MLX81100KLQBAA000TU [MELEXIS]

DC-Motor Controller;
MLX81100KLQBAA000TU
型号: MLX81100KLQBAA000TU
厂家: Melexis Microelectronic Systems    Melexis Microelectronic Systems
描述:

DC-Motor Controller

文件: 总19页 (文件大小:393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MLX81100  
DC-Motor Controller  
Features  
CPU  
o
MelexCM CPU (Dual RISC CPU – 5MIPS)  
o
LIN protocol controller  
16-bit application CPU90  
o
o
Internal RC-Oscillator  
Memories  
2kbyte RAM, 30kbyte Flash, 128 byte EEPROM  
Flash for series production  
o
o
Periphery  
o
o
o
o
Three 16-bit timer with capture and compare  
Full duplex SPI interface  
100-kBaud UART  
2 high and 2 low side FET driver with protection  
o
o
o
Over temperature control  
Short circuit protection  
Current control  
o
o
o
o
o
8-bit PWM control with programmable base frequency of 100Hz to 100kHz  
8 high voltage I/Os  
16-channel 10-bit ADC with high voltage option  
Independent analog watchdog  
Temperature sensor  
Voltage Regulator  
o
o
o
o
Direct powered from 12V boardnet with low voltage detection  
Operating voltage VS = 7.3V to 18V  
External Load transistor for higher 5V loads or higher ambient temperature possible  
Very low standby current, < 50µA in sleep mode  
Bus Interface  
o
o
o
o
LIN transceiver  
Supporting of LIN 2.x and SAE J2602  
LIN protocol software provided by Melexis  
Wake up by LIN traffic or local sources  
Additional Features  
o
o
o
On-chip CPU debugger  
Jump start and 45V load dump protected  
Available in two package variants QFN 6x6 40 and TQFP EP 48L  
MLX81100 – Product Abstract  
Page 1 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
Applications  
LIN slaves for all kind of high current DC Motor with full bridge FET control like  
o
Wiper control  
Valve control  
o
Seat movement  
Pumps  
o
o
Ordering Information  
Order Code  
Temp. Range  
(K)  
Package  
(LQ or PF)  
Delivery Option  
(RE, TU, TR)  
MLX81100KLQꢀꢁꢀBAAꢀꢁꢀ000ꢀꢁꢀTUꢀ  
MLX81100KLQꢀꢁꢀBAAꢀꢁꢀ000ꢀꢁꢀREꢀ  
MLX81100KPFꢀꢁꢀBAAꢀꢁꢀ000ꢀꢁꢀTRꢀ  
MLX81100KPFꢀꢁꢀBAAꢀꢁꢀ000ꢀꢁꢀREꢀ  
ꢁꢀ40°Cꢀ…ꢀ125°Cꢀ  
ꢁꢀ40°Cꢀ…ꢀ125°Cꢀ  
ꢁꢀ40°Cꢀ…ꢀ125°Cꢀ  
ꢁꢀ40°Cꢀ…ꢀ125°Cꢀ  
QFN40ꢀ6x6ꢀ  
QFN40ꢀ6x6ꢀ  
TQFP48ꢀ7x7ꢀEPꢀ  
TQFP48ꢀ7x7ꢀEPꢀ  
Tubeꢀ  
Reelꢀ  
Trayꢀ  
Reelꢀ  
Ordering example:  
MLX81100KLQ-BAA-000-TU  
MLX81100 – Product Abstract  
Page 2 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
Contents  
1.  
2.  
FUNCTIONAL DIAGRAM ........................................................................................................................ 4  
ELECTRICAL CHARACTERISTICS........................................................................................................ 5  
2.1  
2.2  
O
A
PERATING CONDITIONS .................................................................................................................... 5  
BSOLUTE MAXIMUM RATINGS............................................................................................................ 6  
3.  
APPLICATION CIRCUITRY..................................................................................................................... 7  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
S
INGLE DC-MOTOR  
IGHER VCC LOADS AND HIGHER  
IGH IDE EVERSE OLARITY  
ONNECTION TO  
UAL DC-MOTOR  
UMAN NTERFACE  
EAT EATING AND  
DRIVE.................................................................................................................. 7  
H
H
C
D
H
A
MBIENT  
T
EMPERATURES ................................................................ 8  
ROTECTION....................................................................................... 8  
XTERNAL CAN CONTROLLER................................................................................... 9  
RIVE................................................................................................................... 10  
EVICE WITH DC-MOTOR .................................................................................... 11  
LIMATISATION................................................................................................... 12  
S
R
P
P
E
D
I
D
C
S
H
4.  
5.  
PIN DESCRIPTION ................................................................................................................................ 13  
MECHANICAL SPECIFICATION........................................................................................................... 15  
5.1  
5.2  
QFN 6  
TQFP 7  
X
6 40 SAWN........................................................................................................................... 15  
7 EP 48L........................................................................................................................... 16  
X
6. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS WITH  
DIFFERENT SOLDERING PROCESSES....................................................................................................... 17  
7. DISCLAIMER.......................................................................................................................................... 19  
MLX81100 – Product Abstract  
Page 3 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
1. Functional Diagram  
RTG  
CLKO  
PS  
VDD5V  
POR  
VS  
RC-OSC.  
300kHz  
GND  
5V/1.8V  
Supply  
Voltage  
Monitor  
V1V8  
fRC  
Aux. Supply  
Analog  
Watchdog  
Temp  
SW2  
Diff.  
Amp  
CWD  
Reset  
SHNT_L  
SW0  
BRMID1  
Diff.  
Amp  
Ref. Mux  
VS/2  
BRMID1  
SW1  
BRMID2  
Diff.  
Amp  
12V Ref  
VDRV  
10 bit ADC  
VS/2  
BRMID2  
GND  
GND  
MUX  
VS/2  
SW6  
SW0 … SW7  
VS/2  
SW7  
I/O Register  
Pre-driver  
Control  
CP  
SW0  
Internal Communication Interface  
Pre-  
driver  
High  
HSBC1  
HS1  
Internal Communication Interface  
PWM Control  
50Hz...100kHz  
Side 1  
BRMID1  
SW1  
SW2  
SW3  
SW4  
SW5  
SW6  
MelexCM  
Dual Compare  
CP  
fPLL  
PWMO  
Prescaler  
Compare on/off  
Pre-  
driver  
High  
HSBC2  
HS2  
16 bit TIMER  
fOSC, fOSC/16,  
fOSC/256  
fOSC/256  
fOSC/256  
8 bit Counter  
withPeriod register  
Side 2  
Dual Capture  
Watchdog  
BRMID2  
Pre-  
driver  
Low  
Clock  
fPLL  
Interrrupt  
Controller  
devider  
LS1  
LS2  
Side 1  
RAM  
2kbyte  
Pre-  
driver  
Low  
Appl. CPU  
MLX16  
M
UART  
SPI  
Side 2  
SW7  
Flash  
32kbyte  
with ECC  
M
U
Comm. CPU  
MLX4  
EEPROM  
128byte  
fOSC  
fRC  
Test  
controller  
PLL  
30MHz  
LIN-SBI  
(1.3 and 2.0)  
fPLL  
LIN-  
PHY  
LIN  
Multi-  
CPU  
debugger  
GND  
GND  
External Communication Interface  
IO0 IO1 IO2 IO3 IO4 IO5  
TI0 TI1 TO  
Figure 1- Block diagram  
MLX81100 – Product Abstract  
Page 4 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
2. Electrical Characteristics  
2.1 Operating Conditions  
Following characteristic is valid over the temperature -40deg C<TA<125deg C and supply voltage range of  
7.3<VS<18V, unless otherwise noted. With VS VSmin but above reset state or inside a temperature range  
125deg C<TA<150grdC the controller works correctly, analogue parameters can not be fully guaranteed. If  
several pins are charged with transients above VS and below VSS, the summary of all substrate currents of  
the influenced pins must not exceed 10mA for correct operation of the device. All voltages refer to ground of  
IC, which is built by short of all existing ground pins, which were split to meet EMC performance and lowest  
possible noise influence.  
Limit  
Parameter  
Symbol  
Condition/Remark  
Unit  
Min  
7.3ꢀ  
ꢁ40ꢀ  
Typical  
Max  
18ꢀ  
SupplyꢀVoltageꢀRangeꢀ  
AmbientꢀTemperatureꢀ  
Operationꢀcurrentꢀꢀ  
VSꢀ  
TAꢀ  
Vꢀ  
seeꢀnoteꢀ(*)ꢀbelowꢀ  
NoꢀDCꢁloadꢀonꢀpinsꢀ  
125ꢀ(150*)ꢀ  
30ꢀ  
degꢀCꢀ  
mAꢀ  
I_VSꢀ  
15ꢀ  
VS=13V,ꢀTA≤ꢀ85degꢀ  
VS=18V,ꢀTA≤ꢀ85degꢀ  
50ꢀ  
120ꢀ  
uAꢀ  
uAꢀ  
Standꢀbyꢀcurrentꢀꢀ  
I_SBYꢀ  
Max.ꢀvoltageꢀdifferenceꢀ  
betweenꢀSHNT_LꢀandꢀGNDꢀꢀ  
toꢀbeꢀminimizedꢀforꢀ  
optimumꢀADCꢀaccuracyꢀ  
SHNT_Lꢀ  
400ꢀ  
mVꢀ  
Table 1 - Operating Conditions  
(*) Target temperature after qualification: With temperature applications at TA>125deg C a reduction of chip  
internal power dissipation with external supply transistor is obligatory. The extended temperature range is  
only allowed for a limited periods of time, customers mission profile has to be agreed by Melexis as an  
obligatory part of the Part Submission Warrant (PSW). Some analogue parameter will drift out of limits, but  
chip function can be guaranteed.  
MLX81100 – Product Abstract  
Page 5 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
2.2 Absolute Maximum Ratings  
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-  
rated conditions for extended periods will affect device reliability.  
Limit  
Parameter  
Symbol  
Condition  
Unit  
Min  
Max  
Beforeꢀreverseꢀpolarityꢀ  
protectionꢀ  
VBATꢀ  
ꢁ0.5ꢀ  
20ꢀ  
Batteryꢀsupplyꢀvoltageꢀ  
InputꢀSupplyꢀvoltageꢀ  
VBATꢀ  
VBATꢀ  
Loadꢀdump,ꢀt<500msꢀ  
Jumpꢀstart,ꢀt<ꢀ2minꢀ[1]ꢀ  
ꢁ0.5ꢀ  
ꢁ0.5ꢀ  
45ꢀ  
28ꢀꢀ  
Afterꢀreverseꢀpolarityꢀ  
protectionꢀ  
VSꢀ  
ꢁ0.5ꢀ  
18ꢀ  
Inputꢀvoltageꢀꢀ  
Outputꢀvoltageꢀ  
OutputꢀVoltageꢀ  
SHUNTꢀMeasurementꢀ  
Switchꢀinputsꢀ  
LINꢀBusꢀ  
VDD5Vꢀ  
V1V8ꢀ  
ꢁ0.5ꢀ  
ꢁ0.5ꢀ  
ꢁ0.5ꢀ  
ꢁ0.5ꢀ  
ꢁ0.5ꢀ  
ꢁ24ꢀ  
6.5ꢀ  
2.2ꢀ  
RTGꢀ  
6.5ꢀ  
SHNT_Lꢀ  
SW[7:0]ꢀ  
LINꢀ  
VDD5V+0.5Vꢀ  
VBATꢀ  
Vꢀ  
t<500msꢀ  
VBATꢀ  
DriverꢀVoltageꢀ  
VDRVꢀ  
ꢁ0.5ꢀ  
VBATꢀ  
IO[5:0],ꢀTI[1:0],ꢀ  
TO,CLKOꢀ  
DigitalꢀIO’sꢀ  
ꢁ0.5ꢀ  
VDD5V+0.5Vꢀ  
Watchdogꢀcapꢀ  
CWDꢀ  
HS1,HS2ꢀ  
HSBC1,HSBC2ꢀ  
BRMID1,BRMID2ꢀ  
LS1,LS2ꢀ  
Tstgꢀ  
ꢁ0.5ꢀ  
ꢁ0.5ꢀ  
ꢁ0.5ꢀ  
ꢁ0.5ꢀ  
ꢁ0.5ꢀ  
ꢁ55ꢀ  
VDD5V+0.5Vꢀ  
VBAT+ꢀVDRVꢀ  
VBAT+ꢀVDRVꢀ  
VBATꢀ  
HighꢀsideꢀdriverꢀBridgeꢀ  
Highꢀsideꢀbridgeꢀcapꢀ  
Midpointsꢀofꢀbridgeꢀ  
LowꢀsideꢀdriverꢀBridgeꢀ  
Storageꢀtemperatureꢀ  
JunctionꢀTemperatureꢀ  
ThermalꢀresistanceꢀQFN40ꢀ6x6ꢀ  
VDRVꢀ  
150ꢀ  
degꢀCꢀ  
K/Wꢀ  
TJꢀ  
seeꢀtextꢀnoteꢀ(*)ꢀbelowꢀꢀ  
ꢁ40ꢀ  
150ꢀ(155*)ꢀ  
Rthꢀ  
40ꢀ  
40ꢀ  
ThermalꢀresistanceꢀTQFPꢀ  
EP48Lꢀ  
Rthꢀ  
[1]ꢀJumpstartꢀVoltage:ꢀThisꢀoperationꢀconditionꢀneedsꢀcarefulꢀhandlingꢀofꢀpowerꢀdissipationꢀbyꢀapplicationꢀsoftware,ꢀtoꢀpreventꢀ  
chipsꢀoverheating,ꢀseeꢀalsoꢀJumpstartꢀinterruptꢀdescriptionꢀ  
Table 2 - Absolute Maximum Ratings  
MLX81100 – Product Abstract  
Page 6 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
3. Application Circuitry  
3.1 Single DC-Motor Drive  
In this sample application the IC can drive a DC motor via an external power N- FET's bridge. The high side  
N-FET drive is done by a bootstrap output stage. Current control of the motor is done via shunt  
measurement; the reverse polarity protection of the bridge has to be realized with an external power FET  
connected to the ground line. Short circuits of the bridge will be detected from fast comparators and in this  
case the bridge will be switched off. Weak short circuits should be monitored with the help of an external  
temperature sensor.  
The actual position can be read with hall sensors, which are connected to the timer capture inputs. The hall  
sensors are switched off during standby mode via a switch-able battery voltage output PS. Optional it is  
possible to connect an external serial EEPROM via serial interface in case the usage of an integrated  
MEMORY is forbidden by safety reasons.  
100nF  
VBAT  
VS  
VDRV  
CLKO  
100nF  
RTG  
4.7…10uF  
VDD5V  
HSBC2  
HS2  
100nF  
47uF  
1uF  
100n  
V1V8  
BRMID2  
VBAT  
100n  
PS  
VCC  
HSBC1  
HS1  
IO4  
IO5  
VCC  
Hall  
sensor  
100nF  
BRMID1  
LS1  
M
VCC  
SW0  
SW1  
SW3  
SW4  
Temperature  
sensor  
LS2  
SW2  
GND  
SW5  
SW6  
SW7  
Shunt  
VBAT  
SPI Interface  
IO0  
IO1  
IO2  
IO3  
Reverse  
Polarity  
Protection  
MLX  
90316  
SHNT_L  
CWD  
CWD  
10  
TI0  
TI1  
TO  
LIN  
LIN  
180p  
GND_LIN  
GND_D  
GND_DRV  
GND_A  
Figure 2 - Application circuitry for single DC-motor control  
MLX81100 – Product Abstract Page 7 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
3.2 Higher VCC Loads and higher Ambient Temperatures  
For higher power consumption caused by higher VBAT or higher ambient temperatures, an external  
regulator transistor can bring the main power consumption which is caused by regulator, outside of the  
MLX81100 - so maximum chip temperature can be decreased to meet application needs.  
Figure 3 - Application for higher VCC loads and higher ambient temperatures  
3.3 High Side Reverse Polarity Protection  
A high side full bridge reverse polarity protection can also be realised using the below schematics.  
VBAT  
CLKO  
MLX81100  
Figure 4 - High side N-FET reverse polarity protection  
MLX81100 – Product Abstract  
Page 8 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
3.4 Connection to External CAN Controller  
If the application requires a connection to the CAN network it can be realized with the help of an external  
CAN communication CPU. The following circuitry shows a sample how to implement this together with our  
MLX81100.  
The communication between MLX8100 and external CAN controller is done via the SPI interface of the  
MelexCM.  
A bus wake-up will be signalised at the INH pin of the CAN transceiver. This signal will be used from a  
normal HV-IO pin to wake-up the MLX81100.  
VCC  
LIN  
INH  
SW7  
CAN  
Transceiver  
(TJA 1050)  
SW4  
VCC  
TxD  
RxD  
IO0  
IO1  
CANH  
CANL  
CS_1  
SO  
CAN  
Controller  
(MCP2515)  
IO2  
IO3  
IO4  
IO5  
SI  
CLK  
INT_1  
Figure 5 - Connection to external CAN controller  
MLX81100 – Product Abstract  
Page 9 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
3.5 Dual DC-Motor Drive  
In this sample application the IC realizes driving of 2 DC motor via an external power N-FETs bridge. The  
high side N-FET driving is done with a bootstrap output stage. The current control of the motor is done via  
shunt measurement; the reverse polarity protection of the bridge must be realized with an external power  
FET connected to ground. Short circuit of the bridge will be detected with internal fast comparators and in  
this case the bridge will be switched off.  
Weak short circuits are monitored with an external temperature sensor. The actual position can be read with  
hall sensors, which are connected to the timer capture inputs. The hall sensors are switched off during  
standby mode via a switch-able battery voltage output VS. If there is a need to synchronize the motor  
movement via longer distances it can be done via the serial interface connected to an external high speed  
CAN transceiver as a physical layer.  
Via this interface together with a proprietary protocol it  
is possible that both motor drivers exchange real time position information. Optional it is possible to connect  
an external EEPROM via serial interface, if the application can not use internal memories. This external  
memory will be completely stay under API control by using pins of a digital port to create needed signal  
waveforms for EEPROM.  
100nF  
100nF  
VDRV  
CLKO  
VS  
VBAT  
VBAT  
VS  
VDRV  
CLKO  
100nF  
100nF  
4.7 ..10uF  
47uF  
4.7 ..10uF  
RTG  
RTG  
VDD5V  
VDD5V  
HSBC2  
HS2  
HSBC2  
HS2  
47uF  
1uF  
100nF  
100nF  
100nF  
100nF  
V1V8  
V1V8  
BRMID2  
BRMID2  
1uF  
VBAT  
VBAT  
100nF  
100nF  
PS  
PS  
VCC  
VCC  
VCC  
VCC  
Hall  
sensor  
HSBC1  
HS1  
HSBC1  
HS1  
IO4  
IO4  
VCC  
VCC  
Hall  
sensor  
100nF  
Temperature  
sensor  
100nF  
IO5  
Temperature  
sensor  
IO5  
BRMID1  
LS1  
BRMID1  
LS1  
M
M
SW3  
SW3  
SW4  
SW5  
SW4  
SW5  
SW6  
VBAT VCC  
VCC VBAT  
High speed  
comunication Interface  
with propietary protocol  
INH  
STB  
TxD  
RxD  
SW6  
SW7  
CANH  
CANL  
CANH  
CANL  
STB  
RxD  
TxD  
HS-CAN  
Transceiver  
(TJA1041)  
LS2  
SW7  
LS2  
SW2  
GND  
HS-CAN  
Transceiver  
(TJA1041)  
SW2  
GND  
SW0  
SW1  
SW0  
SW1  
EN  
Shunt  
Shunt  
VBAT  
VBAT  
VCC  
CS  
VCC  
IO0  
IO1  
IO2  
IO3  
Optional  
SCLK  
SDOUT  
SDIN  
SHNT_L  
CWD  
SHNT_L  
CWD  
Reverse  
Polarity  
Protection  
Reverse  
Polarity  
Protection  
serial EEPROM  
if needed for  
security reason  
IO0  
IO1  
IO2  
IO3  
Serial  
EEPROM  
CWD  
CWD  
TI0  
TI1  
TO  
TI0  
TI1  
TO  
LIN  
10  
LIN  
LIN  
180p  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Application example for Dual DC motor driver  
Figure 6 - Application circuitry for a dual DC-motor system  
MLX81100 – Product Abstract  
Page 10 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
3.6 Human Interface Device with DC-Motor  
In this sample application the IC can realize the driving of a feedback DC motor via an external power N-FET  
bridge. The high side N-FET driver is created with a bootstrap output stage. The current control of the motor  
is done via shunt measurement and the reverse polarity protection of the bridge must be realized with an  
external power FET connected to the ground line.  
Short circuits of the bridge will be detected from fast comparators and in this case the bridge will be switched  
off. Weak short circuits are monitored with an external temperature sensor. Detecting rotation direction and  
positions of a rotating encoder can be easy done via the timer capture inputs. The 6 high voltage pins SW[n]  
make it possible to implement a switch matrix up to 3x3 or 6 single switches.  
100nF  
VBAT  
VS  
VDRV  
CLKO  
4.7 ..10uF  
100nF  
RTG  
VDD5V  
V1V8  
HSBC2  
HS2  
100nF  
47uF  
1uF  
100nF  
100nF  
BRMID2  
VBAT  
PS  
SW0  
SW1  
SW3  
HSBC1  
HS1  
SW4  
SW5  
100nF  
BRMID1  
LS1  
M
SW6  
SW7  
VCC  
LS2  
SW2  
GND  
Temperature  
sensor  
IO0  
IO1  
IO2  
IO3  
VCC  
Shunt  
VBAT  
VCC  
SHNT_L  
CWD  
Reverse  
Polarity  
Protection  
Rotation-  
encoder  
IO4  
IO5  
CWD  
TI0  
TI1  
TO  
10  
LIN  
LIN  
180p  
GND  
GND  
GND  
GND  
Figure 7 - Application circuitry for human interface device with DC-motor  
MLX81100 – Product Abstract  
Page 11 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
3.7 Seat Heating and Climatisation  
In this sample application the IC drives 2 separate heat elements via high side drivers and 2 motors via the  
low side drivers. The high side N-FET driving is done with a bootstrap output stage. The current control of  
the high side FET is realized via shunt measurement and the shunt voltage is amplified with a differential  
amplifier connected to the ADC.  
The reverse polarity protection of the low side FET must be realized with an external power FET connected  
to the ground line. Short circuits of the single FET will be detected with integrated comparators and in this  
case the FET will be switched off. Weak short circuits must be monitored with an external temperature  
sensor.  
100nF  
100nF  
VBAT  
VS  
VDRV  
CLKO  
VBAT  
4.7 ..10uF  
RTG  
HSBC2  
VDD5V  
47uF  
VBAT  
100nF  
100nF  
100nF  
HS2  
Fan 1  
BRMID2  
V1V8  
1uF  
Shunt  
M
PS  
SW6  
SW1  
Heater 2  
VBAT  
Fan 2  
LS1  
SW2  
SW3  
VBAT  
M
HSBC1  
100nF  
SW7  
LS2  
HS1  
BRMID1  
Shunt  
SW4  
SW5  
VCC  
SW0  
VBAT  
IO4  
IO5  
Heater 1  
GND  
IO0  
IO1  
IO2  
IO3  
SHNT_L  
CWD  
CWD  
10  
TI0  
TI1  
TO  
LIN  
LIN  
180p  
GND  
GND  
GND  
GND  
Figure 8 - Application circuitry for seat heating and seat climatisation  
MLX81100 – Product Abstract  
Page 12 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
4. Pin Description  
voltage  
range  
Pin name  
remarks and description  
Battery supply voltage; external protection against reverse  
polarity needed  
36  
1
5
1
1
1
6
2
1
0
2
1
2
VS  
Pwr HV  
Pwr HV  
Pwr LV  
Pwr LV  
42  
4,31,22,  
3,37  
Ground: Digital, Analogue, LIN, Driver, Pads: VSSLIN,  
VSSDRV,VSSIO,VSSA,VSSD / (PSUB at TQFP only)  
Input from Regulator (5 V),  
5,35,26,20  
,43,3,4  
GND  
40  
38  
VDD5V  
V1V8  
46  
44  
external blocking capacitors  
Regulator output (about 1.8 V),  
external blocking capacitors  
External regulator transistor control output,  
to be connected to VDD5V or external n-type Transistor  
39  
33  
1
1
8
1
1
8
0
0
0
RTG  
PS  
An HV  
45  
39  
Pwr HV  
Switch-able supply (VS) output voltage, internal clamped  
13,14,16  
-21  
Multifunc  
HV  
15,17-19  
21-24  
SW[7:0]  
High voltage I/O port with wake-up function, configurable  
35  
11  
1
1
1
1
0
0
CWD  
An LV  
An LV  
Watch dog load capacitor  
41  
13  
SHNT_L  
Shunt measurement connection for ADC  
Gate driver for external N-channel MOSFET in low-side  
configuration  
26,27  
24,29  
2
2
2
2
0
0
LS1, LS2  
HS1, HS2  
An HV  
An HV  
30,31  
28,33  
Gate driver for external N-channel MOSFET in high-side  
configuration  
Regulator output, internal clamped, for pre-charging of  
bootstrap capacitors of the high side gate driver  
32  
23,30  
25,28  
7
1
2
2
1
1
1
2
2
1
1
0
0
0
0
0
VDRV  
HSBC1,HSBC2  
BRMID1,BRMID2  
LIN  
An HV  
An HV  
An HV  
An HV  
Dig 5V  
38  
27,34  
29,32  
9
Connection of bootstrap capacitors  
Midpoint of a full bridge (usually the source of high-side  
FET and drain of it’s low-side FET)  
LIN transceiver BUS pin  
Clock 307kHz for possible external charge pump or Chip  
select/input  
34  
CLKO  
40  
2,8,12,  
9,6,1  
2,10,14,  
11,7,1  
6
0
6
IO[5:0]  
Dig LV  
Digital IO (MelexCM)  
10,15  
5
2
1
0
0
2
1
TI[1:0]  
TO  
Test input Test inputs for Melexis (MelexCM) - connect to GND  
Test output Test output for Melexis (MelexCM), unconn. in application  
12,16  
6
48  
40  
IO(0)  
IO(5)  
VSSA  
VSSLIN  
TO  
1
HSBC2  
1
IO(0)  
IO(5)  
VSSA  
PSUB  
VSSLIN  
TO  
nc.  
HS2  
VSSDRV  
HSBC2  
HS2  
BRMID2  
LS2  
BRMID2  
LS2  
LS1  
LS1  
IO(1)  
LIN  
BRMID1  
HS1  
IO(1)  
VDD5V  
LIN  
BRMID1  
HS1  
IO(4)  
IO(2)  
TI(1)  
HSBC1  
VSSIO  
SW(0)  
HSBC1  
VSSIO  
IO(4)  
IO(2)  
TI(1)  
nc.  
QFN40  
TQFP48  
MLX81100 – Product Abstract  
Page 13 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
voltage  
range  
Pin name  
remarks and description  
Dig= digital input, output ,bidir / An= analogue pin / Pwr= power/supply pin  
Multifunc= multifunctional pin (configurable pin) / Test= pin for test purposes  
LV= low volt, vdd5v or v1v8 related / HV= high voltage, VBAT or VS related  
MLX81100 – Product Abstract  
Page 14 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
5. Mechanical Specification  
5.1 QFN 6x6 40 sawn  
A
A1  
A3  
d
D
D2  
E
E2  
e
L
N
ND  
NE  
K
0.20ꢀ  
ꢁꢀ  
min  
nom  
max  
0.80ꢀ 0.00ꢀ  
0.18ꢀ  
4.00ꢀ  
4.30ꢀ  
0.45ꢀ  
0.85ꢀ 0.02ꢀ 0.20ꢀ 0.25ꢀ 6.00ꢀ 4.40ꢀ  
0.90ꢀ 0.05ꢀ 0.30ꢀ 4.50ꢀ  
6.00ꢀ 4.40ꢀ 0.50ꢀ 0.50ꢀ  
4.50ꢀ 0.55ꢀ  
40ꢀ  
10ꢀ  
10ꢀ  
ꢁꢀ  
1.ꢀDimensionsꢀandꢀtolerancesꢀconformꢀtoꢀASMEꢀY14.5Mꢁ1994ꢀ  
2.ꢀAllꢀdimensionsꢀareꢀinꢀMillimeters.ꢀAllꢀangelsꢀareꢀinꢀdegreesꢀ  
3.ꢀNꢀisꢀtheꢀtotalꢀnumberꢀofꢀterminalsꢀ  
4.ꢀDimensionꢀbꢀappliesꢀtoꢀmetallicꢀterminalꢀandꢀisꢀmeasuredꢀbetweenꢀ0.15ꢀandꢀ0.30mmꢀfromꢀterminalꢀtip.ꢀIfꢀtheꢀterminalꢀhasꢀtheꢀ  
optionalꢀradiusꢀonꢀtheꢀotherꢀendꢀofꢀtheꢀterminal,ꢀtheꢀdimensionꢀbꢀshouldꢀnotꢀbeꢀmeasuredꢀinꢀthatꢀradiusꢀareaꢀ  
5.ꢀNDꢀandꢀNEꢀreferꢀtoꢀtheꢀnumberꢀofꢀterminalsꢀonꢀeachꢀDꢀandꢀEꢀsideꢀrespectivelyꢀ  
Depopulationꢀisꢀpossibleꢀinꢀaꢀsymmetricalꢀfashionꢀ  
Exposed pad need best  
possible contact to ground for  
exlectrical and thermal reasons  
MLX81100 – Product Abstract  
Page 15 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
5.2 TQFP 7x7 EP 48L  
A
ꢁꢀ  
ꢁꢀ  
A1  
0.05ꢀ 0.95ꢀ 0.17ꢀ 0.17ꢀ  
ꢁꢀ  
A2  
b
b1  
D
D1  
D2  
E
E1  
E2  
e
L
N
ccc ddd  
min  
0.45ꢀ  
ꢁꢀ  
ꢁꢀ  
ꢁꢀ  
ꢁꢀ  
nom  
1.00ꢀ 0.22ꢀ 0.20ꢀ 9.00ꢀ 7.00ꢀ 5.00ꢀ 9.00ꢀ 7.00ꢀ 5.00ꢀ 0.50ꢀ 0.60ꢀ 48ꢀ  
0.75ꢀ  
max  
1.20ꢀ 0.15ꢀ 1.05ꢀ 0.27ꢀ 0.23ꢀ  
0.08ꢀ 0.08ꢀ  
Notes:ꢀ  
1. AllꢀꢀDimensioningꢀandꢀTolerancesꢀconformꢀtoꢀASMEꢀY14.5Mꢁ1994,ꢀ  
2. DatumꢀPlaneꢀ[ꢁ|ꢁ|ꢁ]ꢀlocatedꢀatꢀMouldꢀPartingꢀLineꢀandꢀcoincidentꢀwithꢀLead,ꢀwhereꢀLeadꢀexists,ꢀplasticꢀbodyꢀatꢀbottomꢀofꢀ  
partingꢀline.ꢀ  
3. Datumꢀ[AꢁB]ꢀandꢀ[ꢁDꢁ]ꢀtoꢀbeꢀdeterminedꢀatꢀcentrelineꢀbetweenꢀleadsꢀwhereꢀleadsꢀexist,ꢀplasticꢀbodyꢀatꢀdatumꢀplaneꢀꢀ[ꢁ|ꢁ|ꢁ]ꢀ  
4. Toꢀbeꢀdeterminedꢀatꢀseatingꢀplaneꢀ[ꢁCꢁ]ꢀ  
5. DimensionsꢀD1ꢀandꢀE1ꢀdoꢀnotꢀincludeꢀMouldꢀprotrusion.ꢀDimensionsꢀD1ꢀandꢀE1ꢀdoꢀnotꢀincludeꢀmouldꢀprotrusion.ꢀAllowableꢀ  
mouldꢀprotrusionꢀisꢀ0.254ꢀmmꢀonꢀD1ꢀandꢀE1ꢀdimensions.ꢀ  
6. 'N'ꢀisꢀtheꢀtotalꢀnumberꢀofꢀterminalsꢀ  
7. Theseꢀdimensionsꢀtoꢀbeꢀdeterminedꢀatꢀdatumꢀplaneꢀ[ꢁ|ꢁ|ꢁ]ꢀ  
8. Packageꢀtopꢀdimensionsꢀareꢀsmallerꢀthanꢀbottomꢀdimensionsꢀandꢀtopꢀofꢀpackageꢀwillꢀnotꢀoverhangꢀbottomꢀofꢀpackage.ꢀꢀ  
9. Dimensionꢀbꢀdoesꢀnotꢀincludeꢀdamꢀbarꢀprotrusion,ꢀallowableꢀdamꢀbarꢀprotrusionꢀshallꢀbeꢀ0.08mmꢀtotalꢀinꢀexcessꢀofꢀtheꢀ"b"ꢀ  
dimensionꢀatꢀmaximumꢀmaterialꢀcondition,ꢀdamꢀbarꢀcanꢀnotꢀbeꢀlocatedꢀonꢀtheꢀlowerꢀradiusꢀofꢀtheꢀfoot.ꢀ  
10. Controllingꢀdimensionꢀmillimetre.ꢀ  
11. maximumꢀallowableꢀdieꢀthicknessꢀtoꢀbeꢀassembledꢀinꢀthisꢀpackageꢀfamilyꢀisꢀ0.38mmꢀ  
12. ThisꢀoutlineꢀconformsꢀtoꢀJEDECꢀpublicationꢀ95ꢀRegistrationꢀMSꢁ026,ꢀVariationꢀABA,ꢀABCꢀ&ꢀABD.ꢀ  
13. A1ꢀisꢀdefinedꢀasꢀtheꢀdistanceꢀfromꢀtheꢀseatingꢀplaneꢀtoꢀtheꢀlowestꢀpointꢀofꢀtheꢀpackageꢀbody.ꢀ  
14. DimensionꢀD2ꢀandꢀE2ꢀrepresentꢀtheꢀsizeꢀofꢀtheꢀexposedꢀpad.ꢀTheꢀactualꢀdimensionsꢀareꢀspecifiedꢀionꢀtheꢀbondingꢀdiagram,ꢀ  
andꢀareꢀindependentꢀfromꢀdieꢀsize.ꢀ  
1. 15.ꢀExposedꢀpadꢀshallꢀbeꢀcoplanarꢀwithꢀbottomꢀofꢀpackageꢀwithinꢀ0.05.ꢀ  
MLX81100 – Product Abstract  
Page 16 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
Exposed pad need best  
possible contact to ground for  
exlectrical and thermal reasons  
6. Standard information regarding manufacturability of  
Melexis products with different soldering processes  
Our products are classified and qualified regarding soldering technology, solderability and moisture  
sensitivity level according to following test methods:  
Reflow Soldering SMD’s (Surface Mount Devices)  
IPC/JEDEC J-STD-020  
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices  
(classification reflow profiles according to table 5-2)  
EIA/JEDEC JESD22-A113  
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing  
(reflow profiles according to table 2)  
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EN60749-20  
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat  
EIA/JEDEC JESD22-B106 and EN60749-15  
Resistance to soldering temperature for through-hole mounted devices  
Iron Soldering THD’s (Through Hole Devices)  
EN60749-15  
Resistance to soldering temperature for through-hole mounted devices  
MLX81100 – Product Abstract  
Page 17 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EIA/JEDEC JESD22-B102 and EN60749-21  
Solderability  
For all soldering technologies deviating from above mentioned standard conditions (regarding peak  
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests  
have to be agreed upon with Melexis.  
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of  
adhesive strength between device and board.  
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more  
information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of  
the use of certain Hazardous Substances) please visit the quality page on our website:  
http://www.melexis.com/quality.aspx  
MLX81100 – Product Abstract  
Page 18 of 19  
June 2012  
Rev 021  
MLX81100  
DC-Motor Controller  
7.  
Disclaimer  
Devices sold by Melexis are covered by the warranty and patent indemnification provisions  
appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or  
by description regarding the information set forth herein or regarding the freedom of the  
described devices from patent infringement. Melexis reserves the right to change  
specifications and prices at any time and without notice. Therefore, prior to designing this  
product into a system, it is necessary to check with Melexis for current information. This  
product is intended for use in normal commercial applications. Applications requiring  
extended temperature range, unusual environmental requirements, or high reliability  
applications, such as military, medical life-support or life-sustaining equipment are  
specifically not recommended without additional processing by Melexis for each  
application.  
The information furnished by Melexis is believed to be correct and accurate. However,  
Melexis shall not be liable to recipient or any third party for any damages, including but not  
limited to personal injury, property damage, loss of profits, loss of use, interrupt of  
business or indirect, special incidental or consequential damages, of any kind, in  
connection with or arising out of the furnishing, performance or use of the technical data  
herein. No obligation or liability to recipient or any third party shall arise or flow out of  
Melexis’ rendering of technical or other services.  
© 2012 Melexis NV. All rights reserved.  
For the latest version of this document, go to our website at  
www.melexis.com  
Or for additional information contact Melexis Direct:  
Europe, Africa, Asia:  
Phone: +32 1367 0495  
E-mail: sales_europe@melexis.com  
America:  
Phone: +1 248 306 5400  
E-mail: sales_usa@melexis.com  
ISO/TS 16949 and ISO14001 Certified  
MLX81100 – Product Abstract  
Page 19 of 19  
June 2012  
Rev 021  

相关型号:

MLX81100KPFBAA000RE

DC-Motor Controller
MELEXIS

MLX81100KPFBAA000TR

DC-Motor Controller
MELEXIS

MLX81100_14

DC-Motor Controller
MELEXIS

MLX81106KDC-CAA-000-RE

IC LIN SWITCH IO CTRL 8SOIC
MELEXIS

MLX81106KDC-CAA-000-SP

IC LIN SWITCH IO CTRL 8SOIC
MELEXIS

MLX81106KDC-CAA-000-TU

IC LIN SWITCH IO CTRL 8SOIC
MELEXIS

MLX81107KLW-CAA-000-TU

IC MINI LIN 24KB FLASH 20QFN
MELEXIS

MLX81107KLW-CAE-000-RE

IC MINI LIN 24KB FLASH 20QFN
MELEXIS

MLX81107KLW-CAE-000-SP

IC MINI LIN 24KB FLASH 20QFN
MELEXIS

MLX81108KDC-CAA-000-TU

IC LIN SWITCH IO CTRL 8SOIC
MELEXIS

MLX81108KDC-CAE-000-RE

IC LIN SWITCH IO CTRL 8SOIC
MELEXIS

MLX81108KDC-CAE-000-SP

IC LIN SWITCH IO CTRL 8SOIC
MELEXIS