MLX71120KLQAAA-000TU [MELEXIS]

FSK/FM/ASK Receiver;
MLX71120KLQAAA-000TU
型号: MLX71120KLQAAA-000TU
厂家: Melexis Microelectronic Systems    Melexis Microelectronic Systems
描述:

FSK/FM/ASK Receiver

文件: 总31页 (文件大小:526K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
Features  
Dual RF input for antenna space and frequency diversity, LNA cascading or differential feeding  
Fully integrated PLL-based synthesizer  
2nd mixer with image rejection  
Reception of ASK or FSK modulated signals  
Wide operating voltage and temperature ranges  
Very low standby current consumption  
Low operating current consumption  
External IF filter for 455kHz or 10.7MHz  
Internal FSK demodulator  
Average or peak detection data slicer mode  
RSSI output with high dynamic range for RF level indication  
Output noise cancellation filter  
MCU clock output  
High over-all frequency accuracy  
32-pin Quad Flat No-Lead Package (QFN)  
Ordering Code  
Product Code  
MLX71120  
MLX71120  
Temperature Code  
Package Code  
Option Code  
AAA-000  
AAA-000  
Packing Form Code  
K
K
LQ  
LQ  
RE  
TU  
Legend:  
Temperature Code:  
Package Code:  
Packing Form:  
K for Temperature Range -40°C to 125°C  
LQ for QFN  
RE for Reel, TU for Tube  
Ordering example:  
MLX71120KLQ-AAA-000-RE  
39010 71120  
Rev. 008  
Page 1 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
Application Examples  
Pin Description  
bottom  
top  
Tire pressure monitoring systems (TPMS)  
Remote keyless entry (RKE)  
Remote controls  
Home and building automation  
Alarm and security systems  
Low power telemetry systems  
Garage and gate controls  
General-purpose RF receivers at 300 to  
930MHz  
LNAI1  
VEE  
RSSI  
CINT  
VCC  
PDN  
LNAO1  
MIXP  
MLX71120  
MIXN  
LNAO2  
VEE  
PDP  
SLC  
DFO  
DF1  
LNAI2  
General Description  
The MLX71120 is a highly-integrated single-channel/dual-band RF receiver based on a double-conversion  
super-heterodyne architecture. It can receive FSK and ASK modulated signals. The IC is designed for gen-  
eral purpose applications for example in the European bands at 433MHz and 868MHz or for similar applica-  
tions in North America or Asia, e.g. at 315MHz or 915MHz. It is also well-suited for narrow-band applications  
according to the ARIB STD-T67 standard in the frequency range 426MHz to 470MHz.  
The receiver’s extended temperature and supply voltage ranges make the device a perfect fit for automotive  
or similar applications where harsh environmental conditions can occur.  
39010 71120  
Rev. 008  
Page 2 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
Document Content  
1
Theory of Operation...................................................................................................5  
1.1 General..............................................................................................................................5  
1.2 Technical Data Overview ...................................................................................................5  
1.3 Block Diagram....................................................................................................................6  
1.4 Operating Modes................................................................................................................7  
1.5 LNA Selection ....................................................................................................................7  
1.6 Mixer Section .....................................................................................................................8  
1.7 IF Amplifier.........................................................................................................................8  
1.8 PLL Synthesizer.................................................................................................................8  
1.9 Reference Oscillator...........................................................................................................9  
1.10 Clock Output...................................................................................................................9  
1.11 FSK Demodulator ...........................................................................................................9  
1.12 Baseband Data Path.....................................................................................................10  
1.13 Data Filter.....................................................................................................................11  
1.14 Data Slicer....................................................................................................................11  
1.14.1  
1.14.2  
Averaging Detection Mode..................................................................................................... 12  
Peak Detection Mode............................................................................................................. 12  
1.15 Data Output and Noise Cancellation Filter ....................................................................13  
2
Frequency Planning.................................................................................................14  
2.1 Calculation of Frequency Settings....................................................................................15  
2.2 Standard Frequency Plans...............................................................................................16  
2.3 433/868MHz Frequency Diversity ....................................................................................16  
3
4
Pin Definitions and Descriptions............................................................................17  
Technical Data..........................................................................................................21  
4.1 Absolute Maximum Ratings..............................................................................................21  
4.2 Normal Operating Conditions...........................................................................................21  
4.3 DC Characteristics ...........................................................................................................22  
4.4 AC System Characteristics...............................................................................................23  
4.5 External Components.......................................................................................................25  
5
Test Circuit ...............................................................................................................26  
5.1 Dual-Channel Application Circuit......................................................................................26  
5.1.1 Test Circuit Component List for Figure 10................................................................................. 27  
39010 71120  
Rev. 008  
Page 3 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
6
7
Package Description................................................................................................28  
6.1 Soldering Information.......................................................................................................28  
Standard information regarding manufacturability of Melexis products with  
different soldering processes.................................................................................29  
8
9
ESD Precautions ......................................................................................................29  
Disclaimer.................................................................................................................31  
39010 71120  
Rev. 008  
Page 4 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
1
Theory of Operation  
1.1 General  
The MLX71120 receiver architecture is based on a double-conversion super-heterodyne approach. The two  
LO signals are derived from an on-chip integer-N PLL frequency synthesizer. The PLL reference frequency  
is derived from a crystal (XTAL). As the first intermediate frequency (IF1) is very high, a reasonably high  
degree of image rejection is provided even without using an RF front-end filter. At applications asking for  
very high image rejections, cost-efficient RF front-end filtering can be realized by using a SAW filter in front  
of the LNA. The second mixer MIX2 is an image-reject mixer.  
The receiver signal chain is setup by one (or two) low noise amplifier(s) (LNA1, LNA2), two down-conversion  
mixers (MIX1, MIX2) and an external IF filter with an on-chip amplifier (IFA). By choosing the required modu-  
lation via an FSK/ASK switch (at pin MODSEL), either the on-chip FSK demodulator (FSK DEMOD) or the  
RSSI-based ASK detector is selected. A second order data filter (OA1) and a data slicer (OA2) follow the  
demodulator. The data slicer threshold can be generated from the mean-value of the data stream or by  
means of the positive and negative peak detectors (PKDET+/-). A digital post-processing of the sliced data  
signal can be performed by a noise cancellation filter (NCF) building block.  
The dual LNA configuration can be used for antenna space diversity or antenna frequency diversity or to  
setup an LNA cascade (to further improve the input sensitivity). The two LNAs can also be setup to feed the  
RF signal differentially.  
A sequencer circuit (SEQ) controls the timing during start-up. This is to reduce start-up time and to minimize  
power dissipation.  
A clock output, which is a divide-by-8 version of the crystal oscillator signal, can be used to drive a microcon-  
troller. The clock output is open drain and gets activated through a load connected to positive supply.  
1.2 Technical Data Overview  
Input frequency ranges: 300 to 470MHz  
610 to 930MHz  
FSK deviation range: 10kHz to 100kHz (WB)  
2kHz to 10kHz (NB)  
Power supply range: 2.1 to 5.5V  
Temperature range: -40 to +125°C  
Shutdown current: 50 nA  
Operating current: 6.5 to 8.1mA  
FSK input sensitivity: -108dBm* (WB, 433MHz)  
-112dBm* (NB, 433MHz)  
Image rejection:  
65dB 1st IF (with external RF front-end filter)  
25dB 2nd IF (internal image rejection)  
Maximum data rate: 50kps RZ (bi-phase) code,  
100kps NRZ  
Spurious emission: < -54dBm  
Linear RSSI range: > 70dB  
Crystal reference frequency: 16 to 27MHz  
MCU clock frequency: 2.0 to 3.4MHz  
ASK input sensitivity: -113dBm* (WB, 433MHz)  
Selectable IF2 frequency: 10.7MHz or 455kHz  
* at 4kbps NRZ, BER = 310-3, without SAW front-end-filter loss  
WB – wideband (180kHz bandwidth at IF2=10.7MHz)  
NB – narrowband (20kHz bandwidth at IF2=455kHz)  
39010 71120  
Rev. 008  
Page 5 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
1.3 Block Diagram  
13  
6
4
5
9
10  
11  
12  
27  
24  
14  
17  
16  
3
VEE  
2
100k  
100k  
DFO  
OA1  
ASK  
FSK  
18  
LNAI1  
1
LNA1  
SW1  
MIX1  
MIX2  
IFA  
LNASEL  
32  
PKDET+  
20  
PDP  
FSK  
DEMOD  
LO1  
LO2  
LNAI2  
8
LNA2  
_
PDN  
PKDET  
VEE  
7
21  
N1  
counter  
N2  
counter  
PFD  
SEQ  
RFSEL  
31  
SW2  
VCO  
RO  
DTAO  
29  
OA2  
NCF  
BIAS  
TEST  
26  
DIV 8  
LF  
CP  
CINT  
23  
19  
30  
25  
28  
15  
22  
Fig. 1: MLX71120 block diagram  
The MLX71120 receiver IC consists of the following building blocks:  
PLL synthesizer (PLL SYNTH) to generate the first and second local oscillator signals LO1 and LO2.  
The PLL SYNTH consists of a fully integrated voltage-controlled oscillator (VCO), a distributed feedback  
divider chain (N1,N2), a phase-frequency detector (PFD) a charge pump (CP), a loop filter (LF) and a  
crystal-based reference oscillator (RO).  
Two low-noise amplifiers (LNA1, LNA2) for high-sensitivity RF signal reception  
First mixer (MIX1) for down-conversion of the RF signal to the first IF (intermediate frequency)  
Second mixer (MIX2) with image rejection for down-conversion from the first to the second IF  
IF amplifier (IFA) to provide a high voltage gain and an RSSI signal output  
FSK demodulator (FSK DEMOD)  
Operational amplifiers OA1 and OA2 for low-pass filtering and data slicing, respectively  
Positive (PKDET+) and negative (PKDET-) peak detectors  
Switches SW1 to select between FSK and ASK as well as SW2 to chose between averaging or peak  
detection mode.  
Noise cancellation filter (NCF)  
Sequencer circuit (SEQ) and biasing (BIAS) circuit  
Clock output (DIV8)  
39010 71120  
Rev. 008  
Page 6 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
1.4 Operating Modes  
The receiver offers two operating modes selectable by setting the corresponding logic level at pin ENRX.  
ENRX  
Description  
Shutdown mode  
Receive mode  
0
1
Note: ENRX is pulled down internally.  
The receiver’s start-up procedure is controlled by a sequencer circuit. It performs the sequential activation of  
the different building blocks. It also initiates the pre-charging of the data filter and data slicer capacitors in  
order to reduce the overall start-up time and current consumption during the start-up phase.  
At ENRX = 0, the receiver is in shutdown mode and draws only a few nA. The bias system and the reference  
oscillator are activated after enabling the receiver by a positive edge at pin ENRX. The crystal oscillator (RO)  
is turned on first. Then the crystal oscillation amplitude builds up from noise. After reaching a certain ampli-  
tude level at pin ROI, the whole IC is activated and draws the full receive mode current consumption ICC. This  
event is used to start the pre-charging of the external data path capacitors. Pre-charging is finished after  
5504 clock cycles. After that time the data output pin DTAO output is activated.  
ENRX  
I
CC  
RO  
I
I
SDN  
Hi-Z  
valid data  
Hi-Z  
DTAO  
t
t
SEQ  
onRO  
t
onRX  
Fig. 2:  
Timing diagram of start-up and shutdown behavior  
1.5 LNA Selection  
The receiver features two identical LNAs. Each LNA is a cascode amplifier with a voltage gain of approxi-  
mately 18dB. The actual gain depends on the antenna matching network at the inputs and the LC tank net-  
work between the LNA outputs and mixer input. LNA operation can be controlled by the LNASEL pin.  
LNASEL  
Description  
0
Hi-Z  
1
LNA1 active, LNA2 shutdown  
LNA1 and LNA2 active  
LNA1 shutdown, LNA2 active  
Pin LNASEL is internally pulled to VCC/2 during receive mode. Therefore both LNAs are active if LNASEL is  
left floating (Hi-Z state).  
39010 71120  
Rev. 008  
Page 7 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
1.6 Mixer Section  
The mixer section consists of two mixers. Both are double-balanced mixers. The second mixer is built as an  
image rejection mixer. The first mixer’s inputs (MIXP and MIXN) are functionally the same. For single-ended  
drive, the unused input has to be tied to ground via a capacitor. A soft band-pass filter is placed between the  
mixers.  
RFSEL  
Description  
0
1
Input frequency range 300 to 470MHz  
Input frequency range 610 to 930MHz  
Pin RFSEL is used to select the required RF band. The LO frequencies and the proper sidebands for image  
suppression will be set accordingly. The mixer output (MIXO) is to drive an external IF filter. This output is set  
up by a source follower that can be biased to create a driving impedance of either 1500 Ohms or 330 Ohms,  
depending on the logic level at pin IFSEL.  
IFSEL  
Description  
IF2 = 455 kHz  
IF2 = 10.7 MHz  
0
1
This feature allows to use standard ceramic filters for 455kHz and 10.7MHz. They can be connected directly  
without additional matching elements. The overall voltage conversion gain of the mixer section is approxi-  
mately 25dB.  
1.7 IF Amplifier  
After having passed the IF filter, the signal is amplified by a high-gain limiting amplifier. It consists of several  
AC-coupled gain stages with a bandwidth of 400kHz to 11MHz. The overall small-signal pass-band gain is  
about 80dB. A received-signal-strength indicator (RSSI) signal is generated within the IF amplifier and is  
available at pin RSSI.  
1.8 PLL Synthesizer  
The PLL synthesizer consists of a fully integrated voltage-controlled oscillator running at 400MHz to  
640MHz, a distributed feedback divider chain, an edge-triggered phase-frequency detector, a charge pump,  
a loop filter and a crystal-based reference oscillator. The PLL is used for generating the LO signals. The LO1  
is directly taken from the VCO output, and the LO2 is derived from the LO1 signal passing the N1 counter.  
Another counter N2 follows N1. The overall feedback divider ratio Ntot is fixed to 24. The values of N1 and N2  
are depending on the selected RF band that can be chosen via pin RFSEL.  
fLO1min  
[MHz]  
fLO1max  
[MHz]  
fLO2min  
[MHz]  
fLO2max  
[MHz]  
RFSEL  
N1  
N2  
Ntot  
0
1
400  
400  
640  
640  
100  
200  
160  
320  
4
2
6
24  
24  
12  
39010 71120  
Rev. 008  
Page 8 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
1.9 Reference Oscillator  
A Colpitts crystal oscillator with integrated functional capacitors is used as the reference oscillator (RO) of  
the PLL synthesizer. The equivalent input capacitance CRO offered to the crystal at pin ROI is about 18pF.  
The crystal oscillator features an amplitude control loop. This is to assure a very stable frequency over the  
specified supply voltage and temperature range together with a short start-up time. A buffer amplifier with  
hysteresis is between RO and PFD. Also a clock divider follows the buffer.  
1.10 Clock Output  
The clock output pin CKOUT is an open-drain output. For power saving reasons, the circuit is only active if  
an external pull-up resistor RCL is applied to the pin. Furthermore, RCL can be used to adjust the clock  
waveform. It forms an RC low-pass together with the capacitive load at the pin, the parasitics of the PCB and  
the input capacitance of the external circuitry (e.g. a microcontroller).  
The clock output feature is disabled if pin CKOUT is connected to ground or left open.  
VCC  
RCL  
CLKO  
Control  
logic  
RO  
output  
CL  
DIV8  
Fig. 3: Clock output implementation  
1.11 FSK Demodulator  
The integrated FSK demodulator is based on a phase-coincidence demodulator principle. An injection-locked  
oscillator (ILO) is used as a frequency-dependent phase shifter. This topology features a good linearity of the  
frequency-phase relationship over the entire locking range. The type of demodulator has no built-in con-  
straints regarding the modulation index. It also offers a wide carrier acceptance range.  
In addition, the demodulator provides an AFC loop for correcting the remaining free-running frequency error  
and drift effects, and also to remove possible frequency offsets between transmitter and receiver frequen-  
cies. The AFC loop features a dead band which means that the AFC loop is only closed if the demodulator  
output voltage leaves the linear region of the demodulator. Most of the time, the control loop is open. This  
leads to several advantages. The AFC loop bandwidth can be high and therefore the reaction time is short.  
Furthermore the demodulator itself has no low-end cut-off frequency.  
The FSK demodulator has a negative control slope, this means the output voltage decreases by increasing  
the IF2 frequency. This guarantees an overall positive slope because the mixer section converts the receive  
frequency to IF2 either with high-low or low-high side injection.  
The FSK demodulator is turned off during ASK demodulation.  
39010 71120  
Rev. 008  
Page 9 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
1.12 Baseband Data Path  
The baseband data path can be divided into a data filter section and a data slicer section.  
DF1  
MODSEL  
DF2  
data filter  
ASK  
FSK  
100k  
100k  
OA1  
DF0  
PDP  
SLC  
PDN  
SW1  
data slicer  
PKDET+  
S4  
S1  
100k  
S2  
switches  
S3  
SLCSEL  
VCC  
S5  
S6  
_
PKDET  
OA2  
Fig. 4: Block diagram of the data path  
Control  
logic  
DTAO  
CINT  
The data filter input is either connected to the ASK or to the FSK demodulation output. Pin MODSEL can be  
used to set the internal switch SW1 accordingly.  
MODSEL  
Description  
0
1
ASK demodulation  
FSK demodulation  
For ASK demodulation, the RSSI signal of the IFA is used. During FSK demodulation, SW1 is connected to  
the FSK demodulator output.  
The SLCSEL pin is used to control the internal switches depending on operating and slicer mode.  
Pins DF1, DF2, DFO, SLC and DTAO are left floating during shutdown mode. So they are in a high-Z state.  
39010 71120  
Rev. 008  
Page 10 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
1.13 Data Filter  
The data filter is formed by the operational amplifier OA1, two internal 100kresistors and two external ca-  
pacitors. It is implemented as a 2nd order Sallen-Key filter. The low pass filter characteristic rejects noise at  
higher frequencies and therefore leads to an increased sensitivity.  
CF1  
DF1  
CF2  
DF2  
data filter  
OA1  
100k  
100k  
DF0  
Fig. 5: Data filter  
The filter’s pole locations can be set by the external capacitors CF1 and CF2. The cut-off frequency fc has to  
be adjusted according to the transmission data rate R. It should be set to approximately 1.5 times the fastest  
expected data rate. For a Butterworth filter characteristic, the data filter capacitors can be calculated as fol-  
lows.  
1
CF1  
2
CF1 =  
CF2 =  
2 π 100k fc  
RRZ [kbit/s]  
RNRZ [kbit/s]  
fc [kHz]  
0.9  
1.8  
2.4  
3.6  
5
CF1 [pF]  
2200  
1200  
1000  
680  
CF2 [pF]  
1000  
680  
0.6  
1.2  
1.6  
2.4  
3.3  
4.8  
6.0  
1.2  
2.4  
3.2  
4.8  
6.6  
9.6  
12  
470  
330  
470  
220  
7.2  
9
330  
150  
220  
100  
1.14 Data Slicer  
The purpose of the data slicer is to convert the filtered data signal into a digital output. It can therefore be  
considered as an analog-to-digital converter. This is done by using the operational amplifier OA2 as a com-  
parator that compares the data filter output with a threshold voltage. The threshold voltage can be derived in  
two different ways from the data signal.  
SLCSEL  
Description  
0
1
Averaging detection mode  
Peak detection mode  
39010 71120  
Rev. 008  
Page 11 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
1.14.1 Averaging Detection Mode  
The simplest configuration is the averaging or RC inte-  
gration method. An on-chip 100kresistor together with  
an external slicer capacitor (CSL) set up an RC low-  
pass filter. This way the threshold voltage automatically  
adjusts to the mean or average value of the analog in-  
put voltage.  
data slicer  
PKDET+  
PDP  
S4  
data  
filter  
S1  
SLC  
To create a stable threshold voltage, the cut-off fre-  
quency of the low pass has to be lower than the lowest  
signal frequency.  
100k  
S2  
switches  
S3  
SLCSEL  
VCC  
CSL  
S5  
_
τAVG  
1.5  
PKDET  
OA2  
CSL ≥  
τAVG  
=
PDN  
100k  
RRZ  
S6  
A long string of zeros or ones, like in NRZ codes, can  
cause a drift of the threshold. That’s why a Manchester  
or other DC-free coding scheme works best.  
Control  
logic  
DTAO  
CINT  
The peak detectors are disabled during averaging de-  
tection mode, and the output pins PDP and PDN are  
pulled to ground (S4, S6 are closed).  
Fig. 6: Data path in averaging detection mode  
1.14.2 Peak Detection Mode  
Peak detection mode has a general advantage over  
averaging detection mode because of the part attack  
and slow release times. Peak detection should be used  
for all non DC-free codes like NRZ. In this configuration  
the threshold is generated by using the positive and  
negative peak detectors. The slicer comparator thresh-  
old is set to the midpoint between the high output and  
the low output of the data filter by an on-chip resistance  
divider. Two external capacitors (CP1, CP2) determine  
the release times for the positive and negative enve-  
lope. The two on-chip resistors provide a path for the  
capacitors to discharge. This allows the peak detectors  
to dynamically follow peak changes of the data filter  
output voltage. The attack times are very short due to  
the high peak detector load currents of about 500uA.  
The decay time constant mainly depends on the longest  
time period without bit polarity change. This corre-  
sponds to the maximum number of consecutive bits with  
the same polarity (NMAX).  
data slicer  
PKDET+  
PDP  
S4  
CP1  
data  
filter  
S1  
S3  
100k  
SLC  
PDN  
S2  
switches  
SLCSEL  
VCC  
CP2  
S5  
_
PKDET  
OA2  
S6  
Control  
logic  
DTAO  
CINT  
Fig. 7: Data path in peak detection mode  
τDECAY  
100k  
NMAX  
RNRZ  
CP1/2 ≥  
τDECAY  
=
If the receiver is in shutdown mode and peak detection mode is selected then the peak detectors are dis-  
abled and the output of the positive peak detector (PDP) is connected to VEE (S4 is closed) and the output  
of the negative peak detector (PDN) is connected to VCC (S5 is closed). This guarantees the correct biasing  
of CP1 and CP2 during start-up  
39010 71120  
Rev. 008  
Page 12 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
1.15 Data Output and Noise Cancellation Filter  
The data output pin DTAO delivers the demodulated data signal which can be further processed by a noise  
cancellation filter (NCF). The NCF can be disabled if pin CINT is connected to ground. In this case the  
multiplexer (MUX) connects the receiver output DTAO directly to the data slicer output.  
MUX  
data slicer  
output  
DTAO  
Fig. 8: Data output and noise filter  
NCF  
CINT  
noise cancellation filter  
CF3  
The noise cancellation filter can suppress random pulses in the data output which are shorter than tmin  
.
15106 7.5106  
CF3 = 1510-6 tmin  
=
=
RNRZ  
RRZ  
The NCF can also operate as a muting circuit. So if the RF input signal is below sensitivity level (or if no  
RF signal is applied) then the data output will go to a constant DC level (either HIGH or LOW). This can be  
achieved by setting the bandwidth of the preceding data filter (sec 1.13) about 10 times higher than the  
bandwidth of the NCF. Further the data filter cutoff frequency must be higher than the data rate, so the noise  
pulses are shorter than the shortest data pulse. Otherwise, the NCF will not be able to distinguish between  
noise and data pulses.  
Having the NCF activated is a good means for reducing the computing power of the microcontroller that fol-  
lows the receiver IC for further data processing.  
In contrast to conventional muting (or squelch) circuits, this topology does not need the RSSI signal for level  
indication. The filtering process is done by means of an analogue integrator. The cut-off frequency of the  
NCF is set by the external capacitor connected to pin CINT. This capacitor CF3 should be set according to  
the maximum data rate. Below table provides some recommendations..  
During receiver start-up a sequencer checks if pin CINT is connected to a capacitor or to ground. The maxi-  
mum value of CF3 should not exceed 12nF. This defines the lowest data rate that can be processed if the  
noise cancellation filter is activated.  
RRZ [kbit/s]  
RNRZ [kbit/s]  
CF3[nF]  
12  
0.6  
1.2  
1.6  
2.4  
3.3  
4.8  
6.0  
1.2  
2.4  
3.2  
4.8  
6.6  
9.6  
12  
6.8  
4.7  
3.3  
2.2  
1.5  
1.2  
In shutdown mode pin DTAO is set to Hi-Z state.  
39010 71120  
Rev. 008  
Page 13 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
2
Frequency Planning  
Because of the double conversion architecture that employs two mixers and two IF signals, there are four  
different combinations for injecting the LO1 and LO2 signals:  
LO1 high side and LO2 high side: receiving at fRF(high-high)  
LO1 high side and LO2 low side: receiving at fRF(high-low)  
LO1 low side and LO2 high side: receiving at fRF(low-high)  
LO1 low side and LO2 low side:  
receiving at fRF(low-low)  
As a result, four different radio frequencies (RFs) could yield one and the same second IF (IF2). Fig. 9 shows  
this for the case of receiving at fRF(high-high). In the example of Fig. 9, the image signals at fRF(low-high) and  
fRF(low-low) are suppressed by the bandpass characteristic provided by the RF front-end. The bandpass  
shape can be achieved either with a SAW filter (featuring just a couple of MHz bandwidth), or by the tank  
circuits at the LNA input and output (this typically yields 30 to 60MHz bandwidth). In any case, the high value  
of the first IF (IF1) helps to suppress the image signals at fRF(low-high) and fRF(low-low).  
The two remaining signals at IF1 resulting from fRF(high-high) and fRF(high-low) are entering the second  
mixer MIX2. This mixer features image rejection with so-called single-sideband (SSB) selection. This means  
either the upper or lower sideband of IF1 can be selected. In the example of Fig. 9, LO2 high-side injection  
has been chosen to select the IF2 signal resulting from fRF(high-high).  
Fig. 9: The four receiving frequencies in a double conversion superhet receiver  
It can be seen from the block diagram of Fig. 1 that there is a fixed relationship between the LO signal fre-  
.
quencies (fLO1 , fLO2) and the reference oscillator frequency fRO  
fLO1 = N1 fLO2  
fLO2 = N2 fRO  
The IF2 frequency can be selected to 455kHz or 10.7MHz via the logic level at the IFSEL control pin. At the  
same time the output impedance of the 2nd mixer at pin MIXO is set according to the IF2 (please refer to pin  
description for details). Of course, also the operating frequency of the FSK demodulator (FSK DEMOD) is set  
accordingly.  
39010 71120  
Rev. 008  
Page 14 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
2.1 Calculation of Frequency Settings  
The receiver has two predefined receive frequency plans which can be selected by the RFSEL control pin.  
Depending on the logic level of RFSEL pin the sideband selection of the second mixer and the counter set-  
tings for N1 and N2 are changed accordingly.  
RFSEL  
Injection  
high-low  
low-high  
fRFmin [MHz]  
300  
fRFmax [MHz]  
470  
N1  
4
N2  
6
0
1
610  
930  
2
12  
The following table shows the relationships of several internal receiver frequencies for the two input fre-  
quency ranges.  
fRF [MHz]  
fIF1  
fLO1  
fLO2  
fRO  
fRF + N1fIF2  
N1 1  
N1 (fRF + fIF2  
N1 1  
)
)
fRF + fIF2  
N1 1  
fRF + fIF2  
300 to 470  
N2 (N1 1)  
fRF N1fIF2  
N1 +1  
N1 (fRF + fIF2  
N1 +1  
fRF + fIF2  
N1 +1  
fRF + fIF2  
610 to 930  
N2 (N1 +1)  
Given IF2 is selectable at either 455kHz or 10.7MHz and the corresponding N1, N2 counter settings, above  
equations can be transferred into the following table.  
IF2=455kHz  
fRF [MHz]  
fIF1  
fLO1  
fLO2  
fRO  
fRF + 1.82MHz  
4(fRF + 0.455MHz)  
fRF + 0.455MHz  
300 to 470  
3
3
18  
fRF + 0.455MHz  
3
fRF 0.91MHz  
2(fRF + 0.455MHz)  
fRF + 0.455MHz  
610 to 930  
3
3
36  
IF2=10.7MHz  
fRF [MHz]  
fIF1  
fLO1  
fLO2  
fRO  
fRF + 42.8MHz  
4(fRF +10.7MHz)  
fRF +10.7MHz  
300 to 470  
610 to 930  
3
3
18  
fRF + 10.7MHz  
3
fRF 21.4MHz  
2(fRF +10.7MHz)  
fRF +10.7MHz  
3
3
36  
39010 71120  
Rev. 008  
Page 15 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
2.2 Standard Frequency Plans  
IF2 = 455kHz  
RFSEL  
fRF [MHz]  
315  
fIF1 [MHz]  
105.6067  
145.2467  
289.1300  
304.6967  
fLO1 [MHz]  
420.6067  
579.1667  
579.1700  
610.3033  
fLO2 [MHz]  
105.1517  
144.7917  
289.5850  
305.1517  
fRO [MHz]  
17.525278  
24.131944  
24.132083  
25.429306  
0
433.92  
868.3  
915  
1
IF2 = 10.7MHz  
RFSEL  
fRF [MHz]  
315  
fIF1 [MHz]  
119.2667  
158.0667  
282.3000  
297.8667  
fLO1 [MHz]  
434.2667  
592.8267  
586.0000  
617.1333  
fLO2 [MHz]  
108.5667  
148.2067  
293.0000  
308.5667  
fRO [MHz]  
18.094444  
24.701111  
24.416667  
25.713889  
0
1
433.92  
868.3  
915  
2.3 433/868MHz Frequency Diversity  
The receiver’s multi-band functionality can be used to operate at two different frequency bands just by  
changing the logic level at pin RFSEL and without changing the crystal. This feature is applicable for com-  
mon use of the 433 and 868MHz bands. Below table shows the corresponding frequency plans.  
IF2 = 455kHz  
RFSEL  
fRF [MHz]  
433.9225  
868.3  
fIF1 [MHz]  
145.2483  
289.1300  
fLO1 [MHz]  
579.17  
fLO2 [MHz]  
144.7925  
289.5850  
fRO [MHz]  
0
1
24.132083  
579.17  
39010 71120  
Rev. 008  
Page 16 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
3
Pin Definitions and Descriptions  
Pin No.  
Name  
I/O Type  
Functional Schematic  
Description  
Vbias  
LNAO1  
3
LNAO1  
analog  
output  
LNA output 1  
Vbias  
3
VCC  
VEE  
LNAI1  
1
1
LNAI1  
analog  
input  
LNA input 1  
VEE  
2
4
VEE  
ground  
negative supply voltage  
MIX1 positive input  
Vbias  
MIXP  
analog  
input  
VCC  
VCC  
MIXP  
4
MIXN  
5
5
6
8
MIXN  
analog  
input  
MIX1 negative input  
LNA output 2  
VEE  
VEE  
Vbias  
Vbias  
LNAO2  
6
LNAO2  
LNAI2  
analog  
output  
VCC  
VEE  
LNAI2  
8
analog  
input  
LNA input 2  
VEE  
7
9
VEE  
ground  
supply  
negative supply voltage  
positive supply voltage  
mixer 2 output,  
VCC  
MIXO  
VCC  
VCC  
10  
analog  
output  
about 150Ώ at 10.7MHz  
and 670 Ώ at 455kHz, resp.  
MIXO  
150  
(670)  
10  
350µA  
(50µA)  
VEE  
11  
12  
VEE  
ground  
negative supply voltage  
IF amplifier positive input  
VCC  
Vbias  
VCC  
IFAP  
analog  
input  
IFAP  
12  
IFAN  
13  
1.5k  
13  
IFAN  
analog  
input  
IF amplifier negative input  
VEE  
VEE  
39010 71120  
Rev. 008  
Page 17 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
Pin No.  
Name  
I/O Type  
Functional Schematic  
Description  
VCC  
VCC  
14  
MODSEL CMOS  
input  
modulation select input  
MODSEL  
14  
400  
VEE  
VCC  
VEE  
VCC  
15  
SLCSEL  
CMOS  
input  
slicer mode select input  
SLCSEL  
15  
400  
VEE  
VEE  
VCC  
VCC  
16  
17  
DF2  
DF1  
analog  
I/O  
data filter connection 2  
DF2  
16  
400  
VEE  
VCC  
analog  
I/O  
data filter connection 1  
DF1  
17  
400  
VEE  
VCC  
VCC  
18  
19  
20  
DFO  
SLC  
PDP  
analog  
output  
data filter output  
DFO  
18  
400  
VEE  
VCC  
analog  
input  
slicer reference input  
SLC  
19  
400  
100k  
VEE  
VCC  
VCC  
analog  
output  
peak detector  
positive output  
PDP  
20  
400  
VEE  
39010 71120  
Rev. 008  
Page 18 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
Pin No.  
Name  
PDN  
I/O Type  
Functional Schematic  
Description  
VCC  
21  
analog  
output  
peak detector  
negative output  
PDN  
400  
21  
VEE  
22  
23  
VCC  
supply  
positive supply voltage  
VCC  
CINT  
analog  
input  
capacitor for noise cancella-  
tion filter  
pin must be connected to  
ground if noise cancellation  
filter is not used  
CINT  
23  
VEE  
VCC  
24  
RSSI  
analog  
output  
receive signal strength  
indication  
RSSI  
400  
24  
VEE  
VEE  
VCC  
VCC  
25  
ROI  
analog  
input  
reference oscillator input  
ROI  
25  
VEE  
VEE  
26  
27  
TEST  
IFSEL  
CMOS  
input  
not used  
connect to ground  
test pin  
VCC  
VCC  
CMOS  
input  
IF select input  
IFSEL  
27  
400  
VEE  
VEE  
VCC  
28  
CLKO  
CMOS  
output  
clock output  
connect pull-up resistor  
to activate clock  
CLKO  
28  
VEE  
39010 71120  
Rev. 008  
Page 19 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
Pin No.  
Name  
DTAO  
I/O Type  
Functional Schematic  
Description  
VCC  
VCC  
29  
CMOS  
output  
data output  
DTAO  
29  
220  
VEE  
VCC  
VCC  
30  
31  
32  
ENRX  
CMOS  
input  
enable RX mode control  
ENRX  
400  
30  
VEE  
VCC  
VEE  
VCC  
RFSEL  
CMOS  
input  
receive frequency select  
input  
RFSEL  
31  
400  
VEE  
VEE  
VCC  
LNASEL  
CMOS  
input  
LNA select input  
LNASEL  
32  
400  
VEE  
39010 71120  
Rev. 008  
Page 20 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
4
Technical Data  
4.1 Absolute Maximum Ratings  
Operation beyond absolute maximum ratings may cause permanent damage of the device.  
Parameter  
Supply voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VCC  
VIN  
0
7
VCC +0.3  
150  
V
V
Input voltage  
-0.3  
-55  
Storage temperature  
Junction temperature  
Thermal Resistance  
Power dissipation  
TSTG  
TJ  
°C  
°C  
K/W  
W
150  
RthJA  
Pdiss  
22  
0.12  
HBM according to MIL STD  
833D, method 3015.7  
Electrostatic discharge  
VESD  
1
kV  
4.2 Normal Operating Conditions  
Parameter  
Supply voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VCC  
TA  
2.1  
-40  
5.5  
125  
V
°C  
V
Operating temperature  
Input low voltage (CMOS)  
Input high voltage (CMOS)  
VIL  
VIH  
ENRX, SEL pins  
ENRX, SEL pins  
RFSEL=0  
0.3*VCC  
0.7*VCC  
300  
610  
100  
200  
0.4  
V
470  
930  
170  
310  
11  
Input frequency range  
First IF range  
fRF  
fIF1  
MHz  
MHz  
RFSEL=1  
RFSEL=0  
RFSEL=1  
Second IF range  
fIF2  
MHz  
MHz  
LO1 range (VCO frequency)  
fLO1  
fLO1 = 24*fREF  
400  
100  
200  
16  
640  
160  
320  
27  
RFSEL=0, fLO2 = fLO1 / 4  
RFSEL=1, fLO2 = fLO1 / 2  
set by the crystal  
fCLK = fREF / 8  
LO2 range  
fLO2  
MHz  
XOSC frequency  
CLKO frequency  
fREF  
fCLK  
MHz  
MHz  
kHz  
2.0  
3.375  
10  
IFSEL=0  
2
FSK deviation  
Data rate ASK  
f  
IFSEL=1  
10  
100  
50  
bi-phase code  
RASK  
kbps  
kbps  
NRZ  
100  
5
bi-phase code, IFSEL=0  
NRZ, IFSEL=0  
bi-phase code, IFSEL=1  
NRZ, IFSEL=1  
10  
Data rate FSK  
RFSK  
50  
100  
39010 71120  
Rev. 008  
Page 21 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
4.3 DC Characteristics  
all parameters under normal operating conditions, unless otherwise stated;  
typical values at TA= 23 °C and VCC = 3 V, all parameters based on test circuits as shown Fig. 10  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
Operating Currents  
ENRX=0, TA = 85°C  
ENRX=0, TA = 125°C  
50  
200  
4
nA  
µA  
Shutdown current  
ISDN  
Supply current reference  
oscillator  
IRO  
ENRX=1, t < tonRO  
1.5  
7.0  
mA  
mA  
ENRX=1, MODSEL= 1  
IFSEL=0, SLCSEL=0  
LNASEL=0 or 1  
Supply current, FSK  
IF2= 455kHz  
IFSK1  
IFSK2  
IASK1  
IASK2  
ENRX=1, MODSEL= 1  
IFSEL=1, SLCSEL=0  
LNASEL=0 or 1  
Supply current, FSK  
IF2= 10.7MHz  
7.5  
6.6  
7.1  
mA  
mA  
mA  
ENRX= 1, MODSEL= 0  
IFSEL=0, SLCSEL=0  
LNASEL=0 or 1  
Supply current, ASK  
IF2= 455kHz  
ENRX= 1, MODSEL= 0  
IFSEL=1, SLCSEL=0  
LNASEL=0 or 1  
Supply current, ASK  
IF2= 10.7MHz  
Digital Pin Characteristics (except of LNASEL)  
Input low voltage (CMOS)  
Input high voltage (CMOS)  
Pull down current ENRX pin  
VIL  
VIH  
ENRX, SEL pins  
ENRX, SEL pins  
ENRX=1  
0.3*VCC  
V
V
0.7*VCC  
2
IPDEN  
8
30  
1
µA  
Low level input current  
ENRX pin  
IINLEN  
ENRX=0  
µA  
High level input current  
IINHSEL  
IINLSEL  
SEL pins  
SEL pins  
1
1
µA  
µA  
Low level input current  
LNASEL Pin Characteristics  
Input voltage LNA1 active  
Input voltage LNA2 active  
DTAO Pin Characteristics  
VLNASEL1 ENRX=1  
VLNASEL2 ENRX=1  
0.1*VCC  
0.3*VCC  
V
V
0.9*VCC  
DTAO pin,  
VOL  
Output low voltage  
Output high voltage  
V
V
ISINK = 600µA  
DTAO pin,  
VOH  
0.7*VCC  
ISOURCE = 600µA  
39010 71120  
Rev. 008  
Page 22 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
4.4 AC System Characteristics  
all parameters under normal operating conditions, unless otherwise stated;  
typical values at TA= 23 °C and VCC = 3 V, all parameters based on test circuits as shown Fig. 11  
Parameter  
Sym-  
bol  
Condition  
Min  
Typ  
Max  
Unit  
Receive Characteristics  
Input Sensitivity 1)  
MODSEL IFSEL  
RFSEL  
315MHz  
433MHz  
868MHz  
915MHz  
315MHz  
433MHz  
868MHz  
915MHz  
315MHz  
433MHz  
868MHz  
915MHz  
Pmin1  
Pmin2  
Pmin3  
Pmin4  
Pmin5  
Pmin6  
Pmin7  
Pmin8  
Pmin9  
Pmin10  
Pmin11  
Pmin12  
-109  
-108  
-106  
-104  
-113  
-113  
-111  
-109  
-114  
-112  
-111  
-109  
0
FSK  
1
0
1
1
0
dBm  
dBm  
dBm  
1
0
1
0
1
wide band  
180kHz BW  
ASK  
narrow band  
20kHz BW  
FSK  
1
Pmax,  
FSK  
Maximum input signal – FSK  
Maximum input signal – ASK  
MODSEL=1  
-10  
-10  
dBm  
dBm  
Pmax,  
ASK  
MODSEL=0, M>60dB  
Spurious emission  
Image rejection 1st IF  
Image rejection 2nd IF  
Pspur  
-54  
dBm  
dB  
IR1 w/o SAW filter  
IR2  
20  
25  
dB  
1) at 4kbps NRZ, BER 310-3, peak detector data slicer, LNASEL = 0 or 1  
WB: f = 20kHz  
NB: f = 5kHz  
39010 71120  
Rev. 008  
Page 23 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
Parameter  
LNA Parameters  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
depends on external  
LC tank  
Voltage gain  
GLNA  
18  
dB  
Mixer Section Parameters  
Mixer output impedance  
IFSEL=0  
IFSEL=1  
1500  
330  
ZMIXO  
GMIX  
IIP3  
with CERFIL between  
MIXO and IFAP  
Voltage conversion gain  
25  
dB  
Input referred 3rd order intercept  
point  
with CERFIL between  
MIXO and IFAP  
-40  
dBm  
IF Amplifier / RSSI  
Operating frequency  
RSSI usable range  
RSSI slope  
fIFA  
0.4  
45  
11  
60  
MHz  
dB  
DRRSSI  
SRSSI  
usable, non-linear  
20  
mV/dB  
FSK Demodulator  
IFSEL=0  
IFSEL=1  
IFSEL=0  
IFSEL=1  
IFSEL=0  
IFSEL=1  
455  
10.7  
20  
kHz  
Input frequency range  
fDEM  
fDEM  
SDEM  
MHz  
Carrier acceptance range  
Demodulator sensitivity  
kHz  
400  
50  
mV/  
kHz  
5
Baseband Data Path  
Data filter bandwidth  
BDF  
IPKD  
depending on CF1,  
CF2  
100  
650  
kHz  
µA  
Peak detector load current  
500  
350  
Start-up Parameters  
Reference oscillator  
start-up time  
depending on crystal  
parameters  
tonRO  
µs  
Sequencer time  
tSEQ  
5504 / fREF  
tonRO + tSEQ  
200  
250  
0.6  
350  
1
µs  
Receiver start-up time  
tonRX  
ms  
Frequency Stability  
Frequency pulling by supply  
voltage  
dfVCC  
3
ppm/V  
39010 71120  
Rev. 008  
Page 24 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
4.5 External Components  
Parameter  
Symbol  
Condition  
Min  
Max  
Unit  
Crystal Parameters  
Crystal frequency  
Load capacitance  
Static capacitance  
Series resistance  
f0  
fundamental mode, AT  
16  
10  
27  
15  
5
MHz  
pF  
CL  
C0  
R1  
pF  
60  
Noise Cancellation Filter  
Integrator capacitor  
Clock Output  
CF3  
depends on data rate  
12  
50  
nF  
RCL  
CL  
Pull-up resistor  
600  
Load capacitance  
pF  
39010 71120  
Rev. 008  
Page 25 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
5
Test Circuit  
5.1 Dual-Channel Application Circuit  
for antenna-diversity applications  
Fig. 10: Dual-channel circuit schematic, peak detectors activated  
39010 71120  
Rev. 008  
Page 26 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
5.1.1 Test Circuit Component List for Figure 10  
Value @  
Value @  
Value @  
315 MHz 433.92 MHz 868.3 MHz 915 MHz  
Value @  
Part Size  
Tol.  
Description  
C3  
C4  
0603  
0603  
0603  
0603  
0603  
0805  
0603  
0603  
0603  
100 pF  
4.7 pF  
100 pF  
100 pF  
100 pF  
33 nF  
100 pF  
3.9 pF  
100 pF  
100 pF  
100 pF  
33 nF  
100 pF  
2.2 pF  
100 pF  
100 pF  
100 pF  
33 nF  
100 pF  
1.5 pF  
100 pF  
100 pF  
100 pF  
33 nF  
5% LNA input filtering capacitor  
LNA output tank capacitor  
5%  
C5  
5% MIX1 positive input matching capacitor  
5% MIX1 negative input matching capacitor  
C6  
C9  
LNA input filtering capacitor  
10% decoupling capacitor  
decoupling capacitor  
5%  
CB0  
CB1  
CB2  
CB3  
330 pF  
330 pF  
330 pF  
330 pF  
330 pF  
330 pF  
330 pF  
330 pF  
330 pF  
330 pF  
330 pF  
330 pF  
10%  
10% decoupling capacitor  
decoupling capacitor  
10%  
10%  
data low-pass filter capacitor,  
for data rate of 4 kbps NRZ  
CF1  
CF2  
0603  
0603  
680 pF  
330 pF  
680 pF  
330 pF  
680 pF  
330 pF  
680 pF  
330 pF  
data low-pass filter capacitor,  
for data rate of 4 kbps NRZ  
10%  
10%  
value according to the data rate  
optional capacitor for noise cancellation  
filter  
CF3  
0603  
connected to ground if noise filter not used  
CIF  
0603  
0603  
1 nF  
1 nF  
1 nF  
1 nF  
10% IFA feedback capacitor  
positive PKDET capacitor,  
10%  
CP1  
33 nF  
33 nF  
33 nF  
33 nF  
for data rate of 4 kbps NRZ  
negative PKDET capacitor,  
10%  
CP2  
CRS  
0603  
0603  
33 nF  
33 nF  
33 nF  
33 nF  
for data rate of 4 kbps NRZ  
1 nF  
1 nF  
1 nF  
1 nF  
10% RSSI output low pass capacitor  
100 nF  
100 nF  
100 nF  
100 nF  
data slicer capacitor,  
10%  
CSL  
0603  
for data rate of 4 kbps NRZ  
for averaging detection mode only  
CX  
L1  
L2  
L3  
0603  
0603  
0603  
0603  
27 pF  
56 nH  
27 nH  
56 nH  
27 pF  
27 nH  
15 nH  
27 nH  
27 pF  
0  
27 pF  
0 Ω  
5% crystal series capacitor  
matching inductor  
5%  
3.9 nH  
0 Ω  
3.9 nH  
0 Ω  
5% LNA output tank inductor  
5% matching inductor  
optional CLK output resistor,  
5%  
RCL  
0603  
3.3 kΩ  
3.3 kΩ  
3.3 kΩ  
3.3 kΩ  
to clock output signal generated  
SMD  
3.45x3.1  
SFECF10M7HA00 1)  
B3dB = 180 kHz  
IF2=10.7MHz  
IF2=455kHz  
IF2=10.7MHz  
IF2=455kHz  
ceramic filter  
from Murata,  
or equivalent part  
CER  
FIL  
SMD  
6.5x6.0  
CFUKG455KD4A  
B6dB = 20 kHz  
18.094444  
MHz  
24.701111  
MHz  
24.416667  
MHz  
25.713889  
MHz  
fundamental-mode  
crystal from Telcona,  
or equivalent part  
SMD  
5x3.2  
17.525278  
MHz  
24.131944  
MHz  
24.132083  
MHz  
25.429306  
MHz  
XTAL  
20ppm cal., 30ppm temp.  
Note 1): SFECF10M7HA00 for -20 to 80˚C  
SFECF10M7HA00S0 for -40 to 125˚C  
39010 71120  
Rev. 008  
Page 27 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
6
Package Description  
The device MLX71120 is RoHS compliant.  
Fig 11: 32L QFN 5x5 Quad  
all Dimension in mm  
D
E
D2  
E2  
A
A1  
A3  
L
e
b
min  
4.75  
5.25  
4.75  
5.25  
3.00  
3.25  
3.00  
3.25  
0.80  
1.00  
0
0.3  
0.5  
0.18  
0.30  
0.20  
0.50  
max  
0.05  
all Dimension in inch  
min  
0.187  
0.207  
0.187  
0.207  
0.118  
0.128  
0.118 0.0315  
0
0.0118  
0.0197  
0.0071  
0.0118  
0.0079  
0.0197  
max  
0.128 0.0393 0.002  
6.1 Soldering Information  
The device MLX71120 is qualified for MSL3 with soldering peak temperature 260 deg C  
according to JEDEC J-STD-20.  
39010 71120  
Rev. 008  
Page 28 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
7
Standard information regarding manufacturability of Melexis  
products with different soldering processes  
Our products are classified and qualified regarding soldering technology, solderability and moisture sensitiv-  
ity level according to following test methods:  
Reflow Soldering SMD’s (Surface Mount Devices)  
IPC/JEDEC J-STD-020  
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices  
(classification reflow profiles according to table 5-2)  
EIA/JEDEC JESD22-A113  
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing  
(reflow profiles according to table 2)  
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EN60749-20  
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat  
EIA/JEDEC JESD22-B106 and EN60749-15  
Resistance to soldering temperature for through-hole mounted devices  
Iron Soldering THD’s (Through Hole Devices)  
EN60749-15  
Resistance to soldering temperature for through-hole mounted devices  
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EIA/JEDEC JESD22-B102 and EN60749-21  
Solderability  
For all soldering technologies deviating from above mentioned standard conditions (regarding peak tempera-  
ture, temperature gradient, temperature profile etc) additional classification and qualification tests have to be  
agreed upon with Melexis.  
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of  
adhesive strength between device and board.  
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more in-  
formation on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of  
the use of certain Hazardous Substances) please visit the quality page on our website:  
http://www.melexis.com/quality.aspx  
8
ESD Precautions  
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).  
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.  
39010 71120  
Rev. 008  
Page 29 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
Your Notes  
39010 71120  
Rev. 008  
Page 30 of 31  
Data Sheet  
Jun/12  
MLX71120  
300 to 930MHz  
FSK/FM/ASK Receiver  
9
Disclaimer  
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its  
Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the infor-  
mation set forth herein or regarding the freedom of the described devices from patent infringement. Melexis  
reserves the right to change specifications and prices at any time and without notice. Therefore, prior to de-  
signing this product into a system, it is necessary to check with Melexis for current information. This product  
is intended for use in normal commercial applications. Applications requiring extended temperature range,  
unusual environmental requirements, or high reliability applications, such as military, medical life-support or  
life-sustaining equipment are specifically not recommended without additional processing by Melexis for  
each application.  
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be  
liable to recipient or any third party for any damages, including but not limited to personal injury, property  
damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential  
damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical  
data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering  
of technical or other services.  
© 2012 Melexis NV. All rights reserved.  
For the latest version of this document, go to our website at  
www.melexis.com  
Or for additional information contact Melexis Direct:  
Europe, Africa, Asia:  
Phone: +32 1367 0495  
E-mail: sales_europe@melexis.com  
America:  
Phone: +1 248 306 5400  
E-mail: sales_usa@melexis.com  
ISO/TS 16949 and ISO14001 Certified  
39010 71120  
Rev. 008  
Page 31 of 31  
Data Sheet  
Jun/12  

相关型号:

MLX71120_12

FSK/FM/ASK Receiver
MELEXIS

MLX71121

300 to 930MHz FSK/FM/ASK Receiver
MELEXIS

MLX71121KLQAAA-000RE

FSK/OOK Receiver
MELEXIS

MLX71121_15

FSK/OOK Receiver
MELEXIS

MLX71122

300 to 930MHz FSK/FM/ASK Receiver
MELEXIS

MLX71122RLQ

300 to 930MHz FSK/FM/ASK Receiver
MELEXIS

MLX71122_16

300 to 930MHz FSK/FM/ASK Receiver
MELEXIS

MLX72013

FSK/ASK Transmitter
MELEXIS

MLX72013KDCAAA-000RE

FSK/ASK Transmitter
MELEXIS

MLX72013KDCAAA-000TU

FSK/ASK Transmitter
MELEXIS

MLX72013_17

433MHz FSK/ASK Transmitter
MELEXIS

MLX73290-A

300 to 960MHz Multi-channel Transceiver With 3DLF Low Power Interface
MELEXIS