTL off  
6CK + ODTL off  
0.3  
0.7  
0.3  
0.7  
0.3  
0.7  
0.3  
0.7  
40  
Writ e Le ve lin g Tim in g  
First DQS, DQS# rising edge  
DQS, DQS# delay  
tWLMRD  
tWLDQSEN  
tWLS  
40  
25  
40  
25  
40  
25  
40  
25  
CK  
CK  
ps  
Write leveling setup from rising CK, CK#  
crossing to rising DQS, DQS# crossing  
325  
245  
195  
163  
Write leveling hold from rising DQS, DQS#  
crossing to rising CK, CK# crossing  
tWLH  
325  
245  
195  
163  
ps  
Write leveling output delay  
Write leveling output error  
tWLO  
tWLOE  
0
0
9
2
0
0
9
2
0
0
9
2
0
0
7.5  
2
ns  
ns  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
No t e s  
1. Parameters are applicable with 0°C T +95°C and VDD/ VDDQ = +1.5V ±0.075V.  
C
2. All voltages are referenced to VSS.  
3. Output timings are only valid for RON output buffer selection.  
34  
t
t
4. Unit “ CK (AVG)” represents the actual CK (AVG) of the input clock under operation.  
Unit “CKrepresents one clock cycle of the input clock, counting the actual clock  
edges.  
5. AC timing and IDD tests may use a VIL-to-VIH swing of up to 900mV in the test envi-  
t
t
t
t
ronment, but input timing is still referenced to VREF (except IS, IH, DS, and DH use  
the AC/ DC trip points and CK, CK# and DQS, DQS# use their crossing points). The  
minimum slew rate for the input signals used to test the device is 1 V/ ns for single-  
ended inputs and 2 V/ ns for differential inputs in the range between VIL(AC) and  
VIH(AC).  
t
6. All timings that use time-based values (ns, µs, ms) should use CK (AVG) to determine  
t
the correct number of clocks (Table 53 on page 67 uses “CKor “ CK [AVG]” inter-  
changeably). In the case of noninteger results, all minimum limits are to be rounded  
up to the nearest whole integer, and all maximum limits are to be rounded down to  
the nearest whole integer.  
7. The use of strobe” or “DQSDIFF” refers to the DQS and DQS# differential crossing  
point when DQS is the rising edge. The use of clock” or “CKrefers to the CK and  
CK# differential crossing point when CK is the rising edge.  
8. This output load is used for all AC timing (except ODT reference timing) and slew  
rates. The actual test load may be different. The output signal voltage reference point  
is VDDQ/ 2 for single-ended signals and the crossing point for differential signals (see  
Figure 32 on page 60).  
9. When operating in DLL disable mode, Micron does not warrant compliance with nor-  
mal mode timings or functionality.  
t
10. The clocks CK (AVG) is the average clock over any 200 consecutive clocks and  
t
CK(AVG) MIN is the smallest clock rate allowed, with the exception of a deviation  
due to clock jitter. Input clock jitter is allowed provided it does not exceed values  
specified and must be of a random Gaussian distribution in nature.  
11. Spread spectrum is not included in the jitter specification values. However, the input  
clock can accommodate spread-spectrum at a sweep rate in the range of 20–60 kHz  
t
with an additional 1 percent of CK (AVG) as a long-term jitter component; however,  
the spread-spectrum may not use a clock rate below tCK (AVG) MIN.  
t
t
12. The clocks CH (AVG) and CL (AVG) are the average half clock period over any 200  
consecutive clocks and is the smallest clock half period allowed, with the exception of  
a deviation due to clock jitter. Input clock jitter is allowed provided it does not exceed  
values specified and must be of a random Gaussian distribution in nature.  
13. The period jitter (tJITPER) is the maximum deviation in the clock period from the aver-  
age or nominal clock. It is allowed in either the positive or negative direction.  
t
14. CH(ABS) is the absolute instantaneous clock high pulse width as measured from one  
rising edge to the following falling edge.  
t
15. CL(ABS) is the absolute instantaneous clock low pulse width as measured from one  
falling edge to the following rising edge.  
16. The cycle-to-cycle jitter (tJITCC) is the amount the clock period can deviate from one  
cycle to the next. It is important to keep cycle-to-cycle jitter at a minimum during the  
DLL locking time.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
74  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
17. The cumulative jitter error (tERRnPER), where n is the number of clocks between 2 and  
50, is the amount of clock time allowed to accumulate consecutively away from the  
average clock over n number of clock cycles.  
t
t
18. DS (base) and DH (base) values are for a single-ended 1 V/ ns DQ slew rate and  
2 V/ ns differential DQS, DQS# slew rate.  
19. These parameters are measured from a data signal (DM, DQ0, DQ1, and so forth)  
transition edge to its respective data strobe signal (DQS, DQS#) crossing.  
20. The setup and hold times are listed converting the base specification values (to which  
derating tables apply) to VREF when the slew rate is 1 V/ ns. These values, with a slew  
rate of 1 V/ ns, are for reference only.  
t
21. Special setup and hold derating and different VAC numbers apply when using 150mV  
AC threshold.  
22. When the device is operated with input clock jitter, this parameter needs to be der-  
t
ated by the actual JITPER of the input clock (output deratings are relative to the  
SDRAM input clock).  
23. Single-ended signal parameter.  
24. The DRAM output timing is aligned to the nominal or average clock. Most output  
parameters must be derated by the actual jitter error when input clock jitter is  
present, even when within specification. This results in each parameter becoming  
larger. The following parameters are required to be derated by subtracting  
t
t
t
t
t
ERR  
(MAX): DQSCK (MIN), LZ (DQS) MIN, LZ (DQ) MIN, and AON (MIN).  
10PER  
t
The following parameters are required to be derated by subtracting ERR  
(MIN):  
10PER  
t
t
t
t
t
DQSCK (MAX), HZ (MAX), LZ (DQS) MAX, LZ (DQ) MAX, and AON (MAX). The  
t
t
t
parameter RPRE (MIN) is derated by subtracting JITPER (MAX), while RPRE (MAX) is  
derated by subtracting JITPER (MIN).  
25. The maximum preamble is bound by LZDQS (MAX).  
t
t
26. These parameters are measured from a data strobe signal (DQS, DQS#) crossing to its  
respective clock signal (CK, CK#) crossing. The specification values are not affected by  
the amount of clock jitter applied, as these are relative to the clock signal crossing.  
These parameters should be met whether clock jitter is present.  
t
27. The DQSCK DLL_DIS parameter begins CL + AL - 1 cycles after the READ command.  
t
28. The maximum postamble is bound by HZDQS (MAX).  
29. Commands requiring a locked DLL are: READ (and RDAP) and synchronous ODT  
t
commands. In addition, after any change of latency XPDLL, timing must be met.  
t
t
30. IS (base) and IH (base) values are for a single-ended 1 V/ ns control/ command/  
address slew rate and 2 V/ ns CK, CK# differential slew rate.  
31. These parameters are measured from a command/ address signal transition edge to  
its respective clock (CK, CK#) signal crossing. The specification values are not affected  
by the amount of clock jitter applied as the setup and hold times are relative to the  
clock signal crossing that latches the command/ address. These parameters should be  
met whether clock jitter is present.  
t
32. For these parameters, the DDR3 SDRAM device supports nPARAM (nCK) =  
t
t
RU( PARAM [ns]/ CK[AVG] [ns]), assuming all input clock jitter specifications are sat-  
t
t
t
isfied. For example, the device will support nRP (nCK) = RU( RP/ CK[AVG]) if all  
input clock jitter specifications are met. This means for DDR3-800 6-6-6, of which  
t
t
t
t
RP = 15ns, the device will support nRP = RU( RP/ CK[AVG]) = 6 as long as the input  
clock jitter specifications are met. That is, the PRECHARGE command at T0 and the  
ACTIVATE command at T0 + 6 are valid even if six clocks are less than 15ns due to  
input clock jitter.  
33. During READs and WRITEs with auto precharge, the DDR3 SDRAM will hold off the  
t
internal PRECHARGE command until RAS (MIN) has been satisfied.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
75  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
t
34. When operating in DLL disable mode, the greater of 4CK or 15ns is satisfied for WR.  
35. The start of the write recovery time is defined as follows:  
– For BL8 (fixed by MRS and OTF): Rising clock edge four clock cycles after WL  
– For BC4 (OTF): Rising clock edge four clock cycles after WL  
– For BC4 (fixed by MRS): Rising clock edge two clock cycles after WL  
36. RESET# should be LOW as soon as power starts to ramp to ensure the outputs are in  
High-Z. Until RESET# is LOW, the outputs are at risk of driving and could result in  
excessive current, depending on bus activity.  
37. The refresh period is 64ms. This equates to an average refresh rate of 7.8125µs. How-  
ever, nine REFRESH commands must be asserted at least once every 70.3µs.  
38. Although CKE is allowed to be registered LOW after a REFRESH command when  
t
REFPDEN (MIN) is satisfied, there are cases where additional time such as  
XPDLL (MIN) is required.  
t
39. ODT turn-on time MIN is when the device leaves High-Z and ODT resistance begins  
to turn on. ODT turn-on time maximum is when the ODT resistance is fully on. The  
ODT reference load is shown in Figure 24 on page 49.  
t
t
40. Half-clock output parameters must be derated by the actual ERR  
and JITDTY  
10PER  
when input clock jitter is present. This results in each parameter becoming larger.  
t
t
The parameters ADC (MIN) and AOF (MIN) are each required to be derated by sub-  
t
t
t
tracting both ERR  
AOF (MAX) are required to be derated by subtracting both ERR  
JITDTY (MAX).  
(MAX) and JITDTY (MAX). The parameters ADC (MAX) and  
10PER  
t
t
(MAX) and  
10PER  
t
41. ODT turn-off time minimum is when the device starts to turn off ODT resistance.  
ODT turn-off time maximum is when the DRAM buffer is in High-Z. The ODT refer-  
ence load is shown in Figure 25 on page 51. This output load is used for ODT timings  
(see Figure 32 on page 60).  
42. Pulse width of a input signal is defined as the width between the first crossing of  
VREF(DC) and the consecutive crossing of VREF(DC).  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
76  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
Co m m a n d a n d Ad d re ss Se t u p , Ho ld , a n d De ra t in g  
t
t
The total IS (setup time) and IH (hold time) required is calculated by adding the data  
t
t
sheet IS (base) and IH (base) values (see Table 54; values come from Table 53 on  
page 67) to the Δ IS and Δ IH derating values (see Table 55 on page 78 and Table 56 on  
page 78), respectively. Example: IS (total setup time) = IS (base) + Δ IS. For a valid tran-  
sition, the input signal has to remain above/ below VIH(AC)/ VIL(AC) for some time VAC  
t
t
t
t
t
t
(see Table 56 on page 78).  
Although the total setup time for slow slew rates might be negative (for example, a valid  
input signal will not have reached VIH[AC]/ VIL[AC] at the time of the rising clock transi-  
tion), a valid input signal is still required to complete the transition and to reach VIH(AC)/  
VIL(AC) (see Figure 17 on page 42 for input signal requirements). For slew rates which fall  
between the values listed in Table 56 on page 78 and Table 57 on page 79, the derating  
values may be obtained by linear interpolation.  
t
Setup ( IS) nominal slew rate for a rising signal is defined as the slew rate between the  
t
last crossing of VREF(DC) and the first crossing of VIH(AC) MIN. Setup ( IS) nominal slew  
rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC)  
and the first crossing of VIL(AC) MAX. If the actual signal is always earlier than the  
nominal slew rate line between the shaded “VREF(DC)-to-AC region,use the nominal  
slew rate for derating value (see Figure 35 on page 80). If the actual signal is later than  
the nominal slew rate line anywhere between the shaded “VREF(DC)-to-AC region,” the  
slew rate of a tangent line to the actual signal from the AC level to the DC level is used for  
derating value (see Figure 37 on page 82).  
t
Hold ( IH) nominal slew rate for a rising signal is defined as the slew rate between the  
t
last crossing of VIL(DC) MAX and the first crossing of VREF(DC). Hold ( IH) nominal slew  
rate for a falling signal is defined as the slew rate between the last crossing of  
VIH(DC) MIN and the first crossing of VREF(DC). If the actual signal is always later than the  
nominal slew rate line between the shaded “DC-to-VREF(DC) region,” use the nominal  
slew rate for derating value (see Figure 36 on page 81). If the actual signal is earlier than  
the nominal slew rate line anywhere between the shaded “DC-to-VREF(DC) region,the  
slew rate of a tangent line to the actual signal from the DC level to the VREF(DC) level is  
used for derating value (see Figure 38 on page 83).  
Ta b le 54:  
Co m m a n d a n d Ad d re ss Se t u p a n d Ho ld Va lu e s Re fe re n ce d a t 1 V/n s – AC/DC-Ba se d  
Sym b o l  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Un it s  
Re fe re n ce  
tIS (base)  
tIH (base)  
tIS (base): AC150  
200  
275  
n/a  
125  
200  
n/a  
65  
45  
ps  
ps  
ps  
VIH(AC)/VIL(AC)  
VIH(DC)/VIL(DC)  
VIH(AC)/VIL(AC)  
140  
190  
120  
170  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
77  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
t
t
Ta b le 55:  
DDR3-800, DDR3-1066, DDR3-1333, a n d DDR3-1600 De ra t in g Va lu e s fo r IS/ IH – AC/DC-  
Ba se d  
AC175 threshold  
Δt IS, Δt IH De ra t in g (p s) – AC/DC-Ba se d  
AC175 Th re sh o ld : VIH(AC) = VREF(DC) + 175m V, VIL(AC) = VREF(DC) - 175m V  
CK, CK# Diffe re n t ia l Sle w Ra t e  
CMD/  
ADDR  
4.0 V/n s  
3.0 V/n s  
2.0 V/n s  
1.8 V/n s  
1.6 V/n s  
1.4 V/n s  
1.2 V/n s  
1.0 V/n s  
Sle w Ra t e  
V/n s  
Δt IS Δt IH Δt IS Δt IH Δt IS Δt IH Δt IS Δt IH Δt IS Δt IH Δt IH Δt IH Δt IS Δt IH Δt IS Δt IH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
88  
59  
50  
34  
88  
59  
50  
34  
88  
59  
50  
34  
96  
67  
8
58  
42  
8
104  
75  
16  
14  
10  
5
66  
50  
16  
12  
6
112  
83  
74  
58  
24  
20  
14  
8
120  
91  
84  
68  
34  
30  
24  
18  
8
128  
99  
40  
38  
34  
29  
23  
5
100  
84  
0
0
0
0
0
0
24  
32  
50  
–2  
–4  
–2  
–4  
–2  
–4  
6
4
22  
30  
46  
–6  
–10  
–16  
–26  
–40  
–60  
–6  
–10  
–16  
–26  
–40  
–60  
–6  
–10  
–16  
–26  
–40  
–60  
2
–2  
18  
26  
40  
–11  
–17  
–35  
–62  
–11  
–17  
–35  
–62  
–11  
–17  
–35  
–62  
–3  
–9  
–27  
–54  
–8  
0
13  
21  
34  
–18  
–32  
–52  
–1  
–10  
–24  
–44  
7
–2  
15  
24  
–19  
–46  
–11  
–38  
–16  
–36  
–2  
–6  
–26  
10  
–30  
–22  
–10  
t
t
Ta b le 56:  
DDR3-1333 a n d DDR3-1600 De ra t in g Va lu e s fo r IS/ IH – AC/DC-Ba se d  
AC150 threshold  
Δt IS, Δt IH De ra t in g (p s) – AC/DC-Ba se d  
AC150 Th re sh o ld : VIH(AC) = VREF(DC) + 150m V, VIL(AC) = VREF(DC) - 150m V  
CK, CK# Diffe re n t ia l Sle w Ra t e  
CMD/  
ADDR  
4.0 V/n s  
3.0 V/n s  
2.0 V/n s  
1.8 V/n s  
1.6 V/n s  
1.4 V/n s  
1.2 V/n s  
1.0 V/n s  
Sle w Ra t e  
V/n s  
Δt IS Δt IH Δt IS Δt IH Δt IS Δt IH Δt IS Δt IH Δt IS Δt IH Δt IH Δt IH Δt IS Δt IH Δt IS Δt IH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
75  
50  
0
50  
34  
75  
50  
0
50  
34  
75  
50  
0
50  
34  
83  
58  
8
58  
42  
8
91  
66  
16  
16  
16  
16  
15  
6
66  
50  
16  
12  
6
99  
74  
24  
24  
24  
24  
23  
14  
–1  
74  
58  
24  
20  
14  
8
107  
82  
32  
32  
32  
32  
31  
22  
7
84  
68  
34  
30  
24  
18  
8
115  
90  
40  
40  
40  
40  
39  
30  
15  
100  
84  
0
0
0
50  
0
–4  
0
–4  
0
–4  
8
4
46  
0
–10  
–16  
–26  
–40  
–60  
0
–10  
–16  
–26  
–40  
–60  
0
–10  
–16  
–26  
–40  
–60  
8
–2  
40  
0
0
0
8
–8  
0
34  
–1  
–10  
–25  
–1  
–10  
–25  
–1  
–10  
–25  
7
–18  
–32  
–52  
–10  
–24  
–44  
–2  
24  
–2  
–17  
–16  
–36  
–6  
–26  
10  
–9  
–10  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
78  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
t
Ta b le 57:  
Min im u m Re q u ire d Tim e VAC Ab o ve VIH(AC) fo r Va lid Tra n sit io n  
Below VIL(AC)  
Sle w Ra t e (V/n s)  
t VAC a t 175m V (p s)  
t VAC a t 150m V (p s)  
>2.0  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
<0.5  
75  
57  
50  
38  
34  
29  
22  
13  
0
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
0
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
79  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
t
t
Fig u re 35: No m in a l Sle w Ra t e a n d VAC fo r IS (Co m m a n d a n d Ad d re ss – Clo ck)  
t
t
t
t
IH  
IS  
IH  
IS  
CK  
CK#  
DQS#  
DQS  
VDDQ  
t
VAC  
VIH(AC) MIN  
VIH(DC) MIN  
VREF to AC  
region  
Nominal  
slew rate  
VREF(DC)  
Nominal  
slew rate  
VIL(DC) MAX  
VIL(DC) MAX  
VREF to AC  
region  
t
VAC  
VSS  
ΔTF  
ΔTR  
VREF(DC) - VIL(AC) MAX  
ΔTF  
VIH(AC) MIN - VREF(DC)  
ΔTR  
Setup slew rate  
falling signal  
Setup slew rate  
rising signal  
=
=
Notes: 1. Both the clock and the strobe are drawn on different time scales.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
80  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
t
Fig u re 36: No m in a l Sle w Ra t e fo r IH (Co m m a n d a n d Ad d re ss – Clo ck)  
t
t
IS  
IH  
t
t
IH  
IS  
CK  
CK#  
DQS#  
DQS  
VDDQ  
VIH(AC) MIN  
VIH(DC) MIN  
Nominal  
slew rate  
DC to VREF  
region  
VREF(DC)  
Nominal  
slew rate  
DC to VREF  
region  
VIL(DC) MAX  
VIL(AC) MAX  
VSS  
ΔTF  
ΔTR  
VREF(DC) - VIL(DC) MAX  
ΔTR  
VIH(DC) MIN - VREF(DC)  
ΔTF  
Hold slew rate  
rising signal  
Hold slew rate  
falling signal  
=
=
Notes: 1. Both the clock and the strobe are drawn on different time scales.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
81  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
t
Fig u re 37: Ta n g e n t Lin e fo r IS (Co m m a n d a n d Ad d re ss – Clo ck)  
t
t
t
t
IS  
IH  
IS  
IH  
CK  
CK#  
DQS#  
DQS  
VDDQ  
t
VAC  
Nominal  
line  
VIH(AC) MIN  
VIH(DC) MIN  
VREF to AC  
region  
Tangent  
line  
VREF(DC)  
Tangent  
line  
VIL(DC) MAX  
VIL(AC) MAX  
VREF to AC  
region  
Nominal  
line  
t
VAC  
ΔTR  
VSS  
Tangent line (VIH[DC] MIN - VREF[DC])  
ΔTR  
Setup slew rate  
rising signal  
=
=
Tangent line (VREF[DC] - VIL[AC] MAX)  
ΔTF  
ΔTF  
Setup slew rate  
falling signal  
Notes: 1. Both the clock and the strobe are drawn on different time scales.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
82  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
t
Fig u re 38: Ta n g e n t Lin e fo r IH (Co m m a n d a n d Ad d re ss – Clo ck)  
t
t
t
t
IH  
IS  
IH  
IS  
CK  
CK#  
DQS#  
DQS  
VDDQ  
VIH(AC) MIN  
Nominal  
line  
VIH(DC) MIN  
DC to VREF  
region  
Ta n ge n t  
line  
VREF(DC)  
Ta n ge n t  
line  
DC to VREF  
region  
Nominal  
line  
VIL(DC) MAX  
VIL(AC) MAX  
VSS  
ΔTR  
ΔTR  
Tangent line (VREF[DC] - VIL[DC] MAX)  
ΔTR  
Hold slew rate  
rising signal  
=
=
Tangent line (VIH[DC] MIN - VREF[DC])  
ΔTF  
Hold slew rate  
falling signal  
Notes: 1. Both the clock and the strobe are drawn on different time scales.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
83  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
Da t a Se t u p , Ho ld , a n d De ra t in g  
t
t
The total DS (setup time) and DH (hold time) required is calculated by adding the data  
t
t
sheet DS (base) and DH (base) values (see Table 58; values come from Table 53 on  
t
t
page 67) to the Δ DS and Δ DH derating values (see Table 59 on page 85), respectively.  
t
t
t
Example: DS (total setup time) = DS (base) + Δ DS. For a valid transition, the input  
t
signal has to remain above/ below VIH(AC)/ VIL(AC) for some time VAC (see Table 61 on  
page 86).  
Although the total setup time for slow slew rates might be negative (for example, a valid  
input signal will not have reached VIH[AC]/ VIL[AC]) at the time of the rising clock transi-  
tion), a valid input signal is still required to complete the transition and to reach VIH/  
VIL(AC). For slew rates which fall between the values listed in Table 59 on page 85, the  
derating values may obtained by linear interpolation.  
t
Setup ( DS) nominal slew rate for a rising signal is defined as the slew rate between the  
t
last crossing of VREF(DC) and the first crossing of VIH(AC) MIN. Setup ( DS) nominal slew  
rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC)  
and the first crossing of VIL(AC) MAX. If the actual signal is always earlier than the  
nominal slew rate line between the shaded “VREF(DC)-to-AC region,use the nominal  
slew rate for derating value (see Figure 39 on page 87). If the actual signal is later than  
the nominal slew rate line anywhere between the shaded “VREF(DC)-to-AC region,” the  
slew rate of a tangent line to the actual signal from the AC level to the DC level is used for  
derating value (see Figure 41 on page 89).  
t
Hold ( DH) nominal slew rate for a rising signal is defined as the slew rate between the  
t
last crossing of VIL(DC) MAX and the first crossing of VREF(DC). Hold ( DH) nominal slew  
rate for a falling signal is defined as the slew rate between the last crossing of  
VIH(DC) MIN and the first crossing of VREF(DC). If the actual signal is always later than the  
nominal slew rate line between the shaded “DC-to-VREF(DC) region,” use the nominal  
slew rate for derating value (see Figure 40 on page 88). If the actual signal is earlier than  
the nominal slew rate line anywhere between the shaded “DC-to-VREF(DC) region,the  
slew rate of a tangent line to the actual signal from the “DC-to-VREF(DC) region” is used  
for derating value (see Figure 42 on page 90).  
Ta b le 58:  
Sym b o l  
Da t a Se t u p a n d Ho ld Va lu e s a t 1 V/n s (DQS, DQS# a t 2 V/n s) – AC/DC-Ba se d  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Un it s  
Re fe re n ce  
tDS AC175 (base)  
tDH AC175 (base)  
tDS AC150 (base)  
tDH AC150 (base)  
75  
150  
25  
100  
ps  
ps  
ps  
ps  
VIH(AC)/VIL(AC)  
VIH(DC)/VIL(DC)  
VIH(AC)/VIL(AC)  
VIH(DC)/VIL(DC)  
30  
65  
10  
45  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
84  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
t
t
Ta b le 59:  
DDR3-800, DDR3-1066, DDR3-1333, a n d DDR3-1600 De ra t in g Va lu e s fo r DS/ DH – AC/DC-  
Ba se d  
AC175 threshold; shaded cells indicate slew rate combinations not supported  
Δt DS, Δt DH De ra t in g (p s) – AC/DC-Ba se d  
DQS, DQS# Diffe re n t ia l Sle w Ra t e  
4.0 V/n s  
3.0 V/n s  
2.0 V/n s  
1.8 V/n s  
1.6 V/n s  
1.4 V/n s  
1.2 V/n s  
1.0 V/n s  
DQ Sle w  
Ra t e V/n s Δt DS Δt DH Δt DS Δt DH Δt DS Δt DH Δt DS Δt DH Δt DS Δt DH Δt DS Δt DH Δt DS Δt DH Δt DS Δt DH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
88  
59  
0
50  
34  
0
88  
59  
0
50  
34  
0
88  
59  
0
50  
34  
0
67  
8
42  
8
16  
14  
10  
5
16  
12  
6
–2  
–4  
–2  
–6  
–4  
–10  
6
4
22  
18  
13  
7
20  
14  
8
2
–2  
–8  
26  
21  
24  
18  
8
–3  
0
29  
23  
5
34  
24  
–1  
–10  
–2  
–16  
15  
–11  
–2  
–6  
–26  
10  
–30  
–22  
–10  
t
t
Ta b le 60:  
DDR3-1333a n d DDR3-1600 De ra t in g Va lu e s fo r DS/ DH – AC/DC-Ba se d  
AC150 threshold; shaded cells indicate slew rate combinations not supported  
Δt DS, Δt DH De ra t in g (p s) – AC/DC-Ba se d  
DQS, DQS# Diffe re n t ia l Sle w Ra t e  
CMD/  
ADDR  
4.0 V/n s  
3.0 V/n s  
2.0 V/n s  
1.8 V/n s  
1.6 V/n s  
1.4 V/n s  
1.2 V/n s  
1.0 V/n s  
Sle w Ra t e  
V/n s  
Δt IS Δt IH Δt IS Δt IH Δt IS Δt IH Δt IS Δt IH Δt IS Δt IH Δt IH Δt IH Δt IS Δt IH Δt IS Δt IH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
75  
50  
0
50  
34  
0
75  
50  
0
50  
34  
0
75  
50  
0
50  
34  
0
58  
8
42  
8
16  
16  
16  
16  
15  
16  
12  
6
0
–4  
0
–4  
–10  
8
4
24  
24  
24  
23  
14  
20  
14  
8
0
8
–2  
–8  
32  
32  
31  
22  
7
24  
18  
8
8
0
40  
39  
30  
15  
34  
24  
–10  
–2  
–16  
–6  
–26  
10  
–10  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
85  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
t
Ta b le 61:  
Re q u ire d Tim e VAC Ab o ve VIH(AC) (Be lo w VIL[AC]) fo r Va lid Tra n sit io n  
t VAC a t 175m V (p s)  
Min  
t VAC a t 150m V (p s)  
Sle w Ra t e (V/n s)  
Min  
>2.0  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
<0.5  
75  
57  
50  
38  
34  
29  
22  
13  
0
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
0
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
86  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
t
t
Fig u re 39: No m in a l Sle w Ra t e a n d VAC fo r DS (DQ – St ro b e )  
CK  
CK#  
DQS#  
DQS  
t
t
t
t
DH  
DS  
DH  
DS  
VDDQ  
t
VAC  
VIH(AC) MIN  
VREF to AC  
region  
VIH(DC) MIN  
VREF(DC)  
Nominal  
slew rate  
Nominal  
slew rate  
VIL(DC) MAX  
VIL(AC) MAX  
VREF to AC  
region  
t
VAC  
VSS  
ΔTF  
ΔTR  
VREF(DC) - VIL(AC) MAX  
ΔTF  
VIH(AC) MIN - VREF(DC)  
ΔTR  
Setup slew rate  
falling signal  
Setup slew rate  
rising signal  
=
=
Notes: 1. Both the clock and the strobe are drawn on different time scales.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
87  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
t
Fig u re 40: No m in a l Sle w Ra t e fo r DH (DQ – St ro b e )  
CK  
CK#  
DQS#  
DQS  
t
t
t
t
DH  
DS  
DH  
DS  
VDDQ  
VIH(AC) MIN  
VIH(DC) MIN  
Nominal  
slew rate  
DC to VREF  
region  
VREF(DC)  
Nominal  
slew rate  
DC to VREF  
region  
VIL(DC) MAX  
VIL(AC) MAX  
VSS  
ΔTF  
ΔTR  
VREF(DC) - VIL(DC) MAX  
ΔTR  
VIH(DC) MIN - VREF(DC)  
ΔTF  
Hold slew rate  
rising signal  
Hold slew rate  
falling signal  
=
=
Notes: 1. Both the clock and the strobe are drawn on different time scales.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
88  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
t
Fig u re 41: Ta n g e n t Lin e fo r DS (DQ – St ro b e )  
CK  
CK#  
DQS#  
DQS  
t
t
t
t
DH  
DS  
DH  
DS  
VDDQ  
t
VAC  
Nominal  
line  
VIH(AC) MIN  
VREF to AC  
region  
VIH(DC) MIN  
Tangent  
line  
VREF(DC)  
Tangent  
line  
VIL(DC) MAX  
VIL(AC) MAX  
VREF to AC  
region  
Nominal  
line  
t
VAC  
ΔTR  
VSS  
Tangent line (VIH[AC] MIN - VREF[DC])  
ΔTR  
Setup slew rate  
rising signal  
=
=
ΔTF  
Setup slew rate  
falling signal  
Tangent line (VREF[DC] - VIL[AC] MAX)  
ΔTF  
Notes: 1. Both the clock and the strobe are drawn on different time scales.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
89  
1Gb : x4, x8, x16 DDR3 SDRAM  
Sp e e d Bin Ta b le s  
t
Fig u re 42: Ta n g e n t Lin e fo r DH (DQ – St ro b e )  
CK  
CK#  
DQS#  
DQS  
t
t
t
t
DH  
DS  
DH  
DS  
VDDQ  
VIH(AC) MIN  
Nominal  
line  
VIH(DC) MIN  
DC to VREF  
region  
Tangent  
line  
VREF(DC)  
Tangent  
line  
DC to VREF  
region  
Nominal  
line  
VIL(DC) MAX  
VIL(AC) MAX  
VSS  
ΔTR  
ΔTF  
Tangent line (VREF[DC] - VIL[DC] MAX)  
ΔTR  
Hold slew rate  
rising signal  
=
=
Tangent line (VIH[DC] MIN - VREF[DC])  
ΔTF  
Hold slew rate  
falling signal  
Notes: 1. Both the clock and the strobe are drawn on different time scales.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_3.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
90  
1Gb : x4, x8, x16 DDR3 SDRAM  
Co m m a n d s  
Co m m a n d s  
Tru t h Ta b le s  
Ta b le 62:  
Tru t h Ta b le – Co m m a n d  
Notes 15 apply to the entire table  
CKE  
Pre v Ne xt  
BA  
A[11,  
9:0] No t e s  
Fu n ct io n  
Sym b o l Cycle Cycle CS# RAS# CAS# WE# [2:0]  
An  
A12 A10  
MODE REGISTER SET  
REFRESH  
MRS  
REF  
SRE  
SRX  
H
H
H
L
H
H
L
L
L
L
H
L
L
L
L
L
L
L
L
V
H
L
L
L
H
L
L
L
H
H
V
H
L
BA  
V
OP code  
V
V
V
V
V
V
V
V
V
V
Self refresh entry  
Self refresh exit  
L
V
V
V
6
H
V
H
H
H
H
L
V
6, 7  
Single-bank PRECHARGE  
PRECHARGE all banks  
Bank ACTIVATE  
PRE  
PREA  
ACT  
WR  
H
H
H
H
H
H
H
H
BA  
V
V
V
V
V
L
V
V
L
H
H
L
BA  
BA  
Row address (RA)  
WRITE  
BL8MRS,  
BC4MRS  
RFU  
V
L
CA  
8
BC4OTF  
BL8OTF  
WRS4  
WRS8  
WRAP  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
L
L
L
BA  
BA  
BA  
RFU  
RFU  
RFU  
L
H
V
L
L
CA  
CA  
CA  
8
8
8
WRITEwith BL8MRS,  
H
auto  
precharge  
BC4MRS  
BC4OTF  
BL8OTF  
WRAPS4  
WRAPS8  
RD  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
L
L
BA  
BA  
BA  
RFU  
RFU  
RFU  
L
H
V
H
H
L
CA  
CA  
CA  
8
8
8
READ  
BL8MRS,  
BC4MRS  
H
BC4OTF  
BL8OTF  
RDS4  
RDS8  
RDAP  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
BA  
BA  
BA  
RFU  
RFU  
RFU  
L
H
V
L
L
CA  
CA  
CA  
8
8
8
READ with BL8MRS,  
H
auto  
precharge  
BC4MRS  
BC4OTF  
BL8OTF  
RDAPS4  
RDAPS8  
NOP  
H
H
H
H
H
H
H
H
H
L
L
L
L
H
L
H
L
H
L
L
H
H
H
X
H
V
H
V
H
H
L
L
H
H
H
X
H
V
H
V
L
BA  
BA  
V
RFU  
RFU  
V
L
H
V
X
V
H
H
V
X
V
CA  
CA  
V
8
8
NO OPERATION  
H
X
H
V
H
V
H
H
9
Device DESELECTED  
Power-down entry  
DES  
X
X
X
10  
6
PDE  
V
V
V
Power-down exit  
PDX  
L
H
V
V
V
V
V
6, 11  
12  
ZQ CALIBRATION LONG  
ZQCL  
H
H
H
H
X
X
X
X
X
X
H
L
X
X
ZQ CALIBRATION SHORT ZQCS  
L
Notes: 1. Commands are defined by states of CS#, RAS#, CAS#, WE#, and CKE at the rising edge of the  
clock. The MSB of BA, RA, and CA are device-density and configuration-dependent.  
2. RESET# is LOW enabled and used only for asynchronous reset. Thus, RESET# must be held  
HIGH during any normal operation.  
3. The state of ODT does not affect the states described in this table.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
91  
1Gb : x4, x8, x16 DDR3 SDRAM  
Co m m a n d s  
4. Operations apply to the bank defined by the bank address. For MRS, BA selects one of four  
mode registers.  
5. “V means “Hor “L(a defined logic level), and “Xmeans “Dont Care.”  
6. See Table 63 for additional information on CKE transition.  
7. Self refresh exit is asynchronous.  
8. Burst READs or WRITEs cannot be terminated or interrupted. MRS (fixed) and OTF BL/BC are  
defined in MR0.  
9. The purpose of the NOP command is to prevent the DRAM from registering any unwanted  
commands. A NOP will not terminate an operation that is executing.  
10. The DES and NOP commands perform similarly.  
11. The power-down mode does not perform any REFRESH operations.  
12. ZQ CALIBRATION LONG is used for either ZQINIT (first ZQCL command during initialization)  
or ZQOPER (ZQCL command after initialization).  
Ta b le 63:  
Tru t h Ta b le – CKE  
Notes 12 apply to the entire table; see Table 62 on page 91 for additional command details  
CKE  
Pre vio u s Cycle 4 Pre se n t Cycle 4  
Co m m a n d 5  
(RAS#, CAS#, WE#, CS#)  
Cu rre n t St a t e 3  
(n - 1)  
(n )  
Act io n 5  
No t e s  
Power-down  
L
L
L
H
L
H
L
L
L
L
L
L
L
Dont Care”  
DES or NOP  
Dont Care”  
DES or NOP  
DES or NOP  
DES or NOP  
DES or NOP  
DES or NOP  
DES or NOP  
DES or NOP  
REFRESH  
Maintain power-down  
Power-down exit  
Self refresh  
L
Maintain self refresh  
Self refresh exit  
L
Bank(s) active  
Reading  
H
H
H
H
H
H
H
Active power-down entry  
Power-down entry  
Writing  
Power-down entry  
Precharging  
Refreshing  
All banks idle  
Power-down entry  
Precharge power-down entry  
Precharge power-down entry  
Self refresh  
6
Notes: 1. All states and sequences not shown are illegal or reserved unless explicitly described else-  
where in this document.  
2. tCKE (MIN) means CKE must be registered at multiple consecutive positive clock edges. CKE  
must remain at the valid input level the entire time it takes to achieve the required number  
of registration clocks. Thus, after any CKE transition, CKE may not transition from its valid  
t
t
t
level during the time period of IS + CKE (MIN) + IH.  
3. Current state = The state of the DRAM immediately prior to clock edge n.  
4. CKE (n) is the logic state of CKE at clock edge n; CKE (n - 1) was the state of CKE at the pre-  
vious clock edge.  
5. COMMAND is the command registered at the clock edge (must be a legal command as  
defined in Table 62 on page 91). Action is a result of COMMAND. ODT does not affect the  
states described in this table and is not listed.  
6. Idle state = All banks are closed, no data bursts are in progress, CKE is HIGH, and all timings  
from previous operations are satisfied. All self refresh exit and power-down exit parameters  
are also satisfied.  
DESELECT (DES)  
The DES command (CS# HIGH) prevents new commands from being executed by the  
DRAM. Operations already in progress are not affected.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
92  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Co m m a n d s  
NO OPERATION (NOP)  
The NOP command (CS# LOW) prevents unwanted commands from being registered  
during idle or wait states. Operations already in progress are not affected.  
ZQ CALIBRATION  
ZQ CALIBRATION LONG (ZQCL)  
The ZQCL command is used to perform the initial calibration during a power-up initial-  
ization and reset sequence (see Figure 51 on page 107). This command may be issued at  
any time by the controller depending on the system environment. The ZQCL command  
triggers the calibration engine inside the DRAM. After calibration is achieved, the cali-  
brated values are transferred from the calibration engine to the DRAM I/ O, which are  
reflected as updated RON and ODT values.  
t
t
The DRAM is allowed a timing window defined by either ZQINIT or ZQOPER to perform  
the full calibration and transfer of values. When ZQCL is issued during the initialization  
t
sequence, the timing parameter ZQINIT must be satisfied. When initialization is  
t
complete, subsequent ZQCL commands require the timing parameter ZQOPER to be  
satisfied.  
ZQ CALIBRATION SHORT (ZQCS)  
The ZQCS command is used to perform periodic calibrations to account for small  
voltage and temperature variations. The shorter timing window is provided to perform  
t
the reduced calibration and transfer of values as defined by timing parameter ZQCS. A  
ZQCS command can effectively correct a minimum of 0.5 percent RON and RTT  
impedance error within 64 clock cycles, assuming the maximum sensitivities specified  
in Table 40 on page 56 and Table 41 on page 57.  
ACTIVATE  
The ACTIVATE command is used to open (or activate) a row in a particular bank for a  
subsequent access. The value on the BA[2:0] inputs selects the bank, and the address  
provided on inputs A[n:0] selects the row. This row remains open (or active) for accesses  
until a PRECHARGE command is issued to that bank.  
A PRECHARGE command must be issued before opening a different row in the same  
bank.  
READ  
The READ command is used to initiate a burst read access to an active row. The address  
provided on inputs A[2:0] selects the starting column address depending on the burst  
length and burst type selected (see Table 68 on page 111 for additional information).  
The value on input A10 determines whether or not auto precharge is used. If auto  
precharge is selected, the row being accessed will be precharged at the end of the READ  
burst. If auto precharge is not selected, the row will remain open for subsequent  
accesses. The value on input A12 (if enabled in the mode register) when the READ  
command is issued determines whether BC4 (chop) or BL8 is used. After a READ  
command is issued, the READ burst may not be interrupted. A summary of READ  
commands is shown in Table 64 on page 94.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
93  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Co m m a n d s  
Ta b le 64:  
READ Co m m a n d Su m m a ry  
CKE  
Pre vio u s Ne xt  
BA  
A[11,  
9:0]  
Fu n ct io n  
Sym b o l  
Cycle Cycle CS# RAS# CAS# WE# [3:0]  
An  
A12 A10  
READ  
BL8MRS, BC4MRS  
BC4OTF  
RD  
H
H
H
H
H
H
L
L
L
L
L
L
H
H
H
H
H
H
L
L
L
L
L
L
H
H
H
H
H
H
BA  
BA  
BA  
BA  
BA  
BA  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
V
L
L
L
CA  
CA  
CA  
CA  
CA  
CA  
RDS4  
RDS8  
BL8OTF  
H
V
L
L
READ  
with auto  
precharge  
BL8MRS, BC4MRS RDAP  
H
H
H
BC4OTF  
BL8OTF  
RDAPS4  
RDAPS8  
H
WRITE  
The WRITE command is used to initiate a burst write access to an active row. The value  
on the BA[2:0] inputs selects the bank. The value on input A10 determines whether or  
not auto precharge is used. The value on input A12 (if enabled in the MR) when the  
WRITE command is issued determines whether BC4 (chop) or BL8 is used. The WRITE  
command summary is shown in Table 65.  
Input data appearing on the DQ is written to the memory array subject to the DM input  
logic level appearing coincident with the data. If a given DM signal is registered LOW, the  
corresponding data will be written to memory. If the DM signal is registered HIGH, the  
corresponding data inputs will be ignored and a WRITE will not be executed to that  
byte/ column location.  
Ta b le 65:  
WRITE Co m m a n d Su m m a ry  
CKE  
Pre v Ne xt  
BA  
Sym b o l Cycle Cycle CS# RAS# CAS# WE# [3:0]  
A[11,  
9:0]  
Fu n ct io n  
An  
A12 A10  
WRITE  
BL8MRS, BC4MRS  
BC4OTF  
WR  
H
H
H
H
H
H
L
L
L
L
L
L
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
BA  
BA  
BA  
BA  
BA  
BA  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
V
L
L
L
CA  
CA  
CA  
CA  
CA  
CA  
WRS4  
WRS8  
BL8OTF  
H
V
L
L
WRITE with  
auto  
precharge  
BL8MRS, BC4MRS WRAP  
H
H
H
BC4OTF  
BL8OTF  
WRAPS4  
WRAPS8  
H
PRECHARGE  
The PRECHARGE command is used to deactivate the open row in a particular bank or in  
t
all banks. The bank(s) are available for a subsequent row access a specified time ( RP)  
after the PRECHARGE command is issued, except in the case of concurrent auto  
precharge. A READ or WRITE command to a different bank is allowed during concurrent  
auto precharge as long as it does not interrupt the data transfer in the current bank and  
does not violate any other timing parameters. Input A10 determines whether one or all  
banks are precharged. In the case where only one bank is precharged, inputs BA[2:0]  
select the bank; otherwise, BA[2:0] are treated as “Dont Care.” After a bank is  
precharged, it is in the idle state and must be activated prior to any READ or WRITE  
commands being issued to that bank. A PRECHARGE command is treated as a NOP if  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
94  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Co m m a n d s  
there is no open row in that bank (idle state) or if the previously open row is already in  
the process of precharging. However, the precharge period is determined by the last  
PRECHARGE command issued to the bank.  
REFRESH  
REFRESH is used during normal operation of the DRAM and is analogous to CAS#-  
before-RAS# (CBR) refresh or auto refresh. This command is nonpersistent, so it must be  
issued each time a refresh is required. The addressing is generated by the internal refresh  
controller. This makes the address bits a “Dont Care” during a REFRESH command. The  
DRAM requires REFRESH cycles at an average interval of 7.8µs (maximum when T ≤  
C
85°C or 3.9µs MAX when T 95°C). To allow for improved efficiency in scheduling and  
C
switching between tasks, some flexibility in the absolute refresh interval is provided. A  
maximum of eight REFRESH commands can be posted to any given DRAM, meaning  
that the maximum absolute interval between any REFRESH command and the next  
REFRESH command is nine times the maximum average interval refresh rate. The  
t
REFRESH period begins when the REFRESH command is registered and ends RFC  
(MIN) later.  
Fig u re 43: Re fre sh Mo d e  
T0  
Ta0  
Ta1  
T4  
T2  
T3  
Tb0  
Tb1  
Tb2  
T1  
CK#  
CK  
t
t
t
CL  
CK  
CH  
1
1
1
CKE  
Valid  
Valid  
Valid  
2
REF  
1
1
1
1
1
1
Command  
NOP  
PRE  
NOP  
NOP  
REF  
NOP  
NOP  
NOP  
ACT  
Address  
A10  
RA  
RA  
All banks  
One bank  
3
BA[2:0]  
Bank(s)  
BA  
4
DQS, DQS#  
4
DQ  
4
DM  
t
t
t
2
RFC  
RP  
RFC (MIN)  
Indicates A Break in  
Time Scale  
Dont Care  
Notes: 1. NOP commands are shown for ease of illustration; other valid commands may be possible at  
these times. CKE must be active during the PRECHARGE, ACTIVATE, and REFRESH com-  
mands, but may be inactive at other times (see " Power-Down Mode" on page 151).  
2. The second REFRESH is not required but depicts two back-to-back REFRESH commands.  
3. “Dont Care” if A10 is HIGH at this point; however, A10 must be HIGH if more than one  
bank is active (must precharge all active banks).  
4. For operations shown, DM, DQ, and DQS signals are all “Dont Care”/High-Z.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
95  
1Gb : x4, x8, x16 DDR3 SDRAM  
Co m m a n d s  
SELF REFRESH  
The SELF REFRESH command is used to retain data in the DRAM, even if the rest of the  
system is powered down. When in the self refresh mode, the DRAM retains data without  
external clocking. The self refresh mode is also a convenient method used to enable/  
disable the DLL (see “DLL Disable Mode” on page 96) as well as to change the clock  
frequency within the allowed synchronous operating range (see “Input Clock Frequency  
Change” on page 99). All power supply inputs (including VREFCA and VREFDQ) must be  
maintained at valid levels upon entry/ exit and during SELF REFRESH operation.  
DLL Disa b le Mo d e  
If the DLL is disabled by the mode register (MR1[0] can be switched during initialization  
or later), the DRAM is targeted, but not guaranteed, to operate similarly to the normal  
mode with a few notable exceptions:  
• The DRAM supports only one value of CAS latency (CL = 6) and one value of CAS  
WRITE latency (CWL = 6).  
t
• DLL disable mode affects the read data clock-to-data strobe relationship ( DQSCK),  
t
t
but not the read data-to-data strobe relationship ( DQSQ, QH). Special attention is  
needed to line the read data up with the controller time domain when the DLL is  
disabled.  
t
• In normal operation (DLL on), DQSCK starts from the rising clock edge AL + CL  
t
cycles after the READ command. In DLL disable mode, DQSCK starts AL + CL - 1  
cycles after the READ command. Additionally, with the DLL disabled, the value of  
t
t
DQSCK could be larger than CK.  
The ODT feature is not supported during DLL disable mode (including dynamic ODT).  
The ODT resistors must be disabled by continuously registering the ODT ball LOW by  
programming RTT_NOM MR1[9, 6, 2] and RTT_WR MR2[10, 9] to “0” while in the DLL  
disable mode.  
Specific steps must be followed to switch between the DLL enable and DLL disable  
t
modes due to a gap in the allowed clock rates between the two modes ( CK [AVG] MAX  
t
and CK [DLL disable] MIN, respectively). The only time the clock is allowed to cross this  
clock rate gap is during self refresh mode. Thus, the required procedure for switching  
from the DLL enable mode to the DLL disable mode is to change frequency during self  
refresh (see Figure 44 on page 97):  
1. Starting from the idle state (all banks are precharged, all timings are fulfilled, ODT is  
turned off, and RTT_NOM and RTT_WR are High-Z), set MR1[0] to “1” to disable the  
DLL.  
t
2. Enter self refresh mode after MOD has been satisfied.  
t
3. After CKSRE is satisfied, change the frequency to the desired clock rate.  
t
4. Self refresh may be exited when the clock is stable with the new frequency for CKSRX.  
t
After XS is satisfied, update the mode registers with appropriate values.  
5. The DRAM will be ready for its next command in the DLL disable mode after the  
t
t
greater of MRD or MOD has been satisfied. A ZQCL command should be issued with  
appropriate timings met as well.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
96  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Co m m a n d s  
Fig u re 44: DLL En a b le Mo d e t o DLL Disa b le Mo d e  
T0  
T1  
Ta0  
Ta1  
Tb0  
Tc0  
Td0  
Td1  
Te0  
Te1  
Tf0  
CK#  
CK  
1
CKE  
Valid  
2
3
4
5
MRS  
Command  
NOP  
NOP  
NOP  
NOP  
MRS  
SRE  
SRX  
t
t
CKSRE  
t
8
CKSRX  
t
7
t
6
MOD  
MOD  
XS  
t
CKESR  
9
1
ODT  
Valid  
Indicates A Break in  
Time Scale  
Dont Care  
Notes: 1. Any valid command.  
2. Disable DLL by setting MR1[0] to “1.”  
3. Enter SELF REFRESH.  
4. Exit SELF REFRESH.  
5. Update the mode registers with the DLL disable parameters setting.  
6. Starting with the idle state, RTT is in the High-Z state.  
7. Change frequency.  
t
8. Clock must be stable CKSRX.  
9. Static LOW in case RTT_NOM or RTT_WR is enabled; otherwise, static LOW or HIGH.  
A similar procedure is required for switching from the DLL disable mode back to the  
DLL enable mode. This also requires changing the frequency during self refresh mode  
(see Figure 45 on page 98).  
1. Starting from the idle state (all banks are precharged, all timings are fulfilled, ODT is  
turned off, and RTT_NOM and RTT_WR are High-Z), enter self refresh mode.  
t
2. After CKSRE is satisfied, change the frequency to the new clock rate.  
t
3. Self refresh may be exited when the clock is stable with the new frequency for CKSRX.  
t
After XS is satisfied, update the mode registers with the appropriate values. At a min-  
t
imum, set MR1[0] to “0” to enable the DLL. Wait MRD, then set MR0[8] to “1” to  
enable DLL RESET.  
t
4. After another MRD delay is satisfied, then update the remaining mode registers with  
the appropriate values.  
5. The DRAM will be ready for its next command in the DLL enable mode after the  
t
t
greater of MRD or MOD has been satisfied. However, before applying any command  
t
or function requiring a locked DLL, a delay of DLLK after DLL RESET must be satis-  
fied. A ZQCL command should be issued with the appropriate timings met as well.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
97  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Co m m a n d s  
Fig u re 45: DLL Disa b le Mo d e t o DLL En a b le Mo d e  
T0  
Ta0  
Ta1  
Tb0  
Tc0  
Tc1  
Td0  
Te0  
Tf0  
Tg0  
Th0  
CK#  
CK  
CKE  
Valid  
t
DLLK  
1
2
3
4
5
6
Valid  
Command  
NOP  
NOP  
SRE  
SRX  
MRS  
MRS  
MRS  
t
t
9
CKSRX  
t
t
t
MRD  
7
8
CKSRE  
XS  
MRD  
t
ODTL off + 1 × CK  
t
CKESR  
10  
ODT  
Indicates A Break in  
Time Scale  
Dont Care  
Notes: 1. Enter SELF REFRESH.  
2. Exit SELF REFRESH.  
t
3. Wait XS, then set MR1[0] to “0” to enable DLL.  
t
4. Wait MRD, then set MR0[8] to “1” to begin DLL RESET.  
t
5. Wait MRD, update registers (CL, CWL, and write recovery may be necessary).  
t
6. Wait MOD, any valid command.  
7. Starting with the idle state.  
8. Change frequency.  
9. Clock must be stable at least CKSRX.  
t
10. Static LOW in case RTT_NOM or RTT_WR is enabled; otherwise, static LOW or HIGH.  
The clock frequency range for the DLL disable mode is specified by the parameter  
t
CKDLL_DIS. Due to latency counter and timing restrictions, only CL = 6 and CWL = 6 are  
supported.  
t
DLL disable mode will affect the read data clock to data strobe relationship ( DQSCK)  
t
t
but not the data strobe to data relationship ( DQSQ, QH). Special attention is needed to  
line up read data to the controller time domain.  
t
Compared to the DLL on mode where DQSCK starts from the rising clock edge AL + CL  
t
cycles after the READ command, the DLL disable mode DQSCK starts AL + CL - 1 cycles  
after the READ command (see Figure 46 on page 99).  
WRITE operations function similarly between the DLL enable and DLL disable modes;  
however, ODT functionality is not allowed with DLL disable mode.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
98  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Co m m a n d s  
t
Fig u re 46: DLL Disa b le DQSCK Tim in g  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CK#  
CK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Valid  
Address  
RL = AL + CL = 6 (CL = 6, AL = 0)  
CL = 6  
DQS, DQS# DLL on  
DI  
DI  
b + 1  
DI  
b + 2  
DI  
b + 3  
DI  
b + 4  
DI  
b + 5  
DI  
b + 6  
DI  
b + 7  
DQ BL8 DLL on  
b
RL (DLL disable) = AL + (CL - 1) = 5  
t
DQSCK (DLL_DIS) MIN  
DQS, DQS# DLL off  
DQ BL8 DLL disable  
DI  
DI  
DI  
b + 2  
DI  
DI  
DI  
DI  
DI  
b
b + 1  
b + 3  
b + 4  
b + 5  
b + 6  
b + 7  
t
DQSCK (DLL_DIS) MAX  
DQS, DQS# DLL off  
DQ BL8 DLL disable  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
b + 7  
b
b + 1  
b + 2  
b + 3  
b + 4  
b + 5  
b + 6  
Transitioning Data  
Dont Care  
Ta b le 66:  
READ Ele ct rica l Ch a ra ct e rist ics, DLL Disa b le Mo d e  
Pa ra m e t e r  
Sym b o l  
tDQSCK (DLL_DIS)  
Min  
Ma x  
Un it s  
Access window of DQS from CK, CK#  
1
10  
ns  
In p u t Clo ck Fre q u e n cy Ch a n g e  
When the DDR3 SDRAM is initialized, it requires the clock to be stable during most  
normal states of operation. This means that after the clock frequency has been set to the  
stable state, the clock period is not allowed to deviate except what is allowed for by the  
clock jitter and spread spectrum clocking (SSC) specifications.  
The input clock frequency can be changed from one stable clock rate to another under  
two conditions: self refresh mode and precharge power-down mode. Outside of these  
two modes, it is illegal to change the clock frequency. For the self refresh mode condi-  
tion, when the DDR3 SDRAM has been successfully placed into self refresh mode and  
t
CKSRE has been satisfied, the state of the clock becomes a “Dont Care.” When the clock  
becomes a “Dont Care,” changing the clock frequency is permissible, provided the new  
t
clock frequency is stable prior to CKSRX. When entering and exiting self refresh mode  
for the sole purpose of changing the clock frequency, the self refresh entry and exit spec-  
ifications must still be met.  
The precharge power-down mode condition is when the DDR3 SDRAM is in precharge  
power-down mode (either fast exit mode or slow exit mode). Either ODT must be at a  
logic LOW or RTT_NOM and RTT_WR must be disabled via MR1 and MR2. This ensures  
RTT_NOM and RTT_WR are in an off state prior to entering precharge power-down mode,  
t
and CKE must be at a logic LOW. A minimum of CKSRE must occur after CKE goes LOW  
before the clock frequency can change. The DDR3 SDRAM input clock frequency is  
allowed to change only within the minimum and maximum operating frequency  
t
t
specified for the particular speed grade ( CK [AVG] MIN to CK [AVG] MAX). During the  
input clock frequency change, CKE must be held at a stable LOW level. When the input  
t
clock frequency is changed, a stable clock must be provided to the DRAM CKSRX before  
t
precharge power-down may be exited. After precharge power-down is exited and XP has  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
99  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Co m m a n d s  
been satisfied, the DLL must be reset via the MRS. Depending on the new clock  
frequency, additional MRS commands may need to be issued. During the DLL lock time,  
RTT_NOM and RTT_WR must remain in an off state. After the DLL lock time, the DRAM is  
ready to operate with a new clock frequency. This process is depicted in Figure 47.  
Fig u re 47: Ch a n g e Fre q u e n cy Du rin g Pre ch a rg e Po w e r-Do w n  
Previous clock frequency  
New clock frequency  
Te0  
Tc1  
Td0  
Td1  
Te1  
T0  
T1  
T2  
Ta0  
Tb0  
Tc0  
CK#  
CK  
t
t
t
t
t
t
CL  
t
t
CL  
CH  
CL  
CH  
CL  
CH  
CH  
b
b
b
b
b
b
t
t
t
CK  
t
CK  
CK  
CK  
b
b
b
t
t
CKSRX  
CKSRE  
t
t
IS  
t
IH  
CKE  
t
IH  
CKE  
t
IS  
t
CPDED  
Command  
NOP  
Valid  
Valid  
NOP  
NOP  
NOP  
NOP  
MRS  
NOP  
Address  
DLL RESET  
t
t
AOFPD/ AOF  
t
t
t
IS  
XP  
IH  
ODT  
DQS, DQS#  
DQ  
High-Z  
High-Z  
DM  
t
DLLK  
Enter precharge  
Frequency  
change  
Exit precharge  
power-down mode  
power-down mode  
Indicates A Break in  
Time Scale  
Dont Care  
Notes: 1. Applicable for both slow-exit and fast-exit precharge power-down modes.  
t
2. tAOFPD and AOF must be satisfied and outputs High-Z prior to T1 (see "On-Die Termina-  
tion (ODT)" on page 160 for exact requirements).  
3. If the RTT_NOM feature was enabled in the mode register prior to entering precharge  
power-down mode, the ODT signal must be continuously registered LOW ensuring RTT is in  
an off state. If the RTT_NOM feature was disabled in the mode register prior to entering pre-  
charge power-down mode, RTT will remain in the off state. The ODT signal can be regis-  
tered either LOW or HIGH in this case.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
100  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Co m m a n d s  
Writ e Le ve lin g  
For better signal integrity, DDR3 SDRAM memory modules adopted fly-by topology for  
the commands, addresses, control signals, and clocks. Write leveling is a scheme for the  
memory controller to adjust or deskew the DQS strobe (DQS, DQS#) to CK relationship  
at the DRAM with a simple feedback feature provided by the DRAM. Write leveling is  
generally used as part of the initialization process, if required. For normal DRAM opera-  
tion, this feature must be disabled. This is the only DRAM operation where the DQS  
functions as an input (to capture the incoming clock) and the DQ function as outputs (to  
report the state of the clock). Note that nonstandard ODT schemes are required.  
The memory controller using the write leveling procedure must have adjustable delay  
settings on its DQS strobe to align the rising edge of DQS to the clock at the DRAM pins.  
This is accomplished when the DRAM asynchronously feeds back the CK status via the  
DQ bus and samples with the rising edge of DQS. The controller repeatedly delays the  
DQS strobe until a CK transition from “0” to “1” is detected. The DQS delay established  
t
t
t
through this procedure helps ensure DQSS, DSS, and DSH specifications in systems  
that use fly-by topology by deskewing the trace length mismatch. A conceptual timing of  
this procedure is shown in Figure 48.  
Fig u re 48: Writ e Le ve lin g Co n ce p t  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK#  
CK  
Source  
Differential DQS  
Tn  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CK#  
CK  
Destination  
Differential DQS  
0
0
DQ  
Destination  
Tn  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CK#  
CK  
Push DQS to capture  
0–1 transition  
Differential DQS  
1
1
DQ  
Dont Care  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
101  
1Gb : x4, x8, x16 DDR3 SDRAM  
Co m m a n d s  
When write leveling is enabled, the rising edge of DQS samples CK, and the prime DQ  
outputs the sampled CKs status. The prime DQ for a x4 or x8 configuration is DQ0 with  
all other DQ (DQ[7:1]) driving LOW. The prime DQ for a x16 configuration is DQ0 for the  
lower byte and DQ8 for the upper byte. It outputs the status of CK sampled by LDQS and  
UDQS. All other DQ (DQ[7:1], DQ[15:9]) continue to drive LOW. Two prime DQ on a x16  
enable each byte lane to be leveled independently.  
The write leveling mode register interacts with other mode registers to correctly  
configure the write leveling functionality. Besides using MR1[7] to disable/ enable write  
leveling, MR1[12] must be used to enable/ disable the output buffers. The ODT value,  
burst length, and so forth need to be selected as well. This interaction is shown in  
Table 67. It should also be noted that when the outputs are enabled during write leveling  
mode, the DQS buffers are set as inputs, and the DQ are set as outputs. Additionally,  
during write leveling mode, only the DQS strobe terminations are activated and deacti-  
vated via the ODT ball. The DQ remain disabled and are not affected by the ODT ball  
(see Table 67).  
Ta b le 67:  
MR1[7]  
Writ e Le ve lin g Ma t rix  
Note 1 applies to the entire table  
DRAM  
RTT_NOM  
MR1[12] MR1[3, 6, 9]  
Writ e  
Le ve lin g  
Ou t p u t  
Bu ffe rs  
RTT_NOM  
Va lu e  
DRAM  
ODT Ba ll DQS  
DQ  
DRAM St a t e  
Ca se No t e s  
Disabled  
See normal operations  
Write leveling not enabled  
0
Enabled  
(1)  
Disabled  
(1)  
n/a  
Low  
High  
Low  
High  
Off  
On  
Off  
On  
Off  
DQS not receiving: not terminated  
Prime DQ High-Z: not terminated  
Other DQ High-Z: not terminated  
1
2
3
4
2
20Ω, 30Ω,  
40Ω, 60Ω, or  
120Ω  
DQS not receiving: terminated by RTT  
Prime DQ High-Z: not terminated  
Other DQ High-Z: not terminated  
Enabled  
(0)  
n/a  
DQS receiving: not terminated  
Prime DQ driving CK state: not terminated  
Other DQ driving LOW: not terminated  
3
40Ω, 60Ω, or  
120Ω  
DQS receiving: terminated by RTT  
Prime DQ driving CK state: not terminated  
Other DQ driving LOW: not terminated  
Notes: 1. Expected usage if used during write leveling: Case 1 may be used when DRAM are on a  
dual-rank module and on the rank not being levelized or on any rank of a module not  
being levelized on a multislotted system. Case 2 may be used when DRAM are on any rank  
of a module not being levelized on a multislotted system. Case 3 is generally not used. Case  
4 is generally used when DRAM are on the rank that is being leveled.  
2. Since the DRAM DQS is not being driven (MR1[12] = 1), DQS ignores the input strobe, and  
all RTT_NOM values are allowed. This simulates a normal standby state to DQS.  
3. Since the DRAM DQS is being driven (MR1[12] = 0), DQS captures the input strobe, and only  
some RTT_NOM values are allowed. This simulates a normal write state to DQS.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
102  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Co m m a n d s  
Writ e Le ve lin g Pro ce d u re  
A memory controller initiates the DRAM write leveling mode by setting MR1[7] to a “1,”  
assuming the other programable features (MR0, MR1, MR2, and MR3) are first set and  
the DLL is fully reset and locked. The DQ balls enter the write leveling mode going from  
a High-Z state to an undefined driving state, so the DQ bus should not be driven. During  
write leveling mode, only the NOP or DES commands are allowed. The memory  
controller should attempt to level only one rank at a time; thus, the outputs of other  
ranks should be disabled by setting MR1[12] to a “1” in the other ranks. The memory  
t
controller may assert ODT after a MOD delay as the DRAM will be ready to process the  
ODT transition. ODT should be turned on prior to DQS being driven LOW by at least  
t
t
ODTL on delay (WL - 2 CK), provided it does not violate the aforementioned MOD  
delay requirement.  
t
The memory controller may drive DQS LOW and DQS# HIGH after WLDQSEN has been  
t
satisfied. The controller may begin to toggle DQS after WLMRD (one DQS toggle is DQS  
transitioning from a LOW state to a HIGH state with DQS# transitioning from a HIGH  
state to a LOW state, then both transition back to their original states). At a minimum,  
t
ODTL on and AON must be satisfied at least one clock prior to DQS toggling.  
t
t
After WLMRD and a DQS LOW preamble ( WPRE) have been satisfied, the memory  
controller may provide either a single DQS toggle or multiple DQS toggles to sample CK  
t
for a given DQS-to-CK skew. Each DQS toggle must not violate DQSL (MIN) and  
DQSH (MIN) specifications. DQSL (MAX) and DQSH (MAX) specifications are not  
applicable during write leveling mode. The DQS must be able to distinguish the CKs  
rising edge within WLS and WLH. The prime DQ will output the CKs status  
asynchronously from the associated DQS rising edge CK capture within WLO. The  
t
t
t
t
t
t
t
remaining DQ that always drive LOW when DQS is toggling must be LOW within WLOE  
after the first WLO is satisfied (the prime DQ going LOW). As previously noted, DQS is  
t
an input and not an output during this process. Figure 49 on page 104 depicts the basic  
timing parameters for the overall write leveling procedure.  
The memory controller will likely sample each applicable prime DQ state and determine  
whether to increment or decrement its DQS delay setting. After the memory controller  
performs enough DQS toggles to detect the CKs 0-to-1” transition, the memory  
controller should lock the DQS delay setting for that DRAM. After locking the DQS  
setting, leveling for the rank will have been achieved, and the write leveling mode for the  
rank should be disabled or reprogrammed (if write leveling of another rank follows).  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
103  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Co m m a n d s  
Fig u re 49: Writ e Le ve lin g Se q u e n ce  
T1  
T2  
t
t
WLH  
WLH  
t
t
WLS  
WLS  
CK#  
CK  
1
2
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
MRS  
t
MOD  
ODT  
t
3
t
3
DQSH  
t
3
DQSL  
t
3
DQSH  
t
DQSL  
WLDQSEN  
4
Differential DQS  
t
t
t
t
WLMRD  
WLO  
WLO  
WLO  
5
Prime DQ  
t
WLOE  
Early remaining DQ  
Late remaining DQ  
t
WLO  
Indicates A Break in  
Time Scale  
Undefined Driving Mode  
Dont Care  
Notes: 1. MRS: Load MR1 to enter write leveling mode.  
2. NOP: NOP or DES.  
3. DQS, DQS# needs to fulfill minimum pulse width requirements tDQSH (MIN) and  
tDQSL (MIN) as defined for regular writes. The maximum pulse width is system-dependent.  
4. Differential DQS is the differential data strobe (DQS, DQS#). Timing reference points are the  
zero crossings. The solid line represents DQS; the dotted line represents DQS#.  
5. DRAM drives leveling feedback on a prime DQ (DQ0 for x4 and x8). The remaining DQ are  
driven low and remain in this state throughout the leveling procedure.  
Writ e Le ve lin g Mo d e Exit Pro ce d u re  
After the DRAM are leveled, they must exit from write leveling mode before the normal  
mode can be used. Figure 50 on page 105 depicts a general procedure in exiting write  
leveling mode. After the last rising DQS (capturing a “1” at T0), the memory controller  
t
should stop driving the DQS signals after WLO (MAX) delay plus enough delay to enable  
the memory controller to capture the applicable prime DQ state (at ~Tb0). The DQ balls  
become undefined when DQS no longer remains LOW, and they remain undefined until  
t
MOD after the MRS command (at Te1).  
The ODT input should be deasserted LOW such that ODTL off (MIN) expires after the  
t
DQS is no longer driving LOW. When ODT LOW satisfies IS, ODT must be kept LOW (at  
~Tb0) until the DRAM is ready for either another rank to be leveled or until the normal  
mode can be used. After DQS termination is switched off, write level mode should be  
t
disabled via the MRS command (at Tc2). After MOD is satisfied (at Te1), any valid  
command may be registered by the DRAM. Some MRS commands may be issued after  
t
MRD (at Td1).  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
104  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Co m m a n d s  
Fig u re 50: Exit Writ e Le ve lin g  
T0  
T1  
T2  
Ta0  
Tb0  
Tc0  
Tc1  
Tc2  
Td0  
Td1  
Te0  
Te1  
CK#  
CK  
Command  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
MRS  
NOP  
Valid  
NOP  
Valid  
Valid  
t
MRD  
Address  
Valid  
MR1  
t
t
IS  
MOD  
ODT  
t
AOF (MIN)  
ODTL off  
RTT DQS, RTT DQS#  
RTT_NOM  
t
AOF (MAX)  
DQS, DQS#  
RTT_DQ  
t
t
WLO + WLOE  
DQ  
CK = 1  
Indicates A Break in  
Time Scale  
Undefined Driving Mode  
Transitioning  
Dont Care  
Notes: 1. The DQ result, “= 1,” between Ta0 and Tc0, is a result of the DQS, DQS# signals capturing CK  
HIGH just after the T0 state.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
105  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Op e ra t io n s  
In it ia liza t io n  
The following sequence is required for power up and initialization, as shown in  
Figure 51 on page 107:  
1. Apply power. RESET# is recommended to be below 0.2 × VDDQ during power ramp to  
ensure the outputs remain disabled (High-Z) and ODT off (RTT is also High-Z). All  
other inputs, including ODT, may be undefined.  
During power up, either of the following conditions may exist and must be met:  
• Condition A:  
– VDD and VDDQ are driven from a single-power converter output and are ramped  
with a maximum delta voltage between them of ΔV 300mV. Slope reversal of any  
power supply signal is allowed. The voltage levels on all balls other than VDD,  
VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD on one side, and  
must be greater than or equal to VSSQ and VSS on the other side.  
– Both VDD and VDDQ power supplies ramp to VDD (MIN) and VDDQ (MIN) within  
t
VDDPR = 200ms.  
VREFDQ tracks VDD × 0.5, VREFCA tracks VDD × 0.5.  
– VTT is limited to 0.95V when the power ramp is complete and is not applied directly  
t
to the device; however, VTD should be greater than or equal to zero to avoid device  
latchup.  
• Condition B:  
– VDD may be applied before or at the same time as VDDQ.  
– VDDQ may be applied before or at the same time as VTT, VREFDQ, and VREFCA.  
– No slope reversals are allowed in the power supply ramp for this condition.  
2. Until stable power, maintain RESET# LOW to ensure the outputs remain disabled  
(High-Z). After the power is stable, RESET# must be LOW for at least 200µs to begin  
the initialization process. ODT will remain in the High-Z state while RESET# is LOW  
and until CKE is registered HIGH.  
3. CKE must be LOW 10ns prior to RESET# transitioning HIGH.  
4. After RESET# transitions HIGH, wait 500µs (minus one clock) with CKE LOW.  
5. After this CKE LOW time, CKE may be brought HIGH (synchronously) and only NOP  
or DES commands may be issued. The clock must be present and valid for at least  
t
10ns (and a minimum of five clocks) and ODT must be driven LOW at least IS prior to  
CKE being registered HIGH. When CKE is registered HIGH, it must be continuously  
registered HIGH until the full initialization process is complete.  
t
6. After CKE is registered HIGH and after XPR has been satisfied, MRS commands may  
be issued. Issue an MRS (LOAD MODE) command to MR2 with the applicable settings  
(provide LOW to BA2 and BA0 and HIGH to BA1).  
7. Issue an MRS command to MR3 with the applicable settings.  
8. Issue an MRS command to MR1 with the applicable settings, including enabling the  
DLL and configuring ODT.  
9. Issue an MRS command to MR0 with the applicable settings, including a DLL RESET  
t
command. DLLK (512) cycles of clock input are required to lock the DLL.  
10. Issue a ZQCL command to calibrate RTT and RON values for the process voltage tem-  
t
perature (PVT). Prior to normal operation, ZQINIT must be satisfied.  
t
t
11. When DLLK and ZQINIT have been satisfied, the DDR3 SDRAM will be ready for nor-  
mal operation.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
106  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Fig u re 51: In it ia liza t io n Se q u e n ce  
T (MAX) = 200ms  
V
DD  
See power-up  
conditions  
in the  
initialization  
sequence text,  
set up 1  
VDDQ  
V
TT  
VREF  
Stable and  
valid clock  
Tc0  
Td0  
Tb0  
T1  
T0  
Ta0  
Power-up  
ramp  
t
t
CK  
VTD  
CK#  
CK  
t
t
t
CL  
CL  
CKSRX  
t
IO  
= 20ns  
z
RESET#  
t
IS  
T (MIN) = 10ns  
Valid  
Valid  
CKE  
ODT  
t
IS  
NOP  
Command  
MRS  
MRS  
MRS  
MRS  
ZQCL  
Valid  
DM  
Address  
A10  
Valid  
Code  
Code  
Code  
Code  
Code  
Code  
Code  
Code  
Valid  
Valid  
A10 = H  
BA0 = L  
BA1 = H  
BA2 = L  
BA0 = H  
BA1 = H  
BA2 = L  
BA0 = H  
BA1 = L  
BA2 = L  
BA0 = L  
BA1 = L  
BA2 = L  
BA[2:0]  
DQS  
DQ  
RTT  
t
t
t
MOD  
T = 200µs (MIN)  
T = 500µs (MIN)  
t
t
t
ZQINIT  
MRD  
MRD  
XPR  
MRD  
MR0 with  
DLL reset  
MR1 with  
DLL enable  
MR2  
MR3  
ZQ calibration  
All voltage  
supplies valid  
and stable  
t
DLLK  
DRAM ready for  
external commands  
Normal  
operation  
Indicates A Break in  
Time Scale  
Dont Care  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
107  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Mo d e Re g ist e rs  
Mode registers (MR0–MR3) are used to define various modes of programmable opera-  
tions of the DDR3 SDRAM. A mode register is programmed via the MODE REGISTER  
SET (MRS) command during initialization, and it retains the stored information (except  
for MR0[8] which is self-clearing) until it is either reprogrammed, RESET# goes LOW, or  
until the device loses power.  
Contents of a mode register can be altered by reexecuting the MRS command. If the user  
chooses to modify only a subset of the mode registers variables, all variables must be  
programmed when the MRS command is issued. Reprogramming the mode register will  
not alter the contents of the memory array, provided it is performed correctly.  
The MRS command can only be issued (or reissued) when all banks are idle and in the  
t
precharged state ( RP is satisfied and no data bursts are in progress). After an MRS  
t
t
command has been issued, two parameters must be satisfied: MRD and MOD.  
t
The controller must wait MRD before initiating any subsequent MRS commands (see  
Figure 52).  
t
Fig u re 52: MRS-t o -MRS Co m m a n d Tim in g ( MRD)  
T0  
T1  
T2  
Ta0  
Ta1  
Ta2  
CK#  
CK  
1
2
MRS  
NOP  
NOP  
NOP  
NOP  
MRS  
Command  
t
MRD  
Address  
Valid  
Valid  
3
CKE  
Indicates A Break in  
Time Scale  
Dont Care  
Notes: 1. Prior to issuing the MRS command, all banks must be idle and precharged, tRP (MIN) must  
be satisfied, and no data bursts can be in progress.  
2. tMRD specifies the MRS-to-MRS command minimum cycle time.  
3. CKE must be registered HIGH from the MRS command until tMRSPDEN (MIN) (see "Power-  
Down Mode" on page 151).  
t
4. For a CAS latency change, XPDLL timing must be met before any nonMRS command.  
t
The controller must also wait MOD before initiating any nonMRS commands  
(excluding NOP and DES), as shown in Figure 53 on page 109. The DRAM requires MOD  
t
in order to update the requested features, with the exception of DLL RESET, which  
t
requires additional time. Until MOD has been satisfied, the updated features are to be  
assumed unavailable.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
108  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
t
Fig u re 53: MRS-t o -n o n MRS Co m m a n d Tim in g ( MOD)  
T0  
T1  
T2  
Ta0  
Ta1  
Ta2  
CK#  
CK  
non  
MRS  
NOP  
NOP  
NOP  
NOP  
Command  
MRS  
t
MOD  
Address  
CKE  
Valid  
Valid  
Valid  
Old  
setting  
New  
setting  
Updating setting  
Indicates A Break in  
Time Scale  
Dont Care  
Notes: 1. Prior to issuing the MRS command, all banks must be idle (they must be precharged, tRP  
must be satisfied, and no data bursts can be in progress).  
t
2. Prior to Ta2 when MOD (MIN) is being satisfied, no commands (except NOP/DES) may be  
issued.  
3. If RTT was previously enabled, ODT must be registered LOW at T0 so that ODTL is satisfied  
prior to Ta1. ODT must also be registered LOW at each rising CK edge from T0 until  
tMOD (MIN) is satisfied at Ta2.  
4. CKE must be registered HIGH from the MRS command until tMRSPDEN (MIN), at which time  
power-down may occur (see "Power-Down Mode" on page 151).  
Mo d e Re g ist e r 0 (MR0)  
The base register, MR0, is used to define various DDR3 SDRAM modes of operation.  
These definitions include the selection of a burst length, burst type, CAS latency, oper-  
ating mode, DLL RESET, write recovery, and precharge power-down mode, as shown in  
Figure 54 on page 110.  
Bu rst Le n g t h  
Burst length is defined by MR0[1: 0] (see Figure 54 on page 110). Read and write accesses  
to the DDR3 SDRAM are burst-oriented, with the burst length being programmable to  
“4” (chop mode), “8” (fixed), or selectable using A12 during a READ/ WRITE command  
(on-the-fly). The burst length determines the maximum number of column locations  
that can be accessed for a given READ or WRITE command. When MR0[1:0] is set to “01”  
during a READ/ WRITE command, if A12 = 0, then BC4 (chop) mode is selected. If  
A12 = 1, then BL8 mode is selected. Specific timing diagrams, and turnaround between  
READ/ WRITE, are shown in the READ/ WRITE sections of this document.  
When a READ or WRITE command is issued, a block of columns equal to the burst  
length is effectively selected. All accesses for that burst take place within this block,  
meaning that the burst will wrap within the block if a boundary is reached. The block is  
uniquely selected by A[i:2] when the burst length is set to “4” and by A[i:3] when the  
burst length is set to “8” (where Ai is the most significant column address bit for a given  
configuration). The remaining (least significant) address bit(s) is (are) used to select the  
starting location within the block. The programmed burst length applies to both READ  
and WRITE bursts.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
109  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Fig u re 54: Mo d e Re g ist e r 0 (MR0) De fin it io n s  
BA2 BA1 BA0 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address bus  
16 15 14 13 12 11 10  
9
8
7
1
6
5
4
3
2
1
0
Mode register 0 (MR0)  
1
1
0
0
PD  
WR  
DLL  
0
CAS# latency BT  
0
0
M1 M0  
Burst Length  
M15 M14  
Mode Register  
0
0
1
1
0
1
0
1
Fixed BL8  
4 or 8 (on-the-fly via A12)  
Fixed BC4 (chop)  
Reserved  
0
0
1
1
0
1
0
1
Mode register 0 (MR0)  
Mode register 1 (MR1)  
Mode register 2 (MR2)  
Mode register 3 (MR3)  
M8 DLL Reset  
M12 Precharge PD  
0
1
No  
0
1
DLL off (slow exit)  
DLL on (fast exit)  
Yes  
M11 M10 M9 Write Recovery  
M6 M5 M4  
CAS Latency  
M3  
READ Burst Type  
Sequential (nibble)  
Interleaved  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
0
1
5
5
6
6
7
7
8
10  
8
9
10  
12  
Reserved  
11 (DDR3-1600)  
Notes: 1. MR0[16, 13, 7, 2] are reserved for future use and must be programmed to “0.”  
Bu rst Typ e  
Accesses within a given burst may be programmed to either a sequential or an inter-  
leaved order. The burst type is selected via MR0[3], as shown in Figure 54. The ordering  
of accesses within a burst is determined by the burst length, the burst type, and the  
starting column address, as shown in Table 68 on page 111. DDR3 only supports 4-bit  
burst chop and 8-bit burst access modes. Full interleave address ordering is supported  
for READs, while WRITEs are restricted to nibble (BC4) or word (BL8) boundaries.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
110  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Ta b le 68:  
Bu rst Ord e r  
St a rt in g Co lu m n  
Bu rst  
Le n g t h  
READ/  
WRITE  
Ad d re ss  
Bu rst Typ e = Se q u e n t ia l  
(De cim a l)  
Bu rst Typ e = In t e rle a ve d  
(A[2, 1, 0])  
(De cim a l)  
No t e s  
4 chop  
READ  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 V V  
1 V V  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
V V V  
0, 1, 2, 3, Z, Z, Z, Z  
1, 2, 3, 0, Z, Z, Z, Z  
2, 3, 0, 1, Z, Z, Z, Z  
3, 0, 1, 2, Z, Z, Z, Z  
4, 5, 6, 7, Z, Z, Z, Z  
5, 6, 7, 4, Z, Z, Z, Z  
6, 7, 4, 5, Z, Z, Z, Z  
7, 4, 5, 6, Z, Z, Z, Z  
0, 1, 2, 3, X, X, X, X  
4, 5, 6, 7, X, X, X, X  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 0, 5, 6, 7, 4  
2, 3, 0, 1, 6, 7, 4, 5  
3, 0, 1, 2, 7, 4, 5, 6  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 4, 1, 2, 3, 0  
6, 7, 4, 5, 2, 3, 0, 1  
7, 4, 5, 6, 3, 0, 1, 2  
0, 1, 2, 3, 4, 5, 6, 7  
0, 1, 2, 3, Z, Z, Z, Z  
1, 0, 3, 2, Z, Z, Z, Z  
2, 3, 0, 1, Z, Z, Z, Z  
3, 2, 1, 0, Z, Z, Z, Z  
4, 5, 6, 7, Z, Z, Z, Z  
5, 4, 7, 6, Z, Z, Z, Z  
6, 7, 4, 5, Z, Z, Z, Z  
7, 6, 5, 4, Z, Z, Z, Z  
0, 1, 2, 3, X, X, X, X  
4, 5, 6, 7, X, X, X, X  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 3, 4  
1, 3, 4  
1
WRITE  
READ  
8
1
1
1
1
1
1
1
WRITE  
1, 3  
Notes: 1. Internal READ and WRITE operations start at the same point in time for BC4 as they do for  
BL8.  
2. Z = Data and strobe output drivers are in tri-state.  
3. V = A valid logic level (0 or 1), but the respective input buffer ignores level-on input pins.  
4. X = “Dont Care.”  
DLL RESET  
DLL RESET is defined by MR0[8] (see Figure 54 on page 110). Programming MR0[8] to  
“1” activates the DLL RESET function. MR0[8] is self-clearing, meaning it returns to a  
value of “0” after the DLL RESET function has been initiated.  
Anytime the DLL RESET function is initiated, CKE must be HIGH and the clock held  
t
stable for 512 ( DLLK) clock cycles before a READ command can be issued. This is to  
allow time for the internal clock to be synchronized with the external clock. Failing to  
wait for synchronization to occur may result in invalid output timing specifications,  
t
such as DQSCK timings.  
Writ e Re co ve ry  
WRITE recovery time is defined by MR0[11:9] (see Figure 54 on page 110). Write  
recovery values of 5, 6, 7, 8, 10, or 12 may be used by programming MR0[11:9]. The user  
is required to program the correct value of write recovery and is calculated by dividing  
t
t
WR (ns) by CK (ns) and rounding up a noninteger value to the next integer: WR (cycles)  
t
t
= roundup ( WR [ns]/ CK [ns]).  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
111  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Pre ch a rg e Po w e r-Do w n (Pre ch a rg e PD)  
The precharge PD bit applies only when precharge power-down mode is being used.  
When MR0[12] is set to “0,” the DLL is off during precharge power-down providing a  
t
lower standby current mode; however, XPDLL must be satisfied when exiting. When  
MR0[12] is set to “1,” the DLL continues to run during precharge power-down mode to  
t
enable a faster exit of precharge power-down mode; however, XP must be satisfied when  
exiting (see "Power-Down Mode" on page 151).  
CAS La t e n cy (CL)  
The CL is defined by MR0[6:4], as shown in Figure 54 on page 110. CAS latency is the  
delay, in clock cycles, between the internal READ command and the availability of the  
first bit of output data. The CL can be set to 5, 6, 7, 8, 9, or 10. DDR3 SDRAM do not  
support half-clock latencies.  
Examples of CL = 6 and CL = 8 are shown in Figure 55. If an internal READ com mand is  
registered at clock edge n, and the CAS latency is m clocks, the data will be available  
nominally coincident with clock edge n + m. Table 49 on page 63 through Table 51 on  
page 65 indicate the CLs supported at various operating frequencies.  
Fig u re 55: READ La t e n cy  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK#  
CK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
AL = 0, CL = 6  
DQS, DQS#  
DQ  
DI  
DI  
DI  
DI  
DI  
n
n + 1  
n + 2  
n + 3  
n + 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK#  
CK  
Command  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
AL = 0, CL = 8  
DQS, DQS#  
DQ  
DI  
n
Transitioning Data  
Dont Care  
Notes: 1. For illustration purposes, only CL = 6 and CL = 8 are shown. Other CL values are possible.  
2. Shown with nominal tDQSCK and nominal tDSDQ.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
112  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Mo d e Re g ist e r 1 (MR1)  
The mode register 1 (MR1) controls additional functions and features not available in  
the other mode registers: Q OFF (OUTPUT DISABLE), TDQS (for the x8 configuration  
only), DLL ENABLE/ DLL DISABLE, RTT_NOM value (ODT), WRITE LEVELING, POSTED  
CAS ADDITIVE latency, and OUTPUT DRIVE STRENGTH. These functions are  
controlled via the bits shown in Figure 56. The MR1 register is programmed via the MRS  
command and retains the stored information until it is reprogrammed, until RESET#  
goes LOW, or until the device loses power. Reprogramming the MR1 register will not  
alter the contents of the memory array, provided it is performed correctly.  
The MR1 register must be loaded when all banks are idle and no bursts are in progress.  
t
t
The controller must satisfy the specified timing parameters MRD and MOD before  
initiating a subsequent operation.  
Fig u re 56: Mo d e Re g ist e r 1 (MR1) De fin it io n  
BA1 BA0 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
BA2  
Address bus  
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Mode register 1 (MR1)  
1
1
1
1
WL RTT ODS  
0
0
1
Q Off TDQS  
R
TT  
AL  
RTT ODS DLL  
0
0
0
M0  
0
DLL Enable  
Enable (normal)  
Disable  
M15 M14  
Mode Register  
M12  
Q Off  
M11  
TDQS  
0
0
1
1
0
1
0
1
Mode register set 0 (MR0)  
Mode register set 1 (MR1)  
Mode register set 2 (MR2)  
Mode register set 3 (MR3)  
1
0
1
Enabled  
0
1
Disabled  
Enabled  
Disabled  
M5 M1 Output Drive Strength  
0
0
1
1
0
1
0
1
RZQ/6 (40Ω [NOM])  
RZQ/7 (34Ω [NOM])  
Reserved  
2
3
M7  
0
Write Levelization  
Disable (normal)  
Enable  
R
TT  
_
NOM (ODT)  
Non-Writes  
NOM disabled  
RTT  
_
NOM (ODT)  
Writes  
M9 M6 M2  
1
RTT  
_
RTT_NOM disabled  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
RZQ/4 (60Ω [NOM]) RZQ/4 (60Ω [NOM])  
RZQ/2 (120Ω [NOM]) RZQ/2 (120Ω [NOM])  
RZQ/6 (40Ω [NOM]) RZQ/6 (40Ω [NOM])  
Additive Latency (AL)  
Disabled (AL = 0)  
AL = CL - 1  
M4 M3  
0
0
1
1
0
1
0
1
RZQ/12 (20Ω [NOM])  
RZQ/8 (30Ω [NOM])  
Reserved  
n/a  
n/a  
AL = CL - 2  
Reserved  
Reserved  
Reserved  
Reserved  
Notes: 1. MR1[16, 13, 10, 8] are reserved for future use and must be programmed to “0.”  
2. During write leveling, if MR1[7] and MR1[12] are “1” then all RTT_NOM values are available  
for use.  
3. During write leveling, if MR1[7] is a “1,” but MR1[12] is a “0,” then only RTT_NOM write val-  
ues are available for use.  
DLL En a b le /DLL Disa b le  
The DLL may be enabled or disabled by programming MR1[0] during the LOAD MODE  
command, as shown in Figure 56. The DLL must be enabled for normal operation. DLL  
enable is required during power-up initialization and upon returning to normal opera-  
tion after having disabled the DLL for the purpose of debugging or evaluation. Enabling  
the DLL should always be followed by resetting the DLL using the appropriate LOAD  
MODE command.  
If the DLL is enabled prior to entering self refresh mode, the DLL is automatically  
disabled when entering SELF REFRESH operation and is automatically reenabled and  
reset upon exit of SELF REFRESH operation. If the DLL is disabled prior to entering self  
refresh mode, the DLL remains disabled even upon exit of SELF REFRESH operation  
until it is reenabled and reset.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
113  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
The DRAM is not tested to check—nor does Micron warrant compliance with—normal  
mode timings or functionality when the DLL is disabled. An attempt has been made to  
have the DRAM operate in the normal mode where reasonably possible when the DLL  
has been disabled; however, by industry standard, a few known exceptions are defined:  
1. ODT is not allowed to be used.  
2. The output data is no longer edge-aligned to the clock.  
3. CL and CWL can only be six clocks.  
When the DLL is disabled, timing and functionality can vary from the normal operation  
specifications when the DLL is enabled (see “DLL Disable Mode” on page 96). Disabling  
the DLL also implies the need to change the clock frequency (see “Input Clock  
Frequency Change” on page 99).  
Ou t p u t Drive St re n g t h  
The DDR3 SDRAM uses a programmable impedance output buffer. The drive strength  
mode register setting is defined by MR1[5, 1]. RZQ/ 7 (34Ω [NOM]) is the primary output  
driver impedance setting for DDR3 SDRAM devices. To calibrate the output driver  
impedance, an external precision resistor (RZQ) is connected between the ZQ ball and  
VSSQ. The value of the resistor must be 240Ω ±1 percent.  
The output impedance is set during initialization. Additional impedance calibration  
updates do not affect device operation, and all data sheet timings and current specifica-  
tions are met during an update.  
To meet the 34Ω specification, the output drive strength must be set to 34Ω during  
initialization. To obtain a calibrated output driver impedance after power-up, the DDR3  
SDRAM needs a calibration command that is part of the initialization and reset proce-  
dure.  
OUTPUT ENABLE/DISABLE  
The OUTPUT ENABLE function is defined by MR1[12], as shown in Figure 56 on  
page 113. When enabled (MR1[12] = 0), all outputs (DQ, DQS, DQS#) function when in  
the normal mode of operation. When disabled (MR1[12] = 1), all DDR3 SDRAM outputs  
(DQ and DQS, DQS#) are tri-stated. The output disable feature is intended to be used  
t
during IDD characterization of the READ current and during DQSS margining (write  
leveling) only.  
TDQS En a b le  
Termination data strobe (TDQS) is a feature of the x8 DDR3 SDRAM configuration,  
which provides termination resistance (RTT), that may be useful in some system config-  
urations. TDQS is not supported in x4 or x16 configurations. When enabled via the mode  
register (MR1[11]), the RTT that is applied to DQS and DQS# is also applied to TDQS and  
TDQS#. In contrast to the RDQS function of DDR2 SDRAM, TDQS provides the termina-  
tion resistance RTT only. The OUTPUT DATA STROBE function of RDQS is not provided  
by TDQS; thus, RON does not apply to TDQS and TDQS#. The TDQS and DM functions  
share the same ball. When the TDQS function is enabled via the mode register, the DM  
function is not supported. When the TDQS function is disabled, the DM function is  
provided, and the TDQS# ball is not used. The TDQS function is available in the x8 DDR3  
SDRAM configuration only and must be disabled via the mode register for the x4 and x16  
configurations.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
114  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
On -Die Te rm in a t io n  
ODT resistance RTT_NOM is defined by MR1[9, 6, 2] (see Figure 56 on page 113). The RTT  
termination value applies to the DQ, DM, DQS, DQS#, and TDQS, TDQS# balls. DDR3  
supports multiple RTT termination values based on RZQ/ n where n can be 2, 4, 6, 8, or 12  
and RZQ is 240Ω.  
Unlike DDR2, DDR3 ODT must be turned off prior to reading data out and must remain  
off during a READ burst. RTT_NOM termination is allowed any time after the DRAM is  
initialized, calibrated, and not performing read access, or when it is not in self refresh  
mode. Additionally, write accesses with dynamic ODT enabled (RTT_WR) temporarily  
replaces RTT_NOM with RTT_WR.  
The actual effective termination, RTT_EFF, may be different from the RTT targeted due to  
nonlinearity of the termination. For RTT_EFF values and calculations (see "On-Die  
Termination (ODT)" on page 160).  
The ODT feature is designed to improve signal integrity of the memory channel by  
enabling the DDR3 SDRAM controller to independently turn on/ off ODT for any or all  
devices. The ODT input control pin is used to determine when RTT is turned on (ODTL  
on) and off (ODTL off), assuming ODT has been enabled via MR1[9, 6, 2].  
Timings for ODT are detailed in "On-Die Termination (ODT)" on page 160.  
WRITE LEVELING  
The WRITE LEVELING function is enabled by MR1[7], as shown in Figure 56 on  
page 113. Write leveling is used (during initialization) to deskew the DQS strobe to clock  
offset as a result of fly-by topology designs. For better signal integrity, DDR3 SDRAM  
memory modules adopted fly-by topology for the commands, addresses, control signals,  
and clocks.  
The fly-by topology benefits from a reduced number of stubs and their lengths. However,  
fly-by topology induces flight time skews between the clock and DQS strobe (and DQ) at  
t
each DRAM on the DIMM. Controllers will have a difficult time maintaining DQSS,  
t
t
DSS, and DSH specifications without supporting write leveling in systems which use  
fly-by topology-based modules. Write leveling timing and detailed operation informa-  
tion is provided in “Write Leveling” on page 101.  
POSTED CAS ADDITIVE La t e n cy (AL)  
AL is supported to make the command and data bus efficient for sustainable band-  
widths in DDR3 SDRAM. MR1[4, 3] define the value of AL as shown in Figure 57 on  
page 116. MR1[4, 3] enable the user to program the DDR3 SDRAM with an AL = 0, CL - 1,  
or CL - 2.  
With this feature, the DDR3 SDRAM enables a READ or WRITE command to be issued  
t
after the ACTIVATE command for that bank prior to RCD (MIN). The only restriction is  
t
ACTIVATE to READ or WRITE + AL RCD (MIN) must be satisfied. Assuming  
t
t
t
RCD (MIN) = CL, a typical application using this feature sets AL = CL - 1 CK =  
t
RCD (MIN) - 1 CK. The READ or WRITE command is held for the time of the AL before  
it is released internally to the DDR3 SDRAM device. READ latency (RL) is controlled by  
the sum of the AL and CAS latency (CL), RL = AL + CL. WRITE latency (WL) is the sum of  
CAS WRITE latency and AL, WL = AL + CWL (see "Mode Register 2 (MR2)" on page 116).  
Examples of READ and WRITE latencies are shown in Figure 57 on page 116 and  
Figure 59 on page 117.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
115  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Fig u re 57: READ La t e n cy (AL = 5, CL = 6)  
BC4  
T2  
T11  
T0  
T1  
T6  
T12  
T13  
T14  
CK#  
CK  
Command  
ACTIVE n  
READ n  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
t
RCD (MIN)  
DQS, DQS#  
AL = 5  
CL = 6  
DO  
DO  
DO  
DO  
DQ  
n
n + 1  
n + 2  
n + 3  
RL = AL + CL = 11  
Indicates A Break in  
Time Scale  
Transitioning Data  
Dont Care  
Mo d e Re g ist e r 2 (MR2)  
The mode register 2 (MR2) controls additional functions and features not available in  
the other mode registers. These additional functions are CAS WRITE latency (CWL),  
AUTO SELF REFRESH (ASR), SELF REFRESH TEMPERATURE (SRT), and DYNAMIC  
ODT (RTT_WR). These functions are controlled via the bits shown in Figure 58. The MR2  
is programmed via the MRS command and will retain the stored information until it is  
programmed again or until the device loses power. Reprogramming the MR2 register will  
not alter the contents of the memory array, provided it is performed correctly. The MR2  
register must be loaded when all banks are idle and no data bursts are in progress, and  
t
t
the controller must wait the specified time MRD and MOD before initiating a subse-  
quent operation.  
Fig u re 58: Mo d e Re g ist e r 2 (MR2) De fin it io n  
A13  
BA2 BA1 BA0  
A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address bus  
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Mode register 2 (MR2)  
1
1
1
1
RTT_WR  
1
1
1
1
0
SRT ASR  
CWL  
1
0
0
0
0
0
0
0
0
M15 M14  
Mode Register  
M7 Self Refresh Temperature  
M5 M4 M3  
CAS Write Latency (CWL)  
t
0
0
1
1
0
1
0
1
Mode register set 0 (MR0)  
Mode register set 1 (MR1)  
Mode register set 2 (MR2)  
Mode register set 3 (MR3)  
0
1
Normal (C to 85°C)  
Extended (0°C to 95°C)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
5 CK ( CK 2.5ns)  
t
6 CK (2.5ns > CK 1.875ns)  
t
7 CK (1.875ns > CK 1.5ns)  
t
8 CK (1.5ns > CK 1.25ns)  
Reserved  
Reserved  
Reserved  
Reserved  
Auto Self Refresh  
(Optional)  
Dynamic ODT  
M6  
0
M10 M9  
( RTT_WR )  
Disabled: Manual  
Enabled: Automatic  
0
0
1
1
0
1
0
1
RTT_WR disabled  
1
RZQ/4  
RZQ/2  
Reserved  
Notes: 1. MR2[16, 13:11, 8, and 2:0] are reserved for future use and must all be programmed to “0.”  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
116  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
CAS Writ e La t e n cy (CWL)  
CWL is defined by MR2[5:3] and is the delay, in clock cycles, from the releasing of the  
internal write to the latching of the first data in. CWL must be correctly set to the corre-  
sponding operating clock frequency (see Figure 58 on page 116). The overall WRITE  
latency (WL) is equal to CWL + AL (Figure 56 on page 113), as shown in Figure 59.  
Fig u re 59: CAS Writ e La t e n cy  
BC4  
T11  
T0  
T1  
T2  
T6  
T12  
T13  
T14  
CK#  
CK  
ACTIVE n  
WRITE n  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
RCD (MIN)  
DQS, DQS#  
AL = 5  
CWL = 6  
DI  
DI  
DI  
DI  
DQ  
n
n + 1  
n + 2  
n + 3  
WL = AL + CWL = 11  
Indicates A Break in  
Time Scale  
Transitioning Data  
Dont Care  
AUTO SELF REFRESH (ASR)  
Mode register MR2[6] is used to disable/ enable the ASR function.  
When ASR is disabled, the self refresh modes refresh rate is assumed to be at the normal  
85°C limit (sometimes referred to as 1X refresh rate). In the disabled mode, ASR requires  
the user to ensure the DRAM never exceeds a T of 85°C while in self refresh unless the  
C
user enables the SRT feature listed below when the T is between 85°C and 95°C.  
C
Enabling ASR assumes the DRAM self refresh rate is changed automatically from 1X to  
2X when the case temperature exceeds 85°C. This enables the user to operate the DRAM  
beyond the standard 85°C limit up to the optional extended temperature range of 95°C  
while in self refresh mode.  
The standard self refresh current test specifies test conditions to normal case tempera-  
ture (85°C) only, meaning if ASR is enabled, the standard self refresh current specifica-  
tions do not apply (see “Extended Temperature Usage” on page 150).  
SELF REFRESH TEMPERATURE (SRT)  
Mode register MR2[7] is used to disable/ enable the SRT function. When SRT is disabled,  
the self refresh modes refresh rate is assumed to be at the normal 85°C limit (sometimes  
referred to as 1X refresh rate). In the disabled mode, SRT requires the user to ensure the  
DRAM never exceeds a T of 85°C while in self refresh mode unless the user enables ASR.  
C
When SRT is enabled, the DRAM self refresh is changed internally from 1X to 2X, regard-  
less of the case temperature. This enables the user to operate the DRAM beyond the  
standard 85°C limit up to the optional extended temperature range of 95°C while in self  
refresh mode. The standard self refresh current test specifies test conditions to normal  
case temperature (85°C) only, meaning if SRT is enabled, the standard self refresh  
current specifications do not apply (see “Extended Temperature Usage” on page 150).  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
117  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
SRT vs. ASR  
If the normal case temperature limit of 85°C is not exceeded, then neither SRT nor ASR is  
required, and both can be disabled throughout operation. However, if the extended  
temperature option of 95°C is needed, the user is required to provide a 2X refresh rate  
during (manual) refresh and to enable either the SRT or the ASR to ensure self refresh is  
performed at the 2X rate.  
SRT forces the DRAM to switch the internal self refresh rate from 1X to 2X. Self refresh is  
performed at the 2X refresh rate regardless of the case temperature.  
ASR automatically switches the DRAMs internal self refresh rate from 1X to 2X. However,  
while in self refresh mode, ASR enables the refresh rate to automatically adjust between  
1X to 2X over the supported temperature range. One other disadvantage with ASR is the  
DRAM cannot always switch from a 1X to a 2X refresh rate at an exact case temperature  
of 85°C. Although the DRAM will support data integrity when it switches from a 1X to a  
2X refresh rate, it may switch at a lower temperature than 85°C.  
Since only one mode is neccesary, SRT and ASR cannot be enabled at the same time.  
DYNAMIC ODT  
The dynamic ODT (RTT_WR) feature is defined by MR2[10, 9]. Dynamic ODT is enabled  
when a value is selected. This new DDR3 SDRAM feature enables the ODT termination  
value to change without issuing an MRS command, essentially changing the ODT termi-  
nation on-the-fly.”  
With dynamic ODT (RTT_WR) enabled, the DRAM switches from normal ODT (RTT_NOM)  
to dynamic ODT (RTT_WR) when beginning a WRITE burst and subsequently switches  
back to ODT (RTT_NOM) at the completion of the WRITE burst. If RTT_NOM is disabled,  
the RTT_NOM value will be High-Z. Special timing parameters must be adhered to when  
dynamic ODT (RTT_WR) is enabled: ODTLCNW, ODTLCNW4, ODTLCNW8, ODTH4,  
t
ODTH8, and ADC.  
Dynamic ODT is only applicable during WRITE cycles. If ODT (RTT_NOM) is disabled,  
dynamic ODT (RTT_WR) is still permitted. RTT_NOM and RTT_WR can be used indepen-  
dent of one other. Dynamic ODT is not available during write leveling mode, regardless  
of the state of ODT (RTT_NOM). For details on dynamic ODT operation, refer to “On-Die  
Termination (ODT)” on page 160.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
118  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Mo d e Re g ist e r 3 (MR3)  
The mode register 3 (MR3) controls additional functions and features not available in  
the other mode registers. Currently defined is the MULTIPURPOSE REGISTER (MPR).  
This function is controlled via the bits shown in Figure 60. The MR3 is programmed via  
the LOAD MODE command and retains the stored information until it is programmed  
again or until the device loses power. Reprogramming the MR3 register will not alter the  
contents of the memory array, provided it is performed correctly. The MR3 register must  
be loaded when all banks are idle and no data bursts are in progress, and the controller  
t
t
must wait the specified time MRD and MOD before initiating a subsequent operation.  
Fig u re 60: Mo d e Re g ist e r 3 (MR3) De fin it io n  
BA2 BA1 BA0 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address bus  
16 15 14 13 12 11 10  
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
0
Mode register 3 (MR3)  
MPR READ Function  
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
MPR MPR_RF  
0
Mode Register  
M2  
MPR Enable  
M15 M14  
M1 M0  
2
3
Mode register set (MR0)  
Mode register set 1 (MR1)  
Mode register set 2 (MR2)  
Mode register set 3 (MR3)  
0
1
Normal DRAM operations  
Dataflow from MPR  
0
0
1
1
0
1
0
1
0
0
1
1
0
1
0
1
Predefined pattern  
Reserved  
Reserved  
Reserved  
Notes: 1. MR3[16 and 13:4] are reserved for future use and must all be programmed to “0.”  
2. When MPR control is set for normal DRAM operation, MR3[1, 0] will be ignored.  
3. Intended to be used for READ synchronization.  
MULTIPURPOSE REGISTER (MPR)  
The MULTIPURPOSE REGISTER function is used to output a predefined system timing  
calibration bit sequence. Bit 2 is the master bit that enables or disables access to the  
MPR register, and bits 1 and 0 determine which mode the MPR is placed in. The basic  
concept of the multipurpose register is shown in Figure 61 on page 120.  
If MR3[2] is a “0,” then the MPR access is disabled, and the DRAM operates in normal  
mode. However, if MR3[2] is a “1,” then the DRAM no longer outputs normal read data  
but outputs MPR data as defined by MR3[0, 1]. If MR3[0, 1] is equal to “00,” then a  
predefined read pattern for system calibration is selected.  
To enable the MPR, the MRS command is issued to MR3, and MR3[2] = 1 (see Table 69  
on page 120). Prior to issuing the MRS command, all banks must be in the idle state (all  
t
banks are precharged, and RP is met). When the MPR is enabled, any subsequent READ  
or RDAP commands are redirected to the multipurpose register. The resulting operation  
when either a READ or a RDAP command is issued, is defined by MR3[1:0] when the  
MPR is enabled (see Table 70 on page 121). When the MPR is enabled, only READ or  
RDAP commands are allowed until a subsequent MRS command is issued with the MPR  
disabled (MR3[2] = 0). Power-down mode, self refresh, and any other nonREAD/ RDAP  
command is not allowed during MPR enable mode. The RESET function is supported  
during MPR enable mode.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
119  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Fig u re 61: Mu lt ip u rp o se Re g ist e r (MPR) Blo ck Dia g ra m  
Memory core  
MR3[2] = 0 (MPR off)  
Multipurpose register  
predefined data for READs  
MR3[2] = 1 (MPR on)  
DQ, DM, DQS, DQS#  
Notes: 1. A predefined data pattern can be read out of the MPR with an external READ command.  
2. MR3[2] defines whether the data flow comes from the memory core or the MPR. When the  
data flow is defined, the MPR contents can be read out continuously with a regular READ or  
RDAP command.  
Ta b le 69:  
MR3[2]  
MPR Fu n ct io n a l De scrip t io n o f MR3 Bit s  
MR3[1:0]  
MPR  
MPR READ Fu n ct io n  
Fu n ct io n  
0
Dont Care”  
Normal operation, no MPR transaction  
All subsequent READs come from the DRAM memory array  
All subsequent WRITEs go to the DRAM memory array  
1
A[1:0]  
Enable MPR mode, subsequent READ/RDAP commands defined by bits 1 and 2  
(see Table 70 on page 121)  
MPR Fu n ct io n a l De scrip t io n  
The MPR is a 1-bit-wide logical interface via all DQ balls during a READ command. DQ0  
on a x4 and a x8 is the prime DQ and outputs the MPR data while the remaining DQ are  
driven LOW. Similarly, for the x16, DQ0 (lower byte) and DQ8 (upper byte) are the prime  
DQ and output the MPR data while the remaining DQ drive LOW. The MPR readout  
supports fixed READ burst and READ burst chop (MRS and OTF via A12/ BC#) with  
regular READ latencies and AC timings applicable, provided the DLL is locked as  
required.  
MPR addressing for a valid MPR read is as follows:  
• A[1:0] must be set to “00” as the burst order is fixed per nibble  
• A2 selects the burst order:  
– BL8, A2 is set to “0,” and the burst order is fixed to 0, 1, 2, 3, 4, 5, 6, 7  
• For burst chop 4 cases, the burst order is switched on the nibble base and:  
– A2 = 0; burst order = 0, 1, 2, 3  
– A2 = 1; burst order = 4, 5, 6, 7  
• Burst order bit 0 (the first bit) is assigned to LSB, and burst order bit 7 (the last bit) is  
assigned to MSB  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
120  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
• A[9:3] are a “Dont Care”  
• A10 is a “Dont Care”  
• A11 is a “Dont Care”  
• A12: Selects burst chop mode on-the-fly, if enabled within MR0  
• A13 is a “Dont Care”  
• BA[2:0] are a “Dont Care”  
MPR Re g ist e r Ad d re ss De fin it io n s a n d Bu rst in g Ord e r  
The MPR currently supports a single data form at. This data format is a predefined read  
pattern for system calibration. The predefined pattern is always a repeating 0–1 bit  
pattern.  
Examples of the different types of predefined READ pattern bursts are shown in  
Figure 62 on page 122, Figure 63 on page 123, Figure 64 on page 124, and Figure 65 on  
page 125.  
Ta b le 70:  
MPR Re a d o u t s a n d Bu rst Ord e r Bit Ma p p in g  
Bu rst  
Le n g t h  
Re a d  
A[2:0]  
MR3[2]  
MR3[1:0]  
Fu n ct io n  
Bu rst Ord e r a n d Da t a Pa t t e rn  
1
00  
READ predefined  
pattern for system  
calibration  
BL8  
BC4  
BC4  
000  
Burst order: 0, 1, 2, 3, 4, 5, 6, 7  
Predefined pattern: 0, 1, 0, 1, 0, 1, 0, 1  
000  
100  
Burst order: 0, 1, 2, 3  
Predefined pattern: 0, 1, 0, 1  
Burst order: 4, 5, 6, 7  
Predefined pattern: 0, 1, 0, 1  
1
1
1
01  
10  
11  
RFU  
RFU  
RFU  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Notes: 1. Burst order bit 0 is assigned to LSB, and burst order bit 7 is assigned to MSB of the selected  
MPR agent.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
121  
Fig u re 62: MPR Syst e m Re a d Ca lib ra t io n w it h BL8: Fixe d Bu rst Ord e r Sin g le Re a d o u t  
T0  
Ta0  
Tb0  
Tb1  
Tc0  
Tc1  
Tc2  
Tc3  
Tc4  
Tc5  
Tc6  
Tc7  
Tc8  
Tc9  
Tc10  
CK#  
CK  
1
Command  
PREA  
MRS  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
MRS  
NOP  
NOP  
Valid  
READ  
t
t
MOD  
t
t
MOD  
MPRR  
RP  
Bank address  
A[1:0]  
3
0
Valid  
3
2
0
Valid  
2
0
A2  
1
0
00  
0
A[9:3]  
00  
0
Valid  
Valid  
Valid  
A10/AP  
A11  
1
0
0
1
A12/BC#  
A[15:13]  
0
0
Valid  
0
Valid  
0
RL  
DQS, DQS#  
DQ  
Indicates A Break in  
Time Scale  
Dont Care  
Notes: 1. READ with BL8 either by MRS or OTF.  
2. Memory controller must drive 0 on A[2:0].  
Fig u re 63: MPR Syst e m Re a d Ca lib ra t io n w it h BL8: Fixe d Bu rst Ord e r, Ba ck-t o -Ba ck Re a d o u t  
T0  
Ta  
Tb  
Tc0  
Tc1  
Tc2  
Tc3  
Tc4  
Tc5  
Tc6  
Tc7  
Tc8  
Tc9  
Tc10  
MRS  
Td  
CK#  
CK  
1
1
Command  
PREA  
MRS  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Valid  
READ  
READ  
t
t
t
MPRR  
t
t
MOD  
CCD  
RP  
MOD  
Bank address  
A[1:0]  
3
0
Valid  
Valid  
3
2
0
2
0
Valid  
2
0
2
1
A2  
1
0
00  
0
A[9:3]  
00  
0
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
A10/AP  
A11  
1
0
0
1
A12/BC#  
A[15:13]  
0
0
Valid  
0
Valid  
0
RL  
DQS, DQS#  
RL  
DQ  
Indicates A Break in  
Time Scale  
Dont Care  
Notes: 1. READ with BL8 either by MRS or OTF.  
2. Memory controller must drive 0 on A[2:0].  
Fig u re 64: MPR Syst e m Re a d Ca lib ra t io n w it h BC4: Lo w e r Nib b le , Th e n Up p e r Nib b le  
T0  
Ta  
Tb  
Tc0  
Tc1  
Tc2  
Tc3  
Tc4  
Tc5  
Tc6  
Tc7  
Tc8  
Tc9  
Tc10  
Td  
CK#  
CK  
1
1
Command  
PREA  
MRS  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
MRS  
NOP  
NOP  
Valid  
READ  
READ  
t
t
MOD  
t
t
CCD  
t
MPRR  
RF  
MOD  
Bank address  
A[1:0]  
3
0
1
Valid  
Valid  
3
Valid  
0
2
0
2
0
3
0
4
1
A2  
A[9:3]  
A10/AP  
A11  
00  
0
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
00  
0
1
0
0
1
1
A12/BC#  
0
0
Valid  
Valid  
Valid  
A[15:13]  
0
Valid  
0
RL  
DQS, DQS#  
RL  
DQ  
Indicates A Break in  
Time Scale  
Dont Care  
Notes: 1. READ with BC4 either by MRS or OTF.  
2. Memory controller must drive 0 on A[1:0].  
3. A2 = 0 selects lower 4 nibble bits 0 . . . 3.  
4. A2 = 1 selects upper 4 nibble bits 4 . . . 7.  
Fig u re 65: MPR Syst e m Re a d Ca lib ra t io n w it h BC4: Up p e r Nib b le , Th e n Lo w e r Nib b le  
Tc0  
Tc1  
Tc2  
Tc3  
Tc4  
Tc5  
Tc6  
Tc7  
Tc8  
Tc9  
Tc10  
Td  
T0  
Ta  
Tb  
CK#  
CK  
1
1
Command  
PREA  
MRS  
READ  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
MRS  
NOP  
NOP  
Valid  
t
t
t
t
MOD  
t
RF  
CCD  
MPRR  
MOD  
Bank address  
3
0
Valid  
Valid  
3
2
0
2
0
A[1:0]  
Valid  
3
1
4
0
A2  
1
0
A[9:3]  
A10/AP  
A11  
00  
0
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
00  
0
1
0
0
1
1
A12/BC#  
0
0
0
0
Valid  
Valid  
A[15:13]  
Valid  
Valid  
RL  
DQS, DQS#  
RL  
DQ  
Indicates A Break in  
Time Scale  
Dont Care  
Notes: 1. READ with BC4 either by MRS or OTF.  
2. Memory controller must drive 0 on A[1:0].  
3. A2 = 1 selects upper 4 nibble bits 4 . . . 7.  
4. A2 = 0 selects lower 4 nibble bits 0 . . . 3.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
MPR Re a d Pre d e fin e d Pa t t e rn  
The predetermined read calibration pattern is a fixed pattern of 0, 1, 0, 1, 0, 1, 0, 1. The  
following is an example of using the read out predetermined read calibration pattern.  
The example is to perform multiple reads from the multipurpose register in order to do  
system level read timing calibration based on the predetermined and standardized  
pattern.  
The following protocol outlines the steps used to perform the read calibration:  
• Precharge all banks  
t
• After RP is satisfied, set MRS, MR3[2] = 1 and MR3[1:0] = 00. This redirects all subse-  
t
quent reads and loads the predefined pattern into the MPR. As soon as MRD and  
t
MOD are satisfied, the MPR is available  
• Data WRITE operations are not allowed until the MPR returns to the normal DRAM  
state  
• Issue a read with burst order information (all other address pins are “Dont Care”):  
– A[1:0] = 00 (data burst order is fixed starting at nibble)  
– A2 = 0 (for BL8, burst order is fixed as 0, 1, 2, 3, 4, 5, 6, 7)  
– A12 = 1 (use BL8)  
• After RL = AL + CL, the DRAM bursts out the predefined read calibration pattern  
(0, 1, 0, 1, 0, 1, 0, 1)  
• The memory controller repeats the calibration reads until read data capture at  
memory controller is optimized  
t
• After the last MPR READ burst and after MPRR has been satisfied, issue MRS,  
MR3[2] = 0, and MR3[1:0] = “Dont Care” to the normal DRAM state. All subsequent  
read and write accesses will be regular reads and writes from/ to the DRAM array  
t
t
• When MRD and MOD are satisfied from the last MRS, the regular DRAM commands  
(such as activate a memory bank for regular read or write access) are permitted  
MODE REGISTER SET (MRS)  
The mode registers are loaded via inputs BA[2:0], A[13:0]. BA[2:0] determine which mode  
register is programmed:  
• BA2 = 0, BA1 = 0, BA0 = 0 for MR0  
• BA2 = 0, BA1 = 0, BA0 = 1 for MR1  
• BA2 = 0, BA1 = 1, BA0 = 0 for MR2  
• BA2 = 0, BA1 = 1, BA0 = 1 for MR3  
The MRS command can only be issued (or reissued) when all banks are idle and in the  
t
precharged state ( RP is satisfied and no data bursts are in progress). The controller must  
t
wait the specified time MRD before initiating a subsequent operation such as an ACTI-  
VATE command (see Figure 52 on page 108). There is also a restriction after issuing an  
MRS command with regard to when the updated functions become available. This  
t
t
t
parameter is specified by MOD. Both MRD and MOD parameters are shown in  
Figure 52 on page 108 and Figure 53 on page 109. Violating either of these requirements  
will result in unspecified operation.  
ZQ CALIBRATION  
The ZQ CALIBRATION command is used to calibrate the DRAM output drivers (RON)  
and ODT values (RTT) over process, voltage, and temperature, provided a dedicated  
240Ω (±1 percent) external resistor is connected from the DRAMs ZQ ball to VSSQ.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
126  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
DDR3 SDRAM need a longer tim e to calibrate RON and ODT at power-up initialization  
and self refresh exit and a relatively shorter time to perform periodic calibrations. DDR3  
SDRAM defines two ZQ CALIBRATION commands: ZQ CALIBRATION LONG (ZQCL)  
and ZQ CALIBRATION SHORT (ZQCS). An example of ZQ calibration timing is shown in  
Figure 66.  
t
All banks must be precharged and RP must be met before ZQCL or ZQCS commands  
can be issued to the DRAM. No other activities (other than another ZQCL or ZQCS  
command may be issued to another DRAM) can be performed on the DRAM channel by  
t
t
the controller for the duration of ZQINIT or ZQOPER . The quiet time on the DRAM  
channel helps accurately calibrate RON and ODT. After DRAM calibration is achieved,  
the DRAM should disable the ZQ balls current consumption path to reduce power.  
ZQ CALIBRATION commands can be issued in parallel to DLL RESET and locking time.  
Upon self refresh exit, an explicit ZQCL is required if ZQ calibration is desired.  
In dual-rank systems that share the ZQ resistor between devices, the controller must not  
t
t
t
allow overlap of ZQINIT, ZQOPER, or ZQCS between ranks.  
Fig u re 66: ZQ Ca lib ra t io n Tim in g (ZQCL a n d ZQCS)  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Tb0  
Tb1  
Tc0  
Tc1  
Tc2  
CK#  
CK  
Command  
Address  
A10  
ZQCL  
NOP  
NOP  
NOP  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
ZQCS  
NOP  
NOP  
NOP  
Valid  
Valid  
Valid  
CKE  
1
2
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
1
2
ODT  
Activ-  
ities  
DQ  
3
High-Z  
Activities  
3
High-Z  
t
t
t
ZQINIT or ZQOPER  
ZQCS  
Indicates A Break in  
Time Scale  
Dont Care  
Notes: 1. CKE must be continuously registered HIGH during the calibration procedure.  
2. ODT must be disabled via the ODT signal or the MRS during the calibration procedure.  
3. All devices connected to the DQ bus should be High-Z during calibration.  
ACTIVATE  
Before any READ or WRITE commands can be issued to a bank within the DRAM, a row  
in that bank must be opened (activated). This is accomplished via the ACTIVATE  
command, which selects both the bank and the row to be activated.  
After a row is opened with an ACTIVATE command, a READ or WRITE command may be  
t
issued to that row, subject to the RCD specification. However, if the additive latency is  
t
programmed correctly, a READ or WRITE command may be issued prior to RCD (MIN).  
In this operation, the DRAM enables a READ or WRITE command to be issued after the  
t
ACTIVATE command for that bank, but prior to RCD (MIN) with the requirement that  
t
(ACTIVATE-to-READ/ WRITE) + AL RCD (MIN) (see "POSTED CAS ADDITIVE Latency  
t
(AL)" on page 115). RCD (MIN) should be divided by the clock period and rounded up  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
127  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
to the next whole number to determine the earliest clock edge after the ACTIVATE  
command on which a READ or WRITE command can be entered. The same procedure is  
used to convert other specification limits from time units to clock cycles.  
When at least one bank is open, any READ-to-READ command delay or WRITE-to-  
t
WRITE command delay is restricted to CCD (MIN).  
A subsequent ACTIVATE command to a different row in the same bank can only be  
issued after the previous active row has been closed (precharged). The minimum time  
t
interval between successive ACTIVATE commands to the same bank is defined by RC.  
A subsequent ACTIVATE command to another bank can be issued while the first bank is  
being accessed, which results in a reduction of total row-access overhead. The minimum  
time interval between successive ACTIVATE commands to different banks is defined by  
t
RRD. No more than four bank ACTIVATE commands may be issued in a given  
t
t
t
FAW (MIN) period, and the RRD (MIN) restriction still applies. The FAW (MIN) param-  
eter applies, regardless of the number of banks already opened or closed.  
t
t
Fig u re 67: Exa m p le : Me e t in g RRD (MIN) a n d RCD (MIN)  
T0  
T1  
T2  
T3  
T4  
T5  
T8  
T9  
T10  
T11  
CK#  
CK  
Command  
Address  
BA[2:0]  
ACT  
Row  
NOP  
NOP  
ACT  
Row  
NOP  
NOP  
NOP  
NOP  
NOP  
RD/WR  
Col  
Bank x  
Bank y  
Bank y  
t
t
RCD  
RRD  
Indicates A Break in  
Time Scale  
Dont Care  
t
Fig u re 68: Exa m p le : FAW  
T0  
T1  
T4  
T5  
T8  
T9  
T10  
T11  
T19  
T20  
CK#  
CK  
Command  
Address  
ACT  
Row  
NOP  
ACT  
Row  
NOP  
ACT  
NOP  
ACT  
Row  
NOP  
NOP  
ACT  
Row  
Row  
BA[2:0]  
Bank a  
Bank b  
Bank c  
Bank d  
Bank e
t
RRD  
t
FAW  
Indicates A Break in  
Time Scale  
Dont Care  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
128  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
READ  
READ bursts are initiated with a READ command. The starting column and bank  
addresses are provided with the READ command and auto precharge is either enabled  
or disabled for that burst access. If auto precharge is enabled, the row being accessed is  
automatically precharged at the completion of the burst. If auto precharge is disabled,  
the row will be left open after the completion of the burst.  
During READ bursts, the valid data-out element from the starting column address is  
available READ latency (RL) clocks later. RL is defined as the sum of POSTED CAS ADDI-  
TIVE latency (AL) and CAS latency (CL) (RL = AL + CL). The value of AL and CL is  
programmable in the mode register via the MRS command. Each subsequent data-out  
element will be valid nominally at the next positive or negative clock edge (that is, at the  
next crossing of CK and CK#). Figure 69 shows an example of RL based on a CL setting of  
8 and an AL setting of 0.  
Fig u re 69: READ La t e n cy  
T0  
T7  
T8  
T9  
T10  
T11  
T12  
T12  
CK#  
CK  
Command  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank a,  
Col n  
Address  
CL = 8, AL = 0  
DQS, DQS#  
DO  
n
DQ  
Indicates A Break in  
Time Scale  
Transitioning Data  
Dont Care  
Notes: 1. DO n = data-out from column n.  
2. Subsequent elements of data-out appear in the programmed order following DO n.  
DQS, DQS# is driven by the DRAM along with the output data. The initial low state on  
t
DQS and HIGH state on DQS# is known as the READ preamble ( RPRE). The low state on  
DQS and the HIGH state on DQS#, coincident with the last data-out element, is known  
t
as the READ postamble ( RPST). Upon completion of a burst, assuming no other  
t
commands have been initiated, the DQ will go High-Z. A detailed explanation of DQSQ  
t
(valid data-out skew), QH (data-out window hold), and the valid data window are  
t
depicted in Figure 80 on page 137. A detailed explanation of DQSCK (DQS transition  
skew to CK) is also depicted in Figure 80 on page 137.  
Data from any READ burst may be concatenated with data from a subsequent READ  
command to provide a continuous flow of data. The first data element from the new  
burst follows the last element of a completed burst. The new READ command should be  
t
issued CCD cycles after the first READ command. This is shown for BL8 in Figure 70 on  
t
page 131. If BC4 is enabled, CCD must still be met which will cause a gap in the data  
output, as shown in Figure 71 on page 131. Nonconsecutive read data is reflected in  
Figure 72 on page 132. DDR3 SDRAM do not allow interrupting or truncating any READ  
burst.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
129  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Data from any READ burst must be completed before a subsequent WRITE burst is  
allowed. An example of a READ burst followed by a WRITE burst for BL8 is shown in  
Figure 73 on page 132 (BC4 is shown in Figure 74 on page 133). To ensure the read data  
is completed before the write data is on the bus, the minimum READ-to-WRITE timing  
t
t
is RL + CCD - WL + 2 CK.  
A READ burst may be followed by a PRECHARGE command to the same bank provided  
auto precharge is not activated. The minimum READ-to-PRECHARGE command  
spacing to the same bank is four clocks and must also satisfy a minimum analog time  
t
t
from the READ command. This time is called RTP (READ-to-PRECHARGE). RTP starts  
AL cycles later than the READ command. Examples for BL8 are shown in Figure 75 on  
page 133 and BC4 in Figure 76 on page 134. Following the PRECHARGE command, a  
t
subsequent command to the same bank cannot be issued until RP is met. The  
PRECHARGE command followed by another PRECHARGE command to the same bank  
is allowed. However, the precharge period will be determined by the last PRECHARGE  
command issued to the bank.  
If A10 is HIGH when a READ command is issued, the READ with auto precharge function  
is engaged. The DRAM starts an auto precharge operation on the rising edge which is AL  
t
t
+ RTP cycles after the READ command. DRAM support a RAS lockout feature (see  
t
Figure 78 on page 134). If RAS (MIN) is not satisfied at the edge, the starting point of the  
auto precharge operation will be delayed until RAS (MIN) is satisfied. If RTP (MIN) is  
not satisfied at the edge, the starting point of the auto precharge operation will be  
delayed until RTP (MIN) is satisfied. In case the internal precharge is pushed out by  
RTP, RP starts at the point at which the internal precharge happens (not at the next  
rising clock edge after this event). The time from READ with auto precharge to the next  
ACTIVATE command to the same bank is AL + ( RTP + RP)*, where “*means rounded  
up to the next integer. In any event, internal precharge does not start earlier than four  
clocks after the last 8n-bit prefetch.  
t
t
t
t
t
t
t
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
130  
©2006 Micron Technology, Inc. All rights reserved.  
Fig u re 70: Co n se cu t ive READ Bu rst s (BL8)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK#  
CK  
1
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
CCD  
Bank,  
Bank,  
2
Address  
Col n  
Col b  
t
t
RPRE  
RPST  
DQS, DQS#  
DO  
DO  
+ 1  
DO  
+ 2  
DO  
+ 3  
DO  
+ 4  
DO  
+ 5  
DO  
+ 6  
DO  
+ 7  
DO  
DO  
+ 1  
DO  
+ 2  
DO  
+ 3  
DO  
+ 4  
DO  
+ 5  
DO  
+ 6  
DO  
b + 7  
3
DQ  
n
n
n
n
n
n
n
n
b
b
b
b
b
b
b
RL = 5  
RL = 5  
Transitioning Data  
Dont Care  
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
2. The BL8 setting is activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ command at T0 and T4.  
3. DO n (or b) = data-out from column n (or column b).  
4. BL8, RL = 5 (CL = 5, AL = 0).  
Fig u re 71: Co n se cu t ive READ Bu rst s (BC4)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK#  
CK  
1
Command  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
t
CCD  
Bank,  
Col n  
Bank,  
Col b  
2
Address  
t
t
t
t
RPST  
RPRE  
RPST  
RPRE  
DQS, DQS#  
3
DO  
DO  
DO  
DO  
DO  
DO  
b + 1  
DO  
DO  
DQ  
n
n + 1  
n + 2  
n + 3  
b
b + 2  
b + 3  
RL = 5  
RL = 5  
Transitioning Data  
Dont Care  
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
2. The BC4 setting is activated by either MR0[1:0] = 10 or MR0[1:0] = 01 and A12 = 0 during READ command at T0 and T4.  
3. DO n (or b) = data-out from column n (or column b).  
4. BC4, RL = 5 (CL = 5, AL = 0).  
Fig u re 72: No n co n se cu t ive READ Bu rst s  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
CK#  
CK  
Command  
READ  
NOP  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank a,  
Bank a,  
Address  
Col n  
Col b  
CL = 8  
CL = 8  
DQS, DQS#  
DO  
DO  
DQ  
n
b
Transitioning Data  
Dont Care  
Notes: 1. AL = 0, RL = 8.  
2. DO n (or b) = data-out from column n (or column b).  
3. Seven subsequent elements of data-out appear in the programmed order following DO n.  
4. Seven subsequent elements of data-out appear in the programmed order following DO b.  
Fig u re 73: READ (BL8) t o WRITE (BL8)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
CK#  
CK  
1
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
WR  
t
t
t
BL = 4 clocks  
READ-to-WRITE command delay = RL + CCD + 2 CK - WL  
t
WTR  
Bank,  
Bank,  
2
Address  
Col n  
Col b  
t
t
t
WPRE  
t
RPRE  
RPST  
WPST  
DQS, DQS#  
DO  
DO  
n + 1  
DO  
DO  
n + 3  
DO  
DO  
n + 5  
DO  
DO  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
n + 7  
3
DQ  
n
n + 2  
n + 4  
n + 6  
n + 7  
n
n + 1  
n + 2 n + 3  
n + 4  
n + 5  
n + 6  
RL = 5  
WL = 5  
Transitioning Data  
Dont Care  
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
2. The BL8 setting is activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during the READ command at T0, and  
the WRITE command at T6.  
3. DO n = data-out from column, DI b = data-in for column b.  
4. BL8, RL = 5 (AL = 0, CL = 5), WL = 5 (AL = 0, CWL = 5).  
Fig u re 74: READ (BC4) t o WRITE (BC4) OTF  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
CK#  
CK  
1
READ  
NOP  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
WR  
t
t
t
BL = 4 clocks  
READ-to-WRITE command delay = RL + CCD/2 + 2 CK - WL  
t
WTR  
Bank,  
Col n  
Bank,  
2
Address  
Col b  
t
t
t
t
RPRE  
RPST  
WPRE  
WPST  
DQS, DQS#  
DO  
DO  
n + 1  
DO  
DO  
DI  
DI  
DI  
DI  
3
DQ  
n
n + 2  
n + 3  
n
n + 1  
n + 2  
n + 3  
RL = 5  
WL = 5  
Transitioning Data  
Dont Care  
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
2. The BC4 OTF setting is activated by MR0[1:0] and A12 = 0 during READ command at T0 and WRITE command at T4.  
3. DO n = data-out from column n; DI n = data-in from column b.  
4. BC4, RL = 5 (AL - 0, CL = 5), WL = 5 (AL = 0, CWL = 5).  
Fig u re 75: READ t o PRECHARGE (BL8)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
CK#  
CK  
Command  
READ  
NOP  
NOP  
NOP  
NOP  
PRE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACT  
NOP  
NOP  
NOP  
NOP  
Bank a,  
Col n  
Bank a,  
Bank a,  
Address  
(or all)  
Row b  
t
t
RTP  
RP  
DQS, DQS#  
DO  
DO  
+ 1  
DO  
+ 2  
DO  
+ 3  
DO  
+ 4  
DO  
+ 5  
DO  
+ 6  
DO  
+ 7  
DQ  
n
n
n
n
n
n
n
n
t
RAS  
Transitioning Data  
Dont Care  
Fig u re 76: READ t o PRECHARGE (BC4)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
CK#  
CK  
Command  
READ  
NOP  
NOP  
NOP  
NOP  
PRE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACT  
NOP  
NOP  
NOP  
NOP  
Bank a,  
Bank a,  
(or all)  
Bank a,  
Address  
Col n  
Row b  
t
RP  
t
RTP  
DQS, DQS#  
DO  
DO  
+ 1  
DO  
+ 2  
DO  
+ 3  
DQ  
n
n
n
n
t
RAS  
Transitioning Data  
Dont Care  
Fig u re 77: READ t o PRECHARGE (AL = 5, CL = 6)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
CK#  
CK  
PRE  
NOP  
Command  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACT  
Bank a,  
Col n  
Bank a,  
(or all)  
Bank a,  
Row b  
Address  
t
t
AL = 5  
RTP  
RP  
DQS, DQS#  
DO  
n
DO  
+ 1  
DO  
+ 2  
DO  
+ 3  
DQ  
n
n
n
CL = 6  
t
RAS  
Transitioning Data  
Dont Care  
Fig u re 78: READ w it h Au t o Pre ch a rg e (AL = 4, CL = 6)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
Ta0  
CK#  
CK  
Command  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACT  
Bank a,  
Col n  
Bank a,  
Address  
Row  
b
t
AL = 4  
RTP (MIN)  
DQS, DQS#  
DO  
DO  
DO  
DO  
+ 3  
DQ  
n
n
+ 1  
n
+ 2  
n
CL = 6  
t
t
RAS (MIN)  
RP  
Indicates A Break in  
Time Scale  
Transitioning Data  
Dont Care  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
A DQS to DQ output timing is shown in Figure 79 on page 136. The DQ transitions  
t
between valid data outputs must be within DQSQ of the crossing point of DQS, DQS#.  
t
t
DQS must also maintain a minimum HIGH and LOW time of QSH and QSL. Prior to the  
READ preamble, the DQ balls will either be floating or terminated depending on the  
status of the ODT signal.  
Figure 80 on page 137 shows the strobe-to-clock timing during a READ. The crossing  
t
point DQS, DQS# must transition within ± DQSCK of the clock crossing point. The data  
out has no timing relationship to clock, only to DQS, as shown in Figure 80 on page 137.  
Figure 80 on page 137 also shows the READ preamble and postamble. Normally, both  
DQS and DQS# are High-Z to save power (VDDQ). Prior to data output from the DRAM,  
t
DQS is driven LOW and DQS# is HIGH for RPRE. This is known as the READ preamble.  
t
The READ postamble, RPST, is one half clock from the last DQS, DQS# transition.  
During the READ postamble, DQS is driven LOW and DQS# is HIGH. When complete,  
the DQ will either be disabled or will continue terminating depending on the state of the  
t
ODT signal. Figure 85 on page 140 demonstrates how to measure RPST.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
135  
©2006 Micron Technology, Inc. All rights reserved.  
t
Fig u re 79: Da t a Ou t p u t Tim in g – DQSQ a n d Da t a Va lid Win d o w  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CK#  
CK  
1
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
RL = AL + CL  
Bank,  
2
Address  
Col n  
t
DQSQ (MAX)  
t
RPST  
t
DQSQ (MAX)  
t
t
HZ (DQ) MAX  
LZ (DQ) MIN  
DQS, DQS#  
t
t
t
RPRE  
QH  
DO  
QH  
DO  
3
DO  
n + 1  
DO  
n + 2  
DO  
n + 4  
DO  
n + 5  
DO  
DO  
n + 7  
DQ (last data valid)  
n + 3  
n + 6  
n
3
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ (first data no longer valid)  
All DQ collectively  
n
n + 1  
n + 2  
n + 3  
n + 4  
n + 5  
n + 6  
n + 7  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
n + 7  
n
n + 1  
n + 2  
n + 3  
n + 4  
n + 5  
n + 6  
Data valid  
Data valid  
Transitioning Data  
Dont Care  
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
2. The BL8 setting is activated by either MR0[1, 0] = 0, 0 or MR0[0, 1] = 0, 1 and A12 = 1 during READ command at T0.  
3. DO n = data-out from column n.  
4. BL8, RL = 5 (AL = 0, CL = 5).  
5. Output timings are referenced to VDDQ/2 and DLL on and locked.  
6. tDQSQ defines the skew between DQS, DQS# to data and does not define DQS, DQS# to clock.  
7. Early data transitions may not always happen at the same DQ. Data transitions of a DQ can vary (either early or late)  
within a burst.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
t
t
HZ and LZ transitions occur in the same access time as valid data transitions. These  
parameters are referenced to a specific voltage level which specifies when the device  
t
t
t
output is no longer driving HZ (DQS) and HZ (DQ) or begins driving LZ (DQS),  
t
LZ (DQ). Figure 81 shows a method to calculate the point when the device is no longer  
driving HZ (DQS) and HZ (DQ) or begins driving LZ (DQS), LZ (DQ) by measuring the  
signal at two different voltages. The actual voltage measurement points are not critical  
as long as the calculation is consistent. The parameters LZ (DQS), LZ (DQ), HZ (DQS),  
and HZ (DQ) are defined as single-ended.  
t
t
t
t
t
t
t
t
Fig u re 80: Da t a St ro b e Tim in g – READs  
RL measured  
to this point  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CK  
CK#  
t
t
t
t
t
HZ (DQS) MIN  
DQSCK (MIN)  
DQSCK (MIN)  
DQSCK (MIN)  
DQSCK (MIN)  
t
LZ (DQS) MIN  
t
t
t
t
QSL  
QSH  
QSL  
QSH  
DQS, DQS#  
early strobe  
t
t
RPST  
RPRE  
Bit 0  
Bit 1  
DQSCK (MAX)  
Bit 2  
Bit 3  
DQSCK (MAX)  
Bit 4  
Bit 5  
DQSCK (MAX)  
Bit 6  
Bit 7  
DQSCK (MAX)  
t
HZ (DQS) MAX  
t
t
t
t
t
LZ (DQS) MAX  
t
RPST  
DQS, DQS#  
late strobe  
t
t
t
t
QSL  
QSH  
QSL  
QSH  
t
RPRE  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
t
t
Fig u re 81: Me t h o d fo r Ca lcu la t in g LZ a n d HZ  
VOH - xmV  
VTT + 2xmV  
VTT + xmV  
VOH - 2xmV  
t
t
t
t
LZ (DQS), LZ (DQ)  
HZ (DQS), HZ (DQ)  
VTT - xmV  
VOL + 2xmV  
VOL + xmV  
T1  
T2  
VTT - 2xmV  
T1  
T2  
t
t
t
t
LZ (DQS), LZ (DQ) begin point = 2 × T1 - T2  
HZ (DQS), HZ (DQ) end point = 2 × T1 - T2  
t
t
Notes: 1. Within a burst, the rising strobe edge is not necessarily fixed at DQSCK (MIN) or DQSCK  
t
t
(MAX). Instead, the rising strobe edge can vary between DQSCK (MIN) and DQSCK (MAX).  
2. The DQS high pulse width is defined by tQSH, and the DQS low pulse width is defined by  
t
t
tQSL. Likewise, tLZ (DQS) MIN and HZ (DQS) MIN are not tied to DQSCK (MIN) (early strobe  
t
t
t
case) and LZ (DQS) MAX and HZ (DQS) MAX are not tied to DQSCK (MAX) (late strobe  
case); however, they tend to track one another.  
3. The minimum pulse width of the READ preamble is defined by tRPRE (MIN). The minimum  
pulse width of the READ postamble is defined by tRPST (MIN).  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
137  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
t
Fig u re 82: RPRE Tim in g  
CK  
VTT  
VTT  
CK#  
t
t
B
A
DQS  
Single-ended signal provided  
as background information  
t
t
C
D
VTT  
DQS#  
Single-ended signal provided  
as background information  
T1  
t
RPRE begins  
t
RPRE  
DQS - DQS#  
0V  
T2  
Resulting differential  
signal relevant for  
RPRE specification  
t
RPRE ends  
t
t
Fig u re 83: RPST Tim in g  
CK  
VTT  
CK#  
t
A
DQS  
VTT  
t
Single-ended signal, provided  
as background information  
B
t
C
t
D
DQS#  
VTT  
Single-ended signal, provided  
as background information  
t
RPST  
DQS - DQS#  
0V  
Resulting differential  
signal relevant for  
RPST specification  
T1  
t
RPST begins  
T2  
t
t
RPST ends  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
138  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
WRITE  
WRITE bursts are initiated with a WRITE command. The starting column and bank  
addresses are provided with the WRITE command, and auto precharge is either enabled  
or disabled for that access. If auto precharge is selected, the row being accessed will be  
precharged at the end of the WRITE burst. If auto precharge is not selected, the row will  
remain open for subsequent accesses. After a WRITE command has been issued, the  
WRITE burst may not be interrupted. For the generic WRITE commands used in  
Figure 86 on page 141 through Figure 94 on page 146, auto precharge is disabled.  
During WRITE bursts, the first valid data-in element is registered on a rising edge of DQS  
following the WRITE latency (WL) clocks later and subsequent data elements will be  
registered on successive edges of DQS. WRITE latency (WL) is defined as the sum of  
POSTED CAS ADDITIVE latency (AL) and CAS WRITE latency (CWL): WL = AL + CWL.  
The values of AL and CWL are programmed in the MR0 and MR2 registers, respectively.  
Prior to the first valid DQS edge, a full cycle is needed (including a dummy crossover of  
DQS, DQS#) and specified as the WRITE preamble shown in Figure 86 on page 141. The  
half cycle on DQS following the last data-in element is known as the WRITE postamble.  
The time between the WRITE command and the first valid edge of DQS is WL clocks  
t
± DQSS. Figure 87 on page 142 through Figure 94 on page 146 show the nominal case  
t
t
where DQSS = 0ns; however, Figure 86 on page 141 includes DQSS (MIN) and  
t
DQSS (MAX) cases.  
Data may be masked from completing a WRITE using data mask. The mask occurs on  
the DM ball aligned to the write data. If DM is LOW, the write completes normally. If DM  
is HIGH, that bit of data is masked.  
Upon completion of a burst, assuming no other commands have been initiated, the DQ  
will remain High-Z, and any additional input data will be ignored.  
Data for any WRITE burst may be concatenated with a subsequent WRITE command to  
t
provide a continuous flow of input data. The new WRITE command can be CCD clocks  
following the previous WRITE command. The first data element from the new burst is  
applied after the last element of a completed burst. Figures 87 and 88 on page 142 show  
concatenated bursts. An example of nonconsecutive WRITEs is shown in Figure 89 on  
page 143.  
t
Data for any WRITE burst may be followed by a subsequent READ command after WTR  
has been met (see Figures 90 and 91 on page 144 and Figure 92 on page 145).  
Data for any WRITE burst may be followed by a subsequent PRECHARGE command  
t
providing WR has been met, as shown in Figure 93 on page 146 and Figure 94 on  
page 146.  
t
t
Both WTR and WR starting time may vary depending on the mode register settings  
(fixed BC4, BL8 vs. OTF).  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
139  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
t
Fig u re 84: WPRE Tim in g  
CK  
VTT  
CK#  
T1  
t
WPRE begins  
0V  
DQS - DQS#  
t
WPRE  
T2  
Resulting differential  
signal relevant for  
t
WPRE ends  
t
WPRE specification  
t
Fig u re 85: WPST Tim in g  
CK  
VTT  
CK#  
t
WPST  
DQS - DQS#  
0V  
T1  
Resulting differential  
signal relevant for  
WPST specification  
t
WPST begins  
t
T2  
t
WPST ends  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
140  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Fig u re 86: Writ e Bu rst  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CK#  
CK  
1
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
WL = AL + CWL  
Bank,  
2
Address  
Col n  
t
t
t
t
t
DQSS  
DSH  
DSH  
DSH  
DSH  
t
t
t
WPRE  
t
WPST  
DQSL  
t
DQSS (MIN)  
DQS, DQS#  
t
t
t
t
t
t
t
t
DQSL  
DQSH  
DQSH  
DQSL DQSH  
DQSL DQSH  
DQSL DQSH  
DI  
DI  
n + 1  
DI  
DI  
DI  
DI  
DI  
DI  
n + 7  
3
DQ  
n
n + 2  
n + 3  
n + 4  
n + 5  
n + 6  
t
t
t
t
DSH  
DSH  
DSH  
DSH  
t
t
t
WPRE  
t
WPST  
t
DQSS (NOM)  
DQS, DQS#  
t
t
t
t
t
t
t t  
DQSL DQSH  
DQSL  
DQSH  
DQSL  
DQSH  
DQSL DQSH  
DQSL DQSH  
t
t
t
t
t
DSS  
DSS  
DSS  
DSS  
DSS  
DI  
DI  
DI  
n + 2  
DI  
n + 3  
DI  
n + 4  
DI  
n + 5  
DI  
DI  
n + 7  
3
DQ  
n
n + 1  
n + 6  
t
DQSS  
t
t
WPRE  
t
t
WPST  
DQSS (MAX)  
DQS, DQS#  
t
t
t
t
t
t
t
t
t
t
t
t
DQSL  
DQSH  
DQSL  
DQSH  
DQSL DQSH  
DQSL DQSH  
DQSL DQSH  
t
t
DSS  
DSS  
DSS  
DSS  
DSS  
DI  
DI  
n + 1  
DI  
DI  
n + 3  
DI  
DI  
n + 5  
DI  
DI  
3
DQ  
n
n + 2  
n + 4  
n + 6  
n + 7  
Transitioning Data  
Dont Care  
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these  
times.  
2. The BL8 setting is activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during the  
WRITE command at T0.  
3. DI n = data-in for column n.  
4. BL8, WL = 5 (AL = 0, CWL = 5).  
5. tDQSS must be met at each rising clock edge.  
t
6. tWPST is usually depicted as ending at the crossing of DQS, DQS#; however, WPST actually  
ends when DQS no longer drives LOW and DQS# no longer drives HIGH.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
141  
Fig u re 87: Co n se cu t ive WRITE (BL8) t o WRITE (BL8)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK#  
CK  
1
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
t
t
t
BL = 4 clocks  
WR  
WTR  
CCD  
2
Valid  
Valid  
Address  
t
WPST  
t
WPRE  
DQS, DQS#  
DI  
DI  
+ 1  
DI  
DI  
+ 3  
DI  
DI  
+ 5  
DI  
DI  
+ 7  
DI  
DI  
+ 1  
DI  
DI  
+ 3  
DI  
+ 4  
DI  
+ 5  
DI  
DI  
+ 7  
3
DQ  
n
n
n
n
+ 4  
n
n
+ 6  
n
b
b
b
+ 2  
b
b
b
b
+ 6  
b
n
+ 2  
WL = 5  
WL = 5  
Transitioning Data  
Dont Care  
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
2. The BL8 setting is activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during the WRITE commands at  
T0 and T4.  
3. DI n (or b) = data-in for column n (or column b).  
4. BL8, WL = 5 (AL = 0, CWL = 5).  
Fig u re 88: Co n se cu t ive WRITE (BC4) t o WRITE (BC4) via MRS o r OTF  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK#  
CK  
1
WRITE  
NOP  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
t
t
t
CCD  
BL = 4 clocks  
WR  
WTR  
2
Valid  
Valid  
Address  
t
t
t
t
WPST  
WPRE  
WPST  
WPRE  
DQS, DQS#  
DI  
DI  
+ 1  
DI  
DI  
+ 3  
DI  
DI  
+ 1  
DI  
DI  
+ 3  
3
DQ  
n
n
n
+ 2  
n
b
b
b
+ 2  
b
WL = 5  
WL = 5  
Transitioning Data  
Dont Care  
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
2. BC4, WL = 5 (AL = 0, CWL = 5).  
3. DI n (or b) = data-in for column n (or column b).  
4. The BC4 setting is activated by MR0[1:0] = 01 and A12 = 0 during the WRITE command at T0 and T4.  
Fig u re 89: No n co n se cu t ive WRITE t o WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
CK#  
CK  
Command  
WRITE  
NOP  
NOP  
NOP  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Address  
Valid  
Valid  
WL = CWL + AL = 7  
WL = CWL + AL = 7  
DQS, DQS#  
DI  
DI  
+ 1  
DI  
+ 2  
DI  
+ 3  
DI  
+ 4  
DI  
+ 5  
DI  
DI  
+ 7  
DI  
DI  
+ 1  
DI  
DI  
+ 3  
DI  
DI  
+ 5  
DI  
DI  
+ 7  
DQ  
n
n
n
n
n
n
n
+ 6  
n
b
b
b
+ 2  
b
b
+ 4  
b
b
+ 6  
b
DM  
Transitioning Data  
Don't Care  
Notes: 1. DI n (or b) = data-in for column n (or column b).  
2. Seven subsequent elements of data-in are applied in the programmed order following DO n.  
3. Each WRITE command may be to any bank.  
4. Shown for WL = 7 (CWL = 7, AL = 0).  
Fig u re 90: WRITE (BL8) t o READ (BL8)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
Ta0  
CK#  
CK  
1
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
READ  
Command  
t
2
WTR  
3
Valid  
Valid  
Address  
t
t
WPST  
WPRE  
DQS, DQS#  
DI  
DI  
n + 1  
DI  
DI  
n + 3  
DI  
DI  
n + 5  
DI  
DI  
n + 7  
4
DQ  
n
n + 2  
n + 4  
n + 6  
WL = 5  
Indicates A Break in  
Time Scale  
Transitioning Data  
Dont Care  
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
2. tWTR controls the WRITE-to-READ delay to the same device and starts with the first rising clock edge after the last write  
data shown at T9.  
3. The BL8 setting is activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and MR0[12] = 1 during the WRITE command at T0.  
The READ command at Ta0 can be either BC4 or BL8, depending on MR0[1:0] and the A12 status at Ta0.  
4. DI n = data-in for column n.  
5. RL = 5 (AL = 0, CL = 5), WL = 5 (AL = 0, CWL = 5).  
Fig u re 91: WRITE t o READ (BC4 Mo d e Re g ist e r Se t t in g )  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
Ta0  
CK#  
CK  
1
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
READ  
Command  
t
2
WTR  
Valid  
3
Valid  
Address  
t
t
WPST  
WPRE  
DQS, DQS#  
DI  
DI  
n + 1  
DI  
DI  
n + 3  
4
DQ  
n
n + 2  
WL = 5  
Indicates A Break in  
Time Scale  
Transitioning Data  
Dont Care  
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
2. tWTR controls the WRITE-to-READ delay to the same device and starts with the first rising clock edge after the last write  
data shown at T7.  
3. The fixed BC4 setting is activated by MR0[1:0] = 10 during the WRITE command at T0 and the READ command at Ta0.  
4. DI n = data-in for column n.  
5. BC4 (fixed), WL = 5 (AL = 0, CWL = 5), RL = 5 (AL = 0, CL = 5).  
Fig u re 92: WRITE (BC4 OTF) t o READ (BC4 OTF)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
Tn  
CK#  
CK  
1
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
READ  
Command  
t
t
WTR  
2
BL = 4 clocks  
3
Valid  
Valid  
Address  
t
t
WPST  
WPRE  
DQS, DQS#  
DI  
DI  
n + 1  
DI  
DI  
n + 3  
4
DQ  
n
n + 2  
WL = 5  
RL = 5  
Indicates A Break in  
Time Scale  
Transitioning Data  
Dont Care  
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.  
t
2. tWTR controls the WRITE-to-READ delay to the same device and starts after BL.  
3. The BC4 OTF setting is activated by MR0[1:0] = 01 and A12 = 0 during the WRITE command at T0 and the READ command  
at Tn.  
4. DI n = data-in for column n.  
5. BC4, RL = 5 (AL = 0, CL = 5), WL = 5 (AL = 0, CWL = 5).  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Fig u re 93: WRITE (BL8) t o PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
Ta0  
Ta1  
CK#  
CK  
Command  
Address  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
PRE  
Valid  
Valid  
t
WR  
WL = AL + CWL  
DQS, DQS#  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ BL8  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
Indicates A Break in  
Time Scale  
Transitioning Data  
Dont Care  
Notes: 1. DI n = data-in from column n.  
2. Seven subsequent elements of data-in are applied in the programmed order following  
DO n.  
3. Shown for WL = 7 (AL = 0, CWL = 7).  
Fig u re 94: WRITE (BC4 Mo d e Re g ist e r Se t t in g ) t o PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
Ta0  
Ta1  
CK#  
CK  
Command  
Address  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
PRE  
Valid  
Valid  
t
WR  
WL = AL + CWL  
DQS, DQS#  
DQ BC4  
DI  
DI  
DI  
DI  
n
n + 1 n + 2 n + 3  
Indicates A Break in  
Time Scale  
Transitioning Data  
Dont Care  
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these  
times.  
2. The write recovery time (tWR) is referenced from the first rising clock edge after the last  
t
write data is shown at T7. WR specifies the last burst WRITE cycle until the PRECHARGE  
command can be issued to the same bank.  
3. The fixed BC4 setting is activated by MR0[1:0] = 10 during the WRITE command at T0.  
4. DI n = data-in for column n.  
5. BC4 (fixed), WL = 5, RL = 5.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
146  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Fig u re 95: WRITE (BC4 OTF) t o PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
Tn  
CK#  
CK  
1
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
PRE  
Command  
t
2
WR  
Bank,  
3
Valid  
Address  
Col n  
t
t
WPST  
WPRE  
DQS, DQS#  
DI  
DI  
n + 1  
DI  
DI  
n + 3  
4
DQ  
n
n + 2  
WL = 5  
Indicates A Break In  
Time Scale  
Transitioning Data  
Dont Care  
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these  
times.  
t
2. The write recovery time (tWR) is referenced from the rising clock edge at T9. WR specifies  
the last burst WRITE cycle until the PRECHARGE command can be issued to the same bank.  
3. The BC4 setting is activated by MR0[1:0] = 01 and A12 = 0 during the WRITE command at T0.  
4. DI n = data-in for column n.  
5. BC4 (OTF), WL = 5, RL = 5.  
DQ In p u t Tim in g  
Figure 86 on page 141 shows the strobe to clock timing during a WRITE. DQS, DQS#  
t
t
must transition within 0.25 CK of the clock transitions as limited by DQSS. All data and  
data mask setup and hold timings are measured relative to the DQS, DQS# crossing, not  
the clock crossing.  
The WRITE preamble and postamble are also shown. One clock prior to data input to the  
DRAM, DQS must be HIGH and DQS# must be LOW. Then for a half clock, DQS is driven  
t
LOW (DQS# is driven HIGH) during the WRITE preamble, WPRE. Likewise, DQS must  
be kept LOW by the controller after the last data is written to the DRAM during the  
t
WRITE postamble, WPST.  
Data setup and hold times are shown in Figure 96 on page 148. All setup and hold times  
are measured from the crossing points of DQS and DQS#. These setup and hold values  
pertain to data input and data mask input.  
t
t
Additionally, the half period of the data input strobe is specified by DQSH and DQSL.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
147  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Fig u re 96: Da t a In p u t Tim in g  
DQS, DQS#  
t
t
t
t
WPRE  
DQSH  
DQSL  
WPST  
DI  
b
DQ  
DM  
t
DS  
t
DH  
Transitioning Data  
Dont Care  
PRECHARGE  
Input A10 determines whether one bank or all banks are to be precharged, and in the  
case where only one bank is to be precharged, inputs BA[2:0] select the bank.  
When all banks are to be precharged, inputs BA[2:0] are treated as “Dont Care.” After a  
bank is precharged, it is in the idle state and must be activated prior to any READ or  
WRITE commands being issued.  
SELF REFRESH  
The SELF REFRESH command is initiated like a REFRESH command except CKE is LOW.  
The DLL is automatically disabled upon entering SELF REFRESH and is automatically  
enabled and reset upon exiting SELF REFRESH.  
t
The DRAM must be idle with all banks in the precharge state ( RP is satisfied and no  
bursts are in progress) before a self refresh entry command can be issued. ODT must  
also be turned off before self refresh entry by registering the ODT ball LOW prior to the  
self refresh entry command (see “On-Die Termination (ODT)” on page 160 for timing  
requirem ents). If RTT_NOM and RTT_WR are disabled in the mode registers, ODT can be a  
“Dont Care.” After the self refresh entry command is registered, CKE must be held LOW  
to keep the DRAM in self refresh mode.  
After the DRAM has entered self refresh mode, all external control signals, except CKE  
and RESET#, become Dont Care.” The DRAM initiates a minimum of one REFRESH  
t
command internally within the CKE period when it enters self refresh mode.  
The requirements for entering and exiting self refresh mode depend on the state of the  
t
clock during self refresh mode. First and foremost, the clock must be stable (meeting CK  
specifications) when self refresh mode is entered. If the clock remains stable and the  
frequency is not altered while in self refresh mode, then the DRAM is allowed to exit self  
t
t
refresh mode after CKESR is satisfied (CKE is allowed to transition HIGH CKESR later  
than when CKE was registered LOW). Since the clock remains stable in self refresh mode  
t
t
(no frequency change), CKSRE and CKSRX are not required. However, if the clock is  
altered during self refresh mode (turned-off or frequency change), then CKSRE and  
CKSRX must be satisfied. When entering self refresh mode, CKSRE must be satisfied  
prior to altering the clock's frequency. Prior to exiting self refresh mode, CKSRX must be  
satisfied prior to registering CKE HIGH.  
t
t
t
t
t
t
When CKE is HIGH during self refresh exit, NOP or DES must be issued for XS time. XS  
is required for the completion of any internal refresh that is already in progress and must  
be satisfied before a valid command not requiring a locked DLL can be issued to the  
t
device. XS is also the earliest time self refresh reentry may occur (see Figure 97 on  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
148  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
page 149). Before a command requiring a locked DLL can be applied, a ZQCL command  
t
t
must be issued, ZQOPER timing must be met, and XSDLL must be satisfied. ODT must  
t
be off during XSDLL.  
Fig u re 97: Se lf Re fre sh En t ry/Exit Tim in g  
T0  
T1  
T2  
Ta0  
Tb0  
Tc0  
Tc1  
Td0  
Te0  
Tf0  
CK#  
CK  
t
1
CKSRX  
t
1
CKSRE  
t
t
t
t
IS  
IS  
IH  
CPDED  
CKE  
Valid  
Valid  
Valid  
t
1
CKESR (MIN)  
t
IS  
2
ODT  
ODTL  
NOP  
2
RESET#  
5
3
4
6
7
Command  
Address  
NOP  
SRX (NOP)  
SRE (REF)  
NOP  
Valid  
Valid  
Valid  
Valid  
t
t
6, 9  
XS  
8
t
RP  
7, 9  
XSDLL  
Enter self refresh mode  
(synchronous)  
Exit self refresh mode  
(asynchronous)  
Indicates A Break in  
Time Scale  
Dont Care  
t
t
Notes: 1. The clock must be valid and stable meeting CK specifications at least CKSRE after entering  
t
self refresh mode, and at least CKSRX prior to exiting self refresh mode, if the clock is  
stopped or altered between states Ta0 and Tb0. If the clock remains valid and unchanged  
t
t
from entry and during self refresh mode, then CKSRE and CKSRX do not apply; however,  
tCKESR must be satisfied prior to exiting at SRX.  
2. ODT must be disabled and RTT off prior to entering self refresh at state T1. If both RTT_NOM  
and RTT_WR are disabled in the mode registers, ODT can be a “Dont Care.”  
3. Self refresh entry (SRE) is synchronous via a REFRESH command with CKE LOW.  
4. A NOP or DES command is required at T2 after the SRE command is issued prior to the  
inputs becoming “Dont Care.”  
5. NOP or DES commands are required prior to exiting self refresh mode until state Te0.  
6. tXS is required before any commands not requiring a locked DLL.  
7. tXSDLL is required before any commands requiring a locked DLL.  
8. The device must be in the all banks idle state prior to entering self refresh mode. For exam-  
t
ple, all banks must be precharged, RP must be met, and no data bursts can be in progress.  
t
t
9. Self refresh exit is asynchronous; however, XS and XSDLL timings start at the first rising  
t
clock edge where CKE HIGH satisfies tISXR at Tc1. CKSRX timing is also measured so that  
tISXR is satisfied at Tc1.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
149  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Ext e n d e d Te m p e ra t u re Usa g e  
Microns DDR3 SDRAM support the optional extended temperature range of 0°C to 95°C,  
T . Thus, the SRT and ASR options must be used at a minimum.  
C
The extended temperature range DRAM must be refreshed externally at 2X (double  
refresh) anytime the case temperature is above 85°C (and does not exceed 95°C). The  
external refreshing requirement is accomplished by reducing the refresh period from  
64ms to 32ms. However, self refresh mode requires either ASR or SRT to support the  
extended temperature. Thus either ASR or SRT must be enabled when T is above 85°C  
C
or self refresh cannot be used until the case temperature is at or below 85°C. Table 71  
summarizes the two extended temperature options and Table 72 summarizes how the  
two extended temperature options relate to one another.  
Ta b le 71:  
Fie ld  
Se lf Re fre sh Te m p e ra t u re a n d Au t o Se lf Re fre sh De scrip t io n  
MR2 Bit s  
De scrip t io n  
Self Refresh Temperature (SRT)  
SRT  
7
If ASR is disabled (MR2[6] = 0), SRT must be programmed to indicate TOPER during self refresh:  
*MR2[7] = 0: Normal operating temperature range (0°C to 85°C)  
*MR2[7] = 1: Extended operating temperature range (0°C to 95°C)  
If ASR is enabled (MR2[7] = 1), SRT must be set to 0, even if the extended temperature range is  
supported  
*MR2[7] = 0: SRT is disabled  
Auto Self Refresh (ASR)  
ASR  
6
When ASR is enabled, the DRAM automatically provides SELF REFRESH power management  
functions, (refresh rate for all supported operating temperature values)  
* MR2[6] = 1: ASR is enabled (M7 must = 0)  
When ASR is not enabled, the SRT bit must be programmed to indicate TOPER during SELF REFRESH  
operation  
* MR2[6] = 0: ASR is disabled, must use manual self refresh temperature (SRT)  
Ta b le 72:  
Se lf Re fre sh Mo d e Su m m a ry  
MR2[6] MR2[7]  
Pe rm it t e d Op e ra t in g Te m p e ra t u re  
Ra n g e fo r Se lf Re fre sh Mo d e  
(ASR)  
(SRT) SELF REFRESH Op e ra t io n  
0
0
0
1
Self refresh mode is supported in the normal temperature range Normal (0°C to 85°C)  
Self refresh mode is supported in normal and extended  
temperature ranges; When SRT is enabled, it increases self  
refresh power consumption  
Normal and extended (0°C to 95°C)  
1
1
0
1
Self refresh mode is supported in normal and extended  
temperature ranges; Self refresh power consumption may be  
temperature-dependent  
Normal and extended (0°C to 95°C)  
Illegal  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
150  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Po w e r-Do w n Mo d e  
Power-down is synchronously entered when CKE is registered LOW coincident with a  
NOP or DES command. CKE is not allowed to go LOW while either an MRS, MPR,  
ZQCAL, READ, or WRITE operation is in progress. CKE is allowed to go LOW while any of  
the other legal operations (such as ROW ACTIVATION, PRECHARGE, auto precharge, or  
REFRESH) are in progress. However, the power-down IDD specifications are not appli-  
cable until such operations have been completed. Depending on the previous DRAM  
state and the command issued prior to CKE going LOW, certain timing constraints must  
be satisfied (as noted in Table 73). Timing diagrams detailing the different power-down  
mode entry and exits are shown in Figure 98 on page 152 through Figure 107 on  
page 157.  
Ta b le 73:  
Co m m a n d t o Po w e r-Do w n En t ry Pa ra m e t e rs  
La st Co m m a n d Prio r t o  
CKE LOW1  
DRAM St a t u s  
Pa ra m e t e r (Min )  
Pa ra m e t e r Va lu e  
Fig u re  
Idle or active  
Idle or active  
Active  
ACTIVATE  
PRECHARGE  
tACTPDEN  
tPRPDEN  
tRDPDEN  
tWRPDEN  
1tCK  
1tCK  
RL + 4tCK + 1tCK  
Figure 105 on page 156  
Figure 106 on page 156  
Figure 101 on page 154  
Figure 102 on page 154  
READ or READAP  
t
Active  
WRITE: BL8OTF, BL8MRS,  
BC4OTF  
WL + 4tCK + WR/tCK  
t
Active  
Active  
WRITE: BC4MRS  
WL + 2tCK + WR/tCK  
Figure 102 on page 154  
Figure 103 on page 155  
WRITEAP: BL8OTF, BL8MRS,  
BC4OTF  
tWRAPDEN  
WL + 4tCK + WR + 1tCK  
Active  
Idle  
WRITEAP: BC4MRS  
REFRESH  
WL + 2tCK + WR + 1tCK  
1tCK  
Greater of 10tCK or 24ns  
tMOD  
Figure 103 on page 155  
Figure 104 on page 155  
Figure 108 on page 157  
Figure 107 on page 157  
tREFPDEN  
tXPDLL  
tMRSPDEN  
Power-down  
Idle  
REFRESH  
MODE REGISTER SET  
Notes: 1. If slow-exit mode precharge power-down is enabled and entered, ODT becomes asynchro-  
t
nous tANPD prior to CKE going LOW and remains asynchronous until tANPD + XPDLL after  
CKE goes HIGH.  
Entering power-down disables the input and output buffers, excluding CK, CK#, ODT,  
t
CKE, and RESET#. NOP or DES commands are required until CPDED has been satisfied,  
at which time all specified input/ output buffers will be disabled. The DLL should be in a  
locked state when power-down is entered for the fastest power-down exit timing. If the  
DLL is not locked during power-down entry, the DLL must be reset after exiting power-  
down mode for proper READ operation as well as synchronous ODT operation.  
During power-down entry, if any bank remains open after all in-progress commands are  
complete, the DRAM will be in active power-down mode. If all banks are closed after all  
in-progress commands are complete, the DRAM will be in precharge power-down mode.  
Precharge power-down mode must be programmed to exit with either a slow exit mode  
or a fast exit mode. When entering precharge power-down mode, the DLL is turned off in  
slow exit mode or kept on in fast exit mode.  
The DLL remains on when entering active power-down as well. ODT has special timing  
constraints when slow exit mode precharge power-down is enabled and entered. Refer  
to Asynchronous ODT Mode” on page 172 for detailed ODT usage requirements in slow  
exit mode precharge power-down. A summary of the two power-down modes is listed in  
Table 74 on page 152.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
151  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
While in either power-down state, CKE is held LOW, RESET# is held HIGH, and a stable  
clock signal must be maintained. ODT must be in a valid state but all other input signals  
are a “Dont Care.” If RESET# goes LOW during power-down, the DRAM will switch out of  
power-down mode and go into the reset state. After CKE is registered LOW, CKE must  
t
remain LOW until PD (MIN) has been satisfied. The maximum time allowed for power-  
t
t
down duration is PD (MAX) (9 × REFI).  
The power-down states are synchronously exited when CKE is registered HIGH (with a  
t
required NOP or DES command). CKE must be maintained HIGH until CKE has been  
satisfied. A valid, executable command may be applied after power-down exit latency,  
t
t
XP XPDLL have been satisfied. A summary of the power-down modes is listed in  
Table 74.  
For certain CKE-intensive operations, for example, repeating a power-down exit to  
refresh to power-down entry sequence, the number of clock cycles between power-down  
exit and power-down entry may not be sufficient enough to keep the DLL properly  
t
updated. In addition to meeting PD when the REFRESH command is used in between  
t
power-down exit and power-down entry, two other conditions must be met. First, XP  
t
must be satisfied before issuing the REFRESH command. Second, XPDLL must be satis-  
fied before the next power-down may be entered. An example is shown in Figure 108 on  
page 157.  
Ta b le 74:  
Po w e r-Do w n Mo d e s  
Po w e r-Do w n  
Exit  
DRAM St a t e  
MR1[12] DLL St a t e  
Re le va n t Pa ra m e t e rs  
tXP to any other valid command  
Active (any bank open)  
Dont  
Care”  
On  
Fast  
Precharged  
(all banks precharged)  
1
0
On  
Fast  
tXP to any other valid command  
Off  
Slow  
tXPDLL to commands that require the DLL to be locked  
(READ, RDAP, or ODT on)  
tXP to any other valid command  
Fig u re 98: Act ive Po w e r-Do w n En t ry a n d Exit  
T0  
T1  
T2  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
CK#  
CK  
t
t
t
CK  
CH  
CL  
Command  
Valid  
NOP  
NOP  
NOP  
NOP  
NOP  
Valid  
t
PD  
t
IS  
t
IH  
CKE  
t
t
t
CKE (MIN)  
IH  
IS  
Address  
Valid  
Valid  
t
t
CPDED  
XP  
Enter power-down  
mode  
Exit power-down  
mode  
Indicates A Break in  
Time Scale  
Dont Care  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
152  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Fig u re 99: Pre ch a rg e Po w e r-Do w n (Fa st -Exit Mo d e ) En t ry a n d Exit  
T0  
T1  
T2  
T3  
T4  
T5  
Ta0  
Ta1  
CK#  
CK  
t
t
t
CK  
CH  
CL  
Command  
NOP  
NOP  
NOP  
NOP  
NOP  
Valid  
t
t
CPDED  
CKE (MIN)  
t
IH  
t
IS  
CKE  
t
IS  
t
t
XP  
PD  
Enter power-down  
mode  
Exit power-down  
mode  
Indicates A Break in  
Time Scale  
Dont Care  
Fig u re 100: Pre ch a rg e Po w e r-Do w n (Slo w -Exit Mo d e ) En t ry a n d Exit  
T0  
T1  
T2  
T3  
T4  
Ta  
Ta1  
Tb  
CK#  
CK  
t
t
t
CK  
CH  
CL  
1
2
NOP  
Command  
PRE  
NOP  
NOP  
NOP  
Valid  
Valid  
t
t
CKE (MIN)  
CPDED  
t
XP  
t
t
IH  
IS  
CKE  
t
t
XPDLL  
IS  
t
PD  
Enter power-down  
mode  
Exit power-down  
mode  
Indicates A Break in  
Time Scale  
Dont Care  
Notes: 1. Any valid command not requiring a locked DLL.  
2. Any valid command requiring a locked DLL.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
153  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Fig u re 101: Po w e r-Do w n En t ry Aft e r READ o r READ w it h Au t o Pre ch a rg e (RDAP)  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Ta8  
Ta9  
Ta10  
Ta11  
Ta12  
CK#  
CK  
READ/  
RDAP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
t
CPDED  
IS  
CKE  
Address  
Valid  
t
RL = AL + CL  
PD  
DQS, DQS#  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ BL8  
n
n + 1 n + 2 n + 3 n + 4 n+ 5 n + 6 n + 7  
DI  
DI  
DI  
DI  
DQ BC4  
n
n + 1 n + 2 n + 3  
t
RDPDEN  
Power-down or  
self refresh entry  
Indicates A Break In  
Time Scale  
Transitioning Data  
Dont Care  
Fig u re 102: Po w e r-Do w n En t ry Aft e r WRITE  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Tb0  
Tb1  
Tb2  
Tb3  
Tb4  
CK#  
CK  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
t
CPDED  
IS  
CKE  
Valid  
Address  
t
t
PD  
WL = AL + CWL  
WR  
DQS, DQS#  
DQ BL8  
DI  
n + 7  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6  
DI  
DI  
DI  
DI  
DQ BC4  
n
n + 1 n + 2 n + 3  
t
WRPDEN  
Power-down or  
self refresh entry  
1
Indicates A Break in  
Time Scale  
Transitioning Data  
Dont Care  
Notes: 1. CKE can go LOW 2tCK earlier if BC4MRS.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
154  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Fig u re 103: Po w e r-Do w n En t ry Aft e r WRITE w it h Au t o Pre ch a rg e (WRAP)  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Tb0  
Tb1  
Tb2  
Tb3  
Tb4  
CK#  
CK  
WRAP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
t
CPDED  
IS  
CKE  
Address  
Valid  
A10  
1
t
PD  
WL = AL + CWL  
WR  
DQS, DQS#  
DQ BL8  
DI  
n + 7  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6  
DI  
DI  
DI  
DI  
DQ BC4  
n
n + 1 n + 2 n + 3  
t
WRAPDEN  
Start internal  
precharge  
Power-down or  
self refresh entry  
2
Indicates A Break in  
Time Scale  
Transitioning Data  
Dont Care  
Notes: 1. tWR is programmed through MR0[11:9] and represents tWR (MIN)ns/tCK rounded up to the  
t
next integer CK.  
2. CKE can go LOW 2tCK earlier if BC4MRS.  
Fig u re 104: REFRESH t o Po w e r-Do w n En t ry  
T0  
T1  
T2  
T3  
Ta0  
Ta1  
Ta2  
Tb0  
CK#  
CK  
t
t
t
CL  
CK  
CH  
NOP  
Command  
REFRESH  
NOP  
NOP  
NOP  
Valid  
t
t
CPDED  
CKE (MIN)  
t
t
PD  
IS  
CKE  
t
t
XP (MIN)  
REFPDEN  
t
1
RFC (MIN)  
Indicates A Break In  
Time Scale  
Dont Care  
t
Notes: 1. After CKE goes HIGH during RFC, CKE must remain HIGH until tRFC is satisfied.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
155  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Fig u re 105: ACTIVATE t o Po w e r-Do w n En t ry  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK#  
CK  
t
t
t
CL  
CK  
CH  
Command  
Address  
ACTIVE  
Valid  
NOP  
NOP  
t
CPDED  
t
t
PD  
IS  
CKE  
t
ACTPDEN  
Dont Care  
Fig u re 106: PRECHARGE t o Po w e r-Do w n En t ry  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK#  
CK  
t
t
t
CL  
CK  
CH  
Command  
Address  
PRE  
NOP  
NOP  
All/single  
bank  
t
CPDED  
t
t
PD  
IS  
CKE  
t
PREPDEN  
Dont Care  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
156  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Fig u re 107: MRS Co m m a n d t o Po w e r-Do w n En t ry  
T0  
T1  
T2  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
CK#  
CK  
t
t
t
CL  
t
CK  
CH  
CPDED  
Command  
Address  
MRS  
Valid  
NOP  
NOP  
NOP  
NOP  
NOP  
t
t
PD  
MRSPDEN  
t
IS  
CKE  
Indicates A Break in  
Time Scale  
Dont Care  
Fig u re 108: Po w e r-Do w n Exit t o Re fre sh t o Po w e r-Do w n En t ry  
T0  
T1  
T2  
T3  
T4  
Ta0  
Ta1  
Tb0  
CK#  
CK  
t
t
t
CK  
CH  
CL  
Command  
NOP  
NOP  
NOP  
NOP  
REFRESH  
NOP  
NOP  
t
t
1
CPDED  
XP  
t
IH  
t
IS  
CKE  
t
IS  
t
t
2
PD  
XPDLL  
Enter power-down  
mode  
Enter power-down  
mode  
Exit power-down  
mode  
Indicates A Break in  
Time Scale  
Dont Care  
Notes: 1. tXP must be satisfied before issuing the command.  
2. tXPDLL must be satisfied (referenced to the registration of power-down exit) before the  
next power-down can be entered.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
157  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
RESET  
The RESET signal (RESET#) is an asynchronous signal that triggers any time it drops  
LOW, and there are no restrictions about when it can go LOW. After RESET# goes LOW, it  
must remain LOW for 100ns. During this time, the outputs are disabled, ODT (RTT) turns  
off (High-Z), and the DRAM resets itself. CKE should be brought LOW prior to RESET#  
being driven HIGH. After RESET# goes HIGH, the DRAM must be reinitialized as though  
a normal power up were executed (see Figure 109 on page 159). All refresh counters on  
the DRAM are reset, and data stored in the DRAM is assumed unknown after RESET#  
has gone LOW.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
158  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
Op e ra t io n s  
Fig u re 109: RESET Se q u e n ce  
System RESET  
(warm boot)  
Stable and  
valid clock  
Tc0  
Td0  
Tb0  
T1  
T0  
Ta0  
t
CK  
CK#  
CK  
t
t
T (MIN) =  
MAX (10ns, 5 CK)  
CL  
CL  
t
T = 100ns (MIN)  
t
IOZ  
RESET#  
t
IS  
T=10ns (MIN)  
Valid  
Valid  
CKE  
Valid  
MRS  
Valid  
MRS  
Valid  
ZQCL  
ODT  
t
IS  
Valid  
Command  
MRS  
MRS  
NOP  
DM  
Address  
A10  
Code  
Code  
Code  
Code  
Code  
Code  
Code  
Code  
Valid  
Valid  
Valid  
A10 = H  
BA0 = L  
BA1 = H  
BA2 = L  
BA0 = H  
BA1 = H  
BA2 = L  
BA0 = H  
BA1 = L  
BA2 = L  
BA0 = L  
BA1 = L  
BA2 = L  
BA[2:0]  
High-Z  
High-Z  
DQS  
DQ  
High-Z  
RTT  
t
t
MRD  
t
t
t
MOD  
T = 500µs (MIN)  
MRD  
XPR  
MRD  
MR0 with  
DLL RESET  
MR1 with  
DLL ENABLE  
MR2  
MR3  
ZQ CAL  
t
All voltage  
ZQINIT  
supplies valid  
and stable  
DRAM ready  
for external  
commands  
t
DLLK  
Normal  
operation  
Dont Care  
Indicates A Break in  
Time Scale  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_4.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
159  
1Gb : x4, x8, x16 DDR3 SDRAM  
On -Die Te rm in a t io n (ODT)  
On -Die Te rm in a t io n (ODT)  
ODT is a feature that enables the DRAM to enable/ disable and turn on/ off termination  
resistance for each DQ, DQS, DQS#, and DM for the x4 and x8 configurations (and  
TDQS, TDQS# for the x8 configuration, when enabled). ODT is applied to each DQ,  
UDQS, UDQS#, LDQS, LDQS#, UDM, and LDM signal for the x16 configuration.  
The ODT feature is designed to improve signal integrity of the memory channel by  
enabling the DRAM controller to independently turn on/ off the DRAMs internal termi-  
nation resistance for any grouping of DRAM devices. The ODT feature is not supported  
during DLL disable mode. A simple functional representation of the DRAM ODT feature  
is shown in Figure 110. The switch is enabled by the internal ODT control logic, which  
uses the external ODT ball and other control information.  
Fig u re 110: On -Die Te rm in a t io n  
ODT  
VDDQ/2  
To other  
circuitry  
such as  
RCV,  
R
TT  
Switch  
DQ, DQS, DQS#,  
DM, TDQS, TDQS#  
. . .  
Fu n ct io n a l Re p re se n t a t io n o f ODT  
The value of RTT (ODT termination value) is determined by the settings of several mode  
register bits (see Table 78 on page 163). The ODT ball is ignored while in self refresh  
mode (must be turned off prior to self refresh entry) or if mode registers MR1 and MR2  
are programmed to disable ODT. ODT is comprised of nominal ODT and dynamic ODT  
modes and either of these can function in synchronous or asynchronous mode (when  
the DLL is off during precharge power-down or when the DLL is synchronizing).  
Nominal ODT is the base termination and is used in any allowable ODT state. Dynamic  
ODT is applied only during writes and provides OTF switching from no RTT or RTT_NOM  
to RTT_WR.  
The actual effective termination, RTT_EFF, may be different from the RTT targeted due to  
nonlinearity of the termination. For RTT_EFF values and calculations, see "ODT Charac-  
teristics" on page 49.  
No m in a l ODT  
ODT (NOM) is the base termination resistance for each applicable ball, it is enabled or  
disabled via MR1[9, 6, 2] (see Figure 47 on page 61), and it is turned on or off via the ODT  
ball (see Table 75 on page 161).  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_5.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
160  
©2006 Micron Technology, Inc. All rights reserved.  
1Gb : x4, x8, x16 DDR3 SDRAM  
On -Die Te rm in a t io n (ODT)  
Ta b le 75:  
Tru t h Ta b le – ODT (No m in a l)  
Note 1 applies to the entire table  
MR1[9, 6, 2]  
000  
ODT Pin  
DRAM Te rm in a t io n St a t e  
DRAM St a t e  
No t e s  
0
1
RTT_NOM disabled, ODT off  
RTT_NOM disabled, ODT on  
RTT_NOM enabled, ODT off  
RTT_NOM enabled, ODT on  
RTT_NOM reserved, ODT on or off  
Any valid  
Any valid except self refresh, read  
Any valid  
2
3
2
3
000  
000–101  
0
000–101  
1
Any valid except self refresh, read  
Illegal  
110 and 111  
X
Notes: 1. Assumes dynamic ODT is disabled (see "Dynamic ODT" on page 162 when enabled).  
2. ODT is enabled and active during most writes for proper termination, but it is not illegal to  
have it off during writes.  
3. ODT must be disabled during reads. The RTT_NOM value is restricted during writes. Dynamic  
ODT is applicable if enabled.  
Nominal ODT resistance RTT_NOM is defined by MR1[9, 6, 2], as shown in Figure 47 on  
page 61. The RTT_NOM termination value applies to the output pins previously  
mentioned. DDR3 SDRAM supports multiple RTT_NOM values based on RZQ/ n where n  
can be 2, 4, 6, 8, or 12 and RZQ is 240Ω. RTT_NOM termination is allowed any time after  
the DRAM is initialized, calibrated, and not performing read access or when it is not in  
self refresh mode.  
Write accesses use RTT_NOM if dynamic ODT (RTT_WR) is disabled. If RTT_NOM is used  
during writes, only RZQ/ 2, RZQ/ 4, and RZQ/ 6 are allowed (see Table 78 on page 163).  
ODT timings are summarized in Table 76, as well as listed in Table 53 on page 67.  
Examples of nominal ODT timing are shown in conjunction with the synchronous mode  
of operation in “Synchronous ODT Mode” on page 167.  
Ta b le 76:  
ODT Pa ra m e t e r  
De fin it io n fo r All  
DDR3 Sp e e d Bin s  
Sym b o l  
De scrip t io n  
Be g in s a t  
De fin e d t o  
Un it s  
ODTL on  
ODTL off  
tAONPD  
tAOFPD  
ODTH4  
ODT synchronous turn on delay  
ODT synchronous turn off delay  
ODT asynchronous turn on delay  
ODT asynchronous turn off delay  
ODT registered HIGH RTT_ON ±tAON  
ODT registered HIGH RTT_OFF ±tAOF  
CWL + AL - 2  
CWL + AL - 2  
1–9  
tCK  
tCK  
ns  
ODT registered HIGH  
ODT registered HIGH  
RTT_ON  
RTT_OFF  
1–9  
4tCK  
ns  
tCK  
ODT minimum HIGH time after ODT ODT registered HIGH ODTregistered  
assertion or write (BC4)  
or write registration  
with ODT HIGH  
LOW  
ODTH8  
tAON  
tAOF  
ODT minimum HIGH time after  
write (BL8)  
Write registration  
with ODT HIGH  
ODTregistered  
LOW  
6tCK  
tCK  
ps  
ODT turn-on relative to ODTL on  
completion  
Completion of  
ODTL on  
RTT_ON  
See Table 53 on  
page 67  
0.5tCK ± 0.2tCK  
ODT turn-off relative to ODTL off  
completion  
Completion of  
ODTL off  
RTT_OFF  
tCK  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_5.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
161  
1Gb : x4, x8, x16 DDR3 SDRAM  
On -Die Te rm in a t io n (ODT)  
Dyn a m ic ODT  
In certain application cases, and to further enhance signal integrity on the data bus, it is  
desirable that the termination strength of the DDR3 SDRAM can be changed without  
issuing an MRS command, essentially changing the ODT termination on the fly. With  
dynamic ODT (RTT_WR) enabled, the DRAM switches from nominal ODT (RTT_NOM) to  
dynamic ODT (RTT_WR) when beginning a WRITE burst and subsequently switches back  
to nominal ODT (RTT_NOM) at the completion of the WRITE burst. This requirement is  
supported by the dynamic ODT feature, as described below:  
Fu n ct io n a l De scrip t io n  
The dynamic ODT mode is enabled if either MR2[9] or MR2[10] is set to “1.” Dynamic  
ODT is not supported during DLL disable mode so RTT_WR must be disabled. The  
dynamic ODT function is described, as follows:  
• Two RTT values are available—RTT_NOM and RTT_WR:  
– The value for RTT_NOM is preselected via MR1[9, 6, 2]  
– The value for RTT_WR is preselected via MR2[10, 9]  
• During DRAM operation without READ or WRITE commands, the termination is  
controlled as follows:  
– Nominal termination strength RTT_NOM is used  
– Termination on/ off timing is controlled via the ODT ball and latencies ODTL on  
and ODTL off  
• When a WRITE command (WR, WRAP, WRS4, WRS8, WRAPS4, WRAPS8) is registered,  
and if dynamic ODT is enabled, the ODT termination is controlled as follows:  
Alatency of ODTLCNW after the WRITE command: termination strength RTT_NOM  
switches to RTT_WR  
Alatency of ODTLCWN8 (for BL8, fixed or OTF) or ODTLCWN4 (for BC4, fixed or  
OTF) after the WRITE command: termination strength RTT_WR switches back to  
RTT_NOM  
– On/ off termination timing is controlled via the ODT ball and determined by ODTL  
on, ODTL off, ODTH4, and ODTH8  
t
– During the ADC transition window, the value of RTT is undefined  
ODT is constrained during writes and when dynamic ODT is enabled (see Table 77).  
ODT timings listed in Table 76 on page 161 also apply to dynamic ODT mode.  
Ta b le 77:  
Dyn a m ic ODT Sp e cific Pa ra m e t e rs  
De fin it io n fo r All  
DDR3 Sp e e d Bin s Un it s  
Sym b o l  
De scrip t io n  
Be g in s a t  
De fin e d t o  
ODTLCNW  
Change from RTT_NOM to  
RTT_WR  
Write registration  
RTT switched from  
RTT_NOM to RTT_WR  
WL - 2  
tCK  
tCK  
tCK  
tCK  
ODTLCWN4  
ODTLCWN8  
tADC  
Change from RTT_WR to  
RTT_NOM (BC4)  
Write registration  
Write registration  
RTT switched from RTT_WR  
to RTT_NOM  
4tCK + ODTL off  
6tCK + ODTL off  
0.5tCK ± 0.2tCK  
Change from RTT_WR to  
RTT_NOM (BL8)  
RTT switched from RTT_WR  
to RTT_NOM  
RTT change skew  
ODTLCNW completed RTT transition complete  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_5.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
162  
1Gb : x4, x8, x16 DDR3 SDRAM  
On -Die Te rm in a t io n (ODT)  
Ta b le 78:  
M9  
Mo d e Re g ist e rs fo r RTT_NOM  
MR1 (RTT_NOM)  
RTT_NOM  
(RZQ)  
RTT_NOM  
(Oh m s)  
RTT_NOM  
Mo d e Re st rict io n  
M6  
M2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Off  
Off  
60  
n/a  
RZQ/4  
Self refresh  
RZQ/2  
120  
40  
RZQ/6  
RZQ/12  
RZQ/8  
20  
Self refresh, write  
30  
Reserved  
Reserved  
Reserved  
Reserved  
n/a  
n/a  
Notes: 1. RZQ = 240Ω. If RTT_NOM is used during WRITEs, only RZQ/2, RZQ/4, RZQ/6 are allowed.  
Ta b le 79:  
Mo d e Re g ist e rs fo r RTT_WR  
MR2 (RTT_WR)  
RTT_WR  
(RZQ)  
RTT_WR  
(Oh m s)  
M10  
M9  
0
0
0
1
Dynamic ODT off: WRITE does not affect RTT_NOM  
RZQ/4  
RZQ/2  
Reserved  
n/a  
60  
120  
1
0
1
1
Reserved  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Ta b le 80:  
Tim in g Dia g ra m s fo r Dyn a m ic ODT  
Fig u re a n d Pa g e  
Tit le  
Figure 111 on page 164  
Figure 112 on page 164  
Figure 113 on page 165  
Dynamic ODT: ODT Asserted Before and After the WRITE, BC4  
Dynamic ODT: Without WRITE Command  
Dynamic ODT: ODT Pin Asserted Together with WRITE Command for 6 Clock Cycles,  
BL8  
Figure 114 on page 166  
Figure 115 on page 166  
Dynamic ODT: ODT Pin Asserted with WRITE Command for 6 Clock Cycles, BC4  
Dynamic ODT: ODT Pin Asserted with WRITE Command for 4 Clock Cycles, BC4  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_5.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
163  
©2006 Micron Technology, Inc. All rights reserved.  
Fig u re 111: Dyn a m ic ODT: ODT Asse rt e d Be fo re a n d Aft e r t h e WRITE, BC4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
CK#  
CK  
Command  
NOP  
NOP  
NOP  
NOP  
WRS4  
Valid  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Address  
ODTH4  
ODTL off  
ODTH4  
ODT  
ODTL on  
ODTLCWN4  
t
t
t
AOF (MIN)  
t
ADC (MIN)  
ADC (MIN)  
AON (MIN)  
t
RTT  
R
TT_NOM  
R
TT  
_
WR  
RTT_NOM  
t
t
AOF (MAX)  
t
AON (MAX)  
ADC (MAX)  
ADC (MAX)  
ODTLCNW  
DQS, DQS#  
DI  
DI  
DI  
DI  
DQ  
n
n + 1  
n + 2  
n + 3  
WL  
Transitioning  
Dont Care  
Notes: 1. Via MRS or OTF. AL = 0, CWL = 5. RTT_NOM and RTT_WR are enabled.  
2. ODTH4 applies to first registering ODT HIGH and then to the registration of the WRITE command. In this example,  
ODTH4 is satisfied if ODT goes LOW at T8 (four clocks after the WRITE command).  
Fig u re 112: Dyn a m ic ODT: Wit h o u t WRITE Co m m a n d  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK#  
CK  
Command  
Address  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
ODTH4  
ODTL off  
ODTL on  
ODT  
t
t
AON (MAX)  
AOF (MIN)  
t
RTT_NOM  
RTT  
t
AON (MIN)  
AOF (MAX)  
DQS, DQS#  
DQ  
Transitioning  
Dont Care  
Notes: 1. AL = 0, CWL = 5. RTT_NOM is enabled and RTT_WR is either enabled or disabled.  
2. ODTH4 is defined from ODT registered HIGH to ODT registered LOW; in this example, ODTH4 is satisfied. ODT registered  
LOW at T5 is also legal.  
Fig u re 113: Dyn a m ic ODT: ODT Pin Asse rt e d To g e t h e r w it h WRITE Co m m a n d fo r 6 Clo ck Cycle s, BL8  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK#  
CK  
NOP  
WRS8  
Valid  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
ODTLCNW  
ODTH8  
ODTLOFF  
ODTLON  
ODT  
t
t
ADC (MAX)  
AOF (MIN)  
RTT_WR  
RTT  
t
AON (MIN)  
t
AOF (MAX)  
ODTLCWN  
8
DQS, DQS#  
WL  
DI  
DI  
b + 1  
DI  
b + 2  
DI  
b + 3  
DI  
DI  
DI  
DI  
b + 7  
DQ  
b
b + 4  
b + 5  
b + 6  
Transitioning  
Dont Care  
Notes: 1. Via MRS or OTF; AL = 0, CWL = 5. If RTT_NOM can be either enabled or disabled, ODT can be HIGH. RTT_WR is enabled.  
2. In this example, ODTH8 = 6 is satisfied exactly.  
1Gb : x4, x8, x16 DDR3 SDRAM  
On -Die Te rm in a t io n (ODT)  
Fig u re 114: Dyn a m ic ODT: ODT Pin Asse rt e d w it h WRITE Co m m a n d fo r 6 Clo ck Cycle s, BC4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK#  
CK  
Command  
NOP  
WRS4  
Valid  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ODTLCNW  
Address  
ODTH4  
ODTL off  
ODT  
ODTL on  
t
t
AOF (MIN)  
t
ADC (MAX)  
ADC (MIN)  
RTT  
RTT_WR  
RTT_NOM  
t
t
t
AOF (MAX)  
AON (MIN)  
ADC (MAX)  
ODTLCWN  
4
DQS, DQS#  
DI  
DI  
DI  
DI  
DQ  
n
n + 1 n + 2 n + 3  
WL  
Transitioning  
Dont Care  
Notes: 1. Via MRS or OTF. AL = 0, CWL = 5. RTT_NOM and RTT_WR are enabled.  
2. ODTH4 is defined from ODT registered HIGH to ODT registered LOW, so in this example,  
ODTH4 is satisfied. ODT registered LOW at T5 is also legal.  
Fig u re 115: Dyn a m ic ODT: ODT Pin Asse rt e d w it h WRITE Co m m a n d fo r 4 Clo ck Cycle s, BC4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK#  
CK  
Command  
NOP  
WRS4  
Valid  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ODTLCNW  
Address  
ODTL off  
ODTH4  
ODT  
t
t
t
AOF (MIN)  
AOF (MAX)  
ADC (MAX)  
ODTL on  
RTT  
R
TT  
_
WR  
t
AON (MIN)  
ODTLCWN  
4
DQS, DQS#  
WL  
DI  
DI  
DI  
DI  
DQ  
n
n + 1 n + 2 n + 3  
Transitioning  
Dont Care  
Notes: 1. Via MRS or OTF. AL = 0, CWL = 5. RTT_NOM can be either enabled or disabled. If disabled,  
ODT can remain HIGH. RTT_WR is enabled.  
2. In this example ODTH4 = 4 is satisfied exactly.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_5.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
166  
1Gb : x4, x8, x16 DDR3 SDRAM  
On -Die Te rm in a t io n (ODT)  
Syn ch ro n o u s ODT Mo d e  
Synchronous ODT mode is selected whenever the DLL is turned on and locked and  
when either RTT_NOM or RTT_WR is enabled. Based on the power-down definition, these  
modes are:  
• Any bank active with CKE HIGH  
• Refresh mode with CKE HIGH  
• Idle mode with CKE HIGH  
Active power-down mode (regardless of MR0[12])  
• Precharge power-down mode if DLL is enabled during precharge power-down by  
MR0[12]  
ODT La t e n cy a n d Po st e d ODT  
In synchronous ODT mode, RTT turns on ODTL on clock cycles after ODT is sampled  
HIGH by a rising clock edge and turns off ODTL off clock cycles after ODT is registered  
t
t
LOW by a rising clock edge. The actual on/ off times varies by AON and AOF around  
each clock edge (see Table 81 on page 168). The ODT latency is tied to the WRITE latency  
(WL) by ODTL on = WL - 2 and ODTL off = WL - 2.  
Since write latency is made up of CAS WRITE latency (CWL) and ADDITIVE latency (AL),  
the AL programmed into the mode register (MR1[4, 3]) also applies to the ODT signal.  
The DRAMs internal ODT signal is delayed a number of clock cycles defined by the AL  
relative to the external ODT signal. Thus ODTL on = CWL + AL - 2 and ODTL  
off = CWL + AL - 2.  
Tim in g Pa ra m e t e rs  
Synchronous ODT mode uses the following timing parameters: ODTL on, ODTL off,  
t
ODTH4, ODTH8, tAON, and AOF (see Table 81 and Figure 116 on page 168). The  
t
minimum RTT turn-on time ( AON [MIN]) is the point at which the device leaves High-Z  
t
and ODT resistance begins to turn on. Maximum RTT turn-on time ( AON [MAX]) is the  
point at which ODT resistance is fully on. Both are measured relative to ODTL on. The  
t
minimum RTT turn-off time ( AOF [MIN]) is the point at which the device starts to turn  
t
off ODT resistance. Maximum RTT turn off time ( AOF [MAX]) is the point at which ODT  
has reached High-Z. Both are measured from ODTL off.  
When ODT is asserted, it must remain HIGH until ODTH4 is satisfied. If a WRITE  
command is registered by the DRAM with ODT HIGH, then ODT must remain HIGH  
until ODTH4 (BC4) or ODTH8 (BL8) after the WRITE command (see Figure 117 on  
page 169). ODTH4 and ODTH8 are measured from ODT registered HIGH to ODT regis-  
tered LOW or from the registration of a WRITE command until ODT is registered LOW.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_5.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
167  
©2006 Micron Technology, Inc. All rights reserved.  
Ta b le 81:  
Sym b o l  
Syn ch ro n o u s ODT Pa ra m e t e rs  
De scrip t io n  
De fin it io n fo r All DDR3  
Sp e e d Bin s  
Be g in s a t  
De fin e d t o  
Un it s  
ODTL on  
ODTL off  
ODTH4  
ODT synchronous turn-on delay  
ODT synchronous turn-off delay  
ODT registered HIGH  
ODT registered HIGH  
RTT_ON ±tAON  
RTT_OFF ±tAOF  
CWL + AL - 2  
CWL + AL - 2  
4tCK  
tCK  
tCK  
tCK  
ODT minimum HIGH time after ODT  
assertion or WRITE (BC4)  
ODT registered HIGH, or  
write registration with ODT  
HIGH  
ODT registered LOW  
ODTH8  
tAON  
tAOF  
ODT minimum HIGH time after  
WRITE (BL8)  
Write registration with ODT  
HIGH  
ODT registered LOW  
RTT_ON  
6tCK  
tCK  
ps  
ODT turn-on relative to ODTL on  
completion  
Completion of ODTL on  
See Table 53 on page 67  
0.5tCK ± 0.2tCK  
ODT turn-off relative to ODTL off  
completion  
Completion of ODTL off  
RTT_OFF  
tCK  
Fig u re 116: Syn ch ro n o u s ODT  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
CK#  
CK  
CKE  
AL = 3  
AL = 3  
CWL - 2  
ODT  
ODTH4 (MIN)  
ODTL off = CWL + AL - 2  
ODTL on = CWL + AL - 2  
t
t
AON (MIN)  
t
AOF (MIN)  
t
RTT  
RTT_NOM  
AON (MAX)  
AOF (MAX)  
Transitioning  
Dont Care  
Notes: 1. AL = 3; CWL = 5; ODTL on = WL = 6.0; ODTL off = WL - 2 = 6. RTT_NOM is enabled.  
Fig u re 117: Syn ch ro n o u s ODT (BC4)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
CK#  
CK  
CKE  
Command  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
WRS4  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ODTH4 (MIN)  
ODTH4  
ODTH4  
ODT  
ODTL off = WL - 2  
ODTLoff = WL - 2  
ODTL on = WL - 2  
ODTL on = WL - 2  
t
t
t
t
AON (MAX)  
AON (MIN)  
AOF (MIN)  
AOF (MIN)  
RTT  
RTT_NOM  
RTT_NOM  
t
t
t
t
AOF (MAX)  
AOF (MAX)  
AON (MAX)  
AON (MIN)  
Transitioning  
Dont Care  
Notes: 1. WL = 7. RTT_NOM is enabled. RTT_WR is disabled.  
2. ODT must be held HIGH for at least ODTH4 after assertion (T1).  
3. ODT must be kept HIGH ODTH4 (BC4) or ODTH8 (BL8) after the WRITE command (T7).  
4. ODTH is measured from ODT first registered HIGH to ODT first registered LOW or from the registration of the WRITE  
command with ODT HIGH to ODT registered LOW.  
5. Although ODTH4 is satisfied from ODT registered HIGH at T6, ODT must not go LOW before T11 as ODTH4 must also be  
satisfied from the registration of the WRITE command at T7.  
1Gb : x4, x8, x16 DDR3 SDRAM  
On -Die Te rm in a t io n (ODT)  
ODT Off Du rin g READs  
As the DDR3 SDRAM cannot terminate and drive at the same time, RTT must be disabled  
at least one-half clock cycle before the READ preamble by driving the ODT ball LOW (if  
either RTT_NOM or RTT_WR is enabled). RTT may not be enabled until the end of the post-  
amble as shown in the example in Figure 118 on page 171.  
Note:  
ODT may be disabled earlier and enabled later than shown in Figure 118 on page 171.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_5.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
170  
©2006 Micron Technology, Inc. All rights reserved.  
Fig u re 118: ODT Du rin g READs  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
CK#  
CK  
Command  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Address  
Valid  
ODTL on = CWL + AL - 2  
ODTL off = CWL + AL - 2  
ODT  
t
AOF (MIN)  
RTT  
R
TT  
_
NOM  
RTT_NOM  
t
t
AOF (MAX)  
AON (MAX)  
RL = AL + CL  
DQS, DQS#  
DQ  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
b
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
Transitioning  
Dont Care  
Notes: 1. ODT must be disabled externally during READs by driving ODT LOW. For example, CL = 6; AL = CL - 1 = 5; RL = AL +  
CL = 11; CWL = 5; ODTL on = CWL + AL - 2 = 8; ODTL off = CWL + AL - 2 = 8. RTT_NOM is enabled. RTT_WR is a Dont Care.”  
1Gb : x4, x8, x16 DDR3 SDRAM  
On -Die Te rm in a t io n (ODT)  
Asyn ch ro n o u s ODT Mo d e  
Asynchronous ODT mode is available when the DRAM runs in DLL on mode and when  
either RTT_NOM or RTT_WR is enabled; however, the DLL is temporarily turned off in  
precharged power-down standby (via MR0[12]). Additionally, ODT operates asynchro-  
nously when the DLL is synchronizing after being reset. See "Power-Down Mode" on  
page 151 for definition and guidance over power-down details.  
In asynchronous ODT timing mode, the internal ODT command is not delayed by AL  
relative to the external ODT command. In asynchronous ODT mode, ODT controls RTT  
t
t
by analog time. The timing parameters AONPD and AOFPD (see Table 82 on page 173)  
t
t
replace ODTL on/ AON and ODTL off/ AOF, respectively, when ODT operates asyn-  
chronously (see Figure 119 on page 173).  
t
The minimum RTT turn-on time ( AONPD [MIN]) is the point at which the device termi-  
nation circuit leaves High-Z and ODT resistance begins to turn on. Maximum RTT turn-  
t
t
on time ( AONPD [MAX]) is the point at which ODT resistance is fully on. AONPD (MIN)  
t
and AONPD (MAX) are measured from ODT being sampled HIGH.  
t
The minimum RTT turn-off time ( AOFPD [MIN]) is the point at which the device termi-  
t
nation circuit starts to turn off ODT resistance. Maximum RTT turn-off time ( AOFPD  
t
t
[MAX]) is the point at which ODT has reached High-Z. AOFPD (MIN) and AOFPD  
(MAX) are measured from ODT being sampled LOW.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_5.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
172  
©2006 Micron Technology, Inc. All rights reserved.  
Fig u re 119: Asyn ch ro n o u s ODT Tim in g w it h Fa st ODT Tra n sit io n  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
CK#  
CK  
CKE  
t
t
t
t
IS  
IH  
IS  
IH  
ODT  
t
t
AOFPD (MIN)  
t
AONPD (MIN)  
t
RTT  
RTT_NOM  
AONPD (MAX)  
AOFPD (MAX)  
Transitioning  
Dont Care  
Notes: 1. AL is ignored.  
Ta b le 82:  
Sym b o l  
Asyn ch ro n o u s ODT Tim in g Pa ra m e t e rs fo r All Sp e e d Bin s  
De scrip t io n  
Min  
Ma x  
Un it s  
tAONPD  
tAOFPD  
Asynchronous RTT turn-on delay (power-down with DLL off)  
Asynchronous RTT turn-off delay (power-down with DLL off)  
1
1
9
9
ns  
ns  
1Gb : x4, x8, x16 DDR3 SDRAM  
On -Die Te rm in a t io n (ODT)  
Syn ch ro n o u s t o Asyn ch ro n o u s ODT Mo d e Tra n sit io n (Po w e r-Do w n En t ry)  
There is a transition period around power-down entry (PDE) where the DRAMs ODT  
may exhibit either synchronous or asynchronous behavior. This transition period  
occurs if the DLL is selected to be off when in precharge power-down mode by the  
t
setting MR0[12] = 0. Power-down entry begins ANPD prior to CKE first being registered  
t
LOW, and it ends when CKE is first registered LOW. ANPD is equal to the greater of  
t
t
ODTL off + 1 CK or ODTL on + 1 CK. If a REFRESH command has been issued, and it is  
t
in progress when CKE goes LOW, power-down entry will end RFC after the REFRESH  
command rather than when CKE is first registered LOW. Power-down entry will then  
t
t
become the greater of ANPD and RFC - REFRESH command to CKE registered LOW.  
ODT assertion during power-down entry results in an RTT change as early as the lesser of  
t
t
t
t
AONPD (MIN) and ODTL on × CK + AON (MIN) or as late as the greater of AONPD  
t
t
(MAX) and ODTL on × CK + AON (MAX). ODT de-assertion during power-down entry  
may result in an RTT change as early as the lesser of AOFPD (MIN) and ODTL  
off × CK + AOF (MIN) or as late as the greater of AOFPD (MAX) and ODTL  
off × CK + AOF (MAX). Table 83 on page 175 summarizes these parameters.  
t
t
t
t
t
t
If the AL has a large value, the uncertainty of the state of RTT becomes quite large. This is  
because ODTL on and ODTL off are derived from the WL and WL is equal to CWL + AL.  
Figure 120 on page 175 shows three different cases:  
t
• ODT_A: Synchronous behavior before ANPD  
t
• ODT_B: ODT state changes during the transition period with AONPD (MIN) less than  
t
t
t
ODTL on × CK + AON (MIN) and AONPD (MAX) greater than  
t
t
ODTL on × CK + AON (MAX)  
• ODT_C: ODT state changes after the transition period with asynchronous behavior  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_5.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
174  
©2006 Micron Technology, Inc. All rights reserved.  
Ta b le 83:  
ODT Pa ra m e t e rs fo r Po w e r-Do w n (DLL Off) En t ry a n d Exit Tra n sit io n Pe rio d  
De scrip t io n  
Min  
Ma x  
t
Power-down entry transition period (power-down entry)  
Power-down exit transition period (power-down exit)  
ODT to RTT turn-on delay (ODTL on = WL - 2)  
Greater of: tANPD or RFC - refresh to CKE LOW  
tANPD + XPDLL  
t
Lesser of: tAONPD (MIN) (1ns) or  
Greater of: tAONPD (MAX) (9ns) or  
t
t
ODTL on × tCK + AON (MIN)  
ODTL on × tCK + AON (MAX)  
ODT to RTT turn-off delay (ODTL off = WL - 2)  
tANPD  
Lesser of: tAOFPD (MIN) (1ns) or  
Greater of: tAOFPD (MAX) (9ns) or  
t
t
ODTL off × tCK + AOF (MIN)  
ODTL off × tCK + AOF (MAX)  
WL - 1 (greater of ODTL off + 1 or ODTL on + 1)  
Fig u re 120: Syn ch ro n o u s t o Asyn ch ro n o u s Tra n sit io n Du rin g Pre ch a rg e Po w e r-Do w n (DLL Off) En t ry  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
Ta0  
Ta1  
Ta2  
Ta3  
CK#  
CK  
CKE  
Command  
NOP  
REF  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
t
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
RFC (MIN)  
t
ANPD  
PDE transition period  
ODT A  
synchronous  
t
AOF (MIN)  
DRAM RTT  
A
RTT_NOM  
synchronous  
t
ODTL off + AOFPD (MIN)  
ODTL off  
t
AOF (MAX)  
t
AOFPD (MAX)  
ODT B  
asynchronous  
or synchronous  
t
AOFPD (MIN)  
DRAM RTT  
B
RTT_NOM  
asynchronous  
t
or synchronous  
ODTL off + AOFPD (MAX)  
ODT C  
asynchronous  
t
AOFPD (MIN)  
DRAM RTT  
C
RTT_NOM  
asynchronous  
t
AOFPD (MAX)  
Indicates A Break In  
Time Scale  
Transitioning  
Dont Care  
Notes: 1. AL = 0; CWL = 5; ODTL off = WL - 2 = 3.  
1Gb : x4, x8, x16 DDR3 SDRAM  
On -Die Te rm in a t io n (ODT)  
Asyn ch ro n o u s t o Syn ch ro n o u s ODT Mo d e Tra n sit io n (Po w e r-Do w n Exit )  
The DRAMs ODT may exhibit either asynchronous or synchronous behavior during  
power-down exit (PDX). This transition period occurs if the DLL is selected to be off  
when in precharge power-down mode by setting MR0[12] to “0.” Power-down exit  
t
t
begins ANPD prior to CKE first being registered HIGH, and it ends XPDLL after CKE is  
t
t
first registered HIGH. ANPD is equal to the greater of ODTL off + 1 CK or ODTL  
on + 1 CK. The transition period is ANPD plus XPDLL.  
t
t
t
ODT assertion during power-down exit results in an RTT change as early as the lesser of  
t
t
t
t
AONPD (MIN) and ODTL on × CK + AON (MIN) or as late as the greater of  
t
t
AONPD (MAX) and ODTL on × CK + AON (MAX). ODT de-assertion during power-  
t
down exit may result in an RTT change as early as the lesser of AOFPD (MIN) and  
ODTL off × CK + AOF (MIN) or as late as the greater of AOFPD (MAX) and  
ODTL off × CK + AOF (MAX). Table 83 on page 175 summarizes these parameters.  
t
t
t
t
t
If the AL has a large value, the uncertainty of the RTT state becomes quite large. This is  
because ODTL on and ODTL off are derived from the WL, and WL is equal to CWL + AL.  
Figure 121 on page 177 shows three different cases:  
t
• ODT C: asynchronous behavior before ANPD  
t
• ODT B: ODT state changes during the transition period, with AOFPD (MIN) less than  
t
t
t
t
ODTL off × CK + AOF (MIN) and ODTL off × CK + AOF (MAX) greater than  
t
AOFPD (MAX)  
• ODT A: ODT state changes after the transition period with synchronous response  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_5.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
176  
©2006 Micron Technology, Inc. All rights reserved.  
Fig u re 121: Asyn ch ro n o u s t o Syn ch ro n o u s Tra n sit io n Du rin g Pre ch a rg e Po w e r-Do w n (DLL Off) Exit  
T0  
T1  
T2  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Tb0  
Tb1  
Tb2  
Tc0  
Tc1  
Tc2  
Td0  
Td1  
CK#  
CK  
CKE  
COMMAND  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
t
t
XPDLL  
ANPD  
PDX transition period  
ODT A  
asynchronous  
t
AOFPD (MIN)  
DRAM RTT  
asynchronous  
A
RTT_NOM  
t
ODTL off + AOF (MIN)  
t
AOFPD (MAX)  
t
AOFPD (MAX)  
ODT B  
asynchronous  
or synchronous  
t
RTT B  
AOFPD (MIN)  
asynchronous  
or synchronous  
RTT_NOM  
t
t
AOF (MAX)  
ODTL off  
ODTL off + AOF (MAX)  
ODT C  
synchronous  
t
AOF (MIN)  
DRAM RTT  
synchronous  
C
RTT_NOM  
Indicates A Break in  
Time Scale  
Transitioning  
Dont Care  
Notes: 1. CL = 6; AL = CL - 1; CWL = 5; ODTL off = WL - 2 = 8.  
1Gb : x4, x8, x16 DDR3 SDRAM  
On -Die Te rm in a t io n (ODT)  
Asyn ch ro n o u s t o Syn ch ro n o u s ODT Mo d e Tra n sit io n (Sh o rt CKE Pu lse )  
If the time in the precharge power down or idle states is very short (short CKE LOW  
pulse), the power-down entry and power-down exit transition periods will overlap.  
When overlap occurs, the response of the DRAMs RTT to a change in the ODT state may  
be synchronous or asynchronous from the start of the power-down entry transition  
period to the end of the power-down exit transition period even if the entry period ends  
later than the exit period (see Figure 122 on page 179).  
If the time in the idle state is very short (short CKE HIGH pulse), the power-down exit  
and power-down entry transition periods overlap. When this overlap occurs, the  
response of the DRAMs RTT to a change in the ODT state may be synchronous or asyn-  
chronous from the start of power-down exit transition period to the end of the power-  
down entry transition period (see Figure 122 on page 179).  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
1Gb_DDR3_5.fm - Rev. D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
178  
©2006 Micron Technology, Inc. All rights reserved.  
Fig u re 122: Tra n sit io n Pe rio d fo r Sh o rt CKE LOW Cycle s w it h En t ry a n d Exit Pe rio d Ove rla p p in g  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
CK#  
CK  
Command  
CKE  
REF  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
PDE transition period  
t
ANPD  
t
RFC (MIN)  
PDX transition period  
t
t
XPDLL  
ANPD  
Short CKE LOW transition period (RTT change asynchronous or synchronous)  
Indicates A Break in  
Time Scale  
Transitioning  
Dont Care  
Notes: 1. AL = 0, WL = 5, tANPD = 4.  
Fig u re 123: Tra n sit io n Pe rio d fo r Sh o rt CKE HIGH Cycle s w it h En t ry a n d Exit Pe rio d Ove rla p p in g  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
CK#  
CK  
Command  
CKE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
t
t
ANPD  
XPDLL  
t
ANPD  
Short CKE HIGH transition period (RTT change asynchronous or synchonous)  
Indicates A Break in  
Time Scale  
Transitioning  
Dont Care  
Notes: 1. AL = 0, WL = 5, tANPD = 4.  
1Gb : x4, x8, x16 DDR3 SDRAM  
On -Die Te rm in a t io n (ODT)  
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
prodmktg@micron.com www.micron.com Customer Comment Line: 800-932-4992  
Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respec-  
tive owners.  
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although  
considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.  
PDF: 09005aef826aa906/Source: 09005aef82a357c3  
DDR3_5.fm - Rev D 8/1/08 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
181  

相关型号:

128NQ060

Rectifier Diode, Schottky, 1 Phase, 1 Element, 120A, 60V V(RRM), Silicon
INFINEON

128NQ060PBF

120A, 60V, SILICON, RECTIFIER DIODE
INFINEON

128NQ060R

Rectifier Diode, Schottky, 1 Phase, 1 Element, 120A, 60V V(RRM), Silicon
INFINEON

128NQ060RPBF

Rectifier Diode, Schottky, 1 Phase, 1 Element, 120A, 60V V(RRM), Silicon
INFINEON

128P-6101-0822-0

Board Euro Connector, 128 Contact(s), 4 Row(s), Female, Right Angle, 0.1 inch Pitch, Solder Terminal, Plug
WINCHESTER

128P-6101-0822-2

Board Euro Connector, 128 Contact(s), 4 Row(s), Female, Right Angle, 0.1 inch Pitch, Solder Terminal, Plug
WINCHESTER

128P-6101-0822-6

Board Euro Connector, 128 Contact(s), 4 Row(s), Male, Straight, 0.1 inch Pitch, Wire Wrap Terminal, Receptacle
WINCHESTER

128P-6101-0822-7

Board Euro Connector, 128 Contact(s), 4 Row(s), Male, Straight, 0.1 inch Pitch, Wire Wrap Terminal, Receptacle
WINCHESTER

128P-6101-0822-8

Board Euro Connector, 128 Contact(s), 4 Row(s), Male, Straight, 0.1 inch Pitch, Wire Wrap Terminal, Receptacle
WINCHESTER

128P-6101-0831-0

Board Euro Connector, 128 Contact(s), 4 Row(s), Female, Right Angle, 0.1 inch Pitch, Solder Terminal, Plug
WINCHESTER

128P-6101-0831-2

暂无描述
WINCHESTER

128P-6101-0831-6

Board Euro Connector, 128 Contact(s), 4 Row(s), Male, Straight, 0.1 inch Pitch, Wire Wrap Terminal, Receptacle
WINCHESTER