MLX83203 [MELEXIS]

Automotive NFET pre-drivers;
MLX83203
型号: MLX83203
厂家: Melexis Microelectronic Systems    Melexis Microelectronic Systems
描述:

Automotive NFET pre-drivers

文件: 总35页 (文件大小:1399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MLX83202/MLX83203  
Automotive NFET pre-drivers  
Features and Benefits  
Application Examples  
Level shifting between micro-controller PWM outputs  
and 3 external N-FET half-bridges  
100% PWM operation  
Low offset, low drift, fast current sense amplifier  
Operating range VSUP = [4.5, 28] V, 45V Abs. Max  
Fault interrupt & feedback to microcontroller  
Under & overvoltage protection  
Fail-safe applications  
Low-torque control applications  
BLDC sine wave applications (PMSM)  
Overtemperature protection  
VDS and VGS external FET monitoring  
Sleep mode with low quiescent current  
Compatible with 3V and 5V micro-controllers  
Charge-pump provides NFET reverse polarity drive  
Ordering Information  
Part No.  
MLX83202  
MLX83202  
MLX83203  
MLX83203  
Temperature Code  
K (-40°C to 125°C)  
K
K
K
Package Code  
Option code Comment  
LQ (QFN32, 5x5mm)  
PF (TQFP48, 7x7mm)  
LQ (QFN32, 5x5mm)  
PF (TQFP48, 7x7mm)  
AAA 000  
AAA 000  
AAA 000  
AAA 000  
25 Ohm 3HB (*)  
25 Ohm 3HB (*)  
8 Ohm 3HB  
8 Ohm 3HB (*)  
(*): Derivatives of MLX83203KLQAAA-000 available on high volume request  
1 Functional Diagram  
2 General Description  
The MLX83202/MLX83203 family of pre-drivers is  
designed to drive high-current N-type FET 3-phase  
motor control applications.  
The built-in EEPROM allows extensive configurability  
of the pre-driver without the need for external  
resistors and SPI interface programming. This  
reduces the package pin count to only 32.  
All output voltages are monitored for failure  
conditions. The microcontroller is informed of the  
failure condition via a fast serial interface.  
The device comprises a current shunt amplifier, with  
a high gain bandwidth (GBW), offering a fast settling  
time with low noise. This makes the pre-drivers ideal  
for precise torque control applications like e.g.  
electrical power steering and brake by wire.  
A combination of bootstrap and charge pump enables  
driving  
6
NFETs, with gate charges up to  
400nC/NFET with a minimum of device self-heating.  
The IC reset level below 4.5V allows for low-voltage  
operation.  
3901083203  
Rev 2.2  
Page 1 of 35  
Prelim. Data Sheet  
4 Dec 2013  
 
 
MLX83202/MLX83203  
Automotive NFET pre-drivers  
Table of Contents  
1 Functional Diagram____________________________________________________________________1  
2 General Description ___________________________________________________________________1  
3 Glossary of Terms_____________________________________________________________________3  
4 Absolute Maximum Ratings _____________________________________________________________3  
5 Pin Definitions and Descriptions_________________________________________________________4  
6 Electrical Specifications________________________________________________________________5  
7 Block diagram and application circuit ___________________________________________________10  
7.1 Pinout schematics ________________________________________________________________12  
7.2 Ground connections_______________________________________________________________13  
8 Description__________________________________________________________________________14  
8.1 Supply system ___________________________________________________________________14  
8.2 Sleep mode ______________________________________________________________________14  
8.2.1 Sleep mode status overview ______________________________________________________15  
8.3 Enable input _____________________________________________________________________16  
8.4 Protection and diagnostic functions _________________________________________________16  
8.4.1 Drain-source voltage monitoring ___________________________________________________16  
8.4.2 Programmable dead time_________________________________________________________16  
8.4.3 Supply overvoltage shutdown _____________________________________________________16  
8.4.4 Regulated supply overvoltage shutdown _____________________________________________16  
8.4.5 Undervoltage warnings __________________________________________________________17  
8.4.6 Over temperature warning ________________________________________________________17  
8.4.7 EEPROM error warning __________________________________________________________17  
8.4.8 ICOM diagnostics interface _______________________________________________________17  
8.4.9 Pre-driver output state summary ___________________________________________________19  
8.5 EEPROM programming ____________________________________________________________20  
8.5.1 Memory map __________________________________________________________________20  
8.5.2 SPI communication _____________________________________________________________21  
8.6 Current sense amplifier ____________________________________________________________25  
8.7 FET driver implementation _________________________________________________________27  
8.7.1 Normal operation _______________________________________________________________27  
8.7.2 FET driver during sleep mode _____________________________________________________28  
8.8 Charge pump_____________________________________________________________________28  
8.9 100% PWM with bootstrap__________________________________________________________29  
9 Standard information regarding manufacturability of Melexis products with different soldering  
processes ____________________________________________________________________________30  
10 ESD Precautions ____________________________________________________________________30  
11 Package Information_________________________________________________________________31  
11.1 Package data QFN32 (5x5, 32 leads) ________________________________________________31  
11.2 Package data TQFP48_EP 7x7 (48 leads, exposed pad) _______________________________32  
11.3 Package Marking ________________________________________________________________33  
12 Disclaimer _________________________________________________________________________34  
3901083203  
Rev 2.2  
Page 2 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
3 Glossary of Terms  
OVT  
OV  
Overtemperature  
Overvoltage  
UV  
Undervoltage  
POR  
CP  
Power-On-Reset  
Charge pump  
VDD  
Vds  
Vgs  
HV  
Logic supply (3.3V or 5V)  
Drain-source voltage  
Gate-source voltage  
High Voltage (>5V)  
4 Absolute Maximum Ratings  
All voltages are referenced to ground (GND). Positive currents flow into the IC. The absolute maximum  
ratings given in the table below are limiting values that do not lead to a permanent damage of the device.  
Exceeding any of these limits may do so. Long term exposure to limiting values may affect the reliability of  
the device. Reliable operation of the IC is only specified within the limits shown in “Operating conditions”.  
Limit  
Parameter  
Symbol  
Condition  
Unit  
Min  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-10  
Max  
45  
28  
t < 500ms (note 1)  
Permanent (functional)  
V
V
V
V
V
V
mA  
V
Supply voltage  
VSUP, VBATF  
VDD supply voltage  
VDD  
5.5  
Voltage on Analog LV  
Digital Output Voltage  
Digital Input Voltage  
VAN_LV  
VOUT_DIG  
VIN_DIG  
IIN_DIG  
VDD+0.3  
VDD+0.3  
VDD+0.3  
10  
Digital Input Current  
Input voltage on PHASEX pins  
Maximum latchup free current at  
any pin  
VIN_PHASE  
-0.7  
45  
according JEDEC JESD78,  
AEC-Q100-004  
ILATCH  
-100  
100  
mA  
ESD capability of any other pin  
Storage temperature  
ESD  
Tstg  
Human body model (note 2)  
-2  
-55  
+2  
150  
kV  
°C  
150  
(175  
under  
revision)  
Junction Temperature  
TJ  
(note 3)  
-40  
°C  
Thermal resistance Package  
Rthja  
Rthjc  
in free air on multilayer pcb (JEDEC 1s2p)  
referring to center of exposed pad  
37  
10  
K/W  
K/W  
Table 1. Maximum ratings  
Note:  
1. Only during Loaddump pulse.  
2. Equivalent to discharging a 100pF capacitor through a 1.5kOhm resistor conform to MIL STD 883  
method 3015.7  
3. For applications with Tj > 125C: The Extended temperature range is only allowed for a limited period  
of time. The application mission profile has to be agreed by Melexis. Some analog parameters may  
drift out of limits, but chip functionality is guaranteed.  
3901083203  
Rev 2.2  
Page 3 of 35  
Prelim. Data Sheet  
4 Dec 2013  
 
MLX83202/MLX83203  
Automotive NFET pre-drivers  
5 Pin Definitions and Descriptions  
MLX8320x MLX8320x  
Name  
Type  
Function  
QFN32  
TQFP48  
1
2
4
5
IBM  
IBP  
LV analog input Current sensor input (negative input)  
LV Analog input Current sensor input (positive input)  
LV Analog  
3
4
5
6
7
8
9
6
7
8
9
ISENSE  
FETB1  
FETB2  
FETB3  
ICOM  
EN  
Current sensor output  
LV Digital input PWM input for low-side N-FET1 (active low), MISO for SPI  
LV Digital input PWM input for low-side N-FET2 (active low), CLK for SPI  
LV Digital input PWM input for low-side N-FET3 (active low), MOSI for SPI  
LV IO  
LV IO  
10  
11  
14  
15  
16  
17  
18  
19  
20  
21  
22  
26  
28  
29  
30  
31  
33  
35  
38  
39  
41  
43  
44  
45  
47  
3
Diagnostic feedback IO, !CS for SPI  
Enable input  
PHASE2 HV output  
GATET2 HV output  
HV input  
PHASE1 HV output  
GATET1 HV output  
HV input  
PHASE3 HV output  
GATET3 HV output  
Motor phase 2: high-side N-FET2 Source connection  
PWM output to high-side N-FET2 Gate  
Supply input (bootstrap) for high-side N-FET2 Gate  
Motor phase 1: high-side N-FET1 Source connection  
PWM output to high-side N-FET1 Gate  
Supply (bootstrap) input for high-side NFET1  
Motor phase 3: high-side N-FET3 Source connection  
PWM output to high-side N-FET3 Gate  
Supply (bootstrap) input for high-side NFET3 Gate  
Charge pump generated supply input  
Regulated supply for bootstrap capacitors and low-side pre-driver  
PWM output to low-side N-FET2 Gate  
PWM output to low-side N-FET3 Gate  
PWM output to low-side N-FET1 Gate  
Driver ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
CP2  
CP1  
CP3  
VBOOST HV input  
VREG HV output  
HV input  
GATEB2 HV Output  
GATEB3 HV Output  
GATEB1 HV Output  
DGND  
CP  
Ground  
HV Output  
HV Supply input Power supply input  
HV input  
Ground  
LV Digital  
LV Digital  
LV Digital  
LV Supply  
Charge pump driver output to boost VBOOST  
VSUP  
VBATF  
AGND  
FETT2  
FETT1  
FETT3  
VDD  
VBAT sense input for 3 high-side N-FETs to monitor Vds  
Analog ground  
PWM input for high-side N-FET2  
PWM input for high-side N-FET1  
PWM input for high-side N-FET3  
Digital IO and current sensor amplifier supply.  
VREF  
LV Analog input Reference voltage input for current sense  
Table 2. Pin definitions and descriptions  
3901083203  
Rev 2.2  
Page 4 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
6 Electrical Specifications  
DC and AC Operating Range (unless otherwise specified)  
TA  
= -40oC to 125oC,  
VSUP = [7, 18]V  
VDD = 3.3V or 5V  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
Battery Supply  
P.1  
P.2  
Supply voltage  
VSUP  
7
18  
7
V
V
Supply voltage extended  
range low  
Functional with relaxed  
specification  
VSUP_ERL  
4.5  
Supply voltage extended  
range high  
Quiescent current drawn  
from VSUP  
Functional with relaxed  
specification  
P.2b  
P.3  
VSUP_ERH  
Issleep  
18  
28  
30  
V
VDD=low  
uA  
Pre-driver operation without  
charge pump operation  
(EN_CP=0) and without switching  
Operating current drawn  
from VSUP  
P.4  
Isup_int  
1
mA  
Battery overvoltage  
threshold high  
Battery overvoltage  
threshold low  
P.5  
VSUP_OVH Warning on ICOM  
VSUP_OVL ICOM released  
35  
V
V
P.6  
30  
Battery overvoltage  
threshold hysteresis  
Battery overvoltage  
debounce time  
Battery undervoltage  
threshold low  
Battery undervoltage  
threshold high  
Battery undervoltage  
threshold hysteresis  
Battery undervoltage  
debounce time  
VSUP_OVH  
Y
VSUP_OV_d  
eb  
P.7  
0.4  
1
V
P.102  
P.8  
2
6
us  
V
VSUP_UVH Warning on ICOM  
VSUP_UVL ICOM released  
5
0.2  
3
P.9  
V
VSUP_UVH  
Y
VSUP_UV_d  
eb  
P.10  
P.103  
0.5  
V
10  
us  
V
Reset released on rising edge of  
VSUP, while VDD = high  
P.11 Power on reset level  
VPOR  
4.5  
Power and Temperature  
Overtemperature protection  
high  
P.12  
OVT_h  
OVT_l  
Warning on ICOM  
ICOM released  
153  
123  
166  
137  
183  
153  
C  
C  
Overtemperature protection  
P.13  
low  
3901083203  
Rev 2.2  
Page 5 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
VDD IO supply input  
Maximum input current  
Includes ICOM current sourcing  
P.14 VDD operating current  
IDD  
20  
mA  
P.15 VDD pull down resistance  
P.16 VDD input voltage  
P.17 VDD undervoltage high1  
P.18 VDD undervoltage low  
VDDRPD  
VDD  
200  
3
2.7  
2.55  
300  
370  
5.5  
2.85  
2.7  
KOhm  
VDD= 3.3V or 5V logic supply  
V
V
V
VDD_UV_H NFET control activated  
VDD_UV_L NFET control disabled  
VDD undervoltage  
hysteresis  
VDD_UV_H  
Y
P.19  
0.07  
0.1  
0.13  
V
P.20 VDD sleep voltage high  
P.21 VDD sleep voltage low  
VDDsleepH Out of sleep  
VDDsleepL Goto sleep  
VDDsleepH  
2.1  
1.5  
2.7  
2.05  
V
V
VDD sleep voltage  
P.22  
0.45  
0.58  
0.85  
V
hysteresis  
Y
On-chip oscillator  
P.25 ICOM PWM frequency fast  
P.26 ICOM PWM frequency slow FICOMS  
FICOMF  
85  
10.6  
6.8  
100  
12.5  
8
115  
14.4  
9.2  
KHz  
KHz  
MHz  
Oscillator frequency  
FOSC  
Internal Oscillator  
EN=Low, FETT1/2/3=low,  
FETB1/2/3=high  
2048/F  
OSC  
4096/F  
OSC  
P.27 SPI start up pulse duration  
Tspi_su  
s
Charge pump: CPMODE=x  
(Silicon diodes BAS16, Cpump=1uF,Cboost=1uF +Creg=4.7uF)  
Rtyp at room temperature  
Rboost_leak Rmin at 150C Tj  
(excluding Rvreg_leak)  
Resistive Load from  
VBOOST to GND  
6
8
MOhm  
Output slew rate  
Charge pump Frequency  
100  
200  
V/us  
kHz  
FreqCP  
170  
230  
40  
Charge pump: CPMODE=0  
Ireg_cpmode  
0
Load current on VREG  
VREG > 11V, EN_CP = 1  
mA  
Output voltage VREG  
Output voltage VREG  
VBOOST undervoltage high Vboost_UVH ICOM released  
VBOOST undervoltage low Vboost_UVL Warning on ICOM  
Vreg  
Vreg  
VSUP > 8V, I reg < 40mA  
VSUP =[ 7,8]V, Ireg <40mA  
11  
10  
6.1  
5.7  
12  
13  
13  
7.2  
6.7  
V
V
V
V
Charge pump: CPMODE=1  
Ireg_cpmode  
1
Load current on VREG  
VREG > 11V, EN_CP = 1  
20  
mA  
Reverse polarity NFET gate  
voltage (VBOOST-VSUP)  
Output voltage VREG  
VBOOST undervoltage high  
(VBOOST-VSUP)  
VSUP > 7  
Ireg < 20mA  
Ireg < 20mA  
Vgs_RPFET  
Vreg  
5
12  
12  
13  
13  
V
V
V
11  
6.1  
Vboost_UVH ICOM released  
Vboost_UVL Warning on ICOM  
7.2  
VBOOST undervoltage low  
(VBOOST-VSUP)  
5.7  
6.7  
V
VBOOST overvoltage  
Disable and discharge charge  
pump at VSUP_OV  
Vboost_dis  
1 The info VDD_UV_X is used to disable the control of the external FETs  
3901083203  
Rev 2.2  
Page 6 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
VREG warnings (CPMODE=X)  
Internal Resistive Load from  
VREG to GND  
P.34 VREG overvoltage high  
P.35 VREG overvoltage low  
Rtyp at room temperature  
Rmin at 150C Tj  
Warning on ICOM  
ICOM released  
Rvreg_leak  
0.3  
0.4  
1.3  
MOhm  
Vreg_OVH  
Vreg_OVL  
14.2  
13.5  
16.5  
15.8  
V
V
VREG overvoltage  
hysteresis  
P.36  
Vreg_OVHY  
0.65  
V
P.37 VREG undervoltage high  
P.38 VREG undervoltage low  
Vreg_UVH  
Vreg_UVL  
ICOM released  
Warning on ICOM  
7.2  
6.9  
8.1  
7.8  
V
V
VBATF  
Internal leakage from  
VBATF to GND  
Rvbatf_leak Pre-driver is not in sleep mode  
20  
uA  
FET Gate drivers  
P.40 Driver ON resistance 2  
P.41 Rise time  
P.42 Fall time  
R_dr_on  
Tr  
Tf  
4
7
7
8
15  
15  
Ohm  
ns  
ns  
Cload = 1nF, 20% to 80%  
Cload = 1nF, 80% to 20%  
6
4
Pull-up ON resistance  
low-side pre-driver  
Pull-up ON resistance  
high-side pre-driver  
Pull-down ON resistance  
low-side pre-driver  
Pull-down ON resistance  
high-side pre-driver  
Turn-on Gate drive peak  
current  
P.43  
2.4  
4
4
7
Ohm  
Ohm  
Ohm  
Ohm  
A
-10mA Tj = -40  
-10mA, Tj = 150  
Ron_up  
Ron_dn  
8.5  
5.7  
9.2  
-1.4  
1.6  
100  
20  
1.5  
P.44  
10mA Tj = -40  
10mA, Tj = 150  
P.45  
Igon  
VGS=0V  
-1  
1
Turn-off Gate drive peak  
current  
P.46  
Igoff  
VGS=12V  
A
From logic input threshold to 2V  
VGS drive output at no load  
Transitions at the different phases  
at no load condition  
P.50 Propagation delay  
Tpddrv  
20  
ns  
P.51 Propagation delay matching Tpddrvm  
-20  
ns  
DEAD_TIME [ 2:0]=000  
0
001  
010  
011  
100  
101  
110  
111  
0.5  
0.75  
1.0  
1.5  
2.0  
3.0  
6.0  
Programmable dead time :  
asynchronous internal delay  
between high-side and low-  
side pre-driver  
P.52  
Tdead  
us  
%
P.55 Dead time tolerance  
Tdead_tol  
Vds_mon  
-15  
15  
VDSMON[2:0]=000: Disabled  
001  
010  
011  
100  
101  
110  
111  
0.4  
0.6  
0.85  
1.05  
1.25  
1.5  
0.5  
0.6  
0.9  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
Programmable Vds monitor  
voltage  
1.15  
1.45  
1.75  
2.00  
2.3  
P.53b  
V
1.70  
2
The driver on resistance is < 5 Ohm at 25C, maximum values correspond with 150C  
3901083203  
Rev 2.2  
Page 7 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
Programmable Vds monitor  
blanking time: Internal delay  
P.54 between GATE signal high  
and enabling the  
VDS_BLANK_TIME[1:0] =00  
0.59  
1.22  
2.5  
0.75  
1.5  
3
0.93  
1.94  
4.12  
8.44  
01  
10  
11  
Tvds_bl  
us  
4.9  
6
corresponding Vds monitor  
Internal resistance between FET  
gate-source pins to switch-off  
FET. VDD = 0V (sleep mode)  
VGS =0.5V  
VSUP>12V, PHASE2/3 = VSUP,  
CP2/3=PHASE2/3+6.5V  
ICOM released  
Sleep gate discharge  
resistor  
P.56  
Rsgd  
Itcp  
1
KOhm  
uA  
Trickle charge pump current  
capability  
P.58 VGS undervoltage high  
VGS undervoltage low  
P.60 PWM frequency  
P.57  
-35  
-25  
Vgs_UVH  
Vgs_UVL  
F_dr_pwm  
42  
36  
5
70  
63  
100  
%VREG  
%VREG  
KHz  
Warning on ICOM  
20  
1
Typ at room temperature  
Min at 150C Tj  
P.61 Leakage from CPx to PHx  
Rcp_leak  
0.75  
MOhm  
Logic IO (FET inputs, EN input)  
Minimum voltage for input to be  
treated as logical high  
Maximum voltage for input to be  
treated as logical low  
P.63 Digital input high Voltage  
P.64 Digital input low Voltage  
VIN_dig_h  
VIN_dig_l  
70  
%VDD  
%VDD  
30  
P.65 Input pull-up resistance  
P.66 Input pull-down resistance  
P.67 Input pull-down resistance  
RIN_dig_pu FETB1, FETB2, FETB3  
RIN_dig_pd FETT1,FETT2, FETT3  
90  
90  
90  
410  
410  
410  
KOhm  
KOhm  
KOhm  
R_EN_pd  
EN  
SPI timing  
P.68 SPI initial setup time  
P.69 SPI clock frequency  
P.70 Rise/fall times  
Tspi_isu  
Fspi  
Tspi_rf  
2
us  
KHz  
ns  
500  
200  
CLK, CSB, MISO, MOSI  
P.71 CSB setup time  
P.72 CSB high time  
P.73 Clock high time  
P.74 Clock low time  
P.75 Data in setup time  
P.76 Data in hold time  
P.77 Data out ready delay  
EEPROM read delay  
TCSB_su  
TCSB_H  
TCLK_H  
TCLK_L  
TDI_su  
TDI_h  
TDO_r  
T_EE_RD  
T_EE_WR  
1
2
1
1
1
us  
us  
us  
us  
us  
us  
us  
us  
500  
Cload at FETB1<50pF  
EE_RD = 1  
EE_RD = 1  
500  
6
12  
EEPROM write delay  
ms  
ICOM output  
P.78 pullup current  
P.79 pulldown current  
ICOM_PU  
ICOM_PD  
Vicom=0V  
Vicom=VDD  
-2.23  
5
-5  
2.6  
mA  
mA  
Enable input  
From Bridge enable EN <  
EN_PR_DEL 0.2*VDD to VGS < 0.5V,  
Cload=1nF  
Bridge disable propagation  
delay  
P.80  
1
us  
3901083203  
Rev 2.2  
Page 8 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
Current sense amplifier  
P.81 Input offset voltage  
VIS_IO  
-7.3  
-10  
7.6  
10  
mV  
Input offset voltage thermal VIS_IO_TDR  
P.82  
P.83  
P.84  
P.85  
P.86  
uV/C  
drift  
IFT  
IS_CMRR_D  
C
IS_CMRR_A  
C
Input common mode  
rejection DC  
60  
40  
60  
40  
dB  
dB  
dB  
dB  
Input diff. voltage within +/-100mV,  
Common mode [-0.5,1.0]V  
Input common mode  
rejection 1MHz  
Input power supply rejection IS_PSRR_D  
DC for VDD supply  
Input power supply rejection IS_PSRR_A  
C
1MHz for VDD supply  
C
8.0  
10.3  
13.3  
17.2  
22.2  
28.7  
37.0  
47.8  
P.87 Closed loop gain  
IS_GAIN  
Gain programmable in EEPROM  
-3%  
+3%  
-
Amplified output to 99% of final  
value after input change  
P.88 Output settling time  
IS_SET  
1.0  
us  
V
V_ISENSEm  
ax  
V_ISENSEm  
in  
VDD-  
0.020  
P.89 Output voltage range high  
P.90 Output voltage range low  
Current sense output max level  
Current sense output min level  
Output current saturation level  
VDD  
GND  
+0.020  
GND  
V
Output short circuit current  
to ground  
P.91  
I_Isensesc  
1.4  
40  
mA  
P.92 GBW  
P.93 Output slew rate  
IS_GBW  
IS_SR  
10  
MHz  
V/us  
CM spike=+- 1.5V,  
duration=250nsec  
P.94 CM spike recovery  
P.95 VREF voltage input  
IS_CM_REC  
Vref  
730  
50  
ns  
0
%VDD  
Table 3. Electrical specifications  
3901083203  
Rev 2.2  
Page 9 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
7 Block diagram and application circuit  
Figure 1. Block diagram  
3901083203  
Rev 2.2  
Page 10 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
Figure 2. Application schematic 1  
Figure 3. Application schematic 2: internal dead time + HS Reverse Polarity NFET  
3901083203  
Rev 2.2  
Page 11 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
7.1 Pinout schematics  
Principle schematics highlighting ESD connections:  
Figure 4. Pin Internal connections  
3901083203  
Rev 2.2  
Page 12 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
7.2 Ground connections  
Figure 5. Ground connections  
3901083203  
Rev 2.2  
Page 13 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
8 Description  
8.1 Supply system  
Figure 6. Supply system, CPMODE=0  
Figure 7. Supply system, CPMODE=1  
The supply for the IC operation is supplied via VSUP and VDD:  
VDD supplies the IO’s, and the amplifier.  
o
Mind when supplying VDD with a limited output impedance (for instance from a  
microcontroller IO) that the performance of the amplifier may be affected.  
VSUP supplies the internal operation and the charge pump.  
See also chapter: 8.8 Charge pump.  
8.2 Sleep mode  
Sleep mode is activated when the supply input VDD is pulled below VDDsleepL.  
In sleep mode the current consumption on VSUP is reduced to Issleep.  
Pin  
State in sleep mode  
Input/Output  
FETTX, FETBX,  
EN, VREF, ICOM  
ISENSE  
Input pins, supplied from VDD.  
GND  
Supplied from VDD  
Supply regulator is disabled  
GND  
GND  
VREG  
VBOOST, HSD  
CP  
Externally connected to supply  
Charge pump is disabled  
~VBAT  
GND  
CPX  
Any charge that remains after VREG is disabled will leak to ground  
GND  
VSUP>4.5V  
GATETX  
PHASEX  
In sleep mode gate-discharge-resistors (Rsgd) between GATETX and PHASEX  
are activated (see chapter 8.7.2 FET driver during sleep mode)  
VSUP>4.5V  
GND  
GND  
GATEBX  
In sleep mode gate-discharge-resistors (Rsgd) between GATEBX and DGND  
are activated. (see chapter 8.7.2 FET driver during sleep mode)  
Table 4. State of IC during sleep mode  
3901083203  
Rev 2.2  
Page 14 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
Note:  
In case input pins are externally pulled high while VDD LOW, current will flow into VDD via internal  
ESD protection diodes. This condition is not allowed.  
When VDD is pulled low, also ICOM will go low. This should not be interpreted as a diagnostic  
interrupt.  
8.2.1 Sleep mode status overview  
Name  
Type  
State in sleep mode  
IBM  
LV Analog input GND  
IBP  
LV Analog input GND  
ISENSE  
FETB1  
FETB2  
FETB3  
ICOM  
LV Analog output GND (tied to VDD)  
LV Digital input  
LV Digital input  
LV Digital input  
LV IO  
GND (tied to VDD)  
GND (tied to VDD)  
GND (tied to VDD)  
GND (tied to VDD)  
EN  
LV IO  
GND (tied to VDD)  
PHASE2  
GATET2  
CP2  
HV output  
HV output  
HV input  
Connected via Diode to GATE2  
Internal pull down (Rsgd) to GND  
Any present charge leaks to GND  
Connected via Diode to GATE1  
Internal pull down (Rsgd) to GND  
Any present charge leaks to GND  
Connected via Diode to GATE3  
Internal pull down (Rsgd) to GND  
Any present charge leaks to GND  
Connected via CP diodes to VBAT  
GND  
PHASE1  
GATET1  
CP1  
HV output  
HV output  
HV input  
PHASE3  
GATET3  
CP3  
HV output  
HV output  
HV input  
VBOOST  
VREG  
GATEB2  
GATEB3  
GATEB1  
DGND  
CP  
HV input  
HV output  
HV Output  
HV Output  
HV Output  
Ground  
Internal pull down (Rsgd) to GND  
Internal pull down (Rsgd) to GND  
Internal pull down (Rsgd) to GND  
Driver ground  
HV Output  
GND  
VSUP  
VBATF  
AGND  
FETT2  
FETT1  
FETT3  
VDD  
HV Supply input Power supply input  
HV input  
Ground  
Connected to supply  
Analog ground  
LV Digital  
LV Digital  
LV Digital  
GND (tied to VDD)  
GND (tied to VDD)  
GND (tied to VDD)  
LV Supply input Externally pulled low  
LV Analog input GND  
VREF  
Table 5. Pin definitions and descriptions  
3901083203  
Rev 2.2  
Page 15 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
8.3 Enable input  
Pulling the Enable input (EN) low forces the pre-driver to pull all FET gate voltages to ground, switching off all  
external transistors (high impedance). While EN is low, the programming of the EEPROM via SPI can be  
initiated by pulling ICOM low for a time Tspi_su.  
8.4 Protection and diagnostic functions  
8.4.1 Drain-source voltage monitoring  
The MLX8320x provides a drain-source voltage monitoring feature for each external FET to protect against  
short circuits. This drain-source voltage monitoring comparator can be enabled/disabled in EEPROM.  
The drain-source voltage monitor for a certain external FET is only active when the corresponding input is set  
to “on” and the dead time is over. An additional blanking time can be programmed in EEPROM. If the drain-  
source voltage stays higher than the VDS monitor threshold voltage, the VDS error is raised. This threshold  
voltage is configurable in EEPROM.  
The reaction of the pre-driver on a VDS error can be configured in EEPROM with the Bridge Feedback bit. If  
this bit is set the pre-driver will automatically disable the drivers when a VDS error is detected. If not set the  
pre-driver remains active. In any case the VDS error will be reported.  
VDS_COMP_EN  
VDS_BF_EN  
Pre-driver reaction on error event  
Any drain-source over voltage event is ignored  
and no error is reported on ICOM.  
0
1
1
x
0
1
VDS_ERR is reported on ICOM, but the pre-driver remains active.  
VDS_ERR is reported on ICOM and the pre-driver is disabled.  
Table 6. Pre-driver reaction on VDS error  
8.4.2 Programmable dead time  
The pre-drivers’ internal implementation guarantees that low side and high side of the same external half  
bridge can not be “on” at the same time connecting supply directly to ground. See Figure 12 for this internal  
implementation of the pre-driver. The pre-driver also provides a programmable dead time in EEPROM.  
8.4.3 Supply overvoltage shutdown  
The pre-driver has an integrated VSUP over voltage shut down to prevent destruction of the pre-driver at high  
supply voltages. A VSUP_OV event will always switch off the pre-driver, this reaction can not be masked.  
8.4.4 Regulated supply overvoltage shutdown  
The pre-driver has an integrated VREG over voltage shut down. The reaction of the pre-driver on this  
VREG_OV depends on the status of the Bridge Feedback bit in EEPROM. If this VREG_OV_BF_EN bit is set  
the pre-driver will pull all gate voltages low, switching off all external FETs.  
3901083203  
Rev 2.2  
Page 16 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
VREG_OV_BF_EN  
Pre-driver reaction on error event  
0
1
VREG_OV is reported on ICOM, but the pre-driver remains active.  
VREG_OV is reported on ICOM and the pre-driver is disabled.  
Table 7. Pre-driver reaction on VREG_OV  
8.4.5 Undervoltage warnings  
Comparators are implemented to detect an under voltage on VSUP, VBOOST, VREG, VDD and VGS. If an  
under voltage is detected, it will be reported to the MCU. It is the responsibility of the user to take action to  
assure functional operation.  
8.4.6 Over temperature warning  
If the junction temperature exceeds the specified threshold, a warning will be communicated to the MCU. The  
pre-driver will continue in normal operation. It is the responsibility of the user to protect the IC against over  
temperature destruction.  
8.4.7 EEPROM error warning  
To ensure reliable communication with EEPROM the pre-driver provides an automatic single bit error  
correction. If two bits in the addressed word are bad the EEPROM gives the EEP_ERR warning, indicating a  
double error was detected.  
8.4.8 ICOM diagnostics interface  
ICOM is a serial interface that feeds back detailed diagnostics information to the MCU over a single wire. In  
normal operation, when no error is detected, ICOM is high. When an error is detected the pre-driver will  
inform the MCU via a PWM duty cycle on ICOM. It is the responsibility of the MCU to catch the ICOM duty  
cycle and disable the driver if necessary, by pulling EN low.  
Each error corresponds to a duty cycle with a 5 bit resolution. The duty cycle is transmitted until the MCU  
acknowledges the reception of the duty cycle.  
For the MCU to acknowledge the error, it should be able to keep the line low while ICOM is pulling the line  
high, for a period TAck > TICOM. At each ICOM falling edge the pre-driver checks the actual voltage on ICOM to  
detect an acknowledgement. When an acknowledgement is detected the PWM duty cycle is changed to the  
corresponding duty cycle of the next error to be transmitted.  
Figure 8. ICOM diagnostics interface  
3901083203  
Rev 2.2  
Page 17 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
This sequence of capturing duty cycle and acknowledging continues until all error duty cycles are  
communicated and the End Of Frame (EOF) duty cycle is being transmitted. By acknowledging this EOF all  
error latches are reset and the ICOM line goes high again, until a new error is detected.  
(2)  
(2)  
(1)  
(2)  
(2)  
(3)  
Error 3  
(1)  
T
(3)  
(3)  
(1)  
T
(1)  
T
(3)  
T
Error 2  
Error 1  
EOF  
ICOM  
T
T
T
T
T
T
T
T
T
T
Tack  
Tack  
Tack  
Tack  
(1): MCU pulls ICOM low  
(2): MLX8320x detects acknowledge on falling edge  
(3): MCU releases ICOM line  
Figure 9. ICOM serial interface for diagnostics information over a single wire  
In case multiple errors occur at the same time, priority is defined: 0 is the highest priority and 16 is the lowest  
priority. See Table 8 for an overview of all error conditions that are monitored, the corresponding PWM duty  
cycle and the priority.  
Input error  
code  
ICOM_EOF  
EEP_ERR  
VDD_UV  
% Duty  
cycle  
93.5  
55.0  
49.5  
Debounce  
Priority  
Description  
time  
n/a  
n/a  
8us  
16  
9
8
End of frame  
EEPROM DED error  
VDD Under Voltage  
VSUP Over Voltage  
VSUP Under Voltage  
OVT (over temperature)  
VREG Under Voltage  
7
6
5
4
VSUP_OV  
VSUP_UV  
OVT  
44.0  
38.5  
33.0  
27.5  
2us  
8us  
2us  
VREG_UV  
16us  
Vgs Under Voltage  
This event can be masked by setting VGS_UV_COMP_EN=0  
VBOOST Under Voltage  
3
2
1
VGS_UV  
22.0  
16.5  
11.0  
2us  
16us  
2us  
VBOOST_UV  
VREG_OV  
Voltage regulator over voltage  
This event can be masked by setting VREG_OV_BF_EN=0  
Vds Error =VDS_T1 || VDS_T2 || VDS_T3 || VDS_B1 ||  
VDS_B2 || VDS_B3  
Can be Masked by VDS_COMP_EN  
0
VDS_ERR  
5.5  
2us  
To avoid erronous triggering due to switching there is a  
programmable blanking time on top of the debounce time:  
VDS_BLANKTIME[1:0].  
Table 8. Overview diagnostic errors over ICOM  
3901083203  
Rev 2.2  
Page 18 of 35  
Prelim. Data Sheet  
4 Dec 2013  
 
MLX83202/MLX83203  
Automotive NFET pre-drivers  
Two modes for supplying diagnostic feedback to the MCU are possible and can be set in EEPROM.  
The first mode is the slow response diagnostic mode and uses a larger PWM period to communicate  
diagnostics information to the MCU over ICOM.  
The second mode is the fast response diagnostic mode and uses a PWM period that is ~8 times smaller.  
This fast mode allows the fastest response time of the interrupt routine form the external MC, but also implies  
the MCU needs to be fast enough in order to be able to capture the duty cycle. For the fast response  
diagnostic mode the MCU clock needs to be minimum 20MHz.  
Note:  
The different diagnostic feedback modes (slow/fast) are applicable independent of the configuration  
of the internal hardware protection features.  
When VDD is pulled low to put the pre-driver in sleep mode ICOM will go low as well. As soon as  
VDD goes high, ICOM will go high as well and remains high. No EOF may be required.  
At POR it is possible that the voltages on VSUP, VBOOST and VREG have not been achieved (dut  
to charging of the external capacitors) and thus it is possible ICOM may immediately go in diagnostic  
mode. This implies the MCU has to acknowledge these errors until the under voltage conditions have  
been resolved. As soon as the EOF duty cycle is acknowledged and ICOM remains high, the pre-  
driver is ready for normal operation.  
8.4.9 Pre-driver output state summary  
Below table shows all conditions due to which the pre-driver may be disabled:  
The pre-driver is disabled (high-impedance state) The Pre-driver is released again  
As soon as an error condition appears for which the hardware  
protection is activated  
VSUP_OV  
VDS  
VREG_OV  
As soon as the EOF has been acknowledged.  
As soon as VDD = LOW  
As soon as EN = LOW  
As soon as VDD = HIGH  
As soon as EN = HIGH  
Table 9. Pre-driver output summary  
3901083203  
Rev 2.2  
Page 19 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
8.5 EEPROM programming  
The EEPROM data can be programmed during customer production testing by using a PTC-04, or by  
the microcontroller via an SPI interface. The pre-driver is programmed with default settings per table  
below.  
The EEPROM features single error correction and double error detection.  
Note: SPI_Address[6] == SPI_Address[7] == SPI_Address[5]  
8.5.1 Memory map  
SPI  
Address[2:0]  
ED7  
ED6  
ED5  
ED4  
ED3  
ED2  
ED1  
ED0  
0
1
2
3
Res.  
Res.  
Res.  
Res.  
DEAD_TIME[2:0]  
Res.  
Res.  
Res.  
Res.  
Res.  
Res.  
VDSMON[2:0]  
Res.  
Res.  
Res.  
Res.  
CPMODE  
Res.  
Res.  
Res.  
Res.  
VDS_BLANK_TIME[1:0]  
PWM_SPEED  
Res.  
VGS_UV_C  
OMP_EN  
Res.  
CUR_GAIN[2:0].  
VREG_OV  
_BF_EN  
SPI_EN  
VDS_  
BF_EN  
1
VDS_  
COMP_EN  
Res.  
4
5
EN_TCP  
Res.  
EN_CP  
Res.  
Res.  
Res.  
Res.  
Res.  
Table 10. Memory map EEPROM  
Bit name  
Description  
Default  
Driver configuration  
DEAD_TIME[2:0]  
VDSMON[2:0]  
VDS_BLANK_TIME[1:0]  
CUR_GAIN[2:0]  
Defines the DEAD TIME between the HS FET and LS FET of the same phase  
Defines the detection threshold level of the Vds monitoring  
Defines the duration of the Vds monitor blanking time after the on-transition of the FET  
Defines the gain of the current sense amplifier  
011  
111  
10  
011  
1: VBOOST voltage is regulated relative to VSUP.  
0: VBOOST voltage is regulated relative to ground  
CPMODE  
0
IC configuration  
When set, the SPI block is enabled.  
When reset, no SPI possible.  
SPI_EN  
1
1
1
(In SPI mode this value can only be programmed from 1 to 0, not from 0 to 1)  
VREG Over voltage Bridge Feedback Enable  
1: When VREG_OV=1 Bridge driver is SET in tri-state  
0: When VREG_OV=1 No effect on Bridge driver.  
VDS Bridge Feedback Enable  
1: When VDS_ERR=1 Bridge driver is SET in tri-state  
0: When VDS_ERR=1 No effect on Bridge driver.  
1: VDS comparator enabled  
0: VDS comparator disabled  
1: VGS_UV comparator enabled  
0: VGS_UV comparator disabled  
1: PWM = FICOMF  
VREG_OV_BF_EN  
VDS_BF_EN  
VDS_COMP_EN  
VGS_UV_COMP_EN  
PWM_SPEED  
EN_CP  
1
1
0
1
0: PWM = FICOMS  
1: enables boost charge pump  
0: disables boost charge pump  
1: enables trickle charge pump  
0: disables trickle charge pump  
Undefined  
EN_TCP  
0
0
OUT_RESERVE_RG  
Table 11. EEPROM bits  
3901083203  
Rev 2.2  
Page 20 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
8.5.2 SPI communication  
When the chip is in SPI mode the EEPROM is programmable and readable via the SPI port.  
8.5.2.1 Entering / exiting SPI mode  
The MLX83203 will enter from NORMAL mode into SPI mode when ALL below conditions are present:  
EN = 0  
All FETTx = low AND all FETBx high (all FET inputs are disabled)  
ICOM:  
o
o
Any pending errors have been acknowledged  
A Low Level pulse is applied on ICOM between 256us (2048/FOSC) and 512us (4096/FOSC)  
The chip will return from SPI MODE to NORMAL MODE when  
EN = 1.  
This means that  
any ongoing EEPROM writes will be completed  
the EEPROM state machine will copy all EEPROM contents into registers  
During this time the ICOM pin will be kept low.  
Similar to when the MLX83203 comes out of POR, after leaving SPI MODE and returning to NORMAL  
MODE, the MLX83203 will be blocked until the data have been copied to the registers. This assures that all  
chip parameters are set correctly before starting.  
Note: It only makes sense for the MCU to call for SPI if all errors are clear and acknowledged.  
8.5.2.1 SPI protocol  
Figure 10. SPI waveform example for read and write (LSB first)  
3901083203  
Rev 2.2  
Page 21 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
The 16 bit MISO/MOSI shift registers are controlled via 4 pins which are shared with other functions:  
Pin  
SPI signal Comment  
FETB1  
FETB2  
FETB3  
MISO  
CLK  
The signal on the MISO output is guaranteed to be stable while CLK is low  
Clock input  
MOSI  
The MOSI shift register is reading in data on the rising edge of CLK  
Frames are defined by CSB low and have to consist of 16 clock pulses on CLK.  
On the rising edge of CSB:  
If COMM_ERR=0 the read/write action is started as requested in the previous frame.  
Else (COMM_ERR = MISO[14]=1): a communication error is detected. No action will  
occur (EE_READY latch will remain 0). This can be:  
Either due to a parity bit failure: MOSI[15] in frame N was incorrect.  
Or because less or more then 16 rising edges were received during CSB low of  
frame N  
ICOM_IN  
CSB  
CSB has to remain high until the read (T_EE_RD) / write (T_EE_WR) action is completed.  
In this case EE_READY= MISO[13] bit in the next frame will be high  
Else IF CSB goes low before the requested action is completed  
EE_READY= MISO[13] bit in the next frame will be low.  
Table 12. SPI signals  
3901083203  
Rev 2.2  
Page 22 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
8.5.2.2 SPI registers  
Figure 11. SPI REGISTERS and relation to internal Data latches  
MOSI  
Bit[7]  
Bit[6]  
MOSI_DATA [3:0]  
Bit[5]  
Bit[4]  
Bit[3]  
x
Bit[2]  
Bit[1]  
Address [2:0]  
Bit[0]  
Bit[8]  
Bit[15]  
Bit[14]  
Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
CMD [1:0]  
00: EE_RD  
01: EE_WR  
Mosi_Parity  
x
x
MOSI_DATA [6:4]  
10: EE_RDAW1  
11: EE_RDAW2  
MISO  
Bit[7]  
Bit[6]  
Bit[5]  
Bit[4]  
Bit[3]  
Bit[2]  
Bit[1]  
Bit[0]  
MISO_DATA [3:0] (*)  
x
The content from previous MOSI[2:0]  
Bit[15]  
Bit[14] Bit[13]  
Bit[12]  
Bit[11]  
Bit[10]  
Bit[9]  
Bit[8]  
The content from previous  
MOSI[12:11]  
Miso_ Parity COMM_ERR EE_READY  
MISO_DATA [6:4] (*)  
Table 13. SPI registers description  
(*) MISO_DATA [10:4]  
Comment  
IF  
The data received via MOSI have been shifted into the MISO  
register. This allows the MCU to verify the correct data have  
been transmitted.  
MOSI(N)[11:12] = EE_WR (Write command)  
THEN  
MISO(N+1)[10:4] = MOSI(N)[10:4] from previous WR  
instruction  
In order to verify if the data have been correct stored into the  
EEPROM, a dedicated read command is required.  
In case a read command is received, the data in the MISO  
register have been copied out of the designated address in the  
EEPROM. Mind that 3 read consecutive read commands have  
to be successful to ensure retention time.  
ELSE  
; MOSI(N)[11:12] <> EE_WR  
MISO(N+1)[10:4] = EEPROM(address=MOSI(N)[2:0])  
3901083203  
Rev 2.2  
Page 23 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
8.5.2.3 Bit definition  
Bit  
Comment  
MISO_PAR  
MOSI_PAR  
Odd parity of the actual data. So respectively the odd parity of the actual MOSI data, or the odd parity of the  
actual MISO data.  
0: EE_WR or EE_RD command were not completed when the new frame was started (on the falling edge of CSB)  
1: No EE_WR or EE_RD activity ongoing on falling edge of CSB  
EE_READY  
1: Communication error occurred during the previous MOSI message. Possible errors:  
COMM_ERR  
Parity bit failure  
Less or more the 16 rising edges received during CSB low  
0: Previous dataframe was received ok: no communication error  
EE_RD, EE_RDAW1, EE_RDAW2:  
1. A MOSI frame is sent with command: MOSI[12:11] = EE_RD (below is also applicable for EE_RDAWx).  
2. CSB is kept high long enough (>T_EE_RD) to ensure the read command can be completed. (else  
EE_READY will be 0 in next MISO frame)  
3. The requested data will be transmitted in the next MISO frame.  
4. The data in this frame is valid in case  
a. COMM_ERR = 0 (there was no comm. error during the previous MOSI frame)  
b. EE_READY =1 (the read command was completed on the falling edge of CSB)  
c. MISO [15] has the correct parity.  
EE_WR  
1. A MOSI frame N is sent with MOSI[12:11] = EE_WR.  
2. CSB is kept high long enough (>T_EE_WR) to ensure the write command can be completed. (else  
EE_READY will be 0 in next MISO frame)  
3. The received data are used in the next MISO frame as a first verification step in a total of 3 steps need to  
verify if the EE_WR was successful.  
a. Verification of the N+1 MISO frame.  
The N+1 MISO frame should have.  
CMD [1:0]  
i. COMM_ERR = 0 (there was no comm. error during the previous MOSI frame)  
ii. EE_READY =1 (the EE_WR command was completed on the falling edge of CSB)  
iii. MISO[15] has the correct parity.  
iv. MISO_DATA(N+1) = MOSI_DATA(N)  
b. Verification step2: EE_RDAW1:  
The N+1 MOSI frame should have CMD = EE_RDAW1  
Then the N+2 MISO frame should have.  
i. COMM_ERR = 0 (there was no comm. error during the previous MOSI frame)  
ii. EE_READY =1 (the EE_WR command was completed on the falling edge of CSB)  
iii. MISO[15] has the correct parity.  
iv. MISO_DATA(N+2) = MOSI_DATA(N)  
c. Verification step3: EE_RDAW2:  
The N+2 MOSI frame should have CMD = EE_RDAW2  
Then the N+3 MISO frame should have.  
i. COMM_ERR = 0 (there was no comm. error during the previous MOSI frame)  
ii. EE_READY =1 (the EE_WR command was completed on the falling edge of CSB)  
iii. MISO[15] has the correct parity.  
iv. MISO_DATA(N+3) = MOSI_DATA(N)  
Conclusion: in total 3 MOSI frames should be generated to ensure successful writing of data.  
3901083203  
Rev 2.2  
Page 24 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
8.6 Current sense amplifier  
The sense amplifier offers low input offset, and fast settling times. Its input range can be adjusted by applying  
a suitable voltage on the VREF pin, typically as a resistor divider from VDD to GND. For the definition of  
VREF, the input offset, the current range, and the linear output range of the ISENSE pin should all be taken  
into account.  
For input signal:  
Vin = Visp - Visn,  
Max input offset:  
Voffsetmax = Vis_iomax + Trange * Vis_io_tdrift  
(over full temperature range =Trange)  
Visense = (Vin +/-Voffset)*IS_Gain + VREF has to be in the range [V_ISENSEmin, V_ISENSEmax]  
Imin = [ (Visensemin VREF) / IS_GAIN + Voffset ] / Rshunt  
Imax = [ (Visensemax VREF) / IS_GAIN - Voffset ] / Rshunt  
Input offset voltage  
Vis_io  
Input offset voltage thermal drift  
Vis_io_tdrift  
Closed loop gain  
IS_GAIN  
ISENSE Output voltage range HIGH V_ISENSEmax  
ISENSE Output voltage range LOW V_ISENSEmin  
The below table shows the current input range (Amp) for two resistive divider settings on VREF:  
1) VREF = VDD/2 for a symmetrical input range  
2) VREF = VDD/18 for a maximum current level, while ensuring it is possible to measure the input  
offset before starting the motor (Isense_min > 0A).  
Remark: for ease of calculation a max temperature offset drift of 1mV was added to the 5mV offset  
=> max input offset = 6mV  
VDD  
3.3  
0.02  
3.28  
2
3.3  
0.02  
3.28  
18  
3(**)  
0.02  
2.98  
2
3(**)  
0.02  
2.98  
18  
5
0.02  
4.98  
2
5
0.02  
4.98  
18  
4.5(**)  
0.02  
4.48  
2
4.5(**)  
0.02  
4.48  
18  
Visensemin  
Visensemax  
div  
VREF  
1.65  
0.18  
1.50  
0.17  
2.50  
0.28  
2.25  
0.25  
3901083203  
Rev 2.2  
Page 25 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
Voffset  
0.006  
1
Isense min.  
mOhm  
gain  
8
DIV2  
DIV18  
-14.4  
-9.9  
DIV2  
-179  
-138  
-105  
-80  
DIV18  
-12  
DIV2  
-304  
-235  
-180  
-138  
-106  
-80  
DIV18  
-26.2  
-19.0  
-13.4  
-9.0  
DIV2  
-273  
-211  
-162  
-124  
-94  
DIV18  
-23  
-16  
-11  
-7  
-198  
-152  
-117  
-89  
10.3  
13.3  
17.2  
22.2  
28.7  
37.0  
47.8  
-8  
-6.3  
-5  
-3.5  
-3  
-67  
-1.4  
-61  
-0.6  
0.9(*)  
2.0(*)  
3(*)  
-5.6  
-4  
-51  
0.3(*)  
1.6(*)  
2.6(*)  
-46  
-3.0  
-72  
-2  
-38  
-34  
-61  
-1.0  
-54  
0
-28  
-25  
-46  
0.6  
-41  
1
Isense max.  
gain  
8
DIV2  
198  
152  
117  
89  
DIV18  
381  
295  
227  
174  
133  
102  
78  
DIV2  
179  
138  
105  
80  
DIV18  
346  
267  
206  
158  
121  
92  
DIV2  
304  
235  
180  
138  
106  
80  
DIV18  
582  
451  
348  
267  
206  
158  
121  
92  
DIV2  
273  
211  
162  
124  
94  
DIV18  
523  
405  
312  
240  
185  
141  
108  
82  
10.3  
13.3  
17.2  
22.2  
28.7  
37.0  
47.8  
67  
61  
51  
46  
72  
38  
34  
70  
61  
54  
28  
59  
25  
53  
46  
41  
Table 14. Sense amplifier current ranges in Amp. Examples for 1mOhm shunt  
Note:  
(*) Applying a GAIN of 28.7 or higher with DIV 18 for 3.3V does not allow the measure the input offset  
(**) examples taking a 10% supply variation into account.  
3901083203  
Rev 2.2  
Page 26 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
8.7 FET driver implementation  
8.7.1 Normal operation  
The top side FET drivers are bootstrapped drivers. Each of the 6 external FET transistors can be controlled  
directly via the 6 digital inputs. The 6 external FET transistors (or 3 half bridges) can also be controlled with  
only 3 digital input signals. This can be done by connecting the FETTi to VDD and control the 3 phases via  
the FETBi inputs. In this mode the MLX83203 will automatically generate the programmed dead times. Figure  
12 shows the internal implementation of the driver stage from input to output.  
The drain source voltage VDS as well as the gate voltage VGS are monitored to ensure fail safe operation.  
The FET gate outputs are all pulled low by pulling EN low.  
Figure 12. Internal implementation of the driver stage  
3901083203  
Rev 2.2  
Page 27 of 35  
Prelim. Data Sheet  
4 Dec 2013  
 
MLX83202/MLX83203  
Automotive NFET pre-drivers  
8.7.2 FET driver during sleep mode  
When the MLX83203 is in sleep mode a gate discharge resistance (Rsgd~1kOhm) is activated which  
ensures the FET gates remain fully in OFF state.  
Note that is the responsibility of the microcontroller to ensure all gate voltages are low, for instance by setting  
the EN input low, prior to switching to sleep mode.  
Figure 13. State of pre-driver in sleep mode  
Figure 13 PHASEx is kept low with GATETx through the internal body diode of the pre-driver.  
8.8 Charge pump  
EEPROM configuration bits  
Default  
1: VBOOST voltage is regulated relative to VSUP.  
0: VBOOST voltage is regulated relative to ground  
1: enables boost charge pump  
0: disables boost charge pump  
CPMODE  
EN_CP  
0
1
Table 15. CP configuration in EEPROM  
Standard operation of the Charge pump (CPMODE=0) is to ensure sufficient gate voltage to the bootstrap  
capacitors in case of low battery voltage conditions. In this case VBOOST is regulated compared to GND  
level. The charge pump will not be switching when VSUP > VREG + 2* Vf, with Vf= forward voltage of the  
charge pump diodes.  
Alternatively (CPMODE=1) the charge pump can regulate VBOOST compared to VSUP. In this case the  
Cboost cap should be connected to VSUP to ensure any supply variations are coupled to the VBOOST level.  
In this case VBOOST can be applied to drive a high side reverse polarity NFET.  
The disadvantage is an additional amount of dissipation inside the driver to regulate VREG.  
3901083203  
Rev 2.2  
Page 28 of 35  
Prelim. Data Sheet  
4 Dec 2013  
 
MLX83202/MLX83203  
Automotive NFET pre-drivers  
8.9 100% PWM with bootstrap  
A current is drawn from the CP bootstrap pin to the phase pins. This current will discharge the gate voltage  
on top of any external pull down gate resistance. The below tables show some calculation examples.  
bootstrap  
Vreg  
330 nF  
12  
bootstrap  
Vreg  
100 nF  
12  
V
V
Qbootstr  
3960 nC  
Qbootstr  
1200 nC  
QFET  
200 nC  
QFET  
120 nC  
Vgs_initial  
11.4  
V
Vgs_initial  
10.9  
V
Rcp_leak  
leakage  
On time  
Qleak  
0.75 Mohm  
15 uA  
leakage  
On time  
Qleak  
15 uA  
10 ms  
152 nC  
60 ms  
914 nC  
Vgs_end  
Vgs drop  
9.4  
V
V
Vgs_end  
Vgs drop  
9.8  
V
V
2.06  
1.13  
This gate leakage will limit the maximum state time during which 100% PWM can be applied.  
3901083203  
Rev 2.2  
Page 29 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
9 Standard information regarding manufacturability of Melexis  
products with different soldering processes  
Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity  
level according to following test methods:  
Reflow Soldering SMD’s (Surface Mount Devices)  
IPC/JEDEC J-STD-020  
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices  
(classification reflow profiles according to table 5-2)  
EIA/JEDEC JESD22-A113  
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing  
(reflow profiles according to table 2)  
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EN60749-20  
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat  
EIA/JEDEC JESD22-B106 and EN60749-15  
Resistance to soldering temperature for through-hole mounted devices  
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EIA/JEDEC JESD22-B102 and EN60749-21  
Solderability  
For all soldering technologies deviating from above mentioned standard conditions (regarding peak  
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests  
have to be agreed upon with Melexis.  
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of  
adhesive strength between device and board.  
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more  
information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of  
the use of certain Hazardous Substances) please visit the quality page on our website:  
http://www.melexis.com/quality.asp  
10 ESD Precautions  
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).  
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.  
3901083203  
Rev 2.2  
Page 30 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
11 Package Information  
11.1 Package data QFN32 (5x5, 32 leads)  
A
A1  
A3  
b
D/E  
D2/E2  
e
K
L
N
min  
0.80  
0.00  
0.20  
REF  
0.18  
5.00  
B.S.C  
3.50  
0.50  
B.S.C  
0.2  
0.3  
32  
max  
1.00  
0.05  
0.30  
3.70  
-
0.5  
Table 16. Mechanical Dimensions QFN32 5x5, all dimensions in mm  
[1]  
[2]  
General tolerance of D and E is +/-0.1mm  
Bottom pin 1 identification may vary depending on supplier  
Figure 14. Package QFN32  
3901083203  
Rev 2.2  
Page 31 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
11.2 Package data TQFP48_EP 7x7 (48 leads, exposed pad)  
A
-
1.20  
A1  
0.05  
0.15  
A2  
0.95  
1.05  
D/E  
9.00  
B.S.C  
D1/E1  
7.00  
B.S.C  
D2/E2  
4.00  
B.S.C  
e
L
0.45  
0.75  
N
48  
b
0.17  
0.27  
c
0.09  
0.20  
  
0o  
7o  
Min  
Max  
0.50  
B.S.C  
Table 17. Mechanical Dimensions TQFP48_EP 7x7, all dimensions in mm  
Figure 15. Package TQFP48_EP  
3901083203  
Rev 2.2  
Page 32 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
11.3 Package Marking  
Product name:  
Date Code:  
Lot number  
MLX8320X  
YYWW  
ZZZZZZZZ  
X = 2 or 3  
year and week  
format free  
Top view of the package  
8320x  
YYWW  
ZZZZZZZZ  
3901083203  
Rev 2.2  
Page 33 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
12 Disclaimer  
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its  
Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the  
information set forth herein or regarding the freedom of the described devices from patent infringement.  
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior  
to designing this product into a system, it is necessary to check with Melexis for current information. This  
product is intended for use in normal commercial applications. Applications requiring extended temperature  
range, unusual environmental requirements, or high reliability applications, such as military, medical life-  
support or life-sustaining equipment are specifically not recommended without additional processing by  
Melexis for each application.  
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be  
liable to recipient or any third party for any damages, including but not limited to personal injury, property  
damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential  
damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical  
data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering  
of technical or other services.  
© Melexis NV. All rights reserved.  
For the latest version of this document, go to our website at  
www.melexis.com  
Or for additional information contact Melexis Direct:  
Europe, Africa, Asia:  
Phone: +32 1367 0495  
E-mail: sales_europe@melexis.com  
America:  
Phone: +1 603 223 2362  
E-mail: sales_usa@melexis.com  
ISO/TS 16949 and ISO14001 Certified  
3901083203  
Rev 2.2  
Page 34 of 35  
Prelim. Data Sheet  
4 Dec 2013  
MLX83202/MLX83203  
Automotive NFET pre-drivers  
13 History of changes  
Revision  
Author  
Date  
Description  
EE_RD meaning in SPI description corrected  
RDSon specification split up in ON/OFF  
Added RDSon for 83202 variant  
Added package marking  
1.1  
DLM  
1-3-12  
28-3-12  
1.2  
DLM  
TQFP48 pin out included  
Added appl. Schematics, Pin internal structures, updated block diagram  
Updated SPI enabling.  
Updated ICOM duty cycles  
Updated sleep mode  
Updated leakage spec on VBATF  
1.3  
DLM  
15-5-12  
Max voltage on all pins  
1.4  
1.5  
1.6  
1.7  
DLM  
RRR  
SOE  
SOE  
3-7-12  
Final package dimensions.  
Parameters updated per test data.  
Device description updated  
Information about DC variant of pre-driver moved to separate datasheet  
Protection and diagnostic functions updated  
Trickle Charge Pump included  
28-11-12  
21-12-12  
15-01-13  
26-02-13  
2.0  
2.1  
2.1  
SOE  
SOE  
SOE  
06-05-13 Max voltage on phase pins updated  
04-12-13 Entering SPI mode by disabling all 6x FET input signals  
3901083203  
Rev 2.2  
Page 35 of 35  
Prelim. Data Sheet  
4 Dec 2013  

相关型号:

MLX83203KLWDBA-000RE

MLX83203-MLX83202 Automotive 3-Phase BLDC Pre-Driver
MELEXIS

MLX83203_16

MLX83203-MLX83202 Automotive 3-Phase BLDC Pre-Driver
MELEXIS

MLX90109

125kHz RFID Transceiver
MELEXIS

MLX90109CDCAAA-000RE

125kHz RFID Transceiver
MELEXIS

MLX90109CDCAAA-000TU

125kHz RFID Transceiver
MELEXIS

MLX90109EDCAAA-000RE

125kHz RFID Transceiver
MELEXIS

MLX90109EDCAAA-000TU

125kHz RFID Transceiver
MELEXIS

MLX90109_06

125kHz RFID Transceiver
MELEXIS

MLX90109_12

125kHz RFID Transceiver
MELEXIS

MLX90110

128bit OTP/RW Transponder
ETC

MLX90111

128bit Read Write Transponder
ETC

MLX90121

13.56MHz RFID Transceiver
MELEXIS