MLX90333KGO [MELEXIS]

Triaxis 3D-Joystick Position Sensor; 三轴三维摇杆位置传感器
MLX90333KGO
型号: MLX90333KGO
厂家: Melexis Microelectronic Systems    Melexis Microelectronic Systems
描述:

Triaxis 3D-Joystick Position Sensor
三轴三维摇杆位置传感器

传感器 换能器 输出元件
文件: 总38页 (文件大小:822K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MLX90333  
Triaxis 3D-Joystick Position Sensor  
Features and Benefits  
Absolute 3D Position Sensor  
Simple & Robust Magnetic Design  
TriaisHall Technology  
Programmable Linear Transfer Characteristics (Alpha, Beta)  
Selectable Analog (Ratiometric), PWM, Serial Protocol  
12 bit Angular Resolution - 10 bit Angular Thermal Accuracy  
40 bit ID Number  
Single Die – SO8 Package RoHS Compliant  
Dual Die (Full Redundant) – TSSOP16 Package RoHS Compliant  
Applications  
3D Position Sensor  
4-Way Scroll Key  
Joystick  
Joypad  
Man Machine Interface Device  
Ordering Information1  
Part No.  
Temperature Suffix  
Package Code  
Option code  
MLX90333  
MLX90333  
K (40°C to + 125°C)  
K (40°C to + 125°C)  
DC [SOIC-8]  
GO [TSSOP-16]  
-
-
1 Example: MLX90333KDC  
3901090333  
Rev. Preliminary  
Page 1 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
1. Functional Diagram  
Rev.Pol.  
3V3  
&
VDD  
Reg  
OverVolt.  
VSS  
DSP  
D
x 1  
Tria9is™  
A
VX  
OUT 1  
(Analog/PWM)  
A
VY  
VZ  
G
μC  
D
RAM  
x 1  
EEP  
ROM  
OUT 2  
(Analog/PWM)  
Figure 1 - Block Diagram (Analog & PWM)  
3V3  
Reg  
Rev.Pol.  
VDD  
DSP  
Tria9is™  
VX  
A
/SS  
VY  
VZ  
G
μC  
D
SERIAL PROTOCOL  
SCLK  
MOSI/MISO  
RAM  
EEP  
ROM  
VSS  
Figure 2 - Block Diagram (Serial Protocol)  
3901090333  
Rev. Preliminary  
Page 2 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
2. Description  
The MLX90333 is a monolithic sensor IC featuring the TriaisHall technology. Conventional planar Hall  
technology is only sensitive to the flux density applied orthogonally to the IC surface. The TriaisHall  
sensor is also sensitive to the flux density applied parallel to the IC surface. This is obtained through an  
Integrated Magneto-Concentrator (IMC®) which is deposited on the CMOS die (as an additional back-end  
step).  
The MLX90333 is sensitive to the 3 components of the flux density applied to the IC (BX, BY and BZ). This  
allows the MLX90333 to sense any magnet moving in its surrounding and it enables the design of novel  
generation of non-contacting joystick position sensors which are often required for both automotive and  
industrial applications (e.g. man-machine interface).  
Furthermore, the capability of measuring BX, BY and BZ allows the MLX90333 to be considered as  
universal non-contacting position sensor i.e. not limited to joystick applications. For instance, a linear  
travel can be sensed with the MLX90333 once included in a specific magnetic design.  
In combination with the appropriate signal processing, the magnetic flux density of a small magnet (axial  
magnetization) moving above the IC can be measured in a non-contacting way (Figure 3). The two (2)  
angular information are computed from the three (3) vector components of the flux density (i.e. BX, BY and  
BZ). MLX90333 reports two (2) linear output signals. The output formats are selectable between Analog,  
PWM and Serial Protocol.  
Figure 3 - Typical application of MLX90333  
3901090333  
Rev. Preliminary  
Page 3 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
TABLE of CONTENTS  
FEATURES AND BENEFITS ....................................................................................................................... 1  
APPLICATIONS............................................................................................................................................ 1  
ORDERING INFORMATION......................................................................................................................... 1  
1. FUNCTIONAL DIAGRAM...................................................................................................................... 2  
2. DESCRIPTION....................................................................................................................................... 3  
3. GLOSSARY OF TERMS ABBREVIATIONS ACRONYMS ............................................................ 6  
4. PINOUT.................................................................................................................................................. 6  
5. ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 7  
6. DETAILED DESCRIPTION.................................................................................................................... 7  
7. MLX90333 ELECTRICAL SPECIFICATION....................................................................................... 13  
8. MLX90333 ISOLATION SPECIFICATION.......................................................................................... 15  
9. MLX90333 TIMING SPECIFICATION................................................................................................. 15  
10. MLX90333 ACCURACY SPECIFICATION......................................................................................... 16  
11. MLX90333 MAGNETIC SPECIFICATION .......................................................................................... 17  
12. MLX90333 CPU & MEMORY SPECIFICATION ................................................................................. 17  
13. MLX90333 END-USER PROGRAMMABLE ITEMS........................................................................... 18  
14. DESCRIPTION OF END-USER PROGRAMMABLE ITEMS.............................................................. 19  
14.1.  
14.2.  
OUTPUT CONFIGURATION .........................................................................................................................19  
OUTPUT MODE..........................................................................................................................................19  
14.2.1. Analog Output Mode ............................................................................................................................19  
14.2.2. PWM Output Mode...............................................................................................................................19  
14.2.3. Serial Protocol Output Mode ...............................................................................................................20  
14.3.  
OUTPUT TRANSFER CHARACTERISTIC.......................................................................................................20  
14.3.1. The Polarity and Modulo Parameters..................................................................................................20  
14.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point)......................................................................21  
14.3.3. LNR Parameters...................................................................................................................................21  
14.3.4. CLAMPING Parameters ......................................................................................................................22  
14.3.5. DEADZONE Parameter.......................................................................................................................22  
14.4.  
14.5.  
IDENTIFICATION ........................................................................................................................................22  
SENSOR FRONT-END .................................................................................................................................23  
14.5.1. HIGHSPEED Parameter......................................................................................................................23  
14.5.2. GAINMIN and GAINMAX Parameters ................................................................................................23  
14.5.3. FIELDTHRES_MIN and FIELDTHRES_MAX Parameters.................................................................23  
14.6.  
FILTER ....................................................................................................................................................24  
14.6.1. Hysteresis Filter ...................................................................................................................................24  
14.6.2. FIR Filters............................................................................................................................................24  
14.6.3. IIR Filters.............................................................................................................................................25  
14.7.  
PROGRAMMABLE DIAGNOSTIC SETTINGS .................................................................................................27  
3901090333  
Rev. Preliminary  
Page 4 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
14.7.1. RESONFAULT Parameter ...................................................................................................................27  
14.7.2. EEHAMHOLE Parameter....................................................................................................................27  
14.8.  
LOCK.........................................................................................................................................................27  
14.8.1. MLXLOCK Parameter .........................................................................................................................27  
14.8.2. LOCK Parameter .................................................................................................................................27  
15. MLX90333 SELF DIAGNOSTIC.......................................................................................................... 28  
16. RECOMMENDED APPLICATION DIAGRAMS.................................................................................. 30  
16.1.  
16.2.  
16.3.  
16.4.  
ANALOG OUTPUT WIRING WITH THE MLX90333 IN SOIC PACKAGE.......................................................30  
PWM LOW SIDE OUTPUT WIRING ............................................................................................................30  
ANALOG OUTPUT WIRING WITH THE MLX90333 IN TSSOP PACKAGE....................................................31  
SERIAL PROTOCOL ....................................................................................................................................31  
17. STANDARD INFORMATION REGARDING MANUFACTURABILITY OF MELEXIS PRODUCTS  
WITH DIFFERENT SOLDERING PROCESSES........................................................................................ 33  
18. ESD PRECAUTIONS........................................................................................................................... 33  
19. PACKAGE INFORMATION................................................................................................................. 34  
19.1.  
19.2.  
19.3.  
19.4.  
19.5.  
19.6.  
SOIC8 - PACKAGE DIMENSIONS ...............................................................................................................34  
SOIC8 - PINOUT AND MARKING ...............................................................................................................34  
SOIC8 - IMC POSITIONNING.....................................................................................................................35  
TSSOP16 - PACKAGE DIMENSIONS...........................................................................................................36  
TSSOP16 - PINOUT AND MARKING ..........................................................................................................37  
TSSOP16 - IMC POSITIONNING................................................................................................................37  
20. DISCLAIMER....................................................................................................................................... 38  
3901090333  
Rev. Preliminary  
Page 5 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
3. Glossary of Terms Abbreviations Acronyms  
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
¾
Gauss (G), Tesla (T): Units for the magnetic flux density 1 mT = 10 G  
TC: Temperature Coefficient (in ppm/Deg.C.)  
NC: Not Connected  
PWM: Pulse Width Modulation  
%DC: Duty Cycle of the output signal i.e. TON /(TON + TOFF  
ADC: Analog-to-Digital Converter  
DAC: Digital-to-Analog Converter  
LSB: Least Significant Bit  
)
MSB: Most Significant Bit  
DNL: Differential Non-Linearity  
INL: Integral Non-Linearity  
RISC: Reduced Instruction Set Computer  
ASP: Analog Signal Processing  
DSP: Digital Signal Processing  
ATAN: trigonometric function: arctangent (or inverse tangent)  
IMC: Integrated Magneto-Concentrator (IMC®)  
CoRDiC: Coordinate Rotation Digital Computer (i.e. iterative rectangular-to-polar transform)  
EMC: Electro-Magnetic Compatibility  
4. Pinout2  
SOIC-8  
TSSOP-16  
Pin #  
Analog / PWM  
VDD  
Serial Protocol  
VDD  
Analog / PWM  
Serial Protocol  
1
2
VDIG  
VDIG  
1
1
Test 0  
Test 0  
VSS (Ground1)  
VSS (Ground1)  
1
1
3
Not Used  
Out 2  
/SS  
VDD  
VDD  
1
1
4
SCLK  
Test 01  
Not Used  
Out 22  
Test 01  
/SS2  
5
Out 1  
MOSI / MISO  
Test 1  
6
Test 1  
SCLK2  
7
VDIG  
VDIG  
Out 12  
MOSI2 / MISO2  
Test 12  
8
VSS (Ground)  
VSS (Ground)  
Test 12  
9
VDIG  
VDIG  
2
2
10  
11  
12  
13  
14  
15  
16  
VSS (Ground2)  
VSS (Ground2)  
2
2
VDD  
VDD  
2
2
Test 02  
Not Used  
Out 21  
Test 02  
/SS1  
SCLK1  
Out 11  
MOSI1 / MISO1  
Test 11  
Test 11  
For optimal EMC behavior, it is recommended to connect the unused pins (Not Used and Test) to the  
Ground (see section 16).  
2 See Section 14.1 for the Out 1 and Out 2 configuration  
3901090333  
Rev. Preliminary  
Page 6 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
5. Absolute Maximum Ratings  
Parameter  
Supply Voltage, VDD (overvoltage)  
Reverse Voltage Protection  
Value  
+ 20 V  
10 V  
Positive Output Voltage  
(Analog or PWM)  
+ 10 V  
+ 14 V (200 s max TA = + 25°C)  
Both outputs OUT 1 & OUT 2  
Output Current (IOUT  
)
± 30 mA  
0.3 V  
Reverse Output Voltage  
Both outputs OUT 1 & OUT 2  
Reverse Output Current  
50 mA  
Both outputs OUT 1 & OUT 2  
Operating Ambient Temperature Range, TA  
40°C … + 150°C  
40°C … + 150°C  
± 700 mT  
Storage Temperature Range, TS  
Magnetic Flux Density  
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability.  
6. Detailed Description  
As described on the block diagram (Figure 1 and Figure 2), the magnetic flux density applied to the IC is  
sensed through the Triaissensor front-end. This front-end consists into two orthogonal pairs (for each  
of the two directions parallel with the IC surface i.e. X and Y) of conventional planar Hall plates (sensitive  
element – blue area on Figure 4) and an Integrated Magneto-Concentrator (IMC® yellow disk on Figure  
4).  
Bz  
Bz  
Bz  
Bz  
Figure 4 - Triaissensor front-end (4 Hall plates + IMC® disk)  
Two orthogonal components (respectively BXand BY) proportional to the parallel components  
(respectively BX// and BY//) are induced through the IMC and can be measured by both respective pairs of  
conventional planar Hall plates as those are sensitive to the flux density applied orthogonally to them and  
the IC surface. The third component BZ is also sensed by those four (4) conventional Hall plates as shown  
above.  
3901090333  
Rev. Preliminary  
Page 7 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
In summary, along X-axis, the left Hall plate measures “BX- BZ” while the right Hall plate measures “-BX⊥  
- BZ”. Similarly, along the Y-axis, the left Hall plate measures “BY- BZ” while the right Hall plate measures  
“-BY- BZ”.  
Through an appropriate signal processing, the Triaissensor front-end reports the three (3)  
components of the applied magnetic flux density B i.e. BX, BY and BZ.  
Indeed, by subtracting the signals from the two (2) Hall plates in each pair, the components BXand BY⊥  
are measured while BZ is cancelled. To the contrary, by adding the signals from the two (2) Hall plates in  
each pair, the component BZ is measured while BXand BYare cancelled  
In a joystick based on a “gimbal” mechanism as shown on Figure 3 (left), the magnet (axial magnetization)  
moves on a hemisphere centered at the IC. The flux density is described through the following  
relationships:  
BX = SIN(α) COS(β)  
BY = COS(α) SIN(β)  
BZ = COS(α) COS(β)  
Those components are plotted on the Figure 5, Figure 6 and Figure 7.  
Figure 5 – Magnetic Flux Density – BX, BY, BZ  
3901090333  
Rev. Preliminary  
Page 8 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
-90  
-45  
0
45  
90  
Alpha α (Deg)  
BX  
BY  
BZ  
Figure 6 – Magnetic Flux Density – β = 0 Deg – BX sin(α), BY = 0 & BZ cos(α)  
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
-90  
-45  
0
45  
90  
Beta β (Deg)  
BX  
BY  
BZ  
Figure 7 – Magnetic Flux Density – α = 0 Deg – BX = 0, BY sin(β) & BZ cos(β)  
Three (3) differential voltages corresponding to the three (3) components of the applied flux density are  
provided to the ADC (Analog-to-Digital Converter – Figure 8 and Figure 9). The Hall signals are  
processed through a fully differential analog chain featuring the classic offset cancellation technique (Hall  
plate quadrature spinning and chopper-stabilized amplifier).  
The amplitude of VZ is smaller than the other two (2) components VX and VY due to fact that the magnetic  
gain of the IMC only affects the components parallel to the IC surface.  
3901090333  
Rev. Preliminary  
Page 9 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
2000  
1500  
1000  
500  
0
-500  
-1000  
-1500  
-2000  
-90  
-45  
0
45  
90  
Alpha α (Deg)  
VX  
VY  
VZ  
Figure 8 – ADC Input Signals – β = 0 Deg – VX BX sin(α),VY = BY = 0 & VZ BZ cos(α)  
2000  
1500  
1000  
500  
0
-500  
-1000  
-1500  
-2000  
-90  
-45  
0
45  
90  
Beta β (Deg)  
VX  
VY  
VZ  
Figure 9 – ADC Input Signals – α = 0 Deg – VX = BX = 0, VY BY sin(β) & VZ BZ cos(β)  
3901090333  
Rev. Preliminary  
Page 10 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
The conditioned analog signals are converted through an ADC (configurable 14 or 15 bits) and provided  
to a DSP block for further processing. The DSP stage is based on a 16 bit RISC micro-controller whose  
primary function is the extraction of the two (2) angular information from the three (3) raw signals (after so-  
called front-end compensation steps) through the following operations:  
VX  
α = ATAN  
β = ATAN  
kZVZ  
VY  
kZVZ  
where kZ is a programmable parameter.  
In a joystick based on a “ball & socket” joint as shown on Figure 3 (right), the magnet (axial  
magnetization) moves on a hemisphere centered at the pivot point. The flux density is described through  
slightly more complex equations but the MLX90333 offers an alternate algorithm to extract both angular  
informations:  
VX  
α = ATAN  
β = ATAN  
(kZVZ )2 + (ktVY )2  
VY  
(kZVZ )2 + (ktVX )2  
where kZ and kt are programmable parameters.  
The DSP functionality is governed by the micro-code (firmware F/W) of the micro-controller which is  
stored into the ROM (mask programmable). In addition to the ATANfunction, the F/W controls the whole  
analog chain, the output transfer characteristic, the output protocol, the programming/calibration and also  
the self-diagnostic modes.  
In the MLX90333, the ATANfunction is computed via a look-up table (i.e. it is not obtained through a  
CoRDiC algorithm).  
Due to the fact that the ATANoperation is performed on the ratios VX/VZand VY/VZ, the angular  
information are intrinsically self-compensated vs. flux density variations (due to airgap change, thermal or  
ageing effects) affecting the magnetic signal. This feature allows therefore an improved thermal accuracy  
vs. joystick based on conventional linear Hall sensors.  
Once the angular information is computed (over 360 degrees), it is further conditioned (mapped) vs. the  
target transfer characteristic and it is provided at the output(s) as:  
an analog output level through a 12 bit DAC followed by a buffer  
a digital PWM signal with 12 bit depth (programmable frequency 100 Hz 1 kHz)  
a digital Serial Protocol (SP 14 bits computed angular information available)  
3901090333  
Rev. Preliminary  
Page 11 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
For instance, the analog output can be programmed for offset, gain and clamping to meet any rotary  
position sensor output transfer characteristic:  
Vout(α) = ClampLo  
Vout(α) = Voffset + Gain × α  
Vout(α) = ClampHi  
for α ≤ αmin  
for αmin ≤ α ≤ αmax  
for α ≥ αmax  
Vout(β) = ClampLo  
Vout(β) = Voffset + Gain × β  
Vout(β) = ClampHi  
for β ≤ βmin  
for βmin ≤ β ≤ βmax  
for β ≥ βmax  
where Voffset, Gain, ClampLo and ClampHi are the main adjustable parameters for the end-user.  
The linear part of the transfer curve can be adjusted through a 3 point calibration. Once only one output is  
used, a 5 point calibration is also available for further improvement of the linearity.  
The calibration parameters are stored in EEPROM featuring a Hamming Error Correction Coding (ECC).  
The programming steps do not require any dedicated pins. The operation is done using the supply and  
output nodes of the IC. The programming of the MLX90333 is handled at both engineering lab and  
production line levels by the Melexis Programming Unit PTC-04 with the MLX90316 daughterboard and  
dedicated software tools (DLL User Interface).  
3901090333  
Rev. Preliminary  
Page 12 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
7. MLX90333 Electrical Specification  
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the  
Temperature suffix (K).  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
Nominal Supply Voltage  
VDD  
4.5  
5
5.5  
11  
16  
3
V
mA  
mA  
V
Slow mode(4)  
Fast mode(4)  
8.5  
13.5  
2.7  
Supply Current(3)  
Idd  
POR Level  
VDD POR Supply Under Voltage  
2
Output Current  
Analog Output mode  
Iout  
-8  
8
mA  
mA  
mA  
mA  
mA  
kΩ  
kΩ  
%VDD  
Both outputs OUT 1 & OUT 2  
PWM Output mode  
-20  
20  
15  
15  
45  
Vout = 0 V  
12  
12  
24  
10  
10  
Output Short Circuit Current  
Both outputs OUT 1 & OUT 2  
Ishort  
Vout = 5 V  
Vout = 14 V (TA = 25°C)  
Pull-down to Ground  
Pull-up to 5V(5)  
(6)  
1
1
Output Load  
RL  
(6)  
Both outputs OUT 1 & OUT 2  
3
Vsat_lo  
Vsat_hi  
Analog Saturation Output Level  
Both outputs OUT 1 & OUT 2  
Pull-up load RL 10 k  
Pull-down load RL 10 kΩ  
Pull-up Low Side RL 10 kΩ  
Push-Pull (IOUT = -20mV)  
96  
97  
%VDD  
%VDD  
%VDD  
%VDD  
Digital Saturation Output Level  
Both outputs OUT 1 & OUT 2  
VsatD_lo  
1.5  
VsatD_hi Push-Pull (IOUT = 20mV)  
1
Pull-down load RL 10 kΩ  
Diag_lo  
1.5  
Active Diagnostic Output Level  
Both outputs OUT 1 & OUT 2  
Pull-up load RL 10 kΩ  
97  
98  
Pull-down load RL 10 kΩ  
Diag_hi  
%VDD  
%VDD  
%VDD  
%VDD  
%VDD  
Pull-up load RL 10 kΩ  
Broken VSS&  
BVSSPD  
4(7)  
Pull-down load RL 10 kΩ  
(8)  
Broken VSS  
&
BVSSPU  
BVDDPD  
BVDDPU  
99  
100  
0
Passive Diagnostic Output Level  
Both outputs OUT 1 & OUT 2  
(Broken Track Diagnostic) (7)  
Pull-up load RL 1kΩ  
(8)  
Broken VDD  
&
1
Pull-down load RL 1kΩ  
Broken VDD &  
No Broken Track diagnostic  
Pull-up load to 5V  
(9)  
Clamped Output Level  
Clamp_lo Programmable  
Clamp_hi Programmable  
0
0
100  
100  
%VDD  
%VDD  
(9)  
Both outputs OUT 1 & OUT 2  
3 For the dual version, the supply current is multiplied by 2  
4 See section 14.5.1 for details concerning Slow and Fast mode  
5 Applicable for output in Analog and PWM (Open-Drain) modes  
6 RL < for output in PWM mode  
7 For detailed information, see also section 15  
9 Clamping levels need to be considered vs the saturation of the output stage (see Vsat_lo and Vsat_hi)  
3901090333  
Rev. Preliminary  
Page 13 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
As an illustration of the previous table, the MLX90333 fits the typical classification of the output span  
described on the Figure 10.  
100 %  
Diagnostic Band (High)  
96 %  
92 %  
88 %  
90 %  
80 %  
70 %  
60 %  
50 %  
40 %  
30 %  
20 %  
10 %  
0 %  
Clamping High  
Linear Range  
12 %  
8 %  
4 %  
Clamping Low  
Diagnostic Band (Low)  
Figure 10 - Output Span Classification  
3901090333  
Rev. Preliminary  
Page 14 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
8. MLX90333 Isolation Specification  
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the  
Temperature suffix (K). Only valid for the package code GO i.e. dual die version.  
Parameter  
Symbol  
Test Conditions  
Between 2 dies  
Min  
Typ  
Max  
Units  
Isolation Resistance  
4
Mꢀ  
9. MLX90333 Timing Specification  
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the  
Temperature suffix (K).  
Parameter  
Symbol  
Test Conditions  
Slow mode(10)  
Fast mode(10)  
Slow mode(11)  
Fast mode(11)  
Min  
Typ  
Max  
Units  
Main Clock Frequency  
Ck  
7
MHz  
MHz  
μs  
20  
Sampling Rate  
600  
200  
μs  
Step Response Time  
Ts  
Slow mode(10), Filter=5(11)  
Fast mode(10), Filter=0(11)  
See Section 15  
4
600  
5
ms  
μs  
400  
Watchdog  
Wd  
ms  
ms  
Start-up Cycle  
Tsu  
Slow and Fast mode(10)  
15  
Analog Output Slew Rate  
COUT = 42 nF  
200  
100  
V/ms  
C
OUT = 100 nF  
PWM Frequency  
FPWM  
PWM Output Enabled  
100  
1000  
Hz  
μs  
μs  
μs  
μs  
Digital Output Rise Time  
Both outputs OUT 1 & OUT 2  
Digital Output Fall Time  
Both outputs OUT 1 & OUT 2  
Mode 5 – 10nF, RL = 10 kꢀ  
Mode 7 – 10nF, RL = 10 kꢀ  
Mode 5 – 10nF, RL = 10 kꢀ  
Mode 7 – 10nF, RL = 10 kꢀ  
120  
2.2  
1.8  
1.9  
10 See section 14.5.1 for details concerning Slow and Fast mode  
11 See section 14.6 for details concerning Filter parameter  
3901090333  
Rev. Preliminary  
Page 15 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
10. MLX90333 Accuracy Specification  
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the  
Temperature suffix (K).  
Parameter  
Symbol  
Test Conditions  
Slow Mode(12)  
Fast Mode(12)  
Min  
Typ  
Max  
Units  
ADC Resolution on the raw  
signals X, Y and Z  
RADC  
15  
14  
bits  
bits  
Offset on the Raw Signals X, Y X0, Y0, Z0 TA = 25°C  
and Z  
-60  
-1  
60  
1
LSB15  
Mismatch on the Raw Signals X,  
Y and Z  
TA = 25°C  
SMISMXY Between X and Y  
%
SMISMXZ  
SMISMYZ  
Between X and Z  
End-User programmable(13) (KT parameter)  
Between Y and Z  
Thermal Offset Drift #1 on the  
raw signals X, Y and Z  
Thermal Offset Drift at the DSP  
input (excl. DAC and output stage)  
Thermal Offset Drift of the DAC  
and Output Stage  
-60  
+60  
LSB15  
%VDD  
Thermal Offset Drift #2  
- 0.3  
+ 0.3  
(to be considered only for the  
analog output mode)  
Thermal Drift of Sensitivity  
Mismatch  
- 0.3  
+ 0.3  
%
Analog Output Resolution  
RDAC  
12 bits DAC  
0.025  
%VDD/LSB  
(Theoretical – Noise free)  
INL  
-4  
+4  
2
LSB  
LSB  
DNL  
0.05  
1
0.05  
5
Output stage Noise  
Noise pk-pk(17)  
Clamped Output  
Gain = 14, Slow mode, Filter=5  
Gain = 14, Fast mode, Filter=0  
%VDD  
LSB15  
LSB15  
%VDD  
%DC/LSB  
10  
20  
10  
Ratiometry Error  
-0.1  
0
0.1  
PWM Output Resolution  
RPWM  
12 bits  
0.025  
(Theoretical – Jitter free)  
Gain = 11, FPWM = 250 Hz – 800Hz  
Theoretical – Jitter free  
PWM Jitter  
JPWM  
RSPI  
5
LSB12  
bits  
Serial Protocol Output  
14  
12 15 bits corresponds to 14 bits + sign and 14 bits corresponds to 13 bits + sign. After angular calculation, this corresponds to  
0.005Deg/LSB15 in Low Speed Mode and 0.01Deg/LSB14 in High Speed.  
13 The mismatch between X and Z (Y and Z) is end-user programmable through the 2 parameters KZ and KT as described in the  
formulas page 11 in order to take into account the IC mismatch and system tolerances (magnetic and mechanical).  
17  
The application diagram used is described in the recommended wiring. For detailed information, refer to section Filter in  
application mode (Section 14.6).  
19 Above 70 mT, the IMC starts saturating yielding to an increase of the linearity error.  
3901090333  
Rev. Preliminary  
Page 16 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
Resolution  
11. MLX90333 Magnetic Specification  
DC Operating Parameters at VDD = 5V (unless otherwise specified) and for TA as specified by the  
Temperature suffix (K).  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
Magnetic Flux Density  
B
20  
50  
70(19)  
0
mT  
Magnet Temperature Coefficient  
TCm  
-2400  
ppm/°C  
12. MLX90333 CPU & Memory Specification  
The DSP is based on a 16 bit RISC µController. This CPU provides 5 Mips while running at 20 MHz.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
ROM  
RAM  
10  
kB  
B
256  
128  
EEPROM  
B
3901090333  
Rev. Preliminary  
Page 17 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
13. MLX90333 End-User Programmable Items  
Default Values  
Parameter  
Comments  
-
# bit  
2
MAINMODE  
Select Outputs Configuration  
Define the output stages mode  
PWM Polarity (Out 1)  
PWM Polarity (Out 2)  
PWM Frequency  
0
Outputs Mode  
PWMPOL1  
PWMPOL2  
PWM_Freq  
ALPHA_POL  
ALPHA_MOD180  
ALPHA_DP  
ALPHA_DEADZONE  
ALPHA_S0  
ALPHA_X  
2
3
0
1
0
1
1000h  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
16  
1
Revert the Sign of Alpha  
Modulo Operation (180deg) on Alpha  
Alpha Discontinuity Point  
Alpha Dead Zone  
1
8
6
Initial Slope  
16  
16  
16  
16  
1
Alpha X Coordinate  
Alpha Y Coordinate  
Alpha S Coordinate  
Revert the Sign of Beta  
Modulo Operation (180deg) on Beta  
Beta Discontinuity Point  
Beta Dead Zone  
ALPHA_Y  
ALPHA_S1  
BETA_POL  
BETA_MOD180  
BETA_DP  
1
6
BETA_DEADZONE  
BETA_S0  
8
Beta Dead Zone  
16  
16  
16  
16  
16  
16  
1
BETA_X  
Beta X Coordinate  
BETA_Y  
Beta Y Coordinate  
BETA_S1  
Beta S Coordinate  
CLAMP_LOW  
CLAMP_HIGH  
2D  
Clamping Low  
8%  
Clamping High  
8%  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
XYZ  
SPI Only  
1
KZ  
8
KT  
8
FIELDTHRES_LOW  
FIELDTHRES_HIGH  
DERIVGAIN  
FILTER  
8
8
8
8
FILTER A1  
FILTER A2  
FSWAP  
Filter coefficient A1 for FILTER=6  
Filter coefficient A2 for FILTER=6  
6600h  
2A00h  
TBD  
16  
16  
1
TBD  
FHYST  
8
MELEXISID1  
MELEXISID2  
MELEXISID3  
CUSTUMERID1  
CUSTUMERID2  
CUSTUMERID3  
MLX  
MLX  
MLX  
TBD  
TBD  
TBD  
16  
16  
16  
16  
16  
16  
3901090333  
Rev. Preliminary  
Page 18 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
HIGHSPEED  
GAINMIN  
0
TBD  
TBD  
1
8
GAINMAX  
EEHAMHOLE  
RESONFAULT  
MLXLOCK  
LOCK  
8
3131h  
TBD  
TBD  
TBD  
16  
2
1
1
14. Description of End-User Programmable Items  
14.1. Output Configuration  
The parameter MAINMODE defines the output stages configuration  
MAINMODE  
OUT1  
ALPHA  
BETA  
OUT2  
0
1
2
3
BETA  
ALPHA  
ALPHA  
BETA  
ALPHA DERIVATE  
BETA DERIVATE  
14.2. Output Mode  
The MLX90333 outputs type is defined by the Output Mode parameter.  
Parameter  
Value  
Description  
Analog Rail-to-Rail  
2, 4  
Analog Output Mode  
5
7
Low Side (NMOS)  
Push-Pull  
PWM Output Mode  
Serial  
N/A  
Low Side (NMOS)  
14.2.1. Analog Output Mode  
The Analog Output Mode is a rail-to-rail and ratiometric output with a push-pull output stage configuration  
allows the use of a pull-up or pull-down resistor.  
14.2.2. PWM Output Mode  
If one of the PWM Output modes is selected, the output signal is a digital signal with Pulse Width  
Modulation (PWM).  
In mode 5, the output stage is an open drain NMOS transistor (low side), to be used with a pull-up resistor  
to VDD.  
In mode 7, the output stage is a push-pull stage for which Melexis recommends the use of a pull-up  
resistor to VDD.  
The PWM polarity of the Out 1 (Out 2) is selected by the PWMPOL1 (PWMPOL2) parameter:  
PWMPOL1 (PWMPOL2) = 0 for a low level at 100%  
PWMPOL1 (PWMPOL2) = 1 for a high level at 100%  
3901090333  
Rev. Preliminary  
Page 19 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
The PWM frequency is selected by the PWM_Freq parameter.  
PWM Frequency Code  
Pulse-Width Modulation Frequency (Hz)  
Oscillator Mode  
100  
35000  
-
200  
500  
7000  
1000  
3500  
Low Speed  
High Speed  
17500  
50000  
20000  
10000  
For instance, in Low Speed Mode, set PWM_Freq = 7000 (decimal) to set the PWM frequency at 500Hz.  
14.2.3. Serial Protocol Output Mode  
The MLX90333 features a digital Serial Protocol mode. The MLX90333 is considered as a Slave node.  
See the dedicated Serial Protocol section for a full description (Section TBD).  
14.3. Output Transfer Characteristic  
Parameter  
Value  
Unit  
ALPHA_POL  
BETA_POL  
0
1
ALPHA_MOD180  
BETA_MOD180  
0
1
ALPHA_DP  
BETA_DP  
deg  
deg  
%
0 359.9999  
0 359.9999  
0 100  
ALPHA_X  
BETA_X  
ALPHA_Y  
BETA_Y  
ALPHA_S0  
ALPHA_S1  
BETA_S0  
BETA_S1  
%/deg  
0 17  
CLAMP_LOW  
CLAMP_HIGH  
%
%
0 100  
0 100  
ALPHA_DEADZONE  
BETA_DEADZONE  
deg  
0 359.9999  
14.3.1. The Polarity and Modulo Parameters  
The angle Alpha is defined as the arctangent of X/Z and Beta as the arctangent of Y/Z. It is possible to  
invert the polarity of these angles via the parameters ALPHA_POL and BETA_POL set to “1”.  
The MLX90313 can also be insensitive to the field polarity by setting the  
ALPHA_MOD180/BETA_MOD180 to “1”.  
3901090333  
Rev. Preliminary  
Page 20 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
z
β
y
α
x
14.3.2. Alpha/Beta Discontinuity Point (or Zero Degree Point)  
The Discontinuity Point defines the zero point of the circle (Alpha or Beta). The discontinuity point places  
the origin at any location of the trigonometric circle (see Figure 12).  
For a Joystick Application, Melexis recommends to set the DP to zero.  
14.3.3. LNR Parameters  
The LNR parameters, together with the clamping values, fully define the relation (the transfer function)  
between the digital angles (Alpha and Beta) and the output signals.  
The shape of the MLX90333 transfer function from the digital angle values to the output voltages is  
described by the drawing below (See Figure 11). Four segments can be programmed but the clamping  
levels are necessarily flat.  
100%  
C
Clamping High  
CLAMPHIGH  
ALPHA_S1  
B
ALPHA_Y  
ALPHA_S0  
A
Clamping Low  
CLAMPLOW  
0%  
0°  
Alpha  
360°  
ALPHA_X  
Figure 11 - Digital Angle (Alpha) Transfer Characteristic (Idem ditto for Beta)  
3901090333  
Rev. Preliminary  
Page 21 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
14.3.4. CLAMPING Parameters  
The clamping levels are two independent values to limit the output voltage range. The CLAMP_LOW  
parameter adjusts the minimum output voltage level. The CLAMP_HIGH parameter sets the maximum  
output voltage level. Both parameters have 16 bits of adjustment. In analog mode, the resolution will be  
limited by the D/A converter (12 bits) to 0.024%VDD. In PWM mode, the resolution will be 0.024%DC. In  
SPI mode, the resolution is 14bits or 0.022deg over 360deg.  
14.3.5. DEADZONE Parameter  
The dead zone is defined as the angle window between 0 and 359.9999 (See Figure 12).  
When the digital angle (Alpha or Beta) lies in this zone, the IC is in fault mode (RESONFAULT must be  
set to “1” – See 14.7.1).  
In case of ALPHA_MOD180 (or BETA_MOD180) is not set, the angle between 180° and 360° will  
generate a “deadzone” fault, unless DEADZONE=0.  
z
90°  
α
Programmable 0° point  
0°  
180°  
x
Programmable Forbidden Zone  
Figure 12 – Discontinuity Point and Dead Zone (Alpha – Idem ditto for Beta)  
14.4. Identification  
Parameter  
Value  
Unit  
0 65535  
0 65535  
0 65535  
0 65535  
0 65535  
0 65535  
MELEXSID1  
MELEXSID2  
MELEXSID3  
CUSTUMERID1  
CUSTUMERID2  
CUSTUMERID3  
Identification number: 48 bits freely useable by Customer for traceability purpose.  
3901090333  
Rev. Preliminary  
Page 22 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
14.5. Sensor Front-End  
Parameter  
Value  
Unit  
0 = Slow mode  
1 = Fast mode  
HIGHSPEED  
GAINMIN  
GAINMAX  
0 41  
0 41  
FIELDTHRES_MIN  
FIELDTHRES_MAX  
0 … 100  
0 … 100  
%
%
14.5.1. HIGHSPEED Parameter  
The HIGHSPEED parameter defines the main frequency for the DSP.  
HIGHSPEED = 0 selects the Slow mode with a 7 MHz master clock.  
HIGHSPEED = 1 selects the Fast mode with a 20 MHz master clock.  
For better noise performance, the Slow Mode must be enabled.  
14.5.2. GAINMIN and GAINMAX Parameters  
The MLX90333 features an automatic gain control (AGC) of the analog chain. The AGC loop is based on  
(VX)²+ (VY)² + (VZ)² = (Amplitude)² = (Radius)²  
and it targets an amplitude of 90% of the ADC input span.  
The current gain can be read out with the programming unit PTC-04 and gives a rough indication of the  
applied magnetic flux density (Amplitude).  
GAINMIN & GAINMAX define the boundaries within the gain setting is allowed to vary. Outside this range,  
the outputs are set in diagnostic low.  
14.5.3. FIELDTHRES_MIN and FIELDTHRES_MAX Parameters  
The strength of the applied field is constantly calculated in a background process. The value of this field  
can be read out with the PTC-04 and  
FIELDTHRES_MIN & FIELDTHRES_MAX define the boundaries within the actual field strength (Radius)  
is allowed to vary. Outside this range, the outputs are set in diagnostic low.  
3901090333  
Rev. Preliminary  
Page 23 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
14.6. FILTER  
Parameter  
FHYST  
Value  
0 11 ; step 0.04  
0… 6  
Unit  
deg  
FILTER  
0
1
FSWAP  
The MLX90333 includes 3 types of filters:  
Hysteresis Filter: programmable by the FHYST parameter  
Low Pass FIR Filters controlled with the Filter parameter  
Low Pass IIR Filter controlled with the Filter parameter and the coefficients FILTER A1 and  
FILTER A2  
Note: if the parameter FSWAP is set to “1”, the filtering is active on the digital angle. If set to “0”, the  
filtering is active on the output transfer function.  
14.6.1. Hysteresis Filter  
The FHYST parameter is a hysteresis filter. The output value of the IC is not updated when the digital step  
is smaller than the programmed FHYST parameter value. The output value is modified when the  
increment is bigger than the hysteresis. The hysteresis filter reduces therefore the resolution to a level  
compatible with the internal noise of the IC. The hysteresis must be programmed to a value close to the  
noise level.  
Please note that for the programmable version, the FHYST parameter is set to 4 by default. If you do not  
wish this feature, please set it to “0”.  
14.6.2. FIR Filters  
The MLX90333 features 6 FIR filter modes controlled with Filter = 0…5. The transfer function is described  
below:  
j
1
yn =  
a x  
i ni  
j
i=0  
a
i
i=0  
The characteristics of the filters no 0 to 5 is given in the Table 1.  
Filter No (j)  
Type  
0
1
2
3
4
5
Disable  
Finite Impulse Response  
133100  
Coefficients a0… a5  
Title  
N/A  
110000  
121000  
111100  
Light  
4
122210  
No Filter  
Extra Light  
90% Response Time  
99% Response Time  
Efficiency RMS (dB)  
Efficiency P2P (dB)  
1
1
0
0
2
3
4
5
2
3
4
4
5
2.9  
2.9  
4.0  
3.6  
4.7  
5.0  
5.6  
6.2  
7.0  
6.1  
Table 1 - FIR Filters Selection Table  
Page 24 of 38  
3901090333  
Rev. Preliminary  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
FIR and HYST Filters : Step response Comparative Plot  
40000  
38000  
36000  
34000  
32000  
30000  
x(n)  
fir(n)  
hyst(n)  
0
5
10  
15  
Milliseconds  
20  
25  
30  
FIR and HYST Filter : Gaussian white noise response  
40200  
40150  
40100  
40050  
40000  
39950  
39900  
39850  
39800  
x(n)  
fir(n)  
hyst(n)  
0
50  
100  
150  
Milliseconds  
Figure 13 - Step Response and Noise Response for FIR (No 3) and FHYST=10  
14.6.3. IIR Filters  
The IIR Filter is enabled with Filter = 6. The diagram of the IIR Filter implemented in the MLX90333 is  
given in Figure 14. Only the parameter A1 and A2 are configurable (See Table 2).  
b0 = 1  
x(n)  
y(n)  
Z-1  
Z-1  
b1 = 2  
-a1  
-a2  
Z-1  
Z-1  
b2 = 1  
Figure 14 - IIR Diagram  
Page 25 of 38  
3901090333  
Rev. Preliminary  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
Filter No  
Type  
6
2nd Order Infinite Impulse Response (IIR)  
Title  
Medium & Strong  
90% Response Time  
Efficiency RMS (dB)  
Efficiency P2P (dB)  
Coefficient A1  
Coefficient A2  
11  
16  
26  
40  
52  
16.2  
20  
100  
>20  
9.9  
11.4  
13.6  
15.3  
12.9  
14.6  
17.1  
18.8  
>20  
26112  
10752  
28160  
12288  
29120  
12992  
30208  
13952  
31296  
14976  
31784  
15412  
Table 2 - IIR Filter Selection Table  
The Figure 15 shows the response of the filter to a Gaussian noise with default coefficient A1 and A2.  
IIR Filter - Gaussian White Noise Response  
40200  
40150  
x(n)  
y(n)  
40100  
40050  
40000  
39950  
39900  
39850  
39800  
0
50  
100  
150  
Time  
Figure 15 - Noise Response for the IIR Filter  
3901090333  
Rev. Preliminary  
Page 26 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
14.7. Programmable Diagnostic Settings  
Parameter  
Value  
Unit  
0
1
RESONFAULT  
0
EEHAMHOLE  
3131h  
14.7.1. RESONFAULT Parameter  
This RESONFAULT parameter disables the soft reset when a fault is detected by the CPU when the  
parameter is set to 1. By default, the parameter is set to “0” but it is recommended to set it to “1” to  
activate the self diagnostic modes (See section 15).  
Note that in the User Interface (MLX90333UI), the RESONFAULT is split in two bits:  
DRESONFAULT: disable the reset in case of a fault.  
DOUTINFAULT: disable output in diagnostic low in case of fault.  
14.7.2. EEHAMHOLE Parameter  
The EEHAMHOLE parameter disables the memory recovery (Hamming code) check when a fault is  
detected by the CRC when it is equal to 3131h. By default the parameter is set to 0 (enable memory  
recovery).  
14.8. Lock  
Parameter  
Value  
Unit  
0
1
0
1
MLXLOCK  
LOCK  
14.8.1. MLXLOCK Parameter  
MLXLOCK locks all the parameters set by Melexis.  
14.8.2. LOCK Parameter  
LOCK locks all the parameters set by the user. Once the lock is enabled, it is not possible to change the  
EEPROM values anymore.  
Note that the lock bit should be set by the solver function “MemLock”.  
3901090333  
Rev. Preliminary  
Page 27 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
15. MLX90333 Self Diagnostic  
The MLX90333 provides numerous self-diagnostic features. Those features increase the robustness of the IC  
functionality as it will prevent the IC to provide erroneous output signal in case of internal or external failure  
modes (“fail-safe”).  
Action  
Effect on Outputs  
Diagnostic low(21)  
Remark  
All the outputs are already  
in Diagnostic low - (start-up)  
ROM CRC Error at start up  
(64 words including Intelligent  
Watch Dog - IWD)  
CPU Reset (20)  
ROM CRC Error (Operation -  
Background task)  
Enter Endless Loop:  
- Progress (watchdog  
Acknowledge)  
- Set Outputs in Diagnostic low  
CPU Reset  
Immediate Diagnostic low  
Diagnostic low  
RAM Test Fail (Start up)  
All the outputs are already  
in Diagnostic low (start-up)  
Start-Up Time is increased  
by 3 ms if successful  
recovery  
Calibration Data CRC Error  
(Start-Up)  
Hamming Code Recovery  
Hamming Code Recovery Error CPU Reset  
(Start-Up)  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
See 14.7.2  
Calibration Data CRC Error  
(Operation - Background)  
Dead Zone Alpha  
CPU Reset  
Set Outputs in Diagnostic low.  
Normal Operation until the “dead  
zone” is left.  
Immediate recovery if the  
“dead zone” is left  
Dead Zone Beta  
ADC Clipping  
(ADC Output is 0000h or  
7FFFh)  
Radius Overflow ( > 100% ) or  
Radius Underflow  
( < 50 % )  
Set Outputs in Diagnostic low  
Normal mode and CPU Reset If  
recovery  
Set Outputs in Diagnostic low  
Normal mode and CPU Reset If  
recovery  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
(50 % - 100 %)  
No magnet / field too high  
See also 14.5.2  
Field Clipping  
Set Outputs in Diagnostic low  
(Radius < FIELDTHRES_LOW Normal mode, and No CPU Reset  
or Radius >  
If recovery  
FIELDTHRES_HIGH)  
Rough Offset Clipping  
(RO is < 0d or > 127d)  
Set Outputs in Diagnostic low  
Normal mode, and CPU Reset If  
recovery  
Set Outputs in Diagnostic low  
Normal mode, and CPU Reset If  
recovery  
Immediate Diagnostic low  
Immediate Diagnostic low  
Gain Clipping  
(Gain < GAINMIN or GAIN >  
GAINMAX)  
See also 14.5.2  
Immediate Diagnostic low  
DAC Monitor (Digital to Analog Set Outputs in Diagnostic low.  
converter)  
Normal Mode with immediate  
recovery without CPU Reset  
MLX90333 Fault Mode continues…  
20 CPU reset means  
1.  
Core Reset (same as Power-On-Reset). It induces a typical start up time.  
2.  
3.  
4.  
Periphery Reset (same as Power-On-Reset)  
Fault Flag/Status Lost  
The reset can be disabled by clearing the RESONFAULT bit (See 14.7.1)  
21 Refer to section 7 for the Diagnostic Output Level specifications  
3901090333  
Rev. Preliminary  
Page 28 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
…MLX90333 Fault Mode  
Fault Mode  
Action  
Effect on Outputs  
Remark  
Immediate Diagnostic low  
ADC Monitor (Analog to Digital Set Outputs in Diagnostic low.  
ADC Inputs are Shorted  
Converter)  
Normal Mode with immediate  
recovery without CPU Reset  
- VDD < POR level =>  
Outputs high impedance  
Undervoltage Mode  
At Start-Up, wait Until VDD > 3V.  
During operation, CPU Reset after  
3 ms debouncing  
- POR level < VDD < 3 V =>  
Outputs in Diagnostic low.  
Firmware Flow Error  
CPU Reset  
CPU Reset  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
Immediate Diagnostic low  
Intelligent Watchdog  
(Observer)  
100% Hardware detection  
Read/Write Access out of  
physical memory  
Write Access to protected area CPU Reset  
(IO and RAM Words)  
Unauthorized entry in  
“SYSTEM” Mode  
VDD > 7 V  
100% Hardware detection  
100% Hardware detection  
100% Hardware detection  
CPU Reset  
Set Output High Impedance  
(Analog)  
Pull down resistive load =>  
Diag. Low  
Pull up resistive load =>  
Diag. High(21)  
VDD > 9.4 V  
Broken VSS  
Broken VDD  
IC is switched off (internal supply)  
CPU Reset on recovery  
Pull down resistive load =>  
Diag. Low  
Pull up resistive load =>  
Diag. High  
100% Hardware detection  
CPU Reset on recovery  
CPU Reset on recovery  
100% Hardware detection.  
Pull down load 10 kto  
meet Diag Low spec: < 4%  
VDD  
No valid diagnostic for  
VPULLUP = VDD.  
Pull down resistive load =>  
Diag. Low  
Pull up resistive load =>  
Diag. High  
Pull down resistive load =>  
Diag. Low  
Pull up resistive load =>  
Diag. High  
Pull up load (10k) to  
VPULLUP > 8 V to meet Diag  
Hi spec > 96% Vdd.  
3901090333  
Rev. Preliminary  
Page 29 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
16. Recommended Application Diagrams  
16.1. Analog Output Wiring with the MLX90333 in SOIC Package  
ECU  
5 V  
Vdd  
C1  
100nF  
GND  
Vdd  
Vss  
C3  
100nF  
MLX90333  
C6  
4.7nF  
C2  
100nF  
Test 1  
Vdig  
ADC  
NotUsed  
Out 2  
Test 2  
Out 1  
R1  
10k  
R2  
10k  
Out 1  
Out 2  
C4  
100nF  
C5  
4.7nF  
Figure 16 – Recommended wiring for the MLX90333 in SOIC8 package  
16.2. PWM Low Side Output Wiring  
ECU  
5 V  
Vdd  
C1  
100nF  
GND  
Vdd  
Vss  
C3  
4.7nF  
MLX90333  
C6  
5 V  
C2  
100nF  
Test 1  
Vdig  
4.7nF  
ADC  
NotUsed  
PWM 2  
Test 2  
R1  
1k  
R2  
1k  
PWM 1  
PWM 2  
PWM 1  
C4  
4.7nF  
C5  
4.7nF  
Figure 17 – Recommended wiring for a PWM Low Side Output configuration  
3901090333  
Rev. Preliminary  
Page 30 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
16.3. Analog Output Wiring with the MLX90333 in TSSOP Package  
VDD1  
ECU  
Vdd1  
GND1  
GND1  
GND1  
C2  
100nF  
C31  
100nF  
C32  
100nF  
C1  
100nF  
Vdig1  
Vss1  
Vdd1  
Out2_1  
Out1_1  
Out1_1  
Out2_1  
C4  
100nF  
MLX90316  
VDD2  
C62  
100nF  
Vdd2  
GND2  
Vdd2  
Vss2  
Out2_2  
Out1_2  
10K  
4.7nF  
ADC  
GND2  
Vdig2  
C5  
100nF  
C61  
100nF  
GND2  
Out1_2  
Out2_2  
Figure 18 – Recommended wiring for the MLX90333 in TSSOP16 package (dual die).  
16.4. Serial Protocol  
Generic schematics for single slave and dual slave applications are described.  
C1  
100nF  
SPI Master  
GND  
Vdd  
5 V  
Vdd  
Vss  
_SS  
MLX90333  
_SS  
C2  
100nF  
Test 0  
Vdig  
R4  
SCLK  
/SS  
Test 1  
MOSI  
R5  
SCLK  
R3  
R2  
MISO  
MOSI  
R1  
MOSI  
3.3V/5V  
Figure 19 – MLX90333 Single Die Serial Protocol Mode  
3901090333  
Rev. Preliminary  
Page 31 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
μCtrl  
Supply  
(V)  
5V  
5V  
3.3V  
5V  
3.3V  
Pull-up  
90316  
MOS  
Type  
Application Type  
Supply Supply R1 () R2 () R3 () R4 () R5 ()  
(V)  
5V  
3.3V  
3.3V  
5V  
(V)  
5V  
5V  
5V  
5V  
5V  
5V μCtrl w/o O.D. w/o 3.3V  
5V μCtrl w/o O.D. w/ 3.3V  
3.3V μCtrl w/o O.D. (23)  
5V μCtrl w/ O.D. w/o 3.3V (24)  
3.3V μCtrl w/ O.D.  
100  
150  
150  
100  
150  
1000  
1000  
1000  
1000  
1000  
20,000  
N/A  
N/A  
20,000  
N/A  
1000  
1000  
N/A  
1000  
N/A  
20,000  
20,000  
N/A  
20,000  
N/A  
BS170  
BS170  
BS170  
N/A  
3.3V  
N/A  
Table 3 - Resistor Values for Common Specific Applications  
23 μCtrl w/ O.D. : Micro-controller with open-drain capability (for instance NEC V850ES series)  
24 μCtrl w/o O.D. : Micro-controller without open-drain capability (like TI TMS320 series or ATMEL AVR )  
3901090333  
Rev. Preliminary  
Page 32 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
17. Standard information regarding manufacturability of Melexis  
products with different soldering processes  
Our products are classified and qualified regarding soldering technology, solderability and moisture  
sensitivity level according to following test methods:  
Reflow Soldering SMD’s (Surface Mount Devices)  
IPC/JEDEC J-STD-020  
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices  
(Classification reflow profiles according to table 5-2)  
EIA/JEDEC JESD22-A113  
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing  
(Reflow profiles according to table 2)  
Melexis Working Instruction 341901308  
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EN60749-20  
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat  
EIA/JEDEC JESD22-B106 and EN60749-15  
Resistance to soldering temperature for through-hole mounted devices  
Melexis Working Instruction 341901309  
Iron Soldering THD’s (Through Hole Devices)  
EN60749-15  
Resistance to soldering temperature for through-hole mounted devices  
Melexis Working Instruction 341901309  
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EIA/JEDEC JESD22-B102 and EN60749-21  
Solderability  
Melexis Working Instruction 3304312  
For all soldering technologies deviating from above mentioned standard conditions (regarding peak  
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests  
have to be agreed upon with Melexis.  
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance  
of adhesive strength between device and board.  
For more information on the lead free topic please see quality page at our website:  
http://www.melexis.com/quality.aspx  
18. ESD Precautions  
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).  
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.  
3901090333  
Rev. Preliminary  
Page 33 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
19. Package Information  
19.1. SOIC8 - Package Dimensions  
1.27 TYP  
NOTES:  
All dimensions are in millimeters (anlges in degrees).  
* Dimension does not include mold flash, protrusions or  
gate burrs (shall not exceed 0.15 per side).  
** Dimension does not include interleads flash or protrusion  
(shall not exceed 0.25 per side).  
*** Dimension does not include dambar protrusion.  
Allowable dambar protrusion shall be 0.08 mm total in  
excess of the dimension at maximum material condition.  
Dambar cannot be located on the lower radius of the foot.  
3.81  
3.99** 6.20**  
5.80  
4.80  
4.98*  
1.37  
1.57  
0.19  
0.25  
1.52  
1.72  
0°  
8°  
0.100  
0.250  
0.41  
1.27  
0.36  
0.46***  
19.2. SOIC8 - Pinout and Marking  
Marking :  
Part Number MLX90333 (3 digits)  
Die Version (3 digits)  
8
5
333  
Bxx  
333Bxx  
123456  
TOP  
Lot number (6 digits)  
123456  
YY  
WW  
Bottom  
Week Date code (2 digits)  
Year Date code (2 digits)  
1
4
3901090333  
Rev. Preliminary  
Page 34 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
19.3. SOIC8 - IMC Positionning  
CW  
8
7
6
5
CCW  
0.46 +/- 0.06  
COS  
1.25  
1.65  
1
2
3
4
1.96  
2.26  
SIN  
3901090333  
Rev. Preliminary  
Page 35 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
19.4. TSSOP16 - Package Dimensions  
0.65 TYP  
12O TYP  
0.20 TYP  
0.09 MIN  
1.0 DIA  
4.30  
4.50**  
6.4 TYP  
0.09 MIN  
1.0  
0O  
8O  
0.50  
0.75  
12O TYP  
1.0  
1.0 TYP  
0.85  
0.95  
4.90  
5.10*  
0.09  
0.20  
1.1 MAX  
0.05  
0.15  
0.19  
0.30***  
NOTES:  
All dimensions are in millimeters (anlges in degrees).  
* Dimension does not include mold flash, protrusions or gate burrs (shall not exceed 0.15 per side).  
** Dimension does not include interleads flash or protrusion (shall not exceed 0.25 per side).  
*** Dimension does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm total in excess of the dimension at  
maximum material condition. Dambar cannot be located on the lower radius of the foot.  
3901090333  
Rev. Preliminary  
Page 36 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
19.5. TSSOP16 - Pinout and Marking  
Vdig_1  
Vss_1  
Test1_1  
Out1_1/MOSI/MISO_1  
Out2_1/SCLK_1  
_SS_1  
Vdd_1  
Test0_1  
Test0_2  
_SS_2  
Vdd_2  
Out2_2/SCLK_2  
Out1_2/MOSI/MISO_2  
Test1_2  
Marking :  
Vss_2  
Part Number MLX90316 (3 digits)  
Vdig_2  
Die Version (3 digits)  
333  
Bxx  
Top  
123456  
Lot number (6 digits)  
YY  
WW  
Bottom  
Week Date code (2 digits)  
Year Date code (2 digits)  
19.6. TSSOP16 - IMC Positionning  
CW  
COS 2  
16  
9
Die 1  
Die 2  
SIN 2  
SIN 1  
0.30 +/- 0.06  
CCW  
1.95  
2.45  
1
8
1.84  
2.04  
COS 1  
2.76  
2.96  
3901090333  
Rev. Preliminary  
Page 37 of 38  
Data Sheet  
May 07  
MLX90333  
Triaxis 3D-Joystick Position Sensor  
20. Disclaimer  
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in  
its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the  
information set forth herein or regarding the freedom of the described devices from patent infringement.  
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,  
prior to designing this product into a system, it is necessary to check with Melexis for current information.  
This product is intended for use in normal commercial applications. Applications requiring extended  
temperature range, unusual environmental requirements, or high reliability applications, such as military,  
medical life-support or life-sustaining equipment are specifically not recommended without additional  
processing by Melexis for each application.  
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not  
be liable to recipient or any third party for any damages, including but not limited to personal injury,  
property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or  
consequential damages, of any kind, in connection with or arising out of the furnishing, performance or  
use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow  
out of Melexis’ rendering of technical or other services.  
© 2007 Melexis N.V. All rights reserved.  
For the latest version of this document, go to our website at  
www.melexis.com  
Or for additional information contact Melexis Direct:  
Europe, Africa, Asia:  
Phone: +32 1367 0495  
E-mail: sales_europe@melexis.com  
America:  
Phone: +1 603 223 2362  
E-mail: sales_usa@melexis.com  
ISO/TS 16949 and ISO14001 Certified  
3901090333  
Rev. Preliminary  
Page 38 of 38  
Data Sheet  
May 07  

相关型号:

MLX90333KGO-BCH-000-RE

SENSOR LINEAR ANALOG/PWM 16TSSOP
MELEXIS

MLX90333KGO-BCH-000-SP

SENSOR LINEAR ANALOG/PWM 16TSSOP
MELEXIS

MLX90333KGO-BCH-000-TU

SENSOR LINEAR ANALOG/PWM 16TSSOP
MELEXIS

MLX90333KGO-BCH-100-RE

SENSOR LINEAR SPI 16TSSOP
MELEXIS

MLX90333KGO-BCH-100-SP

SENSOR LINEAR SPI 16TSSOP
MELEXIS

MLX90333KGO-BCH-100-TU

SENSOR LINEAR SPI 16TSSOP
MELEXIS

MLX90333KGO-BCT-000-RE

SENSOR LINEAR ANALOG/PWM 16TSSOP
MELEXIS

MLX90333KGO-BCT-000-SP

SENSOR LINEAR ANALOG/PWM 16TSSOP
MELEXIS

MLX90333KGO-BCT-000-TU

SENSOR LINEAR ANALOG/PWM 16TSSOP
MELEXIS

MLX90333KGOBCH-000RE

Triaxis® Position Sensor
MELEXIS

MLX90333KGOBCH-000TU

Triaxis® Position Sensor
MELEXIS

MLX90333KGOBCH-100RE

Triaxis® Position Sensor
MELEXIS